AGILENT ATF-58143-TR2G

Agilent ATF-58143 Low Noise
Enhancement Mode
Pseudomorphic HEMT in a
Surface Mount Plastic Package
Data Sheet
Features
• Low noise and high linearity
performance
• Enhancement Mode Technology[1]
• Excellent uniformity in product
specifications
The combination of high gain,
high linearity and low noise
makes the ATF-58143 ideal as
low noise amplifier for cellular/
PCS/WCDMA base stations,
wireless local loop, and other
applications that require low
noise and high linearity performance in the 450 MHz to 6 GHz
frequency range.
• Low cost surface mount small
plastic package SOT-343 (4 lead
SC-70) in Tape-and-Reel packaging
option available
Surface Mount Package
SOT-343
• Lead-free option available
Specifications
2 GHz; 3V, 30 mA (Typ.)
• 30.5 dBm output 3rd order intercept
Pin Connections and
Package Marking
• 19 dBm output power at 1 dB
• 0.5 dB noise figure
DRAIN
SOURCE
8Fx
Description
Agilent Technologies’s
ATF-58143 is a high dynamic
range, low noise E-PHEMT
housed in a 4-lead SC-70
(SOT-343) surface mount plastic
package.
SOURCE
GATE
Note:
Top View. Package marking provides orientation
and identification
“8F” = Device Code
“x” = Date code character
identifies month of manufacture.
Attention:
Observe precautions for
handling electrostatic
sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 0)
Refer to Agilent Application Note A004R:
Electrostatic Discharge Damage and Control.
• 16.5 dB associated gain
Applications
• Q1 LNA for cellular/PCS/WCDMA
base stations
• Q1, Q2 LNA and Pre-driver
amplifier for 3–4 GHz WLL
• Other low noise and high linearity
applications at 450 MHz to 6 GHz
Note:
1. Enhancement mode technology requires
positive Vgs, thereby eliminating the need for
the negative gate voltage associated with
conventional depletion mode devices.
ATF-58143 Absolute Maximum Ratings [1]
Symbol
Parameter
Units
Absolute
Maximum
VDS
Drain-Source Voltage [2]
V
5
VGS
Gate-Source Voltage [2]
V
-5 to 1
VGD
Gate Drain Voltage [2]
V
-5 to 1
IDS
Drain Current [2]
mA
100
Pdiss
Total Power Dissipation [3]
mW
500
Pin max.
RF Input Power
dBm
+135]
IGS
Gate Source Current
mA
2[5]
TCH
Channel Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
θjc
Thermal Resistance [4]
°C/W
162
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. Source lead temperature is 25°C. Derate
6.2 mW/°C for TL > 33°C.
4. Thermal resistance measured using
150°C Liquid Crystal Measurement method.
5. The device can handle +13 dBm RF Input
Power provided IGS is limited to 2 mA. IGS at
P1dB drive level is bias circuit dependent. See
applications section for additional information.
120
100
IDS (mA)
80
60
40
20
0
0
1
2
3
4
5
6
7
VDS (V)
Figure 1. Typical I-V Curves (VGS=0.1V per step)
Product Consistency Distribution Charts [6, 7]
-150
Cpk=2.735
Stdev=0.049
Cpk=1.953
Stdev=0.2610
-125
Cpk=1.036
Stdev=0.509
-100
-75
-50
-25
0
0.3
0.4
0.5
0.6
NF (dB)
Figure 2. NF @ 3V, 30 mA.
USL = 0.9, Nominal = 0.5
0.7
0.8
15
16
17
18
GAIN (dB)
Figure 3. Gain @ 3V, 30 mA.
USL = 18.5, LSL = 15, Nominal = 16.5
28
29
30
31
32
33
34
OIP3 (dBm)
Figure 4. OIP3 @ 3V, 30 mA.
LSL = 29, Nominal = 30.5
Notes:
6. Distribution data sample size is 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere
between the upper and lower limits.
7. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on
production test equipment. Circuit losses have been de-embedded from actual measurements.
2
ATF-58143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Units
Min.
Typ.[2]
Max.
Vds = 3V, Ids = 30 mA
V
0.4
0.51
0.75
Threshold Voltage
Vds = 3V, Ids = 4 mA
V
0.18
0.38
0.52
Idss
Saturated Drain Current
Vds = 3V, Vgs = 0V
µA
—
1
5
Gm
Transconductance
Vds = 3V, gm = ∆Idss/∆Vgs;
∆Vgs = 0.75 – 0.7 = 0.05V
mmho
230
410
560
Igss
Gate Leakage Current
Vgd = Vgs = -3V
µA
—
—
200
NF
Noise
Figure [1]
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
Vds = 3V, Ids = 30 mA
Vds = 3V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
dB
dB
dB
dB
—
—
—
—
0.5
0.3
0.5
0.3
0.9
—
—
—
Ga
Associated Gain [1]
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
Vds = 3V, Ids = 30 mA
Vds = 3V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
dB
dB
dB
dB
15
—
—
—
16.5
23.1
17.7
22.5
18.5
—
—
—
OIP3
Output 3rd Order
Intercept Point [1]
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
Vds = 3V, Ids = 30 mA
Vds = 3V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
dBm
dBm
dBm
dBm
29
—
—
—
30.5
28.6
31.5
31.0
—
—
—
—
P1dB
1dB Compressed
Output Power [1]
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
Vds = 3V, Ids = 30 mA
Vds = 3V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
Vds = 4V, Ids = 30 mA
dBm
dBm
dBm
dBm
—
—
—
—
19
18
21
19
—
—
—
—
Symbol
Parameter and Test Condition
Vgs
Operational Gate Voltage
Vth
Notes:
1. Measurements obtained using production test board described in Figure 5.
2. Typical values determined from a sample size of 500 parts from 3 wafers.
28.2 + j9.4
RFin
input
matching
51 – j3.3
output
matching
RFout
0.7 dB loss
0.6 dB loss
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain,
P1dB and OIP3 measurements. This circuit represents a trade-off between an optimal noise
match and associated impedance matching circuit losses.
3
C2
L1
C5
ATF-58143
S
C4
AGILENT
TECHNOLOGIES
C3
S
J1
: 2.7 pF Cap (0603)
: 1 pF Cap (0603)
: 1200 pF Cap (0603)
: 120 pF Cap (0402)
: 1200 pF Cap (0603)
: 49.9 Ohm (0603)
: 56 nH (0603)
: 0 Ohm, Jumper (0805)
: 0 Ohm, Jumper (0805)
: 0 Ohm, Jumper (0402)
: 0 Ohm, Jumper (0402)
R1
L1
J1
J2
J3
J4
A
J2
C1
C2
C3
C4
C5
G
C1
R1
Figure 6. Close-up of Production Test Board.
ATF-58143 Typical Performance Curves
0.7
0.8
19
0.7
18
0.6
0.5
0.4
17
0.5
GAIN (dB)
Fmin (dB)
Fmin (dB)
0.6
0.4
14
0.2
3V
4V
0
10
20
30
40
50
60
13
3V
4V
0.1
0.2
3V
4V
12
0
70
0
10
20
Ids (mA)
30
40
50
60
0
70
10
20
42
24
37
22
21
50
60
70
40
35
32
OIP3 (dBm)
OIP3 (dBm)
23
40
Figure 9. Gain vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
Figure 8. Fmin vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
25
30
Ids (mA)
Ids (mA)
Figure 7. Fmin vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
GAIN (dB)
15
0.3
0.3
27
30
25
22
20
19
12
0
10
20
30
40
50
60
20
17
3V
4V
18
70
Ids (mA)
Figure 10. Gain vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
4
16
3V
4V
3V
4V
15
0
10
20
30
40
50
60
70
Ids (mA)
Figure 11. OIP3 vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
0
10
20
30
40
50
60
Ids (mA)
Figure 12. OIP3 vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
70
ATF-58143 Typical Performance Curves, continued
24
23
1.5
22
22
P1dB (dBm)
18
1.0
20
Fmin (dB)
P1dB (dBm)
21
20
19
18
16
0.5
17
14
12
3V
4V
25°C
-40°C
85°C
3V
4V
16
15
0
10
20
30
40
50
60
70
0
0
10
20
30
Idq (mA)
40
50
60
70
0
1
Idq (mA)
Figure 13. P1dB vs. Idq and Vds Tuned for
[1]
Max OIP3 and Fmin at 2 GHz.
Figure 14. P1dB vs. Idq and Vds Tuned for
[1]
Max OIP3 and Fmin at 900 MHz.
30
35
25
30
2
3
4
5
6
FREQUENCY (GHz)
Figure 15. Fmin vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
20.0
19.5
20
15
20
0
1
2
3
4
5
6
FREQUENCY (GHz)
Figure 16. Gain vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
Note:
1. When plotting P1dB, the drain current was
allowed to vary dependent on the RF input power.
18.5
18.0
17.5
17.0
25°C
-40°C
85°C
25°C
-40°C
85°C
16.5
10
5
5
25
15
25°C
-40°C
85°C
10
P1dB (dBm)
OPI3 (dBm)
GAIN (dB)
19.0
16.0
0
1
2
3
4
5
6
FREQUENCY (GHz)
Figure 17. OIP3 vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
0
1
2
3
4
5
6
FREQUENCY (GHz)
Figure 18. P1dB vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
ATF-58143 Typical Scattering Parameters, VDS = 3V, IDS = 30 mA
Freq.
GHz
Mag.
S11
Ang.
dB
Mag.
S21
Ang.
dB
Mag.
S12
Ang.
S22
MSG/MAG
Mag. Ang.
dB
0.1
0.5
0.9
1.0
1.5
1.9
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.98
0.81
0.75
0.73
0.69
0.66
0.65
0.63
0.61
0.61
0.62
0.64
0.66
0.68
0.69
0.71
0.74
0.78
0.84
0.87
0.89
0.90
0.93
0.96
0.94
0.96
0.93
-17.1
-92.0
-126.4
-132.2
-153.2
-165.9
-169.3
176.3
160.7
147.4
133.8
123.7
112.5
103.7
93.0
77.2
58.3
39.7
25.1
10.2
-3.9
-20.0
-31.4
-43.9
-54.2
-65.1
-79.8
27.29
25.25
21.87
21.18
18.38
16.74
16.40
14.83
13.51
12.35
11.28
10.32
9.41
8.61
7.84
6.47
5.14
3.77
2.55
1.25
0.19
-1.09
-2.53
-4.00
-5.46
-7.14
-8.81
23.14
18.31
12.40
11.46
8.31
6.88
6.61
5.51
4.74
4.15
3.66
3.28
2.96
2.70
2.47
2.11
1.81
1.54
1.34
1.16
1.02
0.88
0.75
0.63
0.53
0.44
0.36
168.7
123.7
103.4
99.8
85.1
75.4
73.1
61.9
50.9
40.4
30.2
20.5
11.1
2.1
-7.3
-24.8
-43.1
-60.7
-78.8
-97.1
-114.0
-132.2
-148.3
-162.8
-176.5
168.6
153.8
-40.10
-28.10
-26.12
-25.87
-24.70
-23.86
-23.65
-22.71
-21.87
-21.10
-20.45
-19.86
-19.39
-18.87
-18.44
-17.63
-17.13
-16.67
-16.21
-16.04
-15.72
-15.86
-16.22
-16.73
-17.15
-17.68
-18.36
0.010
0.039
0.049
0.051
0.058
0.064
0.066
0.073
0.081
0.088
0.095
0.102
0.107
0.114
0.120
0.131
0.139
0.147
0.155
0.158
0.164
0.161
0.154
0.146
0.139
0.131
0.121
80.8
45.7
34.8
33.4
29.4
27.4
26.9
24.4
21.1
17.7
13.5
9.3
4.9
0.7
-4.4
-14.6
-26.1
-37.0
-50.2
-64.2
-78.3
-93.6
-106.5
-118.2
-128.6
-142.4
-155.6
0.67
0.42
0.32
0.31
0.25
0.23
0.22
0.19
0.17
0.15
0.13
0.13
0.13
0.14
0.14
0.17
0.19
0.24
0.34
0.41
0.46
0.52
0.58
0.66
0.72
0.74
0.77
-12.1
-46.6
-66.7
-72.3
-90.8
-103.6
-106.0
-118.1
-133.3
-145.4
-155.7
-175.4
166.2
152.8
140.7
120.7
95.4
70.1
52.4
37.3
21.5
2.5
-14.1
-26.0
-36.3
-49.0
-64.8
33.69
26.68
23.99
23.52
21.54
20.30
20.03
18.77
17.69
16.73
15.86
15.09
14.40
13.74
13.14
12.06
11.14
10.22
9.39
8.65
7.96
7.39
6.85
6.36
5.85
5.27
4.77
Typical Noise Parameters, VDS = 3V, IDS = 30 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
Ga
dB
0.5
0.9
1.0
1.5
1.9
2.0
2.4
3.0
3.9
5.0
5.8
6.0
0.12
0.18
0.20
0.32
0.43
0.45
0.51
0.58
0.75
0.87
1.01
1.04
0.39
0.37
0.36
0.32
0.30
0.30
0.29
0.31
0.35
0.42
0.50
0.53
17.775
46.9
53.525
80
101
107.7
125.2
154.475
-156.95
-120.93
-100.83
-97.15
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.05
0.06
0.09
0.15
0.18
25.33
22.26
21.54
19.16
17.65
17.33
16.23
14.77
13.39
11.92
11.07
10.93
40
35
MSG/MAG and S21 (dB)
Freq
GHz
30
25
20
15
MSG
10
5
S21
0
-5
-10
-15
0
5
10
15
20
FREQUENCY (GHz)
Figure 19. MSG/MAG and S21 vs. Frequency
at 3V, 30 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to
the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed
within 0.010 inch from each source lead contact point, one via on each side of that point.
6
ATF-58143 Typical Scattering Parameters, VDS = 4V, IDS = 30 mA
Freq.
GHz
Mag.
S11
Ang.
dB
Mag.
S21
Ang.
dB
Mag.
S12
Ang.
S22
MSG/MAG
Mag. Ang.
dB
0.1
0.5
0.9
1
1.5
1.9
2
2.5
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
0.99
0.83
0.76
0.75
0.72
0.71
0.70
0.69
0.68
0.67
0.69
0.73
0.76
0.79
0.82
0.85
0.87
0.89
0.91
0.93
0.94
0.94
0.92
0.91
-16.3
-94.5
-133.1
-139.7
-162.2
-172.7
-174.9
173.5
161.6
141.9
123.1
108.9
96.3
82.4
71.2
60.1
47.2
36.2
26.6
17.2
9.2
1.2
-10.5
17.6
28.16
25.82
22.52
21.83
18.94
17.18
16.79
14.67
13.05
11.00
9.29
7.73
6.16
4.74
3.63
2.63
1.52
0.38
-0.80
-2.01
-3.24
-4.43
-5.79
-6.74
25.6
19.5
13.4
12.3
8.9
7.2
6.9
5.4
4.5
3.5
2.9
2.4
2.0
1.7
1.5
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.5
169.65
125.68
104.58
100.73
85.42
75.68
73.47
59.58
46.88
28.55
10.32
-7.48
-23.78
-39.33
-55.93
-73.30
-90.53
-106.67
-121.58
-135.15
-148.98
-164.25
-59.55
170.70
-41.08
-28.95
-27.00
-26.74
-25.79
-25.25
-25.09
-24.15
-23.33
-22.14
-21.13
-20.28
-19.80
-19.32
-18.49
-17.74
-17.31
-17.12
-17.09
-17.15
-17.22
-17.36
-17.68
-17.94
0.01
0.04
0.04
0.05
0.05
0.05
0.06
0.06
0.07
0.08
0.09
0.10
0.10
0.11
0.12
0.13
0.14
0.14
0.14
0.14
0.14
0.14
0.13
0.13
81.1
46.2
33.9
32.0
26.9
24.8
24.4
21.7
19.0
14.1
7.3
-1.3
-9.7
-16.9
-26.7
-39.3
-52.2
-64.5
-75.2
-84.2
-94.3
-106.1
-119.3
-127.5
0.65
0.45
0.33
0.31
0.24
0.21
0.21
0.18
0.16
0.13
0.12
0.13
0.17
0.20
0.25
0.31
0.38
0.44
0.49
0.54
0.59
0.64
0.68
0.69
-10.17
-54.83
-76.45
-80.28
-95.17
-104.27
-106.18
-117.35
-124.85
-137.33
-42.65
158.73
125.87
104.88
83.12
61.03
41.33
22.65
6.28
-7.48
-22.78
-39.22
-53.35
-71.73
34.62
27.39
24.76
24.29
22.37
21.21
20.94
19.41
18.19
16.57
15.21
14.00
12.98
12.03
11.06
10.19
9.42
8.75
8.15
7.57
6.99
6.46
5.94
5.60
Typical Noise Parameters, VDS = 4V, IDS = 30 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
Ga
dB
0.5
0.9
1.0
1.5
1.9
2.0
2.4
3.0
3.9
5.0
5.8
6.0
0.14
0.23
0.25
0.35
0.47
0.49
0.55
0.61
0.78
0.91
1.05
1.11
0.38
0.36
0.35
0.32
0.3
0.3
0.28
0.3
0.35
0.42
0.49
0.53
9.7
44.4
54.0
78.7
100.7
105.4
124.0
153.9
-157.2
-120.8
-101.2
-97.4
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.05
0.07
0.1
0.16
0.19
24.85
22.21
21.51
19.21
17.71
17.39
16.25
14.86
13.51
12.05
11.14
11.14
40
35
MSG/MAG and S21 (dB)
Freq
GHz
30
25
20
15
MSG
10
5
S21
0
-5
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 20. MSG/MAG and S21 vs. Frequency
at 4V, 30 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to
the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed
within 0.010 inch from each source lead contact point, one via on each side of that point.
7
Ordering Information
Part Number
No. of Devices
Container
ATF-58143-TR1
3000
7" Reel
ATF-58143-TR2
10000
13" Reel
ATF-58143-BLK
100
antistatic bag
ATF-58143-TR1G
3000
7” Reel
ATF-58143-TR2G
10000
13”Reel
ATF-58143-BLKG
100
antistatic bag
Package Dimensions Outline 43 (SOT-343/SC70 4 lead)
Notes:
1. All dimensions are in mm.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash and metal blurr.
4. All specifications comply to EIAJ SC70.
5. Die is facing up for mold and facing down for trim/form, i.e., reverse trim/form.
6. Package surface to be mirror finish.
Symbol
MIN. (mm)
MAX. (mm)
E
1.15
1.35
D
1.85
2.25
HE
1.80
2.40
A
0.80
1.10
A2
0.80
1.00
A1
0.00
0.10
b
0.25
0.40
b1
0.55
0.70
c
0.10
0.20
L
0.10
0.46
8
Recommended PCB Pad Layout for Agilent's SC70 4L/SOT-343 Products
(Dimensions in inches/mm)
Device Orientation
REEL
TOP VIEW
4 mm
CARRIER
TAPE
USER
FEED
DIRECTION
COVER TAPE
9
8 mm
END VIEW
Tape Dimensions For Outline 4T
Tape Dimensions and Product Orientation
Description
Symbol
Size (mm)
Size (inches)
Cavity
Length
Width
Depth
Pitch
Bottom Hole Diameter
Ao
Bo
Ko
P
D1
2.40 ± 0.10
2.40 ± 0.10
1.20 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.094 ± 0.004
0.094 ± 0.004
0.047 ± 0.004
0.157 ± 0.004
0.039 + 0.010
Perforlation
Diameter
Pitch
Position
D
PO
E
1.50 + 0.10
4.00 ± 0.10
1.75 ± 0.10
0.061 + 0.002
0.157 ± 0.004
0.069 ± 0.004
Carrier Tape
Width
Thickness
W
t1
8.00 + 0.30 - 0.10
0.254 ± 0.02
0.315 + 0.012
0.0100 ± 0.0008
Cover Tape
Width
Thickness
C
Tt
5.40 ± 0.010
0.062 ± 0.001
0.205 + 0.004
0.0025 ± 0.0004
Distance
Cavity to Perforation
(Width Direction)
Cavity to Perforation
(Length Direction)
F
3.50 ± 0.05
0.138 ± 0.002
P2
2.00 ± 0.05
0.079 ± 0.002
For product information and a complete list of Agilent
contacts and distributors, please go to our web site.
www.agilent.com/semiconductors
E-mail: [email protected]
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5988-1922EN
December 10, 2004
5989-1919EN