Ordering number : ENA1578 CMOS IC LC75841PE Static Drive, 1/2-Duty Drive General-Purpose LCD Display Driver Overview The LC75841PE is static drive or 1/2-duty drive, microcontroller-controlled general-purpose LCD driver that can be used in applications such as frequency display in products with electronic tuning. In addition to being capable to drive up to 54 segments directly, it can control up to 4 general-purpose output ports. Features • Serial data control of switching between static drive mode and 1/2 duty drive mode. When 1/1-duty: Capable of driving up to 27 segments When 1/2-duty: Capable of driving up to 54 segments • Serial data input supports CCB format communication with the system controller. • Serial data control of the power-saving mode based backup function and the all segments forced off function. • Serial data control of switching between the segment output port and general-purpose output port functions (up to 4 general-purpose output ports). • Serial data control of the frame frequency of the common and segment output waveforms. • Either RC oscillator operating or external clock operating mode can be selected with the serial control data. • High generality, since display data is displayed directly without the intervention of a decoder circuit. • The INH pin allows the display to be forced to the off state. • Allows compatible operation with the LC75842 (842 mode transfer function). • • CCB is a registered trademark of SANYO Semiconductor Co., Ltd. CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format. Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer' s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer' s products or equipment. N1809HKIM 20091006-S00001 No.A1578-1/18 LC75841PE Specifications Absolute Maximum Ratings at Ta = 25°C, VSS = 0V Parameter Maximum supply voltage Symbol Conditions VDD max Input voltage Ratings VDD Unit -0.3 to +7.0 V VIN1 CE, CL, DI, INH VIN2 OSC -0.3 to VDD+0.3 Output voltage VOUT S1 to S27, COM1, COM2, P1 to P4, OSC -0.3 to VDD+0.3 V Output current IOUT1 S1 to S27 300 μA IOUT2 COM1, COM2 3 IOUT3 P1 to P4 5 Pd max Ta=105°C Allowable power dissipation -0.3 to +7.0 V mA 50 mW Operating temperature Topr -40 to +105 °C Storage temperature Tstg -55 to +125 °C Allowable Operating Ranges at Ta = -40 to +105°C, VSS = 0V Parameter Symbol Ratings Conditions min typ unit max Supply voltage VDD VDD 4.0 6.0 Input high-level voltage VIH1 CE, CL, DI, INH 0.45VDD 6.0 VIH2 OSC External clock operating mode 0.45VDD VDD VIL1 CE, CL, DI, INH 0 0.2VDD VIL2 OSC External clock operating mode 0 0.2VDD Rosc OSC RC oscillator operating mode Cosc OSC RC oscillator operating mode fosc OSC RC oscillator operating mode External clock operating frequency fCK OSC External clock operating mode [Figure 3] External clock duty cycle DCK OSC External clock operating mode [Figure 3] Input low-level voltage Recommended external resistor for RC oscillation Recommended external capacitor for RC oscillation Guaranteed range of RC oscillation Data setup time tds Data hold time tdh CE wait time tcp CE setup time tcs CE hold time tch High-level clock pulse width Low-level clock pulse width CL, DI V V V 39 kΩ 1000 pF 19 38 76 kHz 19 38 76 kHz 30 50 70 % [Figure 1][Figure 2] 160 ns CL, DI [Figure 1][Figure 2] 160 ns CE, CL [Figure 1][Figure 2] 160 ns CE, CL [Figure 1][Figure 2] 160 ns CE, CL [Figure 1][Figure 2] 160 ns tφH CL [Figure 1][Figure 2] 160 ns tφL CL [Figure 1][Figure 2] 160 ns Rise time tr CE, CL, DI [Figure 1][Figure 2] 160 ns Fall time tf CE, CL, DI [Figure 1][Figure 2] 160 ns INH switching time tc INH, CE [Figure 4][Figure 5][Figure 6] 10 μs No.A1578-2/18 LC75841PE Electrical Characteristics for the Allowable Operating Ranges Parameter Symbol Pin Ratings Conditions min typ unit max Hysteresis VH CE, CL, DI, INH Input high-level current IIH1 CE, CL, DI, INH VI=6.0V 5.0 IIH2 OSC VI=VDD External clock operating mode 5.0 IIL1 CE, CL, DI, INH VI=0V -5.0 IIL2 OSC VI=0V External clock operating mode -5.0 Input low-level current Output high-level voltage Output low-level voltage Output middle-level 0.03VDD VOH1 S1 to S27 IO=-20μA VDD-0.9 VOH2 COM1, COM2 IO=-100μA VDD-0.9 VOH3 P1 to P4 IO=-1mA VDD-0.9 S1 to S27 IO=20μA COM1, COM2 IO=100μA 0.9 VOL3 P1 to P4 IO=1mA 0.9 VMID COM1, COM2 1/2 bias IO=±100μA OSC RC oscillator operating mode, Rosc=39kΩ, Cosc=1000pF Current drain V VOL2 fosc IDD1 VDD Power-saving mode IDD2 VDD VDD=6.0V, Output open, RC oscillator operating mode, μA μA VOL1 voltage Oscillator frequency V 0.9 1/2VDD 1/2VDD -0.9 +0.9 30.4 38 45.6 V V kHz 15 350 700 1500 3000 450 900 1600 3200 fosc=38kHz, Static IDD3 VDD VDD=6.0V, Output open, RC oscillator operating mode, fosc=38kHz, 1/2 duty IDD4 VDD VDD=6.0V, Output open, External clock operating mode, fCK=38kHz, VIH2=0.5VDD, VIL2=0.1VDD, μA Static IDD5 VDD VDD=6.0V, Output open, External clock operating mode, fCK=38kHz, VIH2=0.5VDD, VIL2=0.1VDD, 1/2 duty No.A1578-3/18 LC75841PE 1. When CL is stopped at the low level tφL tcp ≈ ≈ DI tf VIH1 VIL1 tds ≈ ≈ ≈ VIH1 50% VIL1 tr VIL1 ≈ ≈ tφH CL ≈ VIH1 CE tcs tch tdh [Figure 1] 2. When CL is stopped at the high level ≈ VIH1 CE ≈ VIL1 tφH ≈ tφL VIH1 50% VIL1 CL tr tcp tcs ≈ ≈ ≈ ≈ ≈ tf VIH1 DI VIL1 tds tch tdh [Figure 2] 3. OSC pin clock timing in external clock operating mode tCKH OSC VIH2 50% VIL2 tCKL fCK= 1 tCKH+ tCKL [kHz] tCKH ×100[%] DCK= tCKH+ tCKL [Figure 3] No.A1578-4/18 LC75841PE Package Dimensions unit:mm (typ) 3162C 27 0.5 9.0 7.0 19 28 7.0 9.0 18 36 10 1 9 0.65 0.15 0.3 (1.5) 0.1 1.7max (0.9) SANYO : QFP36(7X7) S27 S26 S25 S24 S23 S22 S21 S20 S19 27 26 25 24 23 22 21 20 19 Pin Assignment OSC 28 18 S18 VDD 29 17 S17 INH 30 16 S16 VSS 31 15 S15 CE 32 14 S14 CL 33 13 S13 DI 34 12 S12 COM2 35 11 S11 COM1 36 10 S10 9 S9 8 S8 7 S7 6 S6 5 S5 4 P4/S4 3 P3/S3 2 P2/S2 P1/S1 1 LC75841PE Top view No.A1578-5/18 LC75841PE COMMON DRIVER S1/P1 S2/P2 S3/P3 S4/P4 S5 S26 S27 COM2 COM1 Block Diagram SEGMENT DRIVER & LATCH INH CONTROL REGISTER CLOCK GENERATOR OSC SHIFT REGISTER CCB INTERFACE VDD CE CL DI VSS Pin Functions Handling Symbol Pin No. Function Active I/O when unused S1/P1 to S4/P4 1 to 4 S5 to S27 5 to 27 COM1 36 COM2 35 OSC 28 Segment outputs for displaying the display data transferred by serial data input. The S1/P1 to S4/P4 pins can be used as general-purpose output ports when so set - O OPEN - O OPEN - I/O VDD H I up by the control data. Common driver outputs. The frame frequency is fo [Hz]. Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin. This pin can be used as the external clock input pin if external clock operating mode is selected with the control data. Serial data transfer inputs. Must be connected to the controller. CE 32 CE: Chip enable CL 33 CL: Synchronization clock DI 34 DI: Transfer data I - I L I GND Display off control input • INH = low (VSS) ...Display forced off S1/P1 to S4/P4 = low (VSS) (These pins are forcibly set to the segment output port function and held at the VSS level.) INH 30 S5 to S27 = low (VSS) COM1, COM2 = low (VSS) OSC = Z (high impedance) GND RC oscillation stopped Inhibits external clock input. • INH = high (VDD)...Display on RC oscillation enabled (RC oscillator operating mode) Enables external clock input (external clock operating mode) However, serial data transfer is possible when the display is forced off. VDD 29 Power supply. Provide a voltage in the range 4.0 to 6.0V. - - - VSS 31 Ground pin. Must be connected to ground. - - - No.A1578-6/18 LC75841PE Serial Data Transfer Formats (1) Static drive mode 1. When CL is stopped at the low level CE CL DI 0 0 1 0 0 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 0 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits Display data 27 bits Control data 12 bits DD 1 bit 2. When CL is stopped at the high level CE CL DI 0 0 1 0 0 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 0 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits Display data 27 bits Control data 12 bits DD 1 bit Note: DD is the direction data. • CCB address ....... "44H" • D1 to D27 ......... Display data • P0 to P2 .............. Segment output port/general-purpose output port switching control data • DT ...................... Static drive or 1/2 duty drive switching control data • FC0 to FC2 ......... Common/segment output waveform frame frequency control data • OC ...................... RC oscillator operating mode/external clock operating mode switching control data • SC ...................... Segments on/off control data • BU ...................... Normal mode/power-saving mode control data No.A1578-7/18 LC75841PE (2) 1/2 duty drive mode 1. When CL is stopped at the low level CL DI 0 0 1 0 0 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 ∼ ∼ ∼ ∼ CE B0 B1 B2 B3 A0 A1 A2 A3 Display data 28 bits Control data 11 bits DD 1 bit ∼ ∼ ∼ ∼ CCB address 8 bits 0 0 1 0 0 0 1 0 D29 D30 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 0 0 0 0 0 0 0 0 0 0 0 0 1 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits Display data 26 bits Fixed data 13 bits DD 1 bit 2. When CL is stopped at the high level ∼ ∼ CE 0 0 1 0 0 0 1 DI 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 ∼ ∼ CL B0 B1 B2 B3 A0 A1 A2 A3 Display data 28 bits Control data 11 bits DD 1 bit ∼ ∼ ∼ ∼ CCB address 8 bits 0 0 1 0 0 0 1 0 D29 D30 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Display data 26 bits Fixed data 13 bits DD 1 bit Note: DD is the direction data. • CCB address ....... "44H" • D1 to D54 ......... Display data • P0 to P2 .............. Segment output port/general-purpose output port switching control data • DT ...................... Static drive or 1/2 duty drive switching control data • FC0 to FC2 ......... Common/segment output waveform frame frequency control data • OC ...................... RC oscillator operating mode/external clock operating mode switching control data • SC ...................... Segments on/off control data • BU ...................... Normal mode/power-saving mode control data No.A1578-8/18 LC75841PE Serial Data Transfer Formats (When in 842 mode data transfer) (1) 1/2 duty drive mode (When in 842 mode data transfer) 1. When CL is stopped at the low level CL DI 0 0 1 0 0 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 BU SC 0 0 B0 B1 B2 B3 A0 A1 A2 A3 Display data 28 bits Control data DD 3 bits 1bit ∼ ∼ ∼ ∼ CCB address 8 bits ∼ ∼ ∼ ∼ CE 0 0 1 0 0 0 1 0 D29 D30 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 0 0 0 0 1 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits Display data 26 bits Fixed data 5 bits DD 1bit 2. When CL is stopped at the high level ∼ ∼ CE 0 0 1 0 0 0 1 DI 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 BU SC 0 0 ∼ ∼ CL B0 B1 B2 B3 A0 A1 A2 A3 Display data 28 bits Control DD data 1 bit 3 bits ∼ ∼ ∼ ∼ CCB address 8 bits 0 0 1 0 0 0 1 0 D29 D30 B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 0 0 0 0 1 Display data 26 bits Fixed data 5 bits DD 1 bit Note: DD is the direction data. • CCB address ....... "44H" • D1 to D54 ......... Display data • BU ...................... Normal mode/power-saving mode control data • SC ...................... Segments on/off control data No.A1578-9/18 LC75841PE Serial Data Transfer Examples (1) Static drive mode The serial data shown in the figure below must be sent. 8 bits 0 0 1 0 0 40 bits 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 0 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 B0 B1 B2 B3 A0 A1 A2 A3 (2) 1/2 duty drive mode • When 29 or more segments are used 96 bits of serial data (including CCB address bits) must be sent. 8 bits 0 0 1 0 0 40 bits 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 D29 D30 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 B0 B1 B2 B3 A0 A1 A2 A3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 B0 B1 B2 B3 A0 A1 A2 A3 • When fewer than 29 segments are used The serial data shown below (the D1 to D28 display data and the control data) must always be sent. 8 bits 0 0 1 0 0 40 bits 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0 B0 B1 B2 B3 A0 A1 A2 A3 Serial Data Transfer Examples (When in 842 mode data transfer) (1) 1/2 duty drive mode (When in 842 mode data transfer) • When 29 or more segments are used 80 bits of serial data (including CCB address bits) must be sent. 8 bits 0 0 1 0 0 32 bits 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 BU SC 0 0 D29 D30 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 0 1 B0 B1 B2 B3 A0 A1 A2 A3 0 0 1 0 0 0 1 0 0 0 0 0 B0 B1 B2 B3 A0 A1 A2 A3 • When fewer than 29 segments are used The serial data shown in the figure below (the D1 to D28 display data, and the control data) must be sent. 8 bits 0 0 1 0 0 32 bits 0 1 0 D1 D2 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 BU SC 0 0 B0 B1 B2 B3 A0 A1 A2 A3 No.A1578-10/18 LC75841PE Control Data Functions 1. P0 to P2: Segment output port/general-purpose output port switching control data These control data bits switch the segment output port/general-purpose output port functions of the S1/P1 to S4/P4 output pins. However, segment output port is forcibly selected when in 842 mode data transfer. Control data Output pin state P0 P1 P2 S1/P1 S2/P2 S3/P3 S4/P4 0 0 0 S1 S2 S3 S4 0 0 1 P1 S2 S3 S4 0 1 0 P1 P2 S3 S4 0 1 1 P1 P2 P3 S4 1 0 0 P1 P2 P3 P4 Note: Sn (n = 1 to 4): Segment output ports Pn (n = 1 to 4): General-purpose output ports Note that when the general-purpose output port function is selected, the correspondence between the output pins and the display data will be that shown in the table. Corresponding display data Output pin Static drive mode 1/2 duty drive mode S1/P1 D1 D1 S2/P2 D2 D3 S3/P3 D3 D5 S4/P4 D4 D7 For example, if the general-purpose output port function is selected for the S4/P4 output pin in 1/2 duty drive mode, it will output a high level (VDD) when display data D7 is 1, and a low level (VSS) when D7 is 0. 2. DT: Static drive mode or 1/2 duty drive mode switching control data This control data bit selects either static drive mode or 1/2 duty drive mode. However, 1/2 duty drive mode is forcibly selected when in 842 mode data transfer. DT Duty drive mode Output pin state (COM2) 0 Static drive mode VSS level 1 1/2 duty drive mode COM2 Note: COM2…Common output 3. FC0 to FC2: Common/segment output waveform frame frequency control data These control data bits set the frame frequency of the common and segment output waveforms. However, fo=fosc/384 is forcibly selected when in 842 mode data transfer. Control data Frame frequency fo [Hz] FC0 FC1 FC2 1 1 0 fosc/768, fCK/768 1 1 1 fosc/576, fCK/576 0 0 0 fosc/384, fCK/384 0 0 1 fosc/288, fCK/288 0 1 0 fosc/192, fCK/192 No.A1578-11/18 LC75841PE 4. OC: RC oscillator operating mode/external clock operating mode switching control data This control data bit switches the OSC pin function (either RC oscillator operating mode or external clock operating mode). However RC oscillator operating mode is forcibly selected when in 842 mode data transfer. OC OSC pin function 0 RC oscillator operating mode 1 External clock operating mode Note: An external resistor, Rosc, and an external capacitor, Cosc, must be connected to the OSC pin if RC oscillator operating mode is selected. 5. SC: Segment on/off control data This control data bit controls the on/off state of the segments. SC Display state 0 On 1 Off Note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins. 6. BU: Normal mode/power-saving mode control data This control data bit selects either normal mode or power-saving mode. BU 0 Mode Normal mode Power-saving mode. In RC oscillator operating mode (OC = 0), the OSC pin oscillator is stopped, and in external clock operating mode 1 (OC = 1), acceptance of the external clock is stopped. In this mode the common and segment output pins go to the VSS levels. However, S1/P1 to S4/P4 output pins that are set to be general-purpose output ports by the control data P0 to P2 can be used as general-purpose output ports. No.A1578-12/18 LC75841PE Display Data and Output Pin Correspondence (1) Static drive mode Output pin COM1 Output pin COM1 Output pin COM1 S1/P1 D1 S11 D11 S21 D21 S2/P2 D2 S12 D12 S22 D22 S3/P3 D3 S13 D13 S23 D23 S4/P4 D4 S14 D14 S24 D24 S5 D5 S15 D15 S25 D25 S6 D6 S16 D16 S26 D26 S27 D27 S7 D7 S17 D17 S8 D8 S18 D18 S9 D9 S19 D19 S10 D10 S20 D20 Notes: This applies to the case where the S1/P1 to S4/P4 output pins are set to be segment output ports. The static drive mode cannot be selected when in 842 mode data transfer. For example, the table below lists the output states for the S11 output pin. Display data Output pin (S11) state D11 0 The LCD segment corresponding to COM1 is off 1 The LCD segment corresponding to COM1 is on (2) 1/2 duty drive mode Output pin COM1 COM2 Output pin COM1 COM2 Output pin COM1 COM2 S1/P1 D1 D2 S11 D21 D22 S21 D41 D42 S2/P2 D3 D4 S12 D23 D24 S22 D43 D44 S3/P3 D5 D6 S13 D25 D26 S23 D45 D46 S4/P4 D7 D8 S14 D27 D28 S24 D47 D48 S5 D9 D10 S15 D29 D30 S25 D49 D50 S6 D11 D12 S16 D31 D32 S26 D51 D52 S7 D13 D14 S17 D33 D34 S27 D53 D54 S8 D15 D16 S18 D35 D36 S9 D17 D18 S19 D37 D38 S10 D19 D20 S20 D39 D40 Note: This applies to the case where the S1/P1 to S4/P4 output pins are set to be segment output ports. For example, the table below lists the output states for the S11 output pin. Display data Output pin (S11) state D21 D22 0 0 The LCD segments corresponding to COM1 and COM2 are off. 0 1 The LCD segment corresponding to COM2 is on. 1 0 The LCD segment corresponding to COM1 is on. 1 1 The LCD segments corresponding to COM1 and COM2 are on. No.A1578-13/18 LC75841PE Output Waveforms (Static drive mode) fo[Hz] VDD COM1 0V VDD LCD driver output when off 0V VDD LCD driver output when on 0V Output Waveforms (1/2 duty, 1/2 bias drive mode) fo[Hz] VDD 1/2VDD COM1 0V VDD 1/2VDD COM2 0V VDD LCD driver output when all LCD segments corresponding to COM1 and COM2 are off. 0V VDD LCD driver output when only LCD segments corresponding to COM1 are on. 0V VDD LCD driver output when only LCD segments corresponding to COM2 are on. 0V VDD LCD driver output when all LCD segments corresponding to COM1 and COM2 are on. 0V Control data Frame frequency fo [Hz] FC0 FC1 FC2 1 1 0 fosc/768, fCK/768 1 1 1 fosc/576, fCK/576 0 0 0 fosc/384, fCK/384 0 0 1 fosc/288, fCK/288 0 1 0 fosc/192, fCK/192 No.A1578-14/18 LC75841PE Display Control and the INH Pin Since the IC’s internal data (the display data D1 to D27 and the control data when in static drive mode, and the display data D1 to D54 and the control data when in 1/2 duty drive mode) is undefined when power is first applied, applications should set the INH pin low at the same time as power is applied to turn off the display (setting S1/P1 to S4/P4 and S5 to S27, COM1, and COM2 to the VSS level) and during this period send serial data from the controller. The controller should then set the INH pin high after the data transfer has completed. This procedure prevents unnecessary display at power on. (See figure 4, figure 5 and figure 6) • Static drive mode ≈ t1 ≈ VDD INH VIL1 CE Internal data D1 to D27, P0 to P2, DT, FC0 to FC2, OC, SC, BU VIL1 Display data and control data transferred Undefined ≈ ≈ ≈ tc Defined Undefined Notes: t1>0 tc ⋅⋅⋅ 10μs min [Figure 4] • 1/2 duty drive mode ≈ t1 ≈ VDD INH VIL1 Internal data D1 to D28, P0 to P2, DT, FC0 to FC2, OC, SC, BU Internal data (D29 to D54) VIL1 Display data and control data transferred Undefined Defined Undefined ≈ ≈ ≈ ≈ ≈ tc CE Undefined Defined Undefined Notes: t1>0 tc ⋅⋅⋅ 10μs min [Figure 5] • 1/2 duty drive mode (when in 842 mode data transfer) ≈ t1 ≈ VDD INH VIL1 VIL1 Display data and control data transferred Internal data (D1 to D28, BU, SC) Internal data (D29 to D54) Undefined Defined Undefined ≈ ≈ ≈ ≈ ≈ tc CE Defined Undefined Undefined Notes: t1>0 tc ⋅⋅⋅ 10μs min [Figure 6] No.A1578-15/18 LC75841PE Notes on Controller Transfer of Display Data Since the LC75841PE transfer the display data (D1 to D54) in two separate transfer operations in 1/2 duty drive mode, we recommend that applications make a point of completing all of the display data transfer within a period of less than 30ms to prevent observable degradation of display quality. OSC Pin Peripheral Circuit (1) RC oscillator operating mode (control data OC = 0) An external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and GND if RC oscillator operating mode is selected. OSC Rosc Cosc (2) External clock operating mode (control data OC = 1) When the external clock operating mode is selected, insert a current protection resistor Rg (4.7 to 47kΩ) between the OSC pin and external clock output pin (external oscillator). Determine the value of the resistance according to the allowable current value at the external clock output pin. Also make sure that the waveform of the external clock is not heavily distorted. External clock output pin OSC Rg External oscillator Note: Allowable current value at external clock output pin > VDD Rg No.A1578-16/18 LC75841PE Sample Application Circuit 1 Static drive mode (P1) (P2) (P3) *3 (P4) +5.0V OSC *2 VDD General-purpose Output ports Used for functions such as backlight control COM1 VSS LCD panel (up to 27 segments) P1/S1 P2/S2 P3/S3 P4/S4 S5 INH From the controller CE CL DI *4 S26 S27 COM2 OPEN *2: In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. If external clock operating mode is selected, a current protection resistor, Rg (4.7 to 47kΩ), must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the “OSC Pin Peripheral Circuit” section.) *3: When a capacitor except the recommended external capacitance (Cosc = 1000pF) is connected to the OSC pin, it should be in the range 220 to 2200pF. *4: The pins to be connected to the controller (CE, CL, DI, INH) can handle 3.3V or 5.0V. No.A1578-17/18 LC75841PE Sample Application Circuit 2 1/2 duty drive mode (P1) (P2) (P3) *3 (P4) +5.0V OSC *2 VDD General-purpose Output ports Used for functions such as backlight control COM1 COM2 P1/S1 P2/S2 P3/S3 P4/S4 S5 INH From the controller CE CL DI *4 LCD panel (up to 54 segments) VSS S25 S26 S27 *2: In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. If external clock operating mode is selected, a current protection resistor, Rg (4.7 to 47kΩ), must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the “OSC Pin Peripheral Circuit” section.) *3: When a capacitor except the recommended external capacitance (Cosc = 1000pF) is connected to the OSC pin, it should be in the range 220 to 2200pF. *4: The pins to be connected to the controller (CE, CL, DI, INH) can handle 3.3V or 5.0V. SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of November, 2009. Specifications and information herein are subject to change without notice. PS No.A1578-18/18