TI MC33078DGKRG4

MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
FEATURES
•
•
•
•
•
•
•
•
•
D (SOIC), DGK (MSOP), OR P (PDIP) PACKAGE
(TOP VIEW)
Dual-Supply Operation . . . ±5 V to ±18 V
Low Noise Voltage . . . 4.5 nV/√Hz
Low Input Offset Voltage . . . 0.15 mV
Low Total Harmonic Distortion . . . 0.002%
High Slew Rate . . . 7 V/µs
High-Gain Bandwidth Product . . . 16 MHz
High Open-Loop AC Gain . . . 800 at 20 kHz
Large Output-Voltage Swing . . . 14.1 V to
–14.6 V
Excellent Gain and Phase Margins
OUT1
IN1−
IN1+
VCC −
1
8
2
7
3
6
4
5
VCC+
OUT2
IN2−
IN2+
DESCRIPTION/ORDERING INFORMATION
The MC33078 is a bipolar dual operational amplifier with high-performance specifications for use in quality audio
and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and
offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic
distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion,
and symmetrical sink/source performance.
ORDERING INFORMATION
PACKAGE (1)
TA
PDIP – P
–40°C to 85°C
SOIC – D
VSSOP/MSOP – DGK
(1)
(2)
ORDERABLE PART NUMBER
Tube of 50
MC33078P
Tube of 75
MC33078D
Reel of 2500
MC33078DR
Reel of 2500
MC33078DGKR
Reel of 250
MC33078DGKT
TOP-SIDE MARKING (2)
MC33078P
M33078
MY_
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DGK: The actual top-side marking has one additional character that designates the assembly/test site.
SYMBOL (EACH AMPLIFIER)
IN+
+
IN −
−
OUT
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2004–2006, Texas Instruments Incorporated
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCC+
Supply voltage (2)
18
V
VCC–
Supply voltage (2)
–18
V
VCC+ – VCC–
Supply voltage
36
V
Input voltage, either input (2) (3)
VCC+ or VCC–
±10
Input current (4)
Duration of output short circuit (5)
Unlimited
D package
θJA
Package thermal impedance, junction to free air (6) (7)
TJ
Operating virtual junction temperature
Tstg
Storage temperature range
97
DGK package
172
P package
(1)
(2)
(3)
(4)
(5)
(6)
(7)
V
mA
°C/W
85
–65
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless
some limiting resistance is used.
The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the
maximum dissipation rating is not exceeded.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions
VCC–
VCC+
TA
2
Supply voltage
Operating free-air temperature range
Submit Documentation Feedback
MIN
MAX
–5
–18
5
18
–40
85
UNIT
V
°C
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
Electrical Characteristics
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIO
Input offset voltage
VO = 0, RS = 10 Ω, VCM = 0
αVIO
Input offset voltage
temperature coefficient
VO = 0, RS = 10 Ω, VCM = 0
IIB
Input bias current
VO = 0, VCM = 0
IIO
Input offset current
VO = 0, VCM = 0
VICR
Common-mode input voltage
range
∆VIO = 5 mV, VO = 0
AVD
Large-signal differential
voltage amplification
RL ≥ 2 kΩ, VO = ±10 V
Maximum output voltage swing VID = ±1 V
kSVR
(1)
2
3
TA = –40°C to 85°C
300
RL = 2k Ω
25
±14
TA = 25°C
90
110
TA = –40°C to 85°C
85
VOM+
10.7
VOM–
–11.9
VO = 0
nA
V
dB
13.8
VOM–
–13.2
–13.7
VOM+
13.5
14.1
VOM–
–14
–14.6
80
100
dB
80
105
dB
15
29
–20
–37
VCC+ = 5 V to 15 V, VCC– = –5 V to –15 V
Supply current (per channel)
nA
13.2
Supply-voltage rejection ratio
ICC
mV
VOM+
VIN = ±13 V
|VID| = 1 V, Output to GND
150
175
±13
Common-mode rejection ratio
Output short-circuit current
750
800
TA = –40°C to 85°C
UNIT
µV/°C
2
TA = 25°C
IOS
(1)
MAX
0.15
TA = –40°C to 85°C
RL = 10k Ω
CMMR
TYP
TA = –40°C to 85°C
TA = 25°C
RL = 600 Ω
VOM
MIN
TA = 25°C
Source current
Sink current
TA = 25°C
2.05
TA = –40°C to 85°C
V
mA
2.5
2.75
mA
Measured with VCC± differentially varied at the same time
Operating Characteristics
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain
AVD = 1, VIN = –10 V to 10 V, RL = 2 kΩ, CL = 100 pF
GBW
Gain bandwidth product
f = 100 kHz
B1
Unity gain frequency
Open loop
Gm
Gain margin
RL = 2 kΩ
Φm
Phase margin
RL = 2 kΩ
Amp-to-amp isolation
f = 20 Hz to 20 kHz
CL = 0 pF
MIN
TYP
5
7
V/µs
10
16
MHz
9
MHz
–11
CL = 100 pF
–6
CL = 0 pF
55
CL = 100 pF
40
Power bandwidth
VO = 27 V(PP), RL = 2 kΩ, THD ≤ 1%
THD
Total harmonic distortion
VO = 3 Vrms, AVD = 1, RL = 2 kΩ, f = 20 Hz to 20 kHz
zo
Open-loop output impedance
VO = 0, f = 9 MHz
rid
Differential input resistance
Cid
Differential input capacitance
Vn
In
MAX
UNIT
dB
deg
–120
dB
120
kHz
0.002
%
37
Ω
VCM = 0
175
kΩ
VCM = 0
12
pF
Equivalent input noise voltage
f = 1 kHz, RS = 100 Ω
4.5
nV/√Hz
Equivalent input noise current
f = 1 kHz
0.5
pA/√Hz
Submit Documentation Feedback
3
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
0.1 µF
10 Ω
100 kΩ
2.0 kΩ
4.3 kΩ
+
D.U.T.
1/2
MC33078
Scope
x1
RIN = 1.0 MΩ
−
4.7 µF
100 kΩ
Voltage Gain = 50,000
2.2 µF
24.3 kΩ
110 kΩ
0.1 µF
NOTE: All capacitors are non-polarized.
Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)
4
22 µF
Submit Documentation Feedback
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
vs
COMMON-MODE VOLTAGE
INPUT BIAS CURRENT
vs
SUPPLY VOLTAGE
600
600
VCM = 0 V
VCC+ = 15 V
VCC– = –15 V
TA = 25°C
400
300
200
100
0
-15
TA = 25°C
500
IIB – Input Bias Current – nA
IIB – Input Bias Current – nA
500
400
300
200
100
0
-10
-5
0
5
10
5
15
7
8
9 10 11 12 13 14 15 16 17 18
VCC+/–VCC– – Supply Voltage – V
VCM – Common Mode Voltage – V
INPUT BIAS CURRENT
vs
TEMPERATURE
INPUT OFFSET VOLTAGE
vs
TEMPERATURE
1000
2
VCC+ = 15 V
900
VCC– = –15 V
800
VCM = 0 V
VCC+ = 15 V
1.5
VIO – Input Offset Voltage – mV
IIB – Input Bias Current – nA
6
700
600
500
400
300
200
VCM = 0 V
1
0.5
0
-0.5
-1
-1.5
100
0
-55 -35 -15
VCC– = –15 V
5
25
45
65
85
105 125
-2
-55 -35 -15
TA – Temperature – °C
5
25
45
65
85
105 125
TA – Temperature – °C
Submit Documentation Feedback
5
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
INPUT COMMON-MODE VOLTAGE
LOW PROXIMITY TO VCC–
vs
TEMPERATURE
INPUT COMMON-MODE VOLTAGE
HIGH PROXIMITY TO VCC+
vs
TEMPERATURE
1.4
0
Input Common-Mode Voltage High
Proximity to V CC+ – V
Input Common-Mode Voltage Low
Proximity to V CC– – V
VCC+ = 3 V to 15 V
1.2
1
0.8
0.6
VCC+ = 3 V to 15 V
0.4
VCC– = -3 V to -15 V
D
è VIO = 5 mV
0.2
VO = 0 V
0
-55
-25
5
35
65
95
-0.2
VCC– = -3 V to -15 V
D VIO = 5 mV
-0.4
VO = 0 V
-0.6
-0.8
-1
-1.2
-1.4
-55
125
-25
TA – Temperature – °C
65
95
125
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC–
vs
LOAD RESISTANCE
10
0
9
-1
TA = 125°C
-2
8
TA = 25°C
-3
Output Saturation Voltage
Proximity to V CC– – V
Output Saturation Voltage
Proximity to V CC+ – V
35
TA – Temperature – °C
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC+
vs
LOAD RESISTANCE
TA = –55°C
-4
-5
-6
-7
-8
-9
7
6
5
TA = 125°C
4
TA = 25°C
3
TA = –55°C
2
1
-10
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0
kW
RL – Load Resistance – kh
6
5
Submit Documentation Feedback
0.5
1
1.5
2
2.5
3
3.5
kW
RL – Load Resistance – k@
4
4.5
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
OUTPUT SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
SUPPLY CURRENT
vs
TEMPERATURE
70
10
60
VCC– = –15 V
9
VID = 1 V
8
50
40
Source
Sink
30
20
ICC – Supply Current – mA
IOS – Output Short-Circuit Current – mA
VCC+ = 15 V
VCM = 0 V
RL = High Impedance
VO = 0 V
7
6
VCC± = ±15 V
5
4
3
VCC± = ±10 V
VCC± = ±5 V
2
1
10
-55
-35
-15
5
25
45
65
85
0
-55
105 125
TA – Temperature – °C
90
80
5
25
45
65
85
105 125
PSSR
vs
FREQUENCY
120
VCC+ = 15 V
VCC– = –15 V
VCM = 0 V
DVCM = ±1.5 V
TA = 25°C
VCC+ = 15 V
VCC– = –15 V
TA = 25°C
110
100
90
80
60
PSRR – dB
CMMR – dB
70
-15
TA – Temperature – °C
CMRR
vs
FREQUENCY
100
-35
50
40
70
T3P
60
50
T3N
40
30
30
20
20
10
10
0
100
10k
100k 1.0E+06
10M
1k
1M
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+07
0
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+07
100
10k
100k 1.0E+06
10M
1k
1M
f – Frequency – Hz
f – Frequency – Hz
Submit Documentation Feedback
7
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
GAIN BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
GAIN BANDWIDTH PRODUCT
vs
TEMPERATURE
30
GBW – Gain Bandwidth Product – MHz
GBW – Gaind Bandwidth Product – MHz
30
25
20
15
10
5
6
7
8
20
15
10
5
0
-55
0
5
25
9 10 11 12 13 14 15 16 17 18
-35
-15
5
25
45
65
OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
30
VCC+ = 15 V
VCC– = –15 V
RL = 2 k W
AV = 1
THD < 1%
TA = 25°C
15
25
VO – Output Voltage – V
VO – Output Voltage – V
RL = 10 kW
10
RL = 2 k W
5
0
-5
RL = 10 kW
-10
RL = 2 kW
-20
8
20
15
10
5
-15
7
9 10 11 12 13 14 15 16 17 18
0
100
10
10k
100k 1.E+06
10M
1k
1M
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+07
VCC+/–VCC– – Supply Voltage – V
8
125
OUTPUT VOLTAGE
vs
FREQUENCY
20
6
105
TA – Temperature – °C
VCC+/–VCC– – Supply Voltage – V
5
85
Submit Documentation Feedback
f – Frequency – Hz
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
OPEN-LOOP GAIN
vs
SUPPLY VOLTAGE
OPEN-LOOP GAIN
vs
TEMPERATURE
120
110
115
AV – Open-Loop Gain – dB
AV – Open-Loop Gain – dB
105
100
95
90
RL = 2 kW
f < 10 Hz
DVO = 2/3(VCC+ – VCC–)
TA = 25°C
85
6
7
8
105
100
95
90
85
80
5
110
RL = 2 k W
f < 10 Hz
DVO = 2/3(VCC+ – VCC–)
TA = 25°C
80
-55
9 10 11 12 13 14 15 16 17 18
VCC+/–VCC– – Supply Voltage – V
200
VO = 1 Vrms
35
190
180
Crosstalk Rejection – dB
ZO – Output Impedance – W
VCC+ = 15 V
VCC– = –15 V
TA = 25°C
30
25
20
15
AV = 1000
10
45
65
85
105 125
170
Drive Channel
VCC+ = 15 V
VCC– = –15 V
RL = 2 kW
VO = 20 VPP
TA = 25°C
160
150
140
130
120
AV = 100
AV = 10
AV = 1
110
5
0
1.0E+03
1k
25
CROSSTALK REJECTION
vs
FREQUENCY
50
40
5
TA – Temperature – °C
OUTPUT IMPEDANCE
vs
FREQUENCY
45
-35 -15
100
1.E+01
10
1.0E+04
10k
1.0E+05
100k
1.0E+06
1M
1.0E+07
10M
1.E+02
100
1.E+03
1k
1.E+04
10k
1.E+05
100k
f – Frequency – Hz
f – Frequency – Hz
Submit Documentation Feedback
9
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
TOTAL HARMONIC DISTORTION
vs
OUTPUT VOLTAGE
0.1
1
VCC+ = 15 V
VCC– = –15 V
VO = 1 Vrms
AV = 1
RL = 2 kW
TA = 25°C
THD – Total Harmonic Distortion – %
THD – Total Harmonic Distortion – %
1
0.01
0.001
0.0001
10
1.E+01
AV = 1000
0.1
AV = 100
0.01
AV = 10
0.001
VCC+ = 15 V
VCC– = –15 V
f = 2 kHz
RL = 2 kW
TA = 25°C
AV = 1
0.0001
100
1.E+02
1k
1.E+03
10k
1.E+04
0
100k
1.E+05
1
2
f – Frequency – Hz
10
10
9
9
Falling Edge
8
7
Rising Edge
6
5
4 DV = 2/3(V – V )
IN
CC+
CC–
AV = 1
3 RL = 2 kW
TA = 25°C
2
5 6 7 8 9 10 11 12 13 14 15 16 17 18
SR – Slew Rate – V/µs
SR – Slew Rate – V/µs
5
6
7
8
9
105
125
SLEW RATE
vs
TEMPERATURE
Falling Edge
7
Rising Edge
6
5
4
3
VCC+ = 15 V
VCC– = –15 V
DVIN = 20 V
AV = 1
RL = 2 kW
2
-55
VCC+/–VCC– – Supply Voltage – V
10
4
VO – Output Voltage – Vrms
SLEW RATE
vs
SUPPLY VOLTAGE
8
3
Submit Documentation Feedback
-35
-15
5
25
45
65
TA – Temperature – °C
85
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
GAIN AND PHASE
vs
FREQUENCY
12
70
Gain, TA = 25°C
-90
40
30
20
10
1.E+04
10k
20
Gain, TA = –55°C
40
Phase, TA = 125°C
50
70
Phase, TA = –55°C
1.E+05
100k
1.E+06
1M
0
-180
1.E+07
10M
1
10
80
1000
100
Cout – Output Load Capacitance – pF
OVERSHOOT
vs
OUTPUT LOAD CAPACITANCE
INPUT VOLTAGE AND CURRENT NOISE
vs
FREQUENCY
100
100
80
10
VCC+ = 15 V
VCC+ = 15 V
VCC– = –15 V
VCC– = –15 V
VIN = 100 mVPP
TA = 25°C
nV/ÖHz
Input Voltage Noise – nV/rtHz
90
70
Overshoot – %
60
Phase, TA = 25°C
f – Frequency – Hz
60
50
40
TA = 125°C
30
20
30
6
3
-135
VCC+ = 15 V
VCC– = –15 V
RL = 2 k W
TA = 25°C
0
1.E+03
1k
Gain Margin – dB
Gain – dB
Phase Shift – deg
Gain
50
10
9
-45
60
0
VCC+ = 15 V
VCC– = –15 V
VO = 0 V
Gain, TA = 125°C
Phase Margin – deg
0
Phase
TA = 25°C
10
1
Input Voltage Noise
Input Current Noise
pA/ÖHz
Input Current Noise – pA/rtHz
80
GAIN AND PHASE MARGIN
vs
OUTPUT LOAD CAPACITANCE
10
TA = –55°C
0
1
10
100
1000
10
Cout – Output Load Capacitance – pF
Submit Documentation Feedback
100
1k
1000
10k
10000
0.1
100k
100000
f – Frequency – Hz
11
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
INPUT REFERRED NOISE VOLTAGE
vs
SOURCE RESISTANCE
GAIN AND PHASE MARGIN
vs
DIFFERENTIAL SOURCE RESISTANCE
1000
16
64
60
VCC– = –15 V
f = 1 Hz
TA = 25°C
14
56
52
12
100
10
44
10
40
Gain Margin
36
8
32
28
6
4
2
VCC+ = 15 V
24
VCC– = –15 V
20
AV = 100
16
VO = 0 V
12
TA = 25°C
8
Phase Margin – deg
48
Phase Margin
Gain Margin – dB
nV/ÖHz
Input Referred Noise Voltage – nV/rtHz
VCC+ = 15 V
4
0
1.E+02
100
1.E+03
1k
1.E+04
10k
1.E+05
100k
1.E+06
1M
1
00
è
RS – Source Resistance – W
55
45
0
45
-10
35
VCC+ = 15 V
VCC– = –15 V
AV = 1
RL = 2 k W
CL = 100 pF
TA = 25°C
-20
-30
5
-40
-5
-15
-2
2
6
10
14
18
22
VO – Output Voltage – V
10
VI – Input Voltage – V
VO – Output Voltage – V
Input
Output
0
1010k
0 0 0 10100k
0000
Input
10
0
35
15
-10
VCC+ = 15 V
VCC– = –15 V
AV = –1
RL = 2 k W
CL = 100 pF
TA = 25°C
25
Output
-20
-30
5
-40
-50
-5
-50
-60
-15
-60
-2
Time – µs
12
101k
00
LARGE SIGNAL TRANSIENT RESPONSE
(AV = –1)
55
15
100
10
0
RSD – Differential Source Resistance – W
è
LARGE SIGNAL TRANSIENT RESPONSE
(AV = 1)
25
10
10
2
6
10
Time – µs
Submit Documentation Feedback
14
18
22
VI – Input Voltage – V
1
1.E+01
10
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
TYPICAL CHARACTERISTICS (continued)
LOW_FREQUENCY NOISE
0.6
0.2
400
0.5
0.1
300
0.4
0.0
-0.1
VCC+ = 15 V
VCC– = –15 V
AV = 1
RL = 2 k W
CL = 100 pF
TA = 25°C
0.2
0.1
-0.2
-0.3
-0.4
0
Input Voltage Noise – nV
Input
0.3
200
VI – Input Voltage – V
VO – Output Voltage – V
SMALL SIGNAL TRANSIENT RESPONSE
100
0
-100
-200
T3
VCC+ = 15 V
-300
VCC– = –15 V
BW = 0.1 Hz to 10 Hz
TA = 25°C
Output
-0.1
-0.2
-0.5
0.0
0.5
1.0
1.5
-0.5
-400
-0.6
-500
-5
Time – µs
-4
-3
-2
-1
0
1
2
3
4
5
Time – s
Submit Documentation Feedback
13
MC33078
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER
www.ti.com
SLLS633C – OCTOBER 2004 – REVISED NOVEMBER 2006
APPLICATION INFORMATION
Output Characteristics
All operating characteristics are specified with 100-pF load capacitance. The MC33078 can drive higher
capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower
frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation
occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance,
adding a small resistance in series with the load should alleviate the problem (see Figure 2).
PULSE RESPONSE
(RL = 600 Ω, CL = 380 pF)
PULSE RESPONSE
(RL = 2 kΩ, CL = 560 pF)
Maximum capacitance
before oscillation = 380 pF
PULSE RESPONSE
(RL = 10 kΩ, CL = 590 pF)
Maximum capacitance
before oscillation = 590 pF
0.25 V per Division
0.25 V per Division
0.25 V per Division
Maximum capacitance
before oscillation = 560 pF
250 ns per Division
250 ns per Division
250 ns per Division
0.25 V per Division
PULSE RESPONSE
(RO = 35 Ω, CO = 1000 pF, RL = 2 kΩ)
0.25 V per Division
PULSE RESPONSE
(RO = 4 Ω, CO = 1000 pF, RL = 2 kΩ)
0.25 V per Division
PULSE RESPONSE
(RO = 0 Ω, CO = 1000 pF, RL = 2 kΩ)
250 ns per Division
250 ns per Division
250 ns per Division
15 V
RO
VO
5V
–5 V
–15 V
CL
Figure 2. Output Characteristics
14
Submit Documentation Feedback
RL = 2 k Ω
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MC33078D
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DE4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DGKR
ACTIVE
MSOP
DGK
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DGKRG4
ACTIVE
MSOP
DGK
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DGKT
ACTIVE
MSOP
DGK
8
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DGKTG4
ACTIVE
MSOP
DGK
8
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078DRE4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MC33078P
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
MC33078PE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated