Freescale Semiconductor Data Sheet: Technical Data Document Number: MC9S08PA60 Rev. 1, 10/9/2012 MC9S08PA60 MC9S08PA60 Series Support: MC9S08PA60 and MC9S08PA32 Key features • 8-Bit S08 central processor unit (CPU) – Up to 20 MHz bus at 2.7 V to 5.5 V across temperature range of -40 °C to 105 °C – Supporting up to 40 interrupt/reset sources – Supporting up to four-level nested interrupt – On-chip memory – Up to 60 KB flash read/program/erase over full operating voltage and temperature – Up to 256 byte EEPROM; 2-byte erase sector; program and erase while executing flash – Up to 4096 byte random-access memory (RAM) – Flash and RAM access protection • Power-saving modes – One low-power stop mode; reduced power wait mode – Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode • Clocks – Oscillator (XOSC) - loop-controlled Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 39.0625 kHz or 4 MHz to 20 MHz – Internal clock source (ICS) - containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allowing 1% deviation across temperature range of 0 °C to 70 °C and 2% deviation across temperature range of -40 °C to 105 °C; up to 20 MHz • System protection – Watchdog with independent clock source – Low-voltage detection with reset or interrupt; selectable trip points – Illegal opcode detection with reset – Illegal address detection with reset • Development support – Single-wire background debug interface – Breakpoint capability to allow three breakpoints setting during in-circuit debugging – On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes • Peripherals – ACMP - one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering – ADC - 16-channel, 12-bit resolution; 2.5 µs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger – CRC - programmable cyclic redundancy check module – FTM - three flex timer modulators modules including one 6-channel and two 2-channel ones; 16-bit counter; each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode – IIC - One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing; supporting SMBUS and PMBUS – MTIM - Two modulo timers with 8-bit prescaler and overflow interrupt – RTC - 16-bit real timer counter (RTC) – SCI - three serial communication interface (SCI/ UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support – SPI - one 8-bit and one 16-bit serial peripheral interface (SPI) modules; full-duplex or singlewire bidirectional; master or slave mode Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2011–2012 Freescale Semiconductor, Inc. • Input/Output – 57 GPIOs including one output-only pin – Two 8-bit keyboard interrupt modules (KBI) – Two true open-drain output pins – Eight, ultra-high current sink pins supporting 20 mA source/sink current • Package options – 64-pin LQFP; 64-pin QFP – 48-pin LQFP – 44-pin LQFP – 32-pin LQFP MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 2 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................4 5.2.1 Control timing........................................................13 1.1 Determining valid orderable parts......................................4 5.2.2 Debug trace timing specifications.........................14 2 Part identification......................................................................4 5.2.3 FTM module timing...............................................15 2.1 Description.........................................................................4 2.2 Format...............................................................................4 5.3 Thermal specifications.......................................................16 5.3.1 Thermal characteristics.........................................16 2.3 Fields.................................................................................4 6 Peripheral operating requirements and behaviors....................17 2.4 Example............................................................................5 6.1 External oscillator (XOSC) and ICS characteristics...........17 3 Parameter Classification...........................................................5 6.2 NVM specifications............................................................19 4 Ratings......................................................................................5 6.3 Analog...............................................................................20 4.1 Thermal handling ratings...................................................5 6.3.1 ADC characteristics...............................................20 4.2 Moisture handling ratings..................................................6 6.3.2 Analog comparator (ACMP) electricals.................23 4.3 ESD handling ratings.........................................................6 4.4 Voltage and current operating ratings...............................6 6.4 Communication interfaces.................................................24 6.4.1 SPI switching specifications..................................24 5 General.....................................................................................7 7 Dimensions...............................................................................27 5.1 Nonswitching electrical specifications...............................7 7.1 Obtaining package dimensions.........................................27 5.1.1 DC characteristics.................................................7 8 Pinout........................................................................................28 5.1.2 Supply current characteristics...............................12 8.1 Signal multiplexing and pin assignments...........................28 5.1.3 EMC performance.................................................13 8.2 Device pin assignment......................................................31 5.2 Switching specifications.....................................................13 9 Revision history.........................................................................34 MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 3 Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PA60 and PA32. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: MC 9 S08 PA AA B CC 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values MC Qualification status • MC = fully qualified, general market flow 9 Memory S08 Core • S08 = 8-bit CPU PA Device family • PA AA Approximate flash size in KB • 60 = 60 KB • 32 = 32 KB B Temperature range (°C) • V = –40 to 105 Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 4 Freescale Semiconductor, Inc. Parameter Classification Field CC Description Package designator Values • • • • • QH = 64-pin QFP LH = 64-pin LQFP LF = 48-pin LQFP LD = 44-pin LQFP LC = 32-pin LQFP 2.4 Example This is an example part number: MC9S08PA60VQH 3 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 1. Parameter Classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 5 Ratings 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes 1 VHBM Electrostatic discharge voltage, human body model -6000 +6000 V VCDM Electrostatic discharge voltage, charged-device model -500 +500 V Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 4.4 Voltage and current operating ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor associated with the pin is enabled. Symbol Description Min. Max. Unit VDD Supply voltage –0.3 5.8 V IDD Maximum current into VDD — 120 mA –0.3 VDD + 0.3 V VDIO Digital input voltage (except RESET, EXTAL, and XTAL) Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 6 Freescale Semiconductor, Inc. General Symbol VAIO ID VDDA Description Min. Max. Analog1, –0.3 VDD + 0.3 V –25 25 mA VDD – 0.3 VDD + 0.3 V RESET, EXTAL, and XTAL input voltage Instantaneous maximum current single pin limit (applies to all port pins) Analog supply voltage Unit 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 Nonswitching electrical specifications 5.1.1 DC characteristics This section includes information about power supply requirements and I/O pin characteristics. Table 2. DC characteristics Symbol C — — VOH P Min Typical1 Max Unit — 2.7 — 5.5 V 5 V, Iload = -2 mA VDD - 1.5 — — V 3 V, Iload = -0.6 mA VDD - 0.8 — — V High current drive pins, high-drive strength 5 V, Iload = -20 mA VDD - 1.5 — — V 3 V, Iload = -6 mA VDD - 0.8 — — V Max total IOH for all ports 5V — — -100 mA 3V — — -60 — — 1.5 V 3 V, Iload = 0.6 mA — — 0.8 V 5 V, Iload =20 mA — — 1.5 V 3 V, Iload = 6 mA — — 0.8 V 5V — — 100 mA 3V — — 60 Descriptions Operating voltage Output high voltage All I/O pins, low-drive strength C P C IOHT VOL D P Output high current Output low voltage All I/O pins, low-drive 5 V, Iload = 2 strength mA C P High current drive pins, high-drive strength2 C IOLT D Output low current Max total IOL for all ports Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 7 Nonswitching electrical specifications Table 2. DC characteristics (continued) Symbol C VIH P VIL P Min Typical1 Max Unit VDD>4.1V 0.70 × VDD — — V VDD>2.7V 0.85 × VDD — — VDD>4.1V — — 0.35 × VDD VDD>2.7V — — 0.30 × VDD Descriptions Input high voltage All digital inputs Input low voltage All digital inputs V Vhys C Input hysteresis All digital inputs — 0.06 × VDD — — mV |IIn| P Input leakage current All input only pins (per pin) VIN = VDD or VSS — 0.1 1 µA |IOZ| P Hi-Z (offstate) leakage current All input/output (per pin) VIN = VDD or VSS — 0.1 1 µA |IOZTOT| C Total leakage All input only and I/O VIN = VDD or combined for VSS all inputs and Hi-Z pins — — 2 µA RPU P Pullup resistors All digital inputs, when enabled (all I/O pins other than PTA5/ IRQ/TCLK/RESET — 17.5 — 52.5 kΩ RPU3 P Pullup resistors PTA5/IRQ/TCLK/ RESET — 17.5 — 52.5 kΩ IIC D DC injection current4, 5, 6 Single pin limit VIN < VSS, VIN > VDD -0.2 — 2 mA -5 — 25 Total MCU limit, includes sum of all stressed pins CIn C Input capacitance, all pins — — — 8 pF VRAM C RAM retention voltage — 2.0 — — V 1. Typical values are measured at 25 °C. Characterized, not tested. 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support ultra high current output. 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin. 4. All functional non-supply pins, except for PTA5, are internally clamped to VSS and VDD. 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one. 6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption). Table 3. LVD and POR Specification Symbol C VPOR D VLVDH C Description POR re-arm voltage1 Falling low-voltage detect threshold - high range (LVDV = 1)2 Min Typ Max Unit 1.5 1.75 2.0 V 4.2 4.3 4.4 V Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 8 Freescale Semiconductor, Inc. Nonswitching electrical specifications Table 3. LVD and POR Specification (continued) Symbol C VLVW1H C VLVW2H C VLVW3H C VLVW4H C VHYSH C VLVDL C VLVDW1L C VLVDW2L C VLVDW3L C VLVDW4L Description Min Typ Max Unit Level 1 falling (LVWV = 00) 4.3 4.4 4.5 V Level 2 falling (LVWV = 01) 4.5 4.5 4.6 V Level 3 falling (LVWV = 10) 4.6 4.6 4.7 V Level 4 falling (LVWV = 11) 4.7 4.7 4.8 V High range low-voltage detect/warning hysteresis — 100 — mV Falling low-voltage detect threshold - low range (LVDV = 0) 2.56 2.61 2.66 V Level 1 falling (LVWV = 00) 2.62 2.7 2.78 V Level 2 falling (LVWV = 01) 2.72 2.8 2.88 V Level 3 falling (LVWV = 10) 2.82 2.9 2.98 V C Level 4 falling (LVWV = 11) 2.92 3.0 3.08 V VHYSDL C Low range low-voltage detect hysteresis — 40 — mV VHYSWL C Low range low-voltage warning hysteresis — 80 — mV VBG P Buffered bandgap output 3 1.14 1.16 1.18 V Falling lowvoltage warning threshold high range Falling lowvoltage warning threshold low range 1. Maximum is highest voltage that POR is guaranteed. 2. Rising thresholds are falling threshold + hysteresis. 3. voltage Factory trimmed at VDD = 5.0 V, Temp = 25 °C MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 9 Nonswitching electrical specifications 0.7 0.6 VDD=3V 0.5 VDD-VOH(V) 0.4 VDD=5V 0.3 0.2 0.1 0 1 2 3 4 IOH(mA) 5 6 Figure 1. Typical IOH Vs. VDD-VOH 0.8 0.7 VDD=3V 0.6 0.5 VDD=5V VDD-VOH(V) 0.4 0.3 0.2 0.1 0 5 10 15 IOH(mA) 20 25 Figure 2. Typical IOH Vs. VDD-VOH (High current drive) MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 10 Freescale Semiconductor, Inc. Nonswitching electrical specifications 0.6 VDD=3V 0.5 0.4 VDD=5V VOL(V) 0.3 0.2 0.1 0 1 2 3 4 IOL(mA) 5 6 Figure 3. Typical IOL Vs. VOL 0.7 0.6 VDD=3V 0.5 VOL(V) 0.4 VDD=5V 0.3 0.2 0.1 0 5 10 15 IOL(mA) 20 25 Figure 4. Typical IOL Vs. VOL (High current drive) MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 11 Nonswitching electrical specifications 5.1.2 Supply current characteristics This section includes information about power supply current in various operating modes. Table 4. Supply current characteristics Num C Parameter Symbol Bus Freq VDD (V) Typical1 Max Unit Temp 1 C Run supply current FEI mode, all modules on; run from flash RIDD 20 MHz 5 12.6 — mA -40 to 105 °C 10 MHz 7.2 — 1 MHz 2.4 — 9.6 — mA -40 to 105 °C mA -40 to 105 °C mA -40 to 105 °C mA -40 to 105 °C µA -40 to 105 °C C 2 C 20 MHz C 10 MHz 6.1 — 1 MHz 2.1 — 10.5 — 10 MHz 6.2 — 1 MHz 2.3 — 7.4 — C C 3 5 C 10 MHz 5.0 — 1 MHz 2.0 — P Run supply current FBE mode, all modules on; run from RAM RIDD 20 MHz 3 12.1 14.8 10 MHz 5 6.5 — 1 MHz 1.8 — 9.1 11.8 P 20 MHz C 10 MHz 5.5 — 1 MHz 1.5 — 9.8 12.3 5.4 — P Run supply current FBE mode, all modules off & gated; run from RAM RIDD 20 MHz 1.6 — 6.9 9.2 10 MHz 4.4 — 1 MHz 1.4 — 7.8 — 10 MHz 4.5 — 1 MHz 1.3 — 5.1 — 10 MHz 3.5 — 1 MHz 1.2 — C Wait mode current FEI mode, all modules on WIDD C C C 20 MHz 20 MHz Stop3 mode supply current no clocks active (except 1 kHz LPO clock)2, 3 5 1 MHz 20 MHz C 3 10 MHz P C 6 20 MHz 20 MHz C 5 RIDD C C 4 Run supply current FEI mode, all modules off & gated; run from flash 3 S3IDD 3 5 3 — 5 3.8 — — 3 3 — -40 to 105 °C Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 12 Freescale Semiconductor, Inc. Switching specifications Table 4. Supply current characteristics (continued) Num C Parameter Symbol Bus Freq VDD (V) Typical1 Max Unit Temp 7 C ADC adder to stop3 — — 5 44 — µA -40 to 105 °C C ADLPC = 1 3 40 — 5 130 — µA -40 to 105 °C 3 125 — ADLSMP = 1 ADCO = 1 MODE = 10B ADICLK = 11B 8 C LVD adder to stop34 — — C 1. 2. 3. 4. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. RTC adder cause <1 µA IDD increase typically, RTC clock source is 1 kHz LPO clock. ACMP adder cause <1 µA IDD increase typically. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms. 5.1.3 EMC performance Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. 5.2 Switching specifications 5.2.1 Control timing Table 5. Control timing Symbol Min Typical1 Max Unit Bus frequency (tcyc = 1/fBus) fBus DC — 20 MHz P Internal low power oscillator frequency fLPO 0.67 1.0 1.25 KHz D External reset pulse width textrst 1.5 × — — ns Num C Rating 1 P 2 3 tSelf_reset 4 D Reset low drive trstdrv 34 × tcyc — — ns 5 D BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes tMSSU 500 — — ns 6 D BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes3 tMSH 100 — — ns Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 13 Switching specifications Table 5. Control timing (continued) Num C 7 D Rating IRQ pulse width D 8 D Keyboard interrupt pulse width D 9 C C C C Symbol Min Typical1 Max Unit Asynchronous path2 tILIH 100 — — ns Synchronous path tIHIL 1.5 × tcyc — — ns Asynchronous path2 tILIH 100 — — ns Synchronous path tIHIL 1.5 × tcyc — — ns Port rise and fall time Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) — tRise — 10.2 — ns tFall — 9.5 — ns Port rise and fall time Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF)4 — tRise tFall — 5.4 — ns — 4.6 — ns 1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated. 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request. 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for ahold time of tMSH after VDD rises above VLVD. 4. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 °C to 105 °C. textrst RESET PIN Figure 5. Reset timing tIHIL KBIPx IRQ/KBIPx tILIH Figure 6. IRQ/KBIPx timing 5.2.2 Debug trace timing specifications Table 6. Debug trace operating behaviors Symbol Description Min. Max. Unit tcyc Clock period Frequency dependent MHz twl Low pulse width 2 — ns twh High pulse width 2 — ns tr Clock and data rise time — 3 ns tf Clock and data fall time — 3 ns Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 14 Freescale Semiconductor, Inc. Switching specifications Table 6. Debug trace operating behaviors (continued) Symbol Description Min. Max. Unit ts Data setup 3 — ns th Data hold 2 — ns Figure 7. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Ts Th Th TRACE_D[3:0] Figure 8. Trace data specifications 5.2.3 FTM module timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 7. FTM input timing No. C Function Symbol Min Max Unit 1 D External clock frequency fTCLK 0 fBus/4 Hz 2 D External clock period tTCLK 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 15 Thermal specifications tTCLK tclkh TCLK tclkl Figure 9. Timer external clock tICPW FTMCHn FTMCHn tICPW Figure 10. Timer input capture pulse 5.3 Thermal specifications 5.3.1 Thermal characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 8. Thermal characteristics Rating Symbol Value Unit Operating temperature range (packaged) TA -40 to 105 °C Junction temperature range TJ -40 to 150 °C Thermal resistance single-layer board 64-pin LQFP θJA 71 °C/W 64-pin QFP θJA 61 °C/W 48-pin LQFP θJA 81 °C/W 44-pin LQFP θJA 75 °C/W 32-pin LQFP θJA 86 °C/W Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 16 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 8. Thermal characteristics (continued) Rating Symbol Value Unit Thermal resistance four-layer board 64-pin LQFP θJA 53 °C/W 64-pin QFP θJA 47 °C/W 48-pin LQFP θJA 57 °C/W 44-pin LQFP θJA 53 °C/W 32-pin LQFP θJA 57 °C/W The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts - chip internal power PI/O = Power dissipation on input and output pins - user determined For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K ÷ (TJ + 273 °C) Solving the equations above for K gives: K = PD × (TA + 273 °C) + θJA × (PD)2 where K is a constant pertaining to the particular part. K can be determined by measuring PD (at equilibrium) for an known TA. Using this value of K, the values of PD and TJ can be obtained by solving the above equations iteratively for any value of TA. 6 Peripheral operating requirements and behaviors MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 17 Peripheral operating requirements and behaviors 6.1 External oscillator (XOSC) and ICS characteristics Table 9. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) Symbol Min Typical1 Max Unit Low range (RANGE = 0) flo 32 — 40 kHz High range (RANGE = 1) FEE or FBE mode fhi 4 — 20 MHz C High range (RANGE = 1), high gain (HGO = 1), FBELP mode fhi 4 — 20 MHz C High range (RANGE = 1), low power (HGO = 0), FBELP mode fhi 4 — 20 MHz Num C 1 C C 2 D 3 D 4 5 Oscillator crystal or resonator Load capacitors Feedback resistor Low Frequency, Low-Power Mode — — — MΩ Low Frequency, High-Gain Mode — 10 — MΩ High Frequency, LowPower Mode — 1 — MΩ High Frequency, High-Gain Mode — 1 — MΩ — — — kΩ — 200 — kΩ — — — kΩ 4 MHz — 0 — kΩ 8 MHz — 0 — kΩ 16 MHz — 0 — kΩ — 1000 — ms — 800 — ms — 3 — ms — 1.5 — ms tIRST — 20 50 µs fextal 0.03125 — 5 MHz 0 — 20 MHz Low-Power Mode 4 D Series resistor High Frequency Mode4 D Series resistor High Frequency, High-Gain Mode D C C C C 7 T 8 D D Crystal start-up time Low range = 32.768 KHz crystal; High range = 20 MHz crystal, 6 RF RS High-Gain Mode Low-Power Low range, low power RS tCSTL Low range, high power High range, low power tCSTH High range, high power Internal reference start-up time Square wave input clock frequency See Note3 C1, C2 Series resistor Low Frequency D D 6 Characteristic FEE or FBE mode2 FBELP mode 9 P Average internal reference frequency trimmed fint_t — 32.768 — kHz 10 P DCO output frequency range - trimmed fdco_t 16 — 20 MHz 11 P Δfdco_t — — ±2.0 %fdco C 12 C Total deviation of DCO output from trimmed frequency5 Over full voltage and temperature range Over fixed voltage and temperature range of 0 to 70 °C FLL acquisition time5, 7 ±1.0 tAcquire — — 2 ms Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 18 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 9. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued) Num C Characteristic Symbol Min Typical1 Max Unit 13 C Long term jitter of DCO output clock (averaged over 2 ms interval)8 CJitter — 0.02 0.2 %fdco 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. 3. See crystal or resonator manufacturer's recommendation. 4. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0. 5. This parameter is characterized and not tested on each device. 6. Proper PC board layout procedures must be followed to achieve specifications. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. XOSC EXTAL XTAL RS RF Crystal or Resonator C1 C2 Figure 11. Typical crystal or resonator circuit 6.2 NVM specifications This section provides details about program/erase times and program-erase endurance for the flash and EEPROM memories. Table 10. Flash characteristics C Characteristic Symbol Min1 Typical2 Max3 Unit4 D Supply voltage for program/erase -40 °C to 105 °C Vprog/erase 2.7 — 5.5 V D Supply voltage for read operation VRead 2.7 — 5.5 V Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 19 Peripheral operating requirements and behaviors Table 10. Flash characteristics (continued) 1. 2. 3. 4. C Characteristic Symbol Min1 Typical2 Max3 Unit4 D NVM Bus frequency fNVMBUS 1 — 25 MHz D NVM Operating frequency fNVMOP 0.8 — 1.05 MHz D Erase Verify All Blocks tVFYALL — — 17030 tcyc D Erase Verify Flash Block tRD1BLK — — 16977 tcyc D Erase Verify EEPROM Block tRD1BLK — — 843 tcyc D Erase Verify Flash Section tRD1SEC — — 517 tcyc D Erase Verify EEPROM Section tDRD1SEC 0.10 0.10 0.11 ms D Read Once tRDONCE — — 455 tcyc D Program Flash (2 word) tPGM2 0.12 0.12 0.14 ms D Program Flash (4 word) tPGM4 0.20 0.21 0.24 ms D Program Once tPGMONCE 0.20 0.21 0.24 ms D Program EEPROM (1 Byte) tDPGM1 0.02 0.02 0.02 ms D Program EEPROM (2 Byte) tDPGM2 0.17 0.18 0.20 ms D Erase All Blocks tERSALL 96.01 100.78 125.80 ms D Erase Flash Block tERSBLK 95.98 100.75 125.76 ms D Erase Flash Sector tERSPG 19.10 20.05 25.05 ms D Erase EEPROM Sector tDERSPG 4.81 5.05 6.30 ms D Unsecure Flash tUNSECU 96.01 100.78 125.80 ms D Verify Backdoor Access Key tVFYKEY — — 469 tcyc D Set User Margin Level tMLOADU — — 442 tcyc C FLASH Program/erase endurance TL to TH = -40 °C to 105 °C nFLPE 10 k 100 k — Cycles C EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C nFLPE 50 k 500 k — Cycles C Data retention at an average junction temperature of TJavg = 85°C after up to 10,000 program/erase cycles tD_ret 15 100 — years Minimun times are based on maxmum fNVMOP and maximum fNVMBUS Typical times are based on typical fNVMOP and maximum fNVMBUS Maximum times are based on minimum fNVMOP and maximum fNVMBUS tcyc = 1 / fNVMBUS Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section. 6.3 Analog MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 20 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.3.1 ADC characteristics Table 11. 5 V 12-bit ADC operating conditions Characteri stic Conditions Symb Min Typ1 Max Unit Comment Supply voltage Absolute VDDA 2.7 — 5.5 V — Delta to VDD (VDD-VDDAD) ΔVDDA -100 0 +100 mV Delta to VSS (VSS-VSSA)1 ΔVSSA -100 0 +100 mV Input voltage VADIN VREFL — VREFH V Input capacitance CADIN — 4.5 5.5 pF Input resistance RADIN — 3 5 kΩ — RAS — — 2 kΩ External to MCU — — 5 — — 5 — — 10 — — 10 0.4 — 8.0 MHz — 0.4 — 4.0 Ground voltage Analog source resistance • • 12-bit mode fADCK > 4 MHz fADCK < 4 MHz • • 10-bit mode fADCK > 4 MHz fADCK < 4 MHz 8-bit mode (all valid fADCK) ADC conversion clock frequency High speed (ADLPC=0) Low power (ADLPC=1) fADCK 1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 1. DC potential difference. MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS R AS ADC SAR ENGINE R ADIN v ADIN v AS C AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 12. ADC input impedance equivalency diagram Table 12. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) Characteristic Conditions Supply current C Symb Min Typ1 Max Unit T IDDA — 133 — µA T IDDA — 218 — µA T IDDA — 327 — µA T IDDAD — 582 990 µA T IDDA — 0.011 1 µA ADLPC = 1 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1 Supply current Stop, reset, module off Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Characteristic Conditions C Symb Min Typ1 Max Unit ADC asynchronous clock source High speed (ADLPC = 0) P fADACK 2 3.3 5 MHz 1.25 2 3.3 — 20 — — 40 — — 3.5 — — 23.5 — — ±5.0 — Low power (ADLPC = 1) Conversion time (including sample time) Short sample (ADLSMP = 0) Sample time Short sample (ADLSMP = 0) T tADC Long sample (ADLSMP = 1) T tADS Long sample (ADLSMP = 1) Total unadjusted Error 12-bit mode T 10-bit mode P — ±1.5 ±2.0 8-bit mode P — ±0.7 ±1.0 12-bit mode T — ±1.0 — 10-bit mode P — ±0.25 ±0.5 mode3 P — ±0.15 ±0.25 Integral Non-Linearity 12-bit mode T — ±1.0 — 10-bit mode T — ±0.3 ±0.5 8-bit mode T — ±0.15 ±0.25 12-bit mode C — ±2.0 — 10-bit mode P — ±0.25 ±1.0 8-bit mode P — ±0.65 ±1.0 12-bit mode T — ±2.5 — 10-bit mode T — ±0.5 ±1.0 8-bit mode T — ±0.5 ±1.0 ≤12 bit modes D EQ — — ±0.5 all modes D EIL -40°C– 25°C D m Differential NonLiniarity 8-bit Zero-scale error Full-scale error5 Quantization error Input leakage error6 Temp sensor slope ETUE DNL INL EZS EFS 25°C– 125°C Temp sensor voltage 25°C D VTEMP25 IIn * RAS ADCK cycles ADCK cycles LSB LSB2 LSB2 LSB2 LSB2 LSB2 mV — 3.266 — — 3.638 — — 1.396 — mV/°C V 1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. 1 LSB = (VREFH - VREFL)/2N 3. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes 3. VADIN = VDDA 4. IIn = leakage current (refer to DC characteristics) MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors 6.3.2 Analog comparator (ACMP) electricals Table 13. Comparator electrical specifications C Characteristic Symbol Min Typical Max Unit D Supply voltage VDDA 2.7 — 5.5 V T Supply current (Operation mode) IDDA — 10 20 µA D Analog input voltage VAIN VSS - 0.3 — VDDA V P Analog input offset voltage VAIO — — 40 mV C Analog comparator hysteresis (HYST=0) VH — 15 20 mV C Analog comparator hysteresis (HYST=1) VH — 20 30 mV T Supply current (Off mode) IDDAOFF — 60 — nA C Propagation Delay tD — 0.4 1 µs 6.4 Communication interfaces 6.4.1 SPI switching specifications The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 70% VDD, unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins. Table 14. SPI master mode timing Nu m. Symbol Description Min. Max. Unit Comment 1 fop fBus/2048 fBus/2 Hz fBus is the bus clock 2 tSPSCK 2 x tBus 2048 x tBus ns tBus = 1/fBus 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK 6 tSU Data setup time (inputs) tBus - 30 1024 x tBus ns — 15 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 25 ns — 9 tHO Data hold time (outputs) 0 — ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. SPI master mode timing (continued) Nu m. Symbol 10 tRI Rise time input tFI Fall time input tRO Rise time output tFO Fall time output 11 Description Min. Max. Unit Comment — tBus - 25 ns — — 25 ns — SS1 (OUTPUT) 3 2 SPSCK (CPOL = 0) (OUTPUT) 10 11 10 11 4 5 5 SPSCK (CPOL = 1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) MSB OUT2 9 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 13. SPI master mode timing (CPHA=0) SS1 (OUTPUT) 2 3 SPSCK (CPOL = 0) (OUTPUT) 5 SPSCK (CPOL = 1) (OUTPUT) 5 6 MISO (INPUT) 10 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI 2 (OUTPUT)PORT DATA MASTER MSB OUT BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 14. SPI master mode timing (CPHA=1) MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors Table 15. SPI slave mode timing Nu m. Symbol Description 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Min. Max. Unit Comment 0 fBus/4 Hz fBus is the bus clock as defined in . 4 x tBus — ns tBus = 1/fBus 1 — tBus — Frequency of operation SPSCK period 1 — tBus — tBus - 30 — ns — Data setup time (inputs) 15 — ns — tHI Data hold time (inputs) 25 — ns — 8 ta Slave access time — tBus ns Time to data active from high-impedance state 9 tdis Slave MISO disable time — tBus ns Hold time to highimpedance state 10 tv Data valid (after SPSCK edge) — 25 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tBus - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 Clock (SPSCK) high or low time SS (INPUT) 2 SPSCK (CPOL = 0) (INPUT) 5 3 SPSCK (CPOL = 1) (INPUT) 13 4 12 13 9 8 MISO (OUTPUT) 5 12 10 see note 6 MOSI (INPUT) SLAVE MSB BIT 6 . . . 1 11 11 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined! Figure 15. SPI slave mode timing (CPHA = 0) MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 26 Freescale Semiconductor, Inc. Dimensions SS (INPUT) 4 2 3 SPSCK (CPOL = 0) (INPUT) 5 SPSCK (CPOL = 1) (INPUT) 5 see note SLAVE 8 MOSI (INPUT) 13 12 13 9 11 10 MISO (OUTPUT) 12 MSB OUT 6 BIT 6 . . . 1 SLAVE LSB OUT 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined! Figure 16. SPI slave mode timing (CPHA=1) 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 32-pin LQFP 98ASH70029A 44-pin LQFP 98ASS23225W 48-pin LQFP 98ASH00962A 64-pin QFP 98ASB42844B 64-pin LQFP 98ASS23234W MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 27 Pinout 8 Pinout 8.1 Signal multiplexing and pin assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. Table 16. Pin availability by package pin-count Pin Number 64-LQFP 64-QFP 1 Lowest Priority <-- --> Highest 48-LQFP 44-LQFP 32-LQFP Port Pin Alt 1 Alt 2 Alt 3 Alt 4 1 1 1 PTD1 KBI1P1 FTM2CH3 MOSI1 — KBI1P0 FTM2CH2 SPSCK1 — 2 2 2 2 PTD01 3 — — — PTH7 — — — — 4 — — — PTH6 — — — — 5 3 3 — PTE7 — TCLK2 — — 6 4 4 — PTH2 — BUSOUT — — 7 5 5 3 — — — — VDD 8 6 6 4 — — — VDDA VREFH 9 7 7 5 — — — VSSA VREFL 10 8 8 6 — — — — VSS 11 9 9 7 PTB7 — SCL — EXTAL 12 10 10 8 PTB6 — SDA — XTAL 13 11 11 — — — — — VSS — PTH11 — FTM2CH1 — — 14 — — 15 — — — PTH01 — FTM2CH0 — — 16 12 — — PTE6 — — — — 17 13 — — PTE5 — — — — 9 PTB51 FTM2CH5 SS0 — — FTM2CH4 MISO0 — — 18 14 12 19 15 13 10 PTB41 20 16 14 11 PTC3 FTM2CH3 — ADP11 — 21 17 15 12 PTC2 FTM2CH2 — ADP10 — 22 18 16 — PTD7 KBI1P7 TXD2 — — 23 19 17 — PTD6 KBI1P6 RXD2 — — 24 20 18 — PTD5 KBI1P5 — — — 25 21 19 13 PTC1 — FTM2CH1 ADP9 — 26 22 20 14 PTC0 — FTM2CH0 ADP8 — 27 — — — PTF7 — — ADP15 — Table continues on the next page... MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 28 Freescale Semiconductor, Inc. Pinout Table 16. Pin availability by package pin-count (continued) Pin Number 64-LQFP Lowest Priority <-- --> Highest 48-LQFP 44-LQFP 32-LQFP Port Pin Alt 1 Alt 2 Alt 3 Alt 4 28 — — — PTF6 — — ADP14 — 29 — — — PTF5 — — ADP13 — 30 — — — PTF4 — — ADP12 — 31 23 21 15 PTB3 KBI0P7 MOSI0 ADP7 — 32 24 22 16 PTB2 KBI0P6 SPSCK0 ADP6 — 33 25 23 17 PTB1 KBI0P5 TXD0 ADP5 — 34 26 24 18 PTB0 KBI0P4 RXD0 ADP4 — 35 — — — PTF3 — — — — 64-QFP 36 — — — PTF2 — — — — 37 27 25 19 PTA7 FTM2FAULT2 — ADP3 — 38 28 26 20 PTA6 FTM2FAULT1 — ADP2 — 39 29 — — PTE4 — — — — 40 30 27 — — — — — VSS 41 31 28 — — — — — VDD 42 — — — PTF1 — — — — 43 — — — PTF0 — — — — 44 32 29 — PTD4 KBI1P4 — — — 45 33 30 21 PTD3 KBI1P3 SS1 — — 46 34 31 22 PTD2 KBI1P2 MISO1 — — 47 35 32 23 PTA3 KBI0P3 TXD0 SCL — KBI0P2 RXD0 SDA — 48 36 33 24 PTA22 49 37 34 25 PTA1 KBI0P1 FTM0CH1 ACMP1 ADP1 50 38 35 26 PTA0 KBI0P0 FTM0CH0 ACMP0 ADP0 51 39 36 27 PTC7 — TxD1 — — 52 40 37 28 PTC6 — RxD1 — — 53 41 — — PTE3 — SS0 — — 54 42 38 — PTE2 — MISO0 — — 55 — — — PTG3 — — — — 56 — — — PTG2 — — — — 57 — — — PTG1 — — — — 58 — — — PTG0 — — — — — PTE11 — MOSI0 — — 59 43 39 60 44 40 — PTE01 — SPSCK0 TCLK1 — 61 45 41 29 PTC5 — FTM1CH1 — — 62 46 42 30 PTC4 — FTM1CH0 RTCO — 63 47 43 31 PTA5 IRQ TCLK0 — RESET 64 48 44 32 PTA4 — ACMPO BKGD MS MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 29 Pinout 1. This is a high current drive pin when operated as output. 2. This is a true open-drain pin when operated as output. Note When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module. MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 30 Freescale Semiconductor, Inc. Pinout PTE3/SS0 PTC6/RxD1 PTC7/TxD1 PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 52 51 50 49 PTE2/MISO0 54 53 PTG2 PTG3 PTG1 55 PTG0 58 57 56 PTE0/SPSCK0/TCLK11 PTE1/MOSI01 PTC5/FTM1CH1 59 PTC4/FTM1CH0/RTCO 62 61 60 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET 64 63 8.2 Device pin assignment PTD1/KBI1P1/FTM2CH3/MOSI1 1 1 48 PTA2/KBI0P2/RxD0/SDA2 PTD0/KBI1P0/FTM2CH2/SPSCK1 1 2 47 PTA3/KBI0P3/TxD0/SCL2 PTD2/KBI1P2/MISO1 PTH7 3 46 PTH6 4 45 PTD3/KBI1P3/SS1 PTE7/TCLK2 5 44 PTD4/KBI1P4 PTH2/BUSOUT VDD 6 43 PTF0 7 42 PTF1 VDDA /VREFH 8 41 VDD VSSA /V 9 40 VSS REFL VSS 10 39 PTE4 PTB7/SCL/EXTAL PTB6/SDA/XTAL 11 38 PTA6/FTM2FAULT1/ADP2 12 37 PTA7/FTM2FAULT2/ADP3 VSS 13 36 PTF2 19 21 22 23 24 25 26 27 28 29 30 31 32 PTC2/FTM2CH2/ADP10 PTD7/KBI1P7/TxD2 PTD6/KBI1P6/RxD2 PTD5/KBI1P5 PTC1/FTM2CH1/ADP9 PTC0/FTM2CH0/ADP8 PTF7/ADP15 PTF6/ADP14 PTF5/ADP13 PTF4/ADP12 PTB3/KBI0P7/MOSI0/ADP7 PTB2/KBI0P6/SPSCK0/ADP6 PTB1/KBI0P5/TxD0/ADP5 20 33 PTC3/FTM2CH3/ADP11 16 PTB4/FTM2CH4/MISO0 1 PTB0/KBI0P4/RxD0/ADP4 PTE6 17 PTF3 34 18 35 15 PTE5 14 PTB5/FTM2CH5/SS0 1 PTH1/FTM2CH11 PTH0/FTM2CH01 Pins in bold are not available on less pi n-count packages. 1. High source/sink current pins 2. True open drain pins Figure 17. MC9S08PA60 64-pin QFP and LQFP package MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 31 PTE3/SS0 PTC6/RxD1 PTC7/TxD1 PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 40 39 38 37 PTE2/MISO0 42 41 PTE0/SPSCK0/TCLK11 PTE1/MOSI01 PTC5/FTM1CH1 45 43 PTC4/FTM1CH0 46 44 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET 47 48 Pinout 34 PTD2/KBI1P2/MISO1 PTH2/BUSOUT 4 33 PTD3/KBI1P3/SS1 VDD 5 32 PTD4/KBI1P4 VDDA /VREFH 6 31 VDD 7 30 VSS 8 29 PTE4 9 PTB7/SCL/EXTAL PTB6/SDA/XTAL 10 28 PTA6/FTM2FAULT1/ADP2 17 18 PTC2/FTM2CH2/ADP10 PTD7/KBI1P7/TxD2 25 PTB1/KBI0P5/TxD0/ADP5 24 16 PTC3/FTM2CH3/ADP11 PTA7/FTM2FAULT2/ADP3 PTB0/KBI0P4/RxD0/ADP4 PTB2/KBI0P6/SPSCK0/ADP6 15 PTB4/FTM2CH4/MISO0 1 Pins in bold are not available on less pi n-count packages. 1. High source/sink current pins 2. True open drain pins 27 26 23 13 14 PTE5 PTB5/FTM2CH5/SS0 1 VSS 11 PTE6 12 22 VSS PTC0/FTM2CH0/ADP8 REFL PTB3/KBI0P7/MOSI0/ADP7 VSSA /V 21 3 PTC1/FTM2CH1/ADP9 PTA3/KBI0P3/TxD0/SCL2 PTE7/TCLK2 19 PTA2/KBI0P2/RxD0/SDA2 35 20 36 2 PTD5/KBI1P5 1 PTD6/KBI1P6/RxD2 PTD1/KBI1P1/FTM2CH3/MOSI1 1 PTD0/KBI1P0/FTM2CH2/SPSCK1 1 Figure 18. MC9S08PA60 48-pin LQFP package MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 32 Freescale Semiconductor, Inc. PTC6/RxD1 PTC7/TxD1 PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM1CH0/ACMP1/ADP1 36 35 34 PTE2/MISO0 38 37 PTE0/SPSCK0/TCLK11 PTE1/MOSI01 PTC5/FTM1CH1 41 39 PTC4/FTM1CH0 42 40 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET 43 44 Pinout PTD1/KBI1P1/FTM2CH3/MOSI1 1 1 33 PTA2/KBI0P2/RxD0/SDA2 PTD0/KBI1P0/FTM2CH2/SPSCK1 1 2 32 3 31 PTA3/KBI0P3/TxD0/SCL2 PTE7/TCLK2 PTH2/BUSOUT 4 30 PTD3/KBI1P3/SS1 VDD 5 29 PTD4/KBI1P4 VDDA /VREFH VSSA /V REFL VSS 6 28 7 27 8 26 9 25 PTD2/KBI1P2/MISO1 VDD VSS PTA6/FTM2FAULT1/ADP2 PTA7/FTM2FAULT2/ADP3 18 19 20 PTD5/KBI1P5 PTC1/FTM2CH1/ADP9 PTC0/FTM2CH0/ADP8 22 17 PTD6/KBI1P6/RxD2 21 16 PTD7/KBI1P7/TxD2 PTB3/KBI0P7/MOSI0/ADP7 15 PTC2/FTM2CH2/ADP10 Pins in bold are not available on less pi n-count packages. 1. High source/sink current pins 2. True open drain pins PTB2/KBI0P6/SPSCK0/ADP6 14 PTC3/FTM2CH3/ADP11 PTB1/KBI0P5/TxD0/ADP5 13 PTB0/KBI0P4/RxD0/ADP4 23 12 24 11 PTB5/FTM2CH5/SS0 1 10 VSS PTB4/FTM2CH4/MISO0 1 PTB7/SCL/EXTAL PTB6/SDA/XTAL Figure 19. MC9S08PA60 44-pin LQFP package MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. Freescale Semiconductor, Inc. 33 PTC6/RxD1 PTC7/TxD1 PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 26 25 PTC5/FTM1CH1 29 27 PTC4/FTM1CH0 30 28 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET 32 31 Revision history PTD1/KBI1P1/FTM2CH3/MOSI1 1 1 24 PTA2/KBI0P2/RxD0/SDA2 PTD0/KBI1P0/FTM2CH2/SPSCK1 1 2 23 PTA3/KBI0P3/TxD0/SCL2 PTD2/KBI1P2/MISO1 3 22 VDDA /VREFH 4 21 PTD3/KBI1P3/SS1 VSSA /V 5 20 PTA6/FTM2FAULT1/ADP2 PTA7/FTM2FAULT2/ADP3 VDD REFL 15 16 14 PTC0/FTM2CH0/ADP8 PTB3/KBI0P7/MOSI0/ADP7 13 PTC1/FTM2CH1/ADP9 PTB2/KBI0P6/SPSCK0/ADP6 11 PTB1/KBI0P5/TxD0/ADP5 12 17 PTC2/FTM2CH2/ADP10 8 PTC3/FTM2CH3/ADP11 PTB0/KBI0P4/RxD0/ADP4 PTB6/SDA/XTAL 9 18 10 19 7 PTB4/FTM2CH4/MISO0 1 6 PTB5/FTM2CH5/SS0 1 VSS PTB7/SCL/EXTAL 1. High source/sink current pins 2. True open drain pins Figure 20. MC9S08PA60 32-pin LQFP package 9 Revision history The following table provides a revision history for this document. Table 17. Revision history Rev. No. Date 1 10/2012 Substantial Changes Initial public release MC9S08PA60 Series Data Sheet, Rev. 1, 10/9/2012. 34 Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Document Number: MC9S08PA60 Rev. 1, 10/9/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011–2012 Freescale Semiconductor, Inc.