ETC ATF

Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Technical Data
ATF-38143
Features
• Low Noise Figure
Surface Mount Package
SOT-343
• Excellent Uniformity in
Product Specifications
• Low Cost Surface Mount
Small Plastic Package
SOT-343 (4 lead SC-70)
• Tape-and-Reel Packaging
Option Available
Pin Connections and
Package Marking
1.9 GHz; 2 V, 10 mA (Typ.)
DRAIN
• 0.4 dB Noise Figure
• 16 dB Associated Gain
• 12.0 dBm Output Power at
1 dB Gain Compression
• 22.0 dBm Output 3rd Order
Intercept
Applications
• Low Noise Amplifier for
Cellular/PCS Handsets
• LNA for WLAN, WLL/RLL,
LEO, and MMDS
Applications
• General Purpose Discrete
PHEMT for Other Ultra Low
Noise Applications
SOURCE
8Px
Specifications
SOURCE
GATE
Note: Top View. Package marking
provides orientation and identification.
“8P” = Device code
“x” = Date code character. A new
character is assigned for each month, year.
Description
Agilent Technologies’s ATF-38143
is a high dynamic range, low
noise, PHEMT housed in a 4-lead
SC-70 (SOT-343) surface mount
plastic package.
Based on its featured performance, ATF-38143 is suitable for
applications in cellular and PCS
handsets, LEO systems, MMDS,
and other systems requiring super
low noise figure with good
intercept in the 450 MHz to
10 GHz frequency range.
2
ATF-38143 Absolute Maximum Ratings[1]
Symbol
Parameter
Units
Absolute
Maximum
V
V
4.5
-4
VDS
VGS
Drain - Source Voltage [2]
Gate - Source Voltage
VGD
IDS
Gate Drain Voltage
Drain Current
V
mA
-4
Idss
Total Power Dissipation [2]
RF Input Power
mW
dBm
580
17
Pdiss
Pin max
TCH
TSTG
Channel Temperature
Storage Temperature
°C
°C
160
-65 to 160
θjc
Thermal Resistance [3]
°C/W
165
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. Source lead temperature is 25°C.
Derate 6 mW/°C for TL > 64°C.
3. Thermal resistance measured using
150°C Liquid Crystal Measurement
method.
Product Consistency Distribution Charts
250
300
Cpk = 1.59062
Stdev = 0.73 dBm
6 Wafers
Sample Size = 450
+0.6 V
250
200
IDS (mA)
200
150
0V
+3 Std
-3 Std
150
100
100
50
50
–0.6 V
0
0
1
2
3
VDS (V)
4
0
18
5
24
26
Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA.
LSL=18.5, Nominal=21.99, USL=26.0
Cpk = 4.08938
Stdev = 0.03 dB
6 Wafers
Sample Size = 450
150
22
OIP3 (dB)
Figure 1. Typical I-V Curves.
(VGS = -0.2 V per step)
180
20
160
Cpk = 2.58097
Stdev = 0.14 dB
6 Wafers
Sample Size = 450
120
120
-3 Std
+3 Std
90
-3 Std
+3 Std
80
60
40
30
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NF (dB)
Figure 3. NF @ 2 GHz, 2 V, 10 mA.
LSL=0, Nominal=0.44, USL=0.85
Note:
Distribution data sample size is 450
samples taken from 6 different wafers.
Future wafers allocated to this product
may have nominal values anywhere within
the upper and lower spec limits.
0
15
15.5
16
16.5
17
17.5
18
GAIN (dB)
Figure 4. Gain @ 2 GHz, 2 V, 10 mA.
LSL=15.0, Nominal=16.06, USL= 18.0
Measurements made on production test
board. This circuit represents a trade-off
between an optimal noise match and a
realizeable match based on production test
requirements. Circuit losses have been deembedded from actual measurements.
3
ATF-38143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Idss [1]
VP [1]
Saturated Drain Current
Pinchoff Voltage
Id
gm[1]
Quiescent Bias Current
Transconductance
IGDO
Igss
Gate to Drain Leakage Current
Gate Leakage Current
VDS = 1.5 V, VGS = 0 V
VDS = 1.5 V, IDS = 10% of Idss
Noise Figure
OIP3
Output 3rd Order
Intercept Point [3]
3rd
IIP3
Input
Order
Intercept Point [3]
P1dB
1 dB Compressed
Compressed Power [3]
118
-0.5
145
-0.35
VGS = -0.54 V, VDS = 2 V mA
—
VDS = 1.5 V, gm = Idss /VP mmho 180
10
230
—
—
30
500
300
VDS = 2 V, IDS = 5 mA
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
VDS = 2 V, IDS = 5 mA
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
dB
dB
f = 2 GHz
VDS = 2 V, IDS = 5 mA
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
VDS = 2 V, IDS = 5 mA
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
VDS = 2 V, IDS = 10 mA
dBm 18.5
15.3
16.0
17.0
17.0
19.0
20.5
22.0
f = 900 MHz
f = 2 GHz
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 10 mA
dBm
dBm
22.0
6.0
f = 900 MHz
f = 2 GHz
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 10 mA
dBm
dBm
3.0
12.0
f = 900 MHz
VDS = 2 V, IDS = 10 mA
dBm
12.0
f = 2 GHz
Associated Gain[3]
90
-0.65
µA
µA
f = 900 MHz
Ga
mA
V
VGD = -5 V
VGD = VGS = -4 V
f = 2 GHz
NF
Units Min. Typ.[2] Max.
Parameters and Test Conditions
f = 900 MHz
—
0.6
0.4
0.3
0.6
0.4
0.3
dB
15
dB
0.85
18
Notes:
1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 6 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input
50 Ohm
Transmission Line
(0.5 dB loss)
Input
Matching Circuit
Γmag = 0.380
Γang = 58.2°
(0.46 dB loss)
DUT
Output
Matching Circuit
Γmag = 0.336
Γang = 34.5°
(0.46 dB loss)
50 Ohm
Transmission Line
(0.5 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test
board requirements. Circuit losses have been de-embedded from actual measurements.
4
ATF-38143 Typical Performance Curves
30
OIP3
20
15
P1dB
10
OIP3
25
OIP3, P1dB (dBm)
OIP3, P1dB (dBm)
25
0.7
5
20
15
P1dB
10
5
0
10
20
30
40
50
60
0.5
0.4
0.3
0.2
0.1
0
0
0
0
10
CURRENT, IDS (mA)
20
30
40
50
60
0
Figure 7. OIP3 and P1dB vs. Id at 2V,
900 MHz.
21
21
0.3
0.2
0.1
ASSOCIATED GAIN (dB)
0.6
ASSOCIATED GAIN (dB)
22
0.4
20
19
18
17
16
0
10
20
30
40
50
60
CURRENT, IDS (mA)
Figure 9. Noise Figure vs. Id at 2V,
900 MHz.
15
0
30
40
50
60
Figure 8. Noise Figure vs. Id at 2V,
2 GHz.
22
0.5
20
CURRENT, IDS (mA)
0.7
0
10
CURRENT, IDS (mA)
Figure 6. OIP3 and P1dB vs. Id at 2V,
2 GHz.
NOISE FIGURE (dB)
0.6
NOISE FIGURE (dB)
30
20
19
18
17
16
10
20
30
40
50
60
15
0
10
20
30
40
50
60
CURRENT, IDS (mA)
CURRENT, IDS (mA)
Figure 10. Associated Gain vs. Id at 2V,
2 GHz.
Figure 11. Associated Gain vs. Id at 2V,
900 MHz.
Notes:
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V
10 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on
production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency)
when compared to a device that is driven by a constant current source as is typically done with active biasing.
5
ATF-38143 Typical Performance Curves, continued
1.6
30
0.8
25
0.7
0.5
0.4
0.3
20
1.0
0.8
15
15
0.6
10
10
0.4
–40 C
+25 C
+85 C
5
0
0
0
2
4
6
8
0
1
FREQUENCY (GHz)
2
3
4
5
6
GAIN (dB), P1dB and OIP3 (dBm)
24
22
–40 C
+25 C
+85 C
16
14
12
10
1.0
20
0.8
15
0.6
10
0.4
P1dB
OIP3
Gain
NF
0.2
0
0
2000
4000
6000
8000
FREQUENCY (MHz)
Figure 15. P1dB and OIP3 vs. Frequency
and Temperature at 2V, 10 mA.
0
10
20
30
40
6
8
10
12
50
60
1.4
30
1.2
25
5
4
Figure 14. Associated Gain vs.
Frequency and Current at 2V.
1.4
30
0
2
FREQUENCY (GHz)
Figure 13. Fmin and Ga vs. Frequency
and Temperature at 2V, 10 mA.
26
18
0
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and
Current at 2V.
20
0
7
NF (dB)
0
5 mA
10 mA
20 mA
5
0.2
1.2
25
1.0
20
0.8
15
0.6
10
0.4
P1dB
OIP3
Gain
NF
5
0.2
0
0
0
10
20
30
40
50
60
CURRENT, IDS (mA)
CURRENT, IDS (mA)
Figure 16. NF, Gain, P1dB and OIP3 vs.
IDS at 2V, 3.9 GHz.
Figure 17. NF, Gain, P1dB and OIP3 vs.
IDS at 2V, 5.8 GHz.
Notes:
1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency)
when compared to a device that is driven by a constant current source as is typically done with active biasing.
NF (dB)
5 mA
10 mA
20 mA
0.1
GAIN (dB), P1dB and OIP3 (dBm)
0.2
P1dB, OIP3 (dBm)
25
1.2
Fmin
Ga
20
Ga (dB)
Fmin (dB)
0.6
30
1.4
Ga (dB)
0.9
6
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA
Freq.
(GHz)
Mag.
S11
Ang.
dB
S21
Mag.
Ang.
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.98
0.95
0.93
0.87
0.82
0.80
0.75
0.71
0.67
0.66
0.66
0.68
0.70
0.72
0.74
0.78
0.82
0.83
0.85
0.87
0.88
0.88
0.89
-25
-40
-51
-75
-89
-98
-120
-139
-170
162
137
113
92
73
56
39
23
10
-2
-16
-30
-39
-50
14.47
14.19
14.00
13.28
12.79
12.45
11.48
10.48
8.68
7.24
6.02
4.78
3.51
2.39
1.51
0.44
-0.73
-2.17
-3.54
-4.84
-6.16
-7.51
-9.07
5.289
5.122
5.010
4.613
4.362
4.192
3.751
3.342
2.716
2.302
2.000
1.734
1.498
1.316
1.190
1.052
0.919
0.779
0.665
0.573
0.492
0.421
0.352
160
148
140
122
111
105
89
76
52
30
10
-10
-29
-47
-64
-83
-100
-117
-132
-147
-161
-176
173
-26.56
-22.85
-21.21
-18.49
-17.52
-16.95
-16.19
-15.70
-15.44
-15.44
-15.60
-15.92
-16.59
-17.20
-17.46
-17.86
-18.42
-19.33
-20.00
-20.45
-20.82
-21.11
-21.83
S12
Mag. Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.047
0.072
0.087
0.119
0.133
0.142
0.155
0.164
0.169
0.169
0.166
0.160
0.148
0.138
0.134
0.128
0.120
0.108
0.100
0.095
0.091
0.088
0.081
0.67
0.65
0.62
0.56
0.52
0.50
0.44
0.40
0.34
0.31
0.29
0.28
0.29
0.32
0.37
0.42
0.47
0.52
0.57
0.63
0.68
0.71
0.75
-21
-32
-40
-58
-69
-77
-94
-110
-138
-162
173
146
121
103
87
66
47
28
11
0
-12
-26
-37
20.51
18.52
17.60
15.88
15.16
14.70
13.84
13.09
12.06
11.34
10.81
10.35
8.89
7.33
6.93
6.66
6.22
4.93
3.95
3.58
2.90
1.98
1.24
73
63
56
41
33
28
16
5
-12
-27
-41
-55
-67
-77
-86
-97
-106
-115
-121
-129
-136
-145
-151
ATF-38143 Typical Noise Parameters
Γopt
Mag.
0.69
0.69
0.68
0.68
0.66
0.65
0.62
0.59
0.50
0.49
0.51
0.53
0.54
0.59
0.62
Ang.
14
26
27
44
59
61
80
98
127
163
-169
-140
-111
-88
-68
Rn/50
0.25
0.23
0.22
0.20
0.17
0.17
0.14
0.11
0.08
0.04
0.04
0.09
0.20
0.36
0.60
Ga
dB
23.0
20.5
19.8
17.1
16.0
15.4
14.3
13.1
10.8
9.8
8.7
7.7
6.8
6.1
6.0
25
20
MSG/MAG and S21 (dB)
VDS = 2 V, IDS = 5 mA
Freq.
Fmin
GHz
dB
0.5
0.18
0.9
0.21
1.0
0.22
1.5
0.26
1.8
0.29
2.0
0.32
2.5
0.40
3.0
0.48
4.0
0.60
5.0
0.70
6.0
0.84
7.0
0.96
8.0
1.12
9.0
1.27
10.0
1.38
15
MSG
10
MAG
5
S21
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 18. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 5 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
7
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA
Freq.
(GHz)
Mag.
S11
Ang.
dB
S21
Mag.
Ang.
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.97
0.93
0.91
0.83
0.78
0.76
0.71
0.68
0.65
0.65
0.66
0.68
0.71
0.73
0.75
0.79
0.82
0.84
0.85
0.87
0.88
0.88
0.89
-29
-47
-58
-85
-100
-109
-131
-150
180
153
129
107
87
68
53
36
20
8
-4
-18
-31
-41
-51
17.41
17.00
16.69
15.69
15.02
14.57
13.38
12.22
10.24
8.68
7.35
6.03
4.72
3.57
2.71
1.61
0.47
-0.93
-2.24
-3.45
-4.63
-5.81
-7.27
7.423
7.081
6.834
6.086
5.634
5.350
4.665
4.083
3.251
2.716
2.330
2.003
1.722
1.509
1.366
1.204
1.055
0.898
0.773
0.672
0.587
0.512
0.433
158
145
136
117
107
100
86
73
50
30
11
-9
-27
-43
-60
-78
-94
-110
-125
-140
-153
-167
-179
-27.74
-24.01
-22.50
-20.00
-19.17
-18.71
-17.99
-17.65
-17.27
-17.08
-16.95
-16.95
-17.27
-17.46
-17.27
-17.39
-17.65
-18.34
-18.86
-19.17
-19.49
-19.74
-20.54
S12
Mag. Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.041
0.063
0.075
0.100
0.110
0.116
0.126
0.131
0.137
0.140
0.142
0.142
0.137
0.134
0.137
0.135
0.131
0.121
0.114
0.110
0.106
0.103
0.094
0.53
0.51
0.48
0.42
0.39
0.37
0.33
0.31
0.28
0.28
0.28
0.29
0.32
0.35
0.40
0.45
0.50
0.54
0.59
0.63
0.67
0.70
0.74
-26
-40
-50
-72
-85
-94
-114
-132
-163
172
147
122
99
83
70
52
35
17
2
-8
-19
-32
-41
22.58
20.51
19.60
17.84
17.09
16.64
15.68
14.94
13.75
12.88
12.15
11.49
9.09
7.94
7.55
7.27
6.84
5.72
4.77
4.42
3.85
3.03
2.34
72
61
55
40
33
28
18
9
-5
-18
-30
-42
-53
-62
-72
-83
-94
-104
-112
-122
-131
-141
-148
ATF-38143 Typical Noise Parameters
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.18
0.19
0.20
0.23
0.25
0.28
0.32
0.39
0.52
0.65
0.75
0.84
0.95
1.10
1.20
0.66
0.64
0.63
0.60
0.57
0.56
0.54
0.52
0.44
0.44
0.45
0.48
0.51
0.55
0.56
13
22
26
43
60
67
81
98
129
166
-165
-135
-106
-84
-65
Rn/50
-
Ga
dB
0.17
0.16
0.15
0.14
0.12
0.12
0.10
0.08
0.06
0.04
0.04
0.08
0.16
0.29
0.46
24.1
21.0
20.4
17.9
17.0
16.1
15.2
13.9
11.9
10.8
9.6
8.7
7.7
7.0
6.8
25
20
MSG/MAG and S21 (dB)
VDS = 2 V, IDS = 10 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
Ang.
MSG
15
10
MAG
5
S21
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 19. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 10 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
8
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA
Freq.
(GHz)
Mag.
S11
Ang.
dB
S21
Mag.
Ang.
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.96
0.91
0.88
0.79
0.75
0.73
0.68
0.66
0.64
0.64
0.66
0.68
0.71
0.73
0.76
0.80
0.83
0.85
0.86
0.88
0.89
0.89
0.90
-33
-53
-65
-93
-109
-119
-140
-159
172
147
124
103
83
65
50
34
18
6
-5
-19
-32
-42
-52
19.50
18.94
18.51
17.23
16.41
15.88
14.52
13.26
11.16
9.52
8.12
6.77
5.41
4.25
3.39
2.27
1.11
-0.26
-1.51
-2.69
-3.80
-4.91
-6.29
9.436
8.850
8.425
7.269
6.616
6.220
5.321
4.604
3.616
2.992
2.548
2.179
1.864
1.632
1.478
1.299
1.136
0.971
0.840
0.734
0.646
0.568
0.485
155
141
132
113
103
97
83
70
49
30
11
-8
-25
-41
-57
-74
-90
-106
-120
-134
-147
-161
-173
-28.87
-25.19
-23.74
-21.41
-20.63
-20.26
-19.58
-19.09
-18.49
-17.99
-17.52
-17.33
-17.39
-17.27
-16.95
-16.89
-17.14
-17.72
-18.13
-18.42
-18.79
-19.02
-19.83
S12
Mag. Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.036
0.055
0.065
0.085
0.093
0.097
0.105
0.111
0.119
0.126
0.133
0.136
0.135
0.137
0.142
0.143
0.139
0.130
0.124
0.120
0.115
0.112
0.102
0.39
0.37
0.35
0.31
0.29
0.29
0.27
0.27
0.28
0.29
0.31
0.34
0.37
0.40
0.44
0.50
0.55
0.58
0.62
0.67
0.69
0.71
0.74
-33
-50
-63
-90
-106
-116
-139
-157
174
151
129
107
87
73
61
44
28
11
-4
-13
-24
-36
-46
24.18
22.07
21.13
19.32
18.52
18.07
17.05
16.18
14.83
13.76
12.82
11.08
9.34
8.33
7.91
7.63
7.20
6.20
5.32
5.01
4.34
3.57
2.94
71
60
54
41
34
30
21
14
2
-9
-20
-32
-43
-53
-63
-76
-87
-98
-107
-118
-127
-138
-146
ATF-38143 Typical Noise Parameters
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.15
0.16
0.16
0.18
0.20
0.22
0.28
0.33
0.45
0.56
0.65
0.72
0.82
0.90
1.00
0.71
0.68
0.66
0.60
0.55
0.51
0.48
0.46
0.37
0.39
0.40
0.44
0.48
0.52
0.60
13
22
26
43
55
68
82
100
133
172
-159
-129
-100
-79
-61
Rn/50
-
Ga
dB
0.13
0.12
0.12
0.09
0.09
0.09
0.08
0.06
0.05
0.04
0.04
0.08
0.15
0.26
0.40
24.8
21.4
21.0
19.0
18.0
16.9
15.5
14.7
12.6
11.4
10.2
9.3
8.3
7.5
7.3
25
20
MSG/MAG and S21 (dB)
VDS = 2 V, IDS = 20 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
Ang.
MSG
15
10
MAG
S21
5
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 20. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 20 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
9
Noise Parameter
Applications Information
Fmin values at 2 GHz and higher
are based on measurements while
the Fmins below 2 GHz have been
extrapolated. The Fmin values are
based on a set of 16 noise figure
measurements made at 16
different impedances using an
ATN NP5 test system. From these
measurements, a true Fmin is
calculated. Fmin represents the
true minimum noise figure of the
device when the device is presented with an impedance
matching network that transforms the source impedance,
typically 50Ω, to an impedance
represented by the reflection
coefficient Γo. The designer must
design a matching network that
will present Γo to the device with
minimal associated circuit losses.
The noise figure of the completed
amplifier is equal to the noise
figure of the device plus the
losses of the matching network
preceding the device. The noise
figure of the device is equal to
Fmin only when the device is
presented with Γo. If the reflection coefficient of the matching
network is other than Γo, then the
noise figure of the device will be
greater than Fmin based on the
following equation.
NF = Fmin + 4 Rn
|Γs – Γo | 2
Zo (|1 + Γo| 2) (1 – Γs| 2)
Where Rn /Zo is the normalized
noise resistance, Γo is the optimum reflection coefficient
required to produce Fmin and Γs is
the reflection coefficient of the
source impedance actually
presented to the device. The
losses of the matching networks
are non-zero and they will also
add to the noise figure of the
device creating a higher amplifier
noise figure. The losses of the
matching networks are related to
the Q of the components and
associated printed circuit board
loss. Γo is typically fairly low at
higher frequencies and increases
as frequency is lowered. Larger
gate width devices will typically
have a lower Γo as compared to
narrower gate width devices.
Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50Ω is required
for the device to produce Fmin. At
VHF frequencies and even lower
L Band frequencies, the required
impedance can be in the vicinity
of several thousand ohms.
Matching to such a high impedance requires very hi-Q components in order to minimize circuit
losses. As an example at 900 MHz,
when air-wound coils (Q > 100)
are used for matching networks,
the loss can still be up to 0.25 dB
which will add directly to the
noise figure of the device. Using
muilti-layer molded inductors
with Qs in the 30 to 50 range
results in additional loss over the
air-wound coil. Losses as high as
0.5 dB or greater add to the
typical 0.15 dB Fmin of the device
creating an amplifier noise figure
of nearly 0.65 dB. A discussion
concerning calculated and
measured circuit losses and their
effect on amplifier noise figure is
covered in Agilent Application
1085.
10
ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model
INSIDE Package
Var
Ean
VAR
VAR1
K=5
Z2=85
Z1=30
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
GATE
Port
G
Num=1 VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L6
L=0.2 nH
R=0.001
L
L1
L=0.6 nH
R=0.001
GaAsFET
FET1
Model= MESFETN1
Mode= nonlinear
SOURCE
Port
S1
Num=2
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL9
Z=Z2 Ohm
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L4
L=0.2 nH
R=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
MSub
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=0
Rough=0 mil
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=0.001
SOURCE
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
The vias are not part of the model as such. They are only included to
account for the source vias in the test fixture.
ATF-38143 Die Model
Statz Model
MESFETM1
NFET=yes
PFET=no
Vto=–0.75
Beta=0.3
Lambda=0.07
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=
Delta2=
Gscap=3
Cgs=0.997 pF
Gdcap=3
Cgd=0.176 pF
Rgd=0.195
Tqm=
Vmax=
Fc=
Rd=0.084
Rg=0.264
Rs=0.054
Ld=0.0014 nH
Lg-0.0883 nH
Ls=0.001 nH
Cds=0.0911 pF
Crf=0.0936
Rc=137
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=1
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
All Params=
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
Port
S2
Num=4
DRAIN
Port
D
Num=3
11
Part Number Ordering Information
No. of
Devices
Container
ATF-38143-TR1
ATF-38143-TR2
3000
10000
7" Reel
13" Reel
ATF-38143-BLK
100
antistatic bag
Part Number
Package Dimensions
Outline 43 (SOT-343/SC-70 4 lead)
1.30 (0.051)
BSC
1.30 (.051) REF
2.60 (.102)
E
1.30 (.051)
E1
0.85 (.033)
0.55 (.021) TYP
1.15 (.045) BSC
e
1.15 (.045) REF
D
h
A
b TYP
A1
L
θ
DIMENSIONS
SYMBOL
A
A1
b
C
D
E
e
h
E1
L
θ
MAX.
MIN.
1.00 (0.039)
0.80 (0.031)
0.10 (0.004)
0 (0)
0.35 (0.014)
0.25 (0.010)
0.20 (0.008)
0.10 (0.004)
2.10 (0.083)
1.90 (0.075)
2.20 (0.087)
2.00 (0.079)
0.65 (0.025)
0.55 (0.022)
0.450 TYP (0.018)
1.35 (0.053)
1.15 (0.045)
0.35 (0.014)
0.10 (0.004)
10
0
DIMENSIONS ARE IN MILLIMETERS (INCHES)
C TYP
12
Device Orientation
REEL
TOP VIEW
END VIEW
4 mm
CARRIER
TAPE
8 mm
8Px
3Px
USER
FEED
DIRECTION
8Px
3Px
8Px
3Px
8Px
3Px
COVER TAPE
Tape Dimensions
For Outline 4T
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
www.semiconductor.agilent.com
Data subject to change.
Copyright © 2000 Agilent Technologies, Inc.
5968-7868E (2/00)