VN750SM-E HIGH SIDE DRIVER Table 1. General Features Type VN750SM-E Figure 1. Package RDS(on) IOUT VCC 55 mΩ 6A 36 V CMOS COMPATIBLE INPUT ■ ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ PROTECTION AGAINST LOSS OF GROUND ■ VERY LOW STAND-BY CURRENT ■ REVERSE BATTERY PROTECTION (*) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ SO-8 c u d e t le o r P Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both in on and off state. The openload threshold is aimed at detecting the 5W/12V standard bulb as an openload fault in the on state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. o s b O - DESCRIPTION The VN750SM-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). ) s ( ct ) s t( u d o r P e t e l o s b O Table 2. Order Codes Package SO-8 Tube VN750SM-E Tape and Reel VN750SMTR-E Note: (*) See application schematic at page 9. Rev. 1 October 2004 1/20 VN750SM-E Figure 2. Block Diagram VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER INPUT OUTPUT LOGIC CURRENT LIMITER ON STATE OPENLOAD DETECTION STATUS OVERTEMPERATURE DETECTION e t le Table 3. Absolute Maximum Ratings Symbol VCC - VCC - Ignd IOUT - IOUT IIN ISTAT Parameter VESD ) s ( ct t e l o bs O 2/20 Ptot Tj Tstg u d o r P e - STATUS - OUTPUT EMAX o s b O - DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) - INPUT c u d OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION - VCC Maximum Switching Energy (L=1.3mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=10A) Power Dissipation TC=25°C Junction Operating Temperature Storage Temperature ) s t( o r P Value 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 Unit V V mA A A mA mA 4000 V 4000 V 5000 V 5000 V 90 mJ 4.2 Internally Limited - 55 to 150 W °C °C VN750SM-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins VCC OUTPUT OUTPUT VCC Connection / Pin Status Floating X To Ground 5 4 8 N.C. X X 1 N.C. STATUS INPUT GND Output X Input X Through 10KΩ resistor c u d Figure 4. Current and Voltage Conventions o r P IS VF IIN e t le VCC INPUT so ISTAT STATUS VIN (s) VSTAT IOUT b O - VCC OUTPUT GND ) s t( VOUT IGND t c u d o r P e Table 4. Thermal Data t e l o Symbol Rthj-lead bs Rthj-amb Parameter Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Value Max Max Unit 30 93 (1) °C/W 82(2) °C/W O (1) When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. (2) When mounted on a standard single-sided FR-4 board with 2 cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 3/20 VN750SM-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) Table 5. Power Symbol Parameter VCC Min. Typ. Max. Unit Operating Supply Voltage 5.5 13 36 V VUSD Undervoltage Shut-down 3 4 5.5 V VUSDhyst Undervoltage Shut-down Hysteresis VOV Overvoltage Shut-down RON On State Resistance IS Test Conditions Supply Current 0.5 36 55 mΩ IOUT=2A; VCC>8V 110 mΩ 25 µA Off State; VCC=13V; VIN=VOUT=0V 10 Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 10 20 On State; VCC=13V; VIN=5V; IOUT=0A 2 3.5 mA 50 µA Off State Output Current VIN=VOUT=0V IL(off2) Off State Output Current VIN=0V; VOUT=3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 0 Parameter Test Conditions e t le o s b O - td(on) Turn-on Delay Time RL=6.5Ω from VIN rising edge to VOUT=1.3V td(off) Turn-off Delay Time RL=6.5Ω from VIN falling edge to VOUT=11.7V dVOUT/ dt(on) Turn-on Voltage Slope dVOUT/ dt(off) Turn-off Voltage Slope t e l o uc Pr Min. µA ) s t( 0 µA od 5 µA 3 µA Typ. Max. Unit -75 Table 6. Switching (VCC =13V) o r P e V IOUT=2A; Tj=25°C; VCC>8V IL(off1) Symbol V 40 µs 30 µs RL=6.5Ω from VOUT=1.3V to VOUT=10.4V See relative diagram V/µs RL=6.5Ω from VOUT=11.7V to VOUT=1.3V See relative diagram V/µs c u d (t s) Table 7. Input Pin Symbol bs VIL O Parameter Low Level Input Current VIH Input High Level IIH High Level Input Current VI(hyst) Input Hysteresis Voltage 4/20 Min. Typ. Input Low Level IIL VICL Test Conditions Input Clamp Voltage VIN=1.25V Max. Unit 1.25 V 1 µA 3.25 V VIN=3.25V 10 0.5 IIN=1mA IIN=-1mA 6 µA V 6.8 -0.7 8 V V VN750SM-E ELECTRICAL CHARACTERISTICS (continued) Table 8. VCC - Output Diode Symbol VF Parameter Test Conditions Forward on Voltage Min. Typ. -IOUT=1.4A; Tj=150°C Max. Unit 0.6 V Max 0.5 10 Unit V µA 100 pF 8 V Table 9. Status Pin Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT=1.6mA Status Leakage Current Normal Operation; VSTAT=5V Status Pin Input Normal Operation; VSTAT=5V Capacitance ISTAT=1mA Status Clamp Voltage ISTAT=-1mA Min 6 Typ 6.8 -0.7 V Table 10. Protections (see note 1) Symbol TTSD TR Thyst tSDL Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Ilim Current limitation Vdemag Test Conditions Min 150 135 7 Tj>TTSD e t le 5.5V<VCC<36V Turn-off Output Clamp Voltage so IOUT=2A; VIN=0V; L=6mH Typ 175 6 VCC-41 Unit °C °C °C 20 µs c u d o r P ) s t( Max 200 15 10 VCC-48 12 A 12 A VCC-55 V b O - Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. ) s ( ct Table 11. Openload Detection Symbol IOL tDOL(on) VOL Parameter Openload ON State o r P e Detection Threshold Openload ON State s b O t e l o tDOL(off) du Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off VIN=5V Test Conditions Min Typ Max Unit 0.6 0.9 1.2 A 200 µs 3.5 V 1000 µs IOUT=0A VIN=0V 1.5 2.5 5/20 VN750SM-E Figure 5. OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL OVERTEMP STATUS TIMING Tj > Tjsh VIN VIN VSTAT VSTAT tDOL(off) tDOL(on) tSDL tSDL Table 12. Truth Table CONDITIONS INPUT OUTPUT STATUS Normal Operation L H L H H H Current Limitation L H H L X X H (Tj < TTSD) H (Tj > TTSD) L Overtemperature L H L L Undervoltage L H L L Overvoltage L H Output Voltage > VOL L H Output Current < IOL L H c u d (t s) c u d e t le o r P H L X X so b O - L L H H H H L H L H H L Figure 6. Switching time Waveforms o r P e VOUTn t e l o s b O 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% t VINn td(on) td(off) t 6/20 ) s t( VN750SM-E Table 13. Electrical Transient Requirements On VCC Pin TEST LEVELS ISO T/R 7637/1 Test Pulse I II III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω I TEST LEVELS RESULTS II III IV C C C C C C C C C C C E C C C C C E C C C C C E c u d ) s t( CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. e t le ) s ( ct o r P o s b O - u d o r P e t e l o s b O 7/20 VN750SM-E Figure 7. Waveforms NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VUSDhyst VCC VUSD INPUT LOAD VOLTAGE STATUS undefined c u d OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUT LOAD VOLTAGE STATUS e t le o s b O - OPEN LOAD with external pull-up INPUT ) s ( ct LOAD VOLTAGE VOUT>VOL VOL STATUS u d o OPEN LOAD without external pull-up r P e INPUT LOAD VOLTAGE t e l o STATUS s b O Tj INPUT LOAD CURRENT STATUS 8/20 TTSD TR OVERTEMPERATURE o r P ) s t( VN750SM-E Figure 8. Application Schematic +5V +5V VCC Rprot STATUS Dld µC Rprot INPUT OUTPUT GND RGND VGND DGND c u d GND PROTECTION REVERSE BATTERY NETWORK AGAINST o r P e s b O t e l o c u d o r P the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. e t le o s b O - Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of (t s) ) s t( LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 9/20 VN750SM-E VOUT=(VPU/(RL+RPU))RL<VOlmin. 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition Figure 9. Open Load detection in off state V batt. VPU c u d VCC ro RPU P e let DRIVER + LOGIC INPUT IL(off2) so OUT + b O R - STATUS (s) t c u d o r P e t e l o s b O 10/20 VOL GROUND RL ) s t( VN750SM-E Figure 10. Off State Output Current Figure 11. High Level Input Current Iih (uA) IL(off1) (uA) 7 3 2.5 6 Off state Vcc=36V Vin=Vout=0V 2 Vin=3.25V 5 1.5 4 1 3 0.5 2 0 1 -0.5 -1 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (ºC) Figure 12. Input Clamp Voltage 125 c u d Ilstat (uA) 0.05 8 150 175 Iin=1mA 0.04 7.6 7.4 Vstat=5V e t le 0.03 7.2 7 o s b O 0.02 6.8 6.6 ) s t( o r P 7.8 0.01 6.4 6.2 6 -50 -25 0 25 50 75 Tc (°C) o r P e 100 125 c u d (t s) 150 Vstat (V) 0.6 bs -50 -25 0 25 50 75 100 125 150 175 125 150 175 Tc (°C) Figure 15. Status Clamp Voltage Vscl (V) 8 t e l o 0.5 0 175 Figure 13. Status Low Output Voltage O 100 Figure 14. Status Leakage Current Vicl (V) 0.4 75 Tc (ºC) 7.8 Istat=1mA 7.6 Istat=1.6mA 7.4 7.2 7 0.3 6.8 0.2 6.6 6.4 0.1 6.2 6 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 -50 -25 0 25 50 75 100 Tc (°C) 11/20 VN750SM-E Figure 16. On State Resistance Vs Tcase Figure 17. On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 140 120 110 120 Iout=2A Iout=2A Vcc=8V; 13V; 36V 100 100 Tc= 150°C 90 80 80 Tc= 125°C 70 60 60 50 40 Tc= 25°C 40 Tc= - 40°C 20 30 20 0 -50 -25 0 25 50 75 100 125 150 5 175 10 15 20 25 30 Figure 18. Openload On State Detection Threshold 40 ) s t( Figure 20. Openload Off State Voltage Detection Threshold Iol (A) c u d Vol (V) 5 1.2 o r P 1.15 4.5 Vcc=13V Vin=5V 1.1 35 Vcc (V) Tc (ºC) Vin=0V 1.05 4 e t le 1 3.5 0.95 0.9 o s b O 3 0.85 2.5 0.8 0.75 2 0.7 ) s ( ct 0.65 0.6 -50 -25 0 25 50 75 100 Tc (ºC) 125 150 u d o 3 O 0 25 50 75 100 125 150 175 Tc (ºC) 2.8 2.6 2.4 bs 3.2 -25 Vil (V) t e l o 3.4 -50 Figure 21. Input Low Level r P e Vih (V) 1 175 Figure 19. Input High Level 3.6 1.5 2.2 2 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2 1 -50 -25 0 25 50 75 Tc (ºC) 12/20 100 125 150 175 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 VN750SM-E Figure 22. Turn-on Voltage Slope Figure 25. Turn-off Voltage Slope dVout/dt/(on) (V/ms) dVout/dt(off) (V/ms) 1000 500 900 450 Vcc=13V Rl=6.5Ohm 800 Vcc=13V Rl=6.5Ohm 400 700 350 600 300 500 250 400 200 300 150 200 100 100 50 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 Tc (ºC) Figure 23. Overvoltage Shutdown Figure 26. ILIM Vs Tcase Vov (V) Ilim (A) 50 20 48 18 46 16 44 14 42 12 40 10 c u d Vcc=13V 38 e t le o r P o s b O 8 36 ) s t( 6 34 4 32 30 -50 -25 0 25 50 75 Tc (°C) o r P e 100 125 c u d (t s) 150 175 2 0 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) Figure 24. Input Hysteresis Voltage Vhyst (V) 1.5 t e l o 1.4 1.3 s b O 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) 13/20 VN750SM-E Figure 27. SO-8 Maximum turn off current versus load inductance ILMAX (A) 100 10 A B c u d C 1 0.1 e t le 1 10 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC ) s ( ct Conditions: VCC=13.5V t e l o 100 o s b O - Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. u d o r P e VIN, IL o r P ) s t( Demagnetization Demagnetization Demagnetization s b O t 14/20 VN750SM-E SO-8 Thermal Data Figure 28. SO-8 PC Board ) s t( Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.14cm2, 2cm2). Figure 29. Rthj-amb Vs PCB copper area in open box free air condition e t le c u d o r P o s b O - SO8 at 2 pins connected to TAB RTHj_amb (ºC/W) 110 ) s ( ct 105 100 u d o 95 r P e 90 t e l o 85 O bs 80 75 70 0 0.5 1 1.5 2 2.5 PCB Cu heatsink area (cm^2) 15/20 VN750SM-E Figure 30. SO-8 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 0.5 cm2 100 2 cm2 10 1 c u d 0.1 0.01 0.0001 0.001 0.01 Figure 31. Thermal fitting model of a single channel HSD in SO-8 ) s ( ct u d o Tj C1 C2 R1 R2 s b O t e l o Pd 16/20 r P e C3 C4 C5 C6 R3 R4 R5 R6 T_amb e t le 0.1 1 Time (s) 10 o r P 100 ) s t( 1000 o s b O - Pulse calculation formula Z THδ = R T H ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 14. Thermal Parameter R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6 Area/island (cm2) (°C/W) (°C/W) ( °C/W) (°C/W) (°C/W) (°C/W) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) 0.5 0.05 0.8 3.5 21 16 58 0.006 2.60E-03 0.0075 0.045 0.35 1.05 2 28 2 VN750SM-E PACKAGE MECHANICAL Table 15. SO-8 Mechanical Data millimeters Symbol Min Typ Max A 1.75 a1 0.1 0.25 a2 1.65 a3 0.65 0.85 b 0.35 0.48 b1 0.19 0.25 C 0.25 c1 0.5 45 (typ.) D 4.8 E 5.8 e 5 6.2 1.27 e3 c u d 3.81 F 3.8 L 0.4 4 M S 8 (max.) L1 e t le 0.8 Figure 32. SO-8 Package Dimensions ) s ( ct o r P ) s t( 1.27 0.6 1.2 o s b O - u d o r P e t e l o s b O 17/20 VN750SM-E Figure 33. SO-8 TUBE SHIPMENT (no suffix) B Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C A 100 2000 532 3.2 6 0.6 All dimensions are in mm. Figure 34. SO-8 TAPE AND REEL SHIPMENT (suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) e t le ) s ( ct TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing o r P e t e l o s b O du W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. o s b O - 2500 2500 330 1.5 13 20.2 12.4 60 18.4 o r P c u d ) s t( All dimensions are in mm. 12 4 8 1.5 1.5 5.5 4.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 18/20 500mm min VN750SM-E REVISION HISTORY Table 16. Revision History Date Revision Oct. 2004 1 Description of Changes - First Issue. c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o s b O 19/20 VN750SM-E c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. s b O The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20