54AC164245 Rad-hard 16-bit transceiver, 3.3 V to 5 V bidirectional level shifter Datasheet − production data Features ■ Fully compatible with 54ACS164245 ■ Dual supply bidirectional level shifter ■ Extended voltage range from 2.3 V to 5.5 V ■ Separated enable pin for 3-state output ■ Schmidt-triggered I/Os: 100 mV hysteresis ■ Internal 26 Ω limiting resistor on each I/O ■ High speed: Tpd = 8 ns maximum ■ Bus hold ■ Fail safe ■ Cold spare ■ Hermetic package ■ 100 krad (Si) at any Mil1019 dose rate ■ SEL immune to 110MeV.cm2/mg LET ions ■ RHA QML-V qualified Ceramic Flat-48 The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package All pins have cold spare buffers to change them to high impedance when VDD is tied to ground. Description The 54AC164245 is a rad-hard advanced highspeed CMOS, Schmitt trigger 16-bit bidirectional multi-purpose transceiver with 3-state outputs and cold sparing. Designed for use as an interface between a 5 V bus and a 3.3 V bus in mixed 5 V/3.3 V supply systems, it achieves high-speed operation while maintaining the CMOS low-power dissipation. Table 1. This IC is intended for two-way asynchronous communication between the data buses and the direction of the data transmission is determined by the nDIR inputs. The A port interfaces with the 3.3 V bus but can also operate at 2.3 V. The B port operates with the 5 V bus. Device summary Reference SMD pin Quality level RHRAC164245K1 - Engineering model Package Lead finish Gold Flat-48 RHRAC164245K01V Note: 5962R9858008VYC Mass QMLVFlight EPPL - -55 °C to +125 °C 1.50 g Gold Temp range Target Contact your ST sales office for information on the specific conditions for products in die form. April 2012 This is information on a product in full production. Doc ID 18093 Rev 2 1/22 www.st.com 22 Functional description 54AC164245 1 Functional description Figure 1. Logic diagram $)2 $)2 /% /% ! ! " " ! ! " " ! ! " " ! ! 6PORT " ! " 6PORT 6PORT ! 6PORT " " ! ! " " ! ! " " ! ! " " !- Table 2. 2/22 Function table Enable, OEx Direction, DIRx Operation L L B data to A bus L H A data to B bus H X Isolation Doc ID 18093 Rev 2 54AC164245 1.1 Functional description Cold spare The 54AC164245 features a cold spare input and output buffers. In high reliability applications, cold sparing enables a redundant device to be tied to the data bus with its power supply at 0 V (VDD = VSS, VDD - VSS = 0 V) without affecting the bus signals or injecting current from the I/Os to the power supplies. Cold sparing also allows to keep unpowered redundant devices so that they can be switched on only when required. Power consumption is therefore reduced by switching off the redundant circuit. This has no impact on the application. Cold spare is achieved by implementing a high impedance between I/Os and VDD. The ESD protection is ensured through a non-conventional dedicated structure. 1.2 Power-up During power up, all outputs are forced to high impedance. The high-impedance state is maintained approximately until VDD is high, thus avoiding any transient and erroneous signals during power-up. 1.3 Pin connections Figure 2. Pin connections !-V Doc ID 18093 Rev 2 3/22 Functional description Table 3. 54AC164245 Pin descriptions Pin n° 4/22 Symbol Name and function 1 DIR1 Direction control inputs 2, 3, 5, 6, 8, 9, 11, 12 1B1 to 1B8 Side B inputs or 3-state outputs (5 V port) 4,10, 15, 21, 28, 34, 39, 45 VSS Reference voltage to ground 7, 18 VDD1 Supply voltage (5 V) 13, 14, 16, 17, 19, 20, 22, 23 2B1 to 2B8 Side B inputs or 3-state outputs (5 V port) 24 DIR2 Direction control inputs 25 nG2 Output enable inputs (active low) 31, 42 VDD2 Supply voltage (3.3 V) 47, 46, 44, 43, 41, 40, 38, 37 1A1 to 1A8 Side A inputs or 3-state outputs (3.3 V port) 36, 35, 33, 32, 30, 29, 27, 26 2A1 to 2A8 Side A inputs or 3-state outputs (3.3 V port) 48 nG1 Output enable inputs (active low) Doc ID 18093 Rev 2 54AC164245 2 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 4. Symbol Absolute maximum ratings (1) (2) (3) Parameter VDD1 5 V supply voltage VDD2 3 V supply voltage (4) Value Unit -0.3 to +6.0 V -0.3 to +6.0 V VIA DC input voltage range port A -0.3 to VDD1+0.3 V V VIB DC input voltage range port B -0.3 to VDD1+0.3 V V VOA DC output voltage range port A -0.3 to VDD1+0.3 V V VOB DC output voltage range port B -0.3 to VDD1+0.3 V V IIA DC input currents port A, anyone input ± 10 mA IIB DC input currents port B, anyone input ± 10 mA Tstg Storage temperature range -65 to +150 °C TL Lead temperature (10 sec) 300 °C TJ Junction temperature range 175 °C TBD °C/W TBD °C/W 2 kV Rthja Thermal resistance junction to ambient Flat package, 48 pins Rthjc Thermal resistance junction to case(5) Flat package, 48 pins ESD HBM: human body model(6) (5) 1. Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. 2. Unless otherwise noted, all voltages are referenced to VSS. 3. The limits for the parameters specified herein shall apply over the full specified VDD range and case temperature range of -55°C to +125°C. 4. VDD1 (5 V) may remain disconnected. 5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 6. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. Doc ID 18093 Rev 2 5/22 Absolute maximum ratings and operating conditions Table 5. Operating conditions (1) Symbol Parameter 54AC164245 Value Unit VDD1 Supply voltage 4.5 to 5.5 or 2.3 to 3.6 V VDD2 Supply voltage 2.3 to 3.6 or 4.5 to 5.5 V VI Input voltage 0 to VDD1 V VO Output voltage 0 to VDD1 V Top Operating temperature -55 to +125 °C 0 to 8 ns / V dt / dv Input rise and fall time VCC = 3.0, 4.5 or 5.5 (2) 1. Unless otherwise noted, all voltages are referenced to VSS. 2. Derate system propagation delays by difference in rise time to switch point for tr or tf > 1 ns/V. 6/22 Doc ID 18093 Rev 2 54AC164245 3 Electrical characteristics Electrical characteristics Top = -55°C to +125°C, VDD1 = 4.5 V to 5.5 V, VDD2 = 2.7 V to 3.6 V, unless otherwise specified. Table 6. DC specifications (1) Symbol Parameter Test condition (VDD) (2) 3.3 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.7 VDD2 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 4.5 and 5.5 V 0.7 VDD2 3.3 V VDD2 = 2.7 and 3.6 V VDD1 = 2.7 and 3.6 V 0.7 VDD1 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.7 VDD1 3.3 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.3 VDD2 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 4.5 and 5.5 V 0.3 VDD2 3.3 V VDD1 = 2.7 and 3.6 V VDD2 = 2.7 and 3.6 V 0.3 VDD1 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.3 VDD1 3.3 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.4 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 4.5 and 5.5 V 0.6 3.3 V VDD1 = 2.7 and 3.6 V VDD2 = 2.7 and 3.6 V 0.4 5.0 V VDD1 = 4.5 and 5.5 V VDD2 = 2.7 and 3.6 V 0.6 3.3 V VDD1 = 5.5 V VDD2 = 3.6 V 3 5.0 V VDD1 = 5.5 V VDD2 = 5.5 V 3 3.3 V VDD1 = 3.6 V VDD2 = 3.6 V 3 5.0 V VDD1 = 5.5 V VDD2 = 3.6 V 3 Schmitt trigger positive going threshold port A VT+ Schmitt trigger positive going threshold port B Schmitt trigger positive going threshold port A VTSchmitt trigger positive going threshold port B Schmitt trigger range of hysteresis port A VH Schmitt trigger range of hysteresis port B Input current high port A (for input under test VI = VDD2 other inputs, VI = VDD2 or VSS) IIH Input current high port B (for input under test VI = VDD1 other inputs, VI = VDD1 or VSS) Limits Port voltage Unit Min. Doc ID 18093 Rev 2 Max. V V V µA 7/22 Electrical characteristics Table 6. Symbol 54AC164245 DC specifications (1) (continued) Test condition (VDD) (2) 3.3 V VDD1 = 5.5 V VDD2 = 3.6 V -1 5V VDD1 = 5.5 V VDD2 = 5.5 V -1 3.3 V VDD1 = 3.6 V VDD2 = 3.6 V -1 5V VDD1 = 5.5 V VDD2 = 3.6 V -1 Input current cold spare mode port A = port B = 5.5 V = VI DIRn = 5.5 V, OEn = 5.5 V VDD1 = 0 V -1 5 Input current cold spare mode port A = port B = 5.5 V = VI DIRn = 0V, OEn = 5.5 V VDD1 = 0 V -1 5 Input current low port A (for input under test VI =VSS other inputs, VI = VDD2 or VSS IIL Input current low port B (for input under test VI =VSS other inputs, VI = VDD1 or VSS ICS Max. µA µA VDD1 = 0 V -1 5 Input current cold spare mode port A = port B = 5.5 V = VI DIRn = 0 V, OEn = 0 V VDD1 = 0 V -1 5 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V 0.5 5V VDD1 = 4.5 V VDD2 = 4.5 V 0.4 Low level output voltage Port B, IOL = 8 mA for all inputs affecting output under test, VI = VDD1 or VSS 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V 0.5 5V VDD1 = 4.5 V VDD2 = 2.7 V 0.4 Low level output voltage 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V 0.2 5V VDD1 = 4.5 V VDD2 = 4.5 V 0.2 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V 0.2 5V VDD1 = 4.5 V VDD2 = 2.7 V 0.2 VOL1 Port A, IOL = 100 µA for all inputs affecting output under test, VI = VDD2 or VSS Low level output voltage Port B, IOL = 100 µA For all inputs affecting output under test, VI =VDD1 or VSS 8/22 Unit Min. Input current cold spare mode port A = port B = 5.5 V = VI DIRn = 5.5 V, OEn = 0 V Low level output voltage Port A, IOL = 8 mA for all inputs affecting output under test, VI = VDD2 or VSS VOL2 Limits Port voltage Parameter V V Doc ID 18093 Rev 2 54AC164245 Table 6. Symbol Electrical characteristics DC specifications (1) (continued) Limits Port voltage Test condition (VDD) (2) High level output voltage port A, IOH = -8 mA for all inputs affecting output under test, VI = VDD2 or VSS 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V VDD2-0.9 5V VDD1 = 4.5 V VDD2 = 4.5 V VDD2-0.7 High level output voltage port B, IOH = -8 mA for all inputs affecting output under test, VI = VDD1 or VSS 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V VDD1-0.9 5V VDD1 = 4.5 V VDD2 = 2.7 V VDD1-0.7 High level output voltage port A, IOH = - 100 µA for all inputs affecting output under test, VI = VDD2 or VSS 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V VDD2-0.2 5V VDD1 = 4.5 V VDD2 = 4.5 V VDD2-0.2 High level output voltage port B, IOH = - 100 µA for all inputs affecting output under test, VI = VDD1 or VSS 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V VDD1-0.2 5V VDD1 = 4.5 V VDD2 = 2.7 V VDD1-0.2 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V VOL = 0.5 V 8.0 5V VDD1 = 4.5 V VDD2 = 4.5 V VOL = 0.4 V 8.0 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V VOL = 0.5 V 8.0 5V VDD1 = 4.5 V VDD2 = 2.7 V VOL = 0.4 V 8.0 Parameter VOH1 VOH2 Output current (sink) port A, VI = VSS IOL (3) Output current (sink) port B, VI = VSS Unit Min. Doc ID 18093 Rev 2 Max. V mA 9/22 Electrical characteristics Table 6. Symbol 54AC164245 DC specifications (1) (continued) Parameter Test condition (VDD) (2) 3.3 V VDD1 = 4.5 V VDD2 = 2.7 V VOH = VDD2 -0.9 V -8.0 5V VDD1 = 4.5 V VDD2 = 4.5 V VOH = VDD2 -0.7 V -8.0 3.3 V VDD1 = 2.7 V VDD2 = 2.7 V VOH = VDD2 -0.9 V -8.0 5V VDD1 = 4.5 V VDD2 = 2.7 V VOH = VDD2 -0.7 V -8.0 Output current (source) port A, VI = VDD2 or VSS IOH (4) Output current (source) port B, VI = VDD2 or VSS IOZH IOZL Three-state output leakage current high port A, for input under test, VI =VDD2 other inputs, VO =VDD2 VI =VDD2 or VSS Three-state output leakage current high port B, for input under test, VI =VDD1 other inputs, VO = VDD1 VI = VDD1 or VSS Three-state output leakage current low port A, for input under test, VI = VSS other inputs, VO = VSS VI = VDD2 or VSS Three-state output leakage current low port B, for input under test, VI = VSS other inputs, VO = VSS VI = VDD1 or VSS Short circuit output current port A, VO = VDD2 or VSS IOS 10/22 Unit Min. Max. mA VDD1 = 5.5 V VDD2 = 3.6 V 3.0 VDD1 = 5.5 V VDD2 = 5.5 V 3.0 3.3 V VDD1 = 3.6 V VDD2 = 3.6 V 3.0 5V VDD1 = 5.5 V VDD2 = 3.6 V 3.0 3.3 V VDD1 = 5.5 V VDD2 = 3.6 V -1.0 5V VDD1 = 5.5 V VDD2 = 5.5 V -1.0 3.3 V VDD1 = 3.6 V VDD2 = 3.6 V -1.0 5V VDD1 = 5.5 V VDD2 = 3.6 V -1.0 3.3 V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V -100 100 5V VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V -200 200 3.3 V VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.6 V -100 100 5V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V -200 200 3.3 V (3) (4) Short circuit output current port B, VO = VDD1 or VSS Limits Port voltage Doc ID 18093 Rev 2 µA µA mA 54AC164245 Table 6. Symbol Electrical characteristics DC specifications (1) (continued) Parameter Test condition (VDD) (2) 3.3 V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 1.5 5V VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 2.0 3.3 V VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.6 V 1.5 5V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 2.0 VDD1 = 5.5 V VDD2 = 5.5 V at 25°C 10 VDD1 = 5.5 V VDD2 = 5.5 V at -55 to +125°C 100 Power dissipation, port A, CL = 50 pF per switching output PD Limits Port voltage (3) (5) (6) Power dissipation, port B, CL = 50 pF per switching output Quiescent supply current port A, VI = VDD2 or VSS Unit Min. Max. mW/ MHz 5V IDDQ µA Quiescent supply current port B, VI = VDD1 or VSS VDD1 = 5.5 V VDD2 = 5.5 V at 25°C 10 VDD1 = 5.5 V VDD2 = 5.5 V at -55 to +125°C 100 5V CI Input capacitance f = 1 MHz VDD1 = VDD2 = 0 V 15 pF CO Output capacitance f = 1 MHz VDD1 = VDD2 = 0 V 15 pF (7) Functional test VIH = 0.7 VDD, VIL = 0.3 VDD VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V L H 1. Each input/output, as applicable, is tested at the specified temperature, for the specified limits, to the tests specified in SMD5962-98580 table I. Non-designated output terminals are high level logic, low level logic or open, except for all IDD tests, where the output terminals are open. When performing these tests, the current meter must be placed in the circuit such that all current flows through the meter. 2. This device requires both VDD1 and VDD2 power supplies for operation. The power supply is indicated and followed by the voltage to which the power supply is set to the given test. 3. This parameter is supplied as a design limit but not guaranteed or tested. 4. No more than one output should be shorted at a time for a maximum duration of one second. 5. Power does not include power contribution of any CMOS output sink current. 6. Power dissipation specified per switching output. 7. Tests must be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table must, at minimum, test all the functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the function table, Table 2. Functional tests are performed in sequence as approved by the qualifying activity on qualified devices. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: VIH = VIH(min + 20%, -0%); VIL = VIL(max + 0%, -50%), as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices are guaranteed to VIH(min) and VIL(max). Doc ID 18093 Rev 2 11/22 Electrical characteristics Table 7. 54AC164245 AC electrical characteristics (1) Limits Symbol Parameter Propagation delay time, data to bus (active low) CL = 50 pF tPLH Propagation delay time, data to bus (active low) CL = 50 pF Propagation delay time, data to bus (active high) CL = 50 pF tPHL Propagation delay time, data to bus (active high) CL = 50 pF Propagation delay time, output enable, OEn to bus (active low), CL = 50 pF tPZL tPLZ tPHZ 12/22 Max. 1.0 20 Port A = Port B = 3.3 V VDD1 = 2.7 to 3.6 V VDD2 = 2.7 to 3.6 V 1.0 20 Port A = Port B = 5 V VDD1=4.5 to 5.5 V VDD2=4.5 to 5.5 V 1.0 15 Port A = 3.3V Port B = 5 V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 1.0 20 Port A = Port B = 3.3 V VDD1 = 2.7 to 3.6 V VDD2 = 2.7 to 3.6 V 1.0 20 Port A = Port B = 5 V VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 15 Port A = 3.3 V Port B = 5V VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 1.0 18 VDD1 = 2.7 to 3.6 V VDD2 = 2.7 to 3.6 V 1.0 18 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 12 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 1.0 18 VDD1 = 2.7 to 3.6 V VDD2 = 2.7 to 3.6 V 1.0 18 VDD1 = 4.5 to 5.5V VDD2 = 4.5 to 5.5V 1.0 12 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.6 V 1.0 20 VDD1 = 2.7 to 3.6 V VDD2 = 2.7 to 3.6 V 1.0 20 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 15 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 12 Port A = 3.3 V Port B = 5 V Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V disable, OEn to bus (low impedance), CL= 50 pF Port A = Port B = 5 V Propagation delay time, output disable, OEn to bus (high impedance), CL = 50 pF Unit Min. VDD1 = 4.5 to 5.5 V VDD2 =2.7 to 3.6 V Propagation delay time, output Port A = Port B = 3.3 V enable, OEn to bus (active high), CL = 50 pF Port A = Port B = 5 V Propagation delay time, output disable, OEn to bus (low impedance), CL = 50 pF Test condition (VDD) Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V enable, OEn to bus (active low), CL = 50 pF Port A = Port B = 5 V Propagation delay time, output enable, OEn to bus (active high), CL = 50 pF tPZH Port voltage Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V disable, OEn to bus (high impedance), CL= 50 pF Port A = Port B = 5 V Doc ID 18093 Rev 2 ns ns ns ns ns ns 54AC164245 Table 7. Electrical characteristics AC electrical characteristics (1) (continued) Limits Symbol Parameter Propagation delay time, output enable, DIRn to bus (active low), CL = 50 pF tPZL (1) Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V disable, DIRn to bus (low impedance), CL= 50 pF Port A = Port B = 5 V Propagation delay time, output disable, DIRn to bus (high impedance), CL = 50 pF tPHZ (1) Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V enable, DIRn to bus (active high), CL= 50 pF Port A = Port B = 5 V Propagation delay time, output disable, DIRn to bus (low impedance), CL =50 pF tPLZ (1) Port A = 3.3 V Port B = 5 V Propagation delay time, output Port A = Port B = 3.3 V enable, DIRn to bus (active low), CL= 50 pF Port A = Port B = 5 V Propagation delay time, output enable, DIRn to bus (active high), CL = 50 pF tPZH (1) Port voltage Port A = 3.3 V Port B = 5.0 V Propagation delay time, output Port A = Port B = 3.3 V disable, DIRn to bus (high impedance), CL= 50 pF Port A = Port B = 5 V Test condition (VDD) Unit Min. Max. VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 12 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.3 V 1.0 18 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 12 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.3 V 1.0 20 VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.3 V 1.0 20 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 15 VDD1 = 4.5 to 5.5 V VDD2 = 2.7 to 3.3 V 1.0 20 VDD1 = 2.7 to 3.3 V VDD2 = 2.7 to 3.3 V 1.0 20 VDD1 = 4.5 to 5.5 V VDD2 = 4.5 to 5.5 V 1.0 15 ns ns ns ns 1. Guaranteed by design but not tested. Doc ID 18093 Rev 2 13/22 Radiations 4 54AC164245 Radiations Total dose (Mil1019 dose rate): all parameters are post-irradiation guaranteed by wafer-lot acceptance (after dose, all guaranteed electrical parameters are tested on a sample of units of each wafer lot). All parameters provided in Table 6 and Table 7 apply to both pre- and post-irradiation. The 54AC164245 is a pure CMOS product. The irradiation is performed at high dose rates. Heavy ions: the behavior of the product when submitted to heavy ions is guaranteed by qualification and is not tested in production. Heavy-ion trials are performed on qualification lots only. Table 8. Radiations Type TID Features Total Ionizing dose High dose rate (50 - 300 rad/sec) up to: Value Unit 100 k rad SEL immune (at 125°C) up to: 110 SEU immune up to: 64 Heavy ions 14/22 MeV.cm²/mg Doc ID 18093 Rev 2 54AC164245 5 Test circuit Test circuit Figure 3. Test circuit 6## 05,3% '%.%2!4/2 $ $ $ $ $54 )3.+ #, 24 62%& )32# !-V Note: CL = 50 pF or equivalent (includes jig and probe capacitance), RT = ZOUT of pulse generator (typically 50Ω ), VREF = 0.5 VDD. ISRC is set to -1.0 mA and ISNK is set to 1.0 mA for tPHL and tPLH measurements. Input signal from pulse generator: VI = 0.0 V to VDD; f = 10 MHz; tr = 1.0 V/ns "0.3 V/ns; tf = 1.0 V/ns "0.3 V/ns; tr and tf are measured from 0.1 VDD to 0.9 VDD and from 0.9 VDD to 0.1 VDD respectively. Figure 4. Waveform 1: propagation delay TR ).054 TF 6$$ '.$ T0(, T0,( 6/( /54054 6/, !-V Doc ID 18093 Rev 2 15/22 Test circuit 54AC164245 Figure 5. Waveform 2: enable and disable times (port A = port B, 5 V operation) 6$$ ).054 6 T0:, T0,: 6$$ 6$$ /54054 6$$6 6$$ T0:( T0(: 6$$ 6$$6 /54054 6$$ 6$$ !-V Figure 6. Waveform 3: enable and disable times (port A = port B, 3.3 V operation) 6$$ ).054 6 T0:, T0,: 6$$ 6$$ /54054 6$$6 6$$ T0:( T0(: 6$$ 6$$6 /54054 6$$ 6$$ !-V 16/22 Doc ID 18093 Rev 2 54AC164245 Test circuit Figure 7. Waveform 4: enable and disable times (port A = 3.3 V, port B = 5 V) 6$$ ).054 6 T0:, T0,: 6$$ 6$$ /54054 6$$6 6$$ T0:( T0(: 6$$ 6$$6 /54054 6$$ T0:, 6$$ T0,: 6$$ 6$$ /54054 6$$6 6$$ T0:( T0(: 6$$ 6$$6 /54054 6$$ 6$$ !-V Doc ID 18093 Rev 2 17/22 Package information 6 54AC164245 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 18/22 Doc ID 18093 Rev 2 54AC164245 Package information Figure 8. Flat-48 package mechanical drawing Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting any unused pins or the metal lid to ground or to the power supply will not affect the electrical characteristics. Table 9. Flat-48 mechanical data mm inch Dim Typ Min Max Typ Min Max A 2.47 2.18 2.72 0.097 0.086 0.107 b 0.254 0.20 0.30 0.010 0.008 0.012 c 0.15 0.12 0.18 0.006 0.005 0.007 D 15.75 15.57 15.92 0.620 0.613 0.627 E 9.65 9.52 9.78 0.380 0.375 0.385 E2 6.35 6.22 6.48 0.250 0.245 0.255 E3 1.65 1.52 1.78 0.065 0.060 0.070 e 0.635 0.025 f 0.20 0.008 L 8.38 6.85 9.40 0.330 0.270 0.370 Q 0.79 0.66 0.92 0.031 0.026 0.036 S1 0.43 0.25 0.61 0.017 0.010 0.024 Doc ID 18093 Rev 2 19/22 Ordering information 54AC164245 7 Ordering information Table 10. Order codes Order code Description RHRAC164245K1 Engineering model RHRAC164245K01V 20/22 QMLVFlight Temperature range Package -55 °C to +125 °C Flat-48 Marking Packing RHFAC164245K1 Conductive strip pack 5962R9858008VYC Doc ID 18093 Rev 2 54AC164245 8 Revision history Revision history Table 11. Document revision history Date Revision Changes 23-Sep-2011 1 Initial release. 06-Apr-2012 2 Added Pin 4 description to Table 3: Pin descriptions. Doc ID 18093 Rev 2 21/22 54AC164245 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 22/22 Doc ID 18093 Rev 2