STMICROELECTRONICS VNQ690SPTR-E

VNQ690SP-E
QUAD CHANNEL HIGH SIDE DRIVER
Figure 1. Package
Table 1. General Features
Type
VNQ690SP-E
RDS(on)
Iout
VCC
90mΩ (*)
10A
36V
(*) Per each channel
■ OUTPUT
CURRENT PER CHANNEL: 10A
■ CMOS COMPATIBLE INPUTS
■ OPEN LOAD DETECTION (OFF STATE)
■ UNDERVOLTAGE & OVERVOLTAGE
n SHUT- DOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUT-DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
n LOSS OF GROUND & LOSS OF VCC
■ REVERSE BATTERY PROTECTION (**)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
10
1
PowerSO-10™
DESCRIPTION
The VNQ690SP-E is a monolithic device made by
using|
STMicroelectronics
VIPower
M0-3
Technology, intended for driving resistive or
inductive loads with one side connected to ground.
This device has four independent channels.
Built-in thermal shut down and output current
limitation protect the chip from over temperature
and short circuit.
Table 2. Order Codes
Package
PowerSO-10™
Tube
VNQ690SP-E
Tape and Reel
VNQ690SPTR-E
Note: (**) See application schematic at page 9
Rev. 1
October 2004
1/20
VNQ690SP-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
UNDERVOLTAGE
DEMAG 1
DRIVER 1
OUTPUT 1
ILIM1
INPUT 1
DEMAG 2
INPUT 2
DRIVER 2
OUTPUT 2
ILIM2
INPUT 3
LOGIC
DEMAG 3
DRIVER 3
INPUT 4
STATUS
OUTPUT 3
ILIM3
STATUS
DEMAG 4
DRIVER 4
OUTPUT 4
OVERTEMP. 1
ILIM4
OVERTEMP. 2
OVERTEMP. 3
OPEN LOAD
OFF-STATE
OVERTEMP. 4
GND
Table 3. Absolute Maximum Ratings
Symbol
Parameter
VCC
Supply voltage (continuous)
-VCC
Reverse supply voltage (continuous)
IOUT
Output current (continuous), per each channel
Value
Unit
41
V
-0.3
V
Internally limited
A
-15
A
IR
Reverse output current (continuous), per each channel
IIN
Input current
+/- 10
mA
ISTAT
Status current
+/- 10
mA
IGND
Ground current at TC<25°C (continuous)
-200
mA
- INPUT
4000
V
- STATUS
4000
V
- OUTPUT
5000
V
- VCC
5000
V
78
W
53
mJ
Junction operating temperature
-40 to 150
°C
Storage temperature
-65 to 150
°C
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
VESD
Ptot
EMAX
Tj
Tstg
2/20
Power dissipation at TC=25°C
Maximum Switching Energy
(L=0.38mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=14A)
VNQ690SP-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
STATUS
INPUT 4
INPUT 3
INPUT 2
INPUT 1
6
7
8
9
5
4
3
10
1
GND
OUTPUT 4
OUTPUT 3
OUTPUT 2
OUTPUT 1
2
11
VCC
Connection / Pin Status
Floating
X
To Ground
N.C.
X
X
Output
X
Input
X
Through 10KΩ resistor
Figure 4. Current and Voltage Conventions
IS
IIN1
INPUT 1 VCC OUTPUT 1
IIN2
VIN1
IIN3
IOUT2
IOUT3
VCC
VOUT1
VOUT2
OUTPUT 3
INPUT 3
VOUT3
IOUT4
VIN3 IIN4
OUTPUT 4
INPUT 4
VIN4
VF1 (*)
OUTPUT 2
INPUT 2
VIN2
IOUT1
STATUS
VSTAT
ISTAT
VOUT4
GND
IGND
(*) VFn = VCCn - VOUTn during reverse battery condition
Table 4. Thermal Data
Symbol
Rthj-case
Rtj-amb
Parameter
Thermal resistance junction-case (MAX) per channel
Thermal resistance junction-ambient (MAX)
Value
2
52 (1)
37 (2)
Unit
°C/W
°C/W
Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm² of Cu (at least 35 µm thick)
Note: 2. When mounted on a standard single-sided FR-4 board with 6cm² of Cu (at least 35 µm thick).
3/20
VNQ690SP-E
ELECTRICAL CHARACTERISTICS
(VCC=6V up to 24V; -40°C<Tj<150°C unless otherwise specified)
Table 5. Power (Per each channel)
Symbol
Parameter
VCC (#)
Test Conditions
Min.
Typ.
Max.
Unit
Operating supply voltage
6
13
36
V
VUSD (#)
Undervoltage shutdown
3.5
4.6
6
V
VUVhyst (#)
Undervoltage hysteresis
0.2
1
V
VOV (#)
Overvoltage shutdown
36
V
VOVhyst (#)
Overvoltage hysteresis
0.25
V
Off state; VIN=VOUT =0V; VCC=13.5V
IS (#)
RON
Supply current
On state resistance
µA
12
40
Tj=25°C
12
25
µA
On state; VIN=3.25V; 9V<VCC<18V
6
12
mA
IOUT=1A; Tj=25°C; 9V<VCC<18V
90
mΩ
IOUT=1A, Tj=150°C; 9V<VCC<18V
180
mΩ
0
50
µA
-75
0
µA
Off state; VIN=VOUT =0V; VCC=13.5V
IL(off1)
Off State Output Current
VIN=VOUT=0V
IL(off2)
Off State Output Current
VIN=0V; VOUT =3.5V
IL(off3)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =125°C
5
µA
IL(off4)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =25°C
3
µA
Note: (#) Per device.
Table 6. Protection (see note 1)
(per each channel)
Symbol
Min.
Typ.
Max.
Unit
Shutdown temperature
150
170
200
°C
TR
Reset temperature
135
Thyst
Thermal hysteresis
7
15
ILIM
DC Short circuit current
10
14
Vdemag
Turn-off output voltage
clamp
TTSD
VSTAT
Parameter
Status low output
voltage
Test Conditions
°C
25
°C
20
A
20
A
VCC-55
V
ISTAT =1.6mA
0.5
V
9V<VCC<36V
6V<VCC<36V
IOUT =2A; VIN=0V; L=6mH
VCC-41
VCC-48
ILSTAT
Status leakage current
Normal operation; VSTAT=5V
10
µA
CSTAT
Status pin input
capacitance
Normal operation; VSTAT=5V
25
pF
VSCL
Status clamp voltage
8
V
ISTAT =1mA
ISTAT =-1mA
6
6.8
-0.7
V
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles
4/20
VNQ690SP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 7. VCC - Output Diode
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT=0.9A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
Typ
30
30
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
Typ
Max
Unit
20
µs
3.5
V
300
µs
Max
1.25
Unit
V
V
V
µA
µA
V
Table 8. Switching (V CC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on delay time
Turn-off delay time
Test Conditions
RL=13Ω channels 1,2,3,4
RL=13Ω channels 1,2,3,4
dVOUT /dt(on) Turn-on voltage slope
RL=13Ω channels 1,2,3,4
dVOUT /dt(off) Turn-off voltage slope
RL=13Ω channels 1,2,3,4
Min
V/µs
V/µs
Table 9. Openload Detection (off state) per each channel
Symbol
tSDL
VOL
TDOL
Parameter
Status Delay
Openload Voltage
Detection Threshold
Openload Detection Delay
at Turn Off
Test Conditions
See Figure 1 (Openload detection
reading must be performed after TDOL).
Min
VIN=0V
1.5
2.5
VCC=18V
Table 10. Logic Input
Symbol
VIL
VIH
VHYST
IIH
IIL
VICL
Parameter
Input Low Level Voltage
Input High Level Voltage
Input Hysteresis Voltage
Input high level voltage
Input Current
Input Clamp Voltage
Test Conditions
Min
Typ
3.25
0.5
VIN=3.25V
VIN=1.25V
IIN=1mA
10
1
6
IIN=-1mA
6.8
8
-0.7
V
Figure 5. Status Timing Waveforms
OPENLOAD STATUS TIMING
OVERTEMP STATUS TIMING
VIN
VIN
VSTAT
VSTAT
tDOL
tSDL
tSDL
tSDL
5/20
VNQ690SP-E
Table 11. Truth Table (Per each channel)
CONDITIONS
INPUT
Normal Operation
Overtemperature
Undervoltage
Overvoltage
Current Limitation
Output Voltage > VOL
OUTPUT
SENSE
L
L
H
H
H
H
L
L
H
H
L
L
L
L
X
H
L
X
L
L
H
H
L
H
L
L
H
H
X
H
L
H
L
H
H
H
Figure 6. Switching Characteristics
VLOAD
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VIN
td(on)
tr
td(off)
t
6/20
VNQ690SP-E
Table 12. Electrical Transient Requirements
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
-50 V
+50 V
-50 V
+50 V
-5 V
-75 V
+75 V
-100 V
+75 V
-6 V
-100 V
+100 V
-150 V
+100 V
-7 V
ISO T/R
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
Test Levels Result
7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
C
C
C
C
C
C
II
C
C
C
C
C
E
III
C
C
C
C
C
E
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
7/20
VNQ690SP-E
Figure 7. Waveforms
NORMAL OPERATION
INPUTn
LOAD VOLTAGEn
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUTn
LOAD VOLTAGEn
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUTn
LOAD VOLTAGEn
STATUS
OPENLOAD with external pull-up
INPUTn
LOAD VOLTAGEn
VOL
STATUS
tDOL
Tj
INPUTn
LOAD CURRENTn
STATUS
8/20
TTSD
TR
OVERTEMPERATURE
tDOL
VNQ690SP-E
Figure 8. Application Schematic
+5V
+5V
VCC
Rprot
STATUS
Dld
Rprot
INPUT1
OUTPUT1
µC
Rprot
INPUT2
OUTPUT2
Rprot
INPUT3
OUTPUT3
INPUT4
OUTPUT4
Rprot
GND
RGND
VGND
DGND
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
9/20
VNQ690SP-E
µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
10/20
VNQ690SP-E
Figure 12. High Level Input Current
Figure 9. Off State Output Current
IL(off1) (µA)
Iih (µA)
3.5
5
3.25
4.5
Vin=3.25V
Vcc=24V
Vout=0V
3
4
2.75
3.5
2.5
3
2.25
2.5
2
2
1.75
1.5
1.5
1
1.25
0.5
1
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
150
175
Tc (ºC)
Figure 13. Input Low Level
Figure 10. Input High Level
Vih (V)
Vil (V)
4
2.6
3.75
2.4
3.5
2.2
3.25
2
3
1.8
2.75
1.6
2.5
1.4
2.25
1.2
2
1
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
Tc (ºC)
Figure 11. Input Clamp Voltage
Figure 14. Input Hysteresis Voltage
Vicl (V)
Vihyst (V)
8
1.4
1.3
7.75
Iin=1mA
1.2
7.5
1.1
7.25
1
7
0.9
6.75
0.8
6.5
0.7
6.25
0.6
6
0.5
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
-50
-25
0
25
50
75
100
125
Tc (ºC)
11/20
VNQ690SP-E
Figure 15. Overvoltage Shutdown
Figure 18. Openload Off State Detection
Threshold
Vov (V)
Vol (V)
50
5
47.5
4.5
Vin=0V
45
4
42.5
3.5
3
40
2.5
37.5
2
35
1.5
32.5
1
0.5
30
-50
-25
0
25
50
75
100
125
150
175
0
-50
Tc (ºC)
-25
0
25
50
75
100
125
150
175
150
175
Tc (ºC)
Figure 16. Turn-on Voltage Slope
Figure 19. Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
500
600
450
550
Vcc=13V
RI=13Ohm
400
Vcc=13V
RI=13Ohm
500
350
450
300
400
250
350
200
300
150
250
100
200
50
150
0
-50
-25
0
25
50
75
100
125
150
175
100
-50
-25
0
25
50
Tc (ºC)
75
100
125
Tc (ºC)
Figure 17. ILIM Vs Tcase
Figure 20. On State Resistance Vs VCC
Ilim (A)
Ron (mOhm)
25
160
Tc= 150ºC
22.5
140
Vcc=13V
20
120
17.5
Iout=1A
100
15
80
12.5
Tc= 25ºC
10
60
7.5
40
Tc= -40ºC
5
20
-50
-25
0
25
50
75
Tc (ºC)
12/20
100
125
150
175
0
5
10
15
20
Vcc (V)
25
30
35
40
VNQ690SP-E
Figure 21. On State Resistance Vs Tcase
Figure 23. Status Clamp Voltage
Ron (mOhm)
Vscl (V)
160
7.4
7.3
140
Iout=1A
Vcc=9V; 18V & 36V
120
Istat=1mA
7.2
100
7.1
80
7
60
6.9
40
6.8
20
6.7
6.6
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
Tc (ºC)
Tc (ºC)
Figure 22. Status Leakage Current
Figure 24. Status Low Output Voltage
Ilstat (µA)
Vstat (V)
0.05
0.8
0.045
0.7
Vstat=5V
Istat=1.6mA
0.04
0.6
0.035
0.5
0.03
0.4
0.025
0.3
0.02
0.2
0.015
0.1
0.01
0
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
13/20
VNQ690SP-E
Figure 25. Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.01
0.1
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
1
L(mH)
10
100
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/20
VNQ690SP-E
PowerSO-10™ Thermal Data
Figure 26. PowerSO-10™ PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Figure 27. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
15/20
VNQ690SP-E
Figure 28. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
Footprint
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
Time (s)
Figure 29. Thermal fitting model of a double
channel HSD in PowerSO-10
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Tj_1
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd1
Tj_2
C1
C2
R1
R2
Pd2
T_amb
16/20
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.05
0.3
0.3
0.8
12
37
0.001
5.00E-03
0.02
0.3
0.75
3
6
22
5
VNQ690SP-E
PACKAGE MECHANICAL
Table 14. PowerSO-10™ Mechanical Data
millimeters
Symbol
Min
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
a
α (*)
Typ
Max
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
1.27
1.25
1.20
13.80
13.85
1.35
1.40
14.40
14.35
0.50
1.20
0.80
0º
2º
1.80
1.10
8º
8º
Note: (*) Muar only POA P013P
Figure 30. PowerSO-10™ Package Dimensions
B
0.10 A B
10
H
E
E2
E4
1
SEATING
PLANE
e
B
DETAIL "A"
h
A
C
0.25
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
P095A
17/20
VNQ690SP-E
Figure 31. PowerSO-10™ Suggested Pad Layout And Tube Shipment (No Suffix)
CASABLANCA
14.6 - 14.9
MUAR
B
10.8 - 11
C
6.30
C
A
A
B
0.67 - 0.73
1
9.5
2
3
4
5
10
9
8
7
6
0.54 - 0.6
All dimensions are in mm.
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
A
B
C (± 0.1)
Casablanca
50
1000
532
10.4 16.4
0.8
Muar
50
1000
532
4.9 17.2
0.8
Figure 32. Tape And Reel Shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
24
4
24
1.5
1.5
11.5
6.5
2
End
All dimensions are in mm.
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
18/20
500mm min
VNQ690SP-E
REVISION HISTORY
Date
Oct. 2004
Revision
1
- First Issue.
Description of Changes
19/20
VNQ690SP-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20