Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package Technical Data ATF-38143 Features • Low Noise Figure Surface Mount Package SOT-343 • Excellent Uniformity in Product Specifications • Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70) • Tape-and-Reel Packaging Option Available Pin Connections and Package Marking 1.9 GHz; 2 V, 10 mA (Typ.) DRAIN • 0.4 dB Noise Figure • 16 dB Associated Gain • 12.0 dBm Output Power at 1 dB Gain Compression • 22.0 dBm Output 3rd Order Intercept Applications • Low Noise Amplifier for Cellular/PCS Handsets • LNA for WLAN, WLL/RLL, LEO, and MMDS Applications • General Purpose Discrete PHEMT for Other Ultra Low Noise Applications SOURCE 8Px Specifications SOURCE GATE Note: Top View. Package marking provides orientation and identification. “8P” = Device code “x” = Date code character. A new character is assigned for each month, year. Description Agilent Technologies’s ATF-38143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. Based on its featured performance, ATF-38143 is suitable for applications in cellular and PCS handsets, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range. 2 ATF-38143 Absolute Maximum Ratings[1] Symbol Parameter Units Absolute Maximum V V 4.5 -4 VDS VGS Drain - Source Voltage [2] Gate - Source Voltage VGD IDS Gate Drain Voltage Drain Current V mA -4 Idss Total Power Dissipation [2] RF Input Power mW dBm 580 17 Pdiss Pin max TCH TSTG Channel Temperature Storage Temperature °C °C 160 -65 to 160 θjc Thermal Resistance [3] °C/W 165 Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Source lead temperature is 25°C. Derate 6 mW/°C for TL > 64°C. 3. Thermal resistance measured using 150°C Liquid Crystal Measurement method. Product Consistency Distribution Charts 250 300 Cpk = 1.59062 Stdev = 0.73 dBm 6 Wafers Sample Size = 450 +0.6 V 250 200 IDS (mA) 200 150 0V +3 Std -3 Std 150 100 100 50 50 –0.6 V 0 0 1 2 3 VDS (V) 4 0 18 5 24 26 Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA. LSL=18.5, Nominal=21.99, USL=26.0 Cpk = 4.08938 Stdev = 0.03 dB 6 Wafers Sample Size = 450 150 22 OIP3 (dB) Figure 1. Typical I-V Curves. (VGS = -0.2 V per step) 180 20 160 Cpk = 2.58097 Stdev = 0.14 dB 6 Wafers Sample Size = 450 120 120 -3 Std +3 Std 90 -3 Std +3 Std 80 60 40 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NF (dB) Figure 3. NF @ 2 GHz, 2 V, 10 mA. LSL=0, Nominal=0.44, USL=0.85 Note: Distribution data sample size is 450 samples taken from 6 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 0 15 15.5 16 16.5 17 17.5 18 GAIN (dB) Figure 4. Gain @ 2 GHz, 2 V, 10 mA. LSL=15.0, Nominal=16.06, USL= 18.0 Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been deembedded from actual measurements. 3 ATF-38143 Electrical Specifications TA = 25°C, RF parameters measured in a test circuit for a typical device Symbol Idss [1] VP [1] Saturated Drain Current Pinchoff Voltage Id gm[1] Quiescent Bias Current Transconductance IGDO Igss Gate to Drain Leakage Current Gate Leakage Current VDS = 1.5 V, VGS = 0 V VDS = 1.5 V, IDS = 10% of Idss Noise Figure OIP3 Output 3rd Order Intercept Point [3] 3rd IIP3 Input Order Intercept Point [3] P1dB 1 dB Compressed Compressed Power [3] 118 -0.5 145 -0.35 VGS = -0.54 V, VDS = 2 V mA — VDS = 1.5 V, gm = Idss /VP mmho 180 10 230 — — 30 500 300 VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA dB dB f = 2 GHz VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 10 mA dBm 18.5 15.3 16.0 17.0 17.0 19.0 20.5 22.0 f = 900 MHz f = 2 GHz VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA dBm dBm 22.0 6.0 f = 900 MHz f = 2 GHz VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA dBm dBm 3.0 12.0 f = 900 MHz VDS = 2 V, IDS = 10 mA dBm 12.0 f = 2 GHz Associated Gain[3] 90 -0.65 µA µA f = 900 MHz Ga mA V VGD = -5 V VGD = VGS = -4 V f = 2 GHz NF Units Min. Typ.[2] Max. Parameters and Test Conditions f = 900 MHz — 0.6 0.4 0.3 0.6 0.4 0.3 dB 15 dB 0.85 18 Notes: 1. Guaranteed at wafer probe level. 2. Typical value determined from a sample size of 450 parts from 6 wafers. 3. Measurements obtained using production test board described in Figure 5. Input 50 Ohm Transmission Line (0.5 dB loss) Input Matching Circuit Γmag = 0.380 Γang = 58.2° (0.46 dB loss) DUT Output Matching Circuit Γmag = 0.336 Γang = 34.5° (0.46 dB loss) 50 Ohm Transmission Line (0.5 dB loss) Output Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 4 ATF-38143 Typical Performance Curves 30 OIP3 20 15 P1dB 10 OIP3 25 OIP3, P1dB (dBm) OIP3, P1dB (dBm) 25 0.7 5 20 15 P1dB 10 5 0 10 20 30 40 50 60 0.5 0.4 0.3 0.2 0.1 0 0 0 0 10 CURRENT, IDS (mA) 20 30 40 50 60 0 Figure 7. OIP3 and P1dB vs. Id at 2V, 900 MHz. 21 21 0.3 0.2 0.1 ASSOCIATED GAIN (dB) 0.6 ASSOCIATED GAIN (dB) 22 0.4 20 19 18 17 16 0 10 20 30 40 50 60 CURRENT, IDS (mA) Figure 9. Noise Figure vs. Id at 2V, 900 MHz. 15 0 30 40 50 60 Figure 8. Noise Figure vs. Id at 2V, 2 GHz. 22 0.5 20 CURRENT, IDS (mA) 0.7 0 10 CURRENT, IDS (mA) Figure 6. OIP3 and P1dB vs. Id at 2V, 2 GHz. NOISE FIGURE (dB) 0.6 NOISE FIGURE (dB) 30 20 19 18 17 16 10 20 30 40 50 60 15 0 10 20 30 40 50 60 CURRENT, IDS (mA) CURRENT, IDS (mA) Figure 10. Associated Gain vs. Id at 2V, 2 GHz. Figure 11. Associated Gain vs. Id at 2V, 900 MHz. Notes: 1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V 10 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 5 ATF-38143 Typical Performance Curves, continued 1.6 30 0.8 25 0.7 0.5 0.4 0.3 20 1.0 0.8 15 15 0.6 10 10 0.4 –40 C +25 C +85 C 5 0 0 0 2 4 6 8 0 1 FREQUENCY (GHz) 2 3 4 5 6 GAIN (dB), P1dB and OIP3 (dBm) 24 22 –40 C +25 C +85 C 16 14 12 10 1.0 20 0.8 15 0.6 10 0.4 P1dB OIP3 Gain NF 0.2 0 0 2000 4000 6000 8000 FREQUENCY (MHz) Figure 15. P1dB and OIP3 vs. Frequency and Temperature at 2V, 10 mA. 0 10 20 30 40 6 8 10 12 50 60 1.4 30 1.2 25 5 4 Figure 14. Associated Gain vs. Frequency and Current at 2V. 1.4 30 0 2 FREQUENCY (GHz) Figure 13. Fmin and Ga vs. Frequency and Temperature at 2V, 10 mA. 26 18 0 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency and Current at 2V. 20 0 7 NF (dB) 0 5 mA 10 mA 20 mA 5 0.2 1.2 25 1.0 20 0.8 15 0.6 10 0.4 P1dB OIP3 Gain NF 5 0.2 0 0 0 10 20 30 40 50 60 CURRENT, IDS (mA) CURRENT, IDS (mA) Figure 16. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 3.9 GHz. Figure 17. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 5.8 GHz. Notes: 1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. NF (dB) 5 mA 10 mA 20 mA 0.1 GAIN (dB), P1dB and OIP3 (dBm) 0.2 P1dB, OIP3 (dBm) 25 1.2 Fmin Ga 20 Ga (dB) Fmin (dB) 0.6 30 1.4 Ga (dB) 0.9 6 ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA Freq. (GHz) Mag. S11 Ang. dB S21 Mag. Ang. dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.98 0.95 0.93 0.87 0.82 0.80 0.75 0.71 0.67 0.66 0.66 0.68 0.70 0.72 0.74 0.78 0.82 0.83 0.85 0.87 0.88 0.88 0.89 -25 -40 -51 -75 -89 -98 -120 -139 -170 162 137 113 92 73 56 39 23 10 -2 -16 -30 -39 -50 14.47 14.19 14.00 13.28 12.79 12.45 11.48 10.48 8.68 7.24 6.02 4.78 3.51 2.39 1.51 0.44 -0.73 -2.17 -3.54 -4.84 -6.16 -7.51 -9.07 5.289 5.122 5.010 4.613 4.362 4.192 3.751 3.342 2.716 2.302 2.000 1.734 1.498 1.316 1.190 1.052 0.919 0.779 0.665 0.573 0.492 0.421 0.352 160 148 140 122 111 105 89 76 52 30 10 -10 -29 -47 -64 -83 -100 -117 -132 -147 -161 -176 173 -26.56 -22.85 -21.21 -18.49 -17.52 -16.95 -16.19 -15.70 -15.44 -15.44 -15.60 -15.92 -16.59 -17.20 -17.46 -17.86 -18.42 -19.33 -20.00 -20.45 -20.82 -21.11 -21.83 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.047 0.072 0.087 0.119 0.133 0.142 0.155 0.164 0.169 0.169 0.166 0.160 0.148 0.138 0.134 0.128 0.120 0.108 0.100 0.095 0.091 0.088 0.081 0.67 0.65 0.62 0.56 0.52 0.50 0.44 0.40 0.34 0.31 0.29 0.28 0.29 0.32 0.37 0.42 0.47 0.52 0.57 0.63 0.68 0.71 0.75 -21 -32 -40 -58 -69 -77 -94 -110 -138 -162 173 146 121 103 87 66 47 28 11 0 -12 -26 -37 20.51 18.52 17.60 15.88 15.16 14.70 13.84 13.09 12.06 11.34 10.81 10.35 8.89 7.33 6.93 6.66 6.22 4.93 3.95 3.58 2.90 1.98 1.24 73 63 56 41 33 28 16 5 -12 -27 -41 -55 -67 -77 -86 -97 -106 -115 -121 -129 -136 -145 -151 ATF-38143 Typical Noise Parameters Γopt Mag. 0.69 0.69 0.68 0.68 0.66 0.65 0.62 0.59 0.50 0.49 0.51 0.53 0.54 0.59 0.62 Ang. 14 26 27 44 59 61 80 98 127 163 -169 -140 -111 -88 -68 Rn/50 0.25 0.23 0.22 0.20 0.17 0.17 0.14 0.11 0.08 0.04 0.04 0.09 0.20 0.36 0.60 Ga dB 23.0 20.5 19.8 17.1 16.0 15.4 14.3 13.1 10.8 9.8 8.7 7.7 6.8 6.1 6.0 25 20 MSG/MAG and S21 (dB) VDS = 2 V, IDS = 5 mA Freq. Fmin GHz dB 0.5 0.18 0.9 0.21 1.0 0.22 1.5 0.26 1.8 0.29 2.0 0.32 2.5 0.40 3.0 0.48 4.0 0.60 5.0 0.70 6.0 0.84 7.0 0.96 8.0 1.12 9.0 1.27 10.0 1.38 15 MSG 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 18. MSG/MAG and |S21|2 vs. Frequency at 2 V, 5 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 7 ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA Freq. (GHz) Mag. S11 Ang. dB S21 Mag. Ang. dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.97 0.93 0.91 0.83 0.78 0.76 0.71 0.68 0.65 0.65 0.66 0.68 0.71 0.73 0.75 0.79 0.82 0.84 0.85 0.87 0.88 0.88 0.89 -29 -47 -58 -85 -100 -109 -131 -150 180 153 129 107 87 68 53 36 20 8 -4 -18 -31 -41 -51 17.41 17.00 16.69 15.69 15.02 14.57 13.38 12.22 10.24 8.68 7.35 6.03 4.72 3.57 2.71 1.61 0.47 -0.93 -2.24 -3.45 -4.63 -5.81 -7.27 7.423 7.081 6.834 6.086 5.634 5.350 4.665 4.083 3.251 2.716 2.330 2.003 1.722 1.509 1.366 1.204 1.055 0.898 0.773 0.672 0.587 0.512 0.433 158 145 136 117 107 100 86 73 50 30 11 -9 -27 -43 -60 -78 -94 -110 -125 -140 -153 -167 -179 -27.74 -24.01 -22.50 -20.00 -19.17 -18.71 -17.99 -17.65 -17.27 -17.08 -16.95 -16.95 -17.27 -17.46 -17.27 -17.39 -17.65 -18.34 -18.86 -19.17 -19.49 -19.74 -20.54 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.041 0.063 0.075 0.100 0.110 0.116 0.126 0.131 0.137 0.140 0.142 0.142 0.137 0.134 0.137 0.135 0.131 0.121 0.114 0.110 0.106 0.103 0.094 0.53 0.51 0.48 0.42 0.39 0.37 0.33 0.31 0.28 0.28 0.28 0.29 0.32 0.35 0.40 0.45 0.50 0.54 0.59 0.63 0.67 0.70 0.74 -26 -40 -50 -72 -85 -94 -114 -132 -163 172 147 122 99 83 70 52 35 17 2 -8 -19 -32 -41 22.58 20.51 19.60 17.84 17.09 16.64 15.68 14.94 13.75 12.88 12.15 11.49 9.09 7.94 7.55 7.27 6.84 5.72 4.77 4.42 3.85 3.03 2.34 72 61 55 40 33 28 18 9 -5 -18 -30 -42 -53 -62 -72 -83 -94 -104 -112 -122 -131 -141 -148 ATF-38143 Typical Noise Parameters 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.18 0.19 0.20 0.23 0.25 0.28 0.32 0.39 0.52 0.65 0.75 0.84 0.95 1.10 1.20 0.66 0.64 0.63 0.60 0.57 0.56 0.54 0.52 0.44 0.44 0.45 0.48 0.51 0.55 0.56 13 22 26 43 60 67 81 98 129 166 -165 -135 -106 -84 -65 Rn/50 - Ga dB 0.17 0.16 0.15 0.14 0.12 0.12 0.10 0.08 0.06 0.04 0.04 0.08 0.16 0.29 0.46 24.1 21.0 20.4 17.9 17.0 16.1 15.2 13.9 11.9 10.8 9.6 8.7 7.7 7.0 6.8 25 20 MSG/MAG and S21 (dB) VDS = 2 V, IDS = 10 mA Freq. Fmin Γopt GHz dB Mag. Ang. MSG 15 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 19. MSG/MAG and |S21|2 vs. Frequency at 2 V, 10 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 8 ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA Freq. (GHz) Mag. S11 Ang. dB S21 Mag. Ang. dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.96 0.91 0.88 0.79 0.75 0.73 0.68 0.66 0.64 0.64 0.66 0.68 0.71 0.73 0.76 0.80 0.83 0.85 0.86 0.88 0.89 0.89 0.90 -33 -53 -65 -93 -109 -119 -140 -159 172 147 124 103 83 65 50 34 18 6 -5 -19 -32 -42 -52 19.50 18.94 18.51 17.23 16.41 15.88 14.52 13.26 11.16 9.52 8.12 6.77 5.41 4.25 3.39 2.27 1.11 -0.26 -1.51 -2.69 -3.80 -4.91 -6.29 9.436 8.850 8.425 7.269 6.616 6.220 5.321 4.604 3.616 2.992 2.548 2.179 1.864 1.632 1.478 1.299 1.136 0.971 0.840 0.734 0.646 0.568 0.485 155 141 132 113 103 97 83 70 49 30 11 -8 -25 -41 -57 -74 -90 -106 -120 -134 -147 -161 -173 -28.87 -25.19 -23.74 -21.41 -20.63 -20.26 -19.58 -19.09 -18.49 -17.99 -17.52 -17.33 -17.39 -17.27 -16.95 -16.89 -17.14 -17.72 -18.13 -18.42 -18.79 -19.02 -19.83 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.036 0.055 0.065 0.085 0.093 0.097 0.105 0.111 0.119 0.126 0.133 0.136 0.135 0.137 0.142 0.143 0.139 0.130 0.124 0.120 0.115 0.112 0.102 0.39 0.37 0.35 0.31 0.29 0.29 0.27 0.27 0.28 0.29 0.31 0.34 0.37 0.40 0.44 0.50 0.55 0.58 0.62 0.67 0.69 0.71 0.74 -33 -50 -63 -90 -106 -116 -139 -157 174 151 129 107 87 73 61 44 28 11 -4 -13 -24 -36 -46 24.18 22.07 21.13 19.32 18.52 18.07 17.05 16.18 14.83 13.76 12.82 11.08 9.34 8.33 7.91 7.63 7.20 6.20 5.32 5.01 4.34 3.57 2.94 71 60 54 41 34 30 21 14 2 -9 -20 -32 -43 -53 -63 -76 -87 -98 -107 -118 -127 -138 -146 ATF-38143 Typical Noise Parameters 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.15 0.16 0.16 0.18 0.20 0.22 0.28 0.33 0.45 0.56 0.65 0.72 0.82 0.90 1.00 0.71 0.68 0.66 0.60 0.55 0.51 0.48 0.46 0.37 0.39 0.40 0.44 0.48 0.52 0.60 13 22 26 43 55 68 82 100 133 172 -159 -129 -100 -79 -61 Rn/50 - Ga dB 0.13 0.12 0.12 0.09 0.09 0.09 0.08 0.06 0.05 0.04 0.04 0.08 0.15 0.26 0.40 24.8 21.4 21.0 19.0 18.0 16.9 15.5 14.7 12.6 11.4 10.2 9.3 8.3 7.5 7.3 25 20 MSG/MAG and S21 (dB) VDS = 2 V, IDS = 20 mA Freq. Fmin Γopt GHz dB Mag. Ang. MSG 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 20. MSG/MAG and |S21|2 vs. Frequency at 2 V, 20 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 9 Noise Parameter Applications Information Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50Ω, to an impedance represented by the reflection coefficient Γo. The designer must design a matching network that will present Γo to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with Γo. If the reflection coefficient of the matching network is other than Γo, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |Γs – Γo | 2 Zo (|1 + Γo| 2) (1 – Γs| 2) Where Rn /Zo is the normalized noise resistance, Γo is the optimum reflection coefficient required to produce Fmin and Γs is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Γo is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γo as compared to narrower gate width devices. Typically for FETs, the higher Γo usually infers that an impedance much higher than 50Ω is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air-wound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muilti-layer molded inductors with Qs in the 30 to 50 range results in additional loss over the air-wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Agilent Application 1085. 10 ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model INSIDE Package Var Ean VAR VAR1 K=5 Z2=85 Z1=30 TLINP TL1 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 GATE Port G Num=1 VIA2 V1 D=20 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40 mil TLINP TL4 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL3 Z=Z2 Ohm L=25 mil K=K A=0.000 F=1 GHz TanD=0.001 L L6 L=0.2 nH R=0.001 L L1 L=0.6 nH R=0.001 GaAsFET FET1 Model= MESFETN1 Mode= nonlinear SOURCE Port S1 Num=2 VIA2 V2 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL10 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL9 Z=Z2 Ohm L=10.0 mil K=K A=0.000 F=1 GHz TanD=0.001 L L4 L=0.2 nH R=0.001 VIA2 V3 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 MSub MSUB MSub1 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+0.34 mil T=0.15 mil TanD=0 Rough=0 mil C C2 C=0.11 pF L L7 C=0.6 nH R=0.001 SOURCE TLINP TL7 Z=Z2/2 Ohm L=5.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL8 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=26.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL6 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 The vias are not part of the model as such. They are only included to account for the source vias in the test fixture. ATF-38143 Die Model Statz Model MESFETM1 NFET=yes PFET=no Vto=–0.75 Beta=0.3 Lambda=0.07 Alpha=4 B=0.8 Tnom=27 Idstc= Vbi=0.7 Tau= Betatce= Delta1= Delta2= Gscap=3 Cgs=0.997 pF Gdcap=3 Cgd=0.176 pF Rgd=0.195 Tqm= Vmax= Fc= Rd=0.084 Rg=0.264 Rs=0.054 Ld=0.0014 nH Lg-0.0883 nH Ls=0.001 nH Cds=0.0911 pF Crf=0.0936 Rc=137 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin= Taumd1=no Fnc=1E6 R=0.17 C=0.2 P=1 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= All Params= VIA2 V4 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil Port S2 Num=4 DRAIN Port D Num=3 11 Part Number Ordering Information No. of Devices Container ATF-38143-TR1 ATF-38143-TR2 3000 10000 7" Reel 13" Reel ATF-38143-BLK 100 antistatic bag Part Number Package Dimensions Outline 43 (SOT-343/SC-70 4 lead) 1.30 (0.051) BSC 1.30 (.051) REF 2.60 (.102) E 1.30 (.051) E1 0.85 (.033) 0.55 (.021) TYP 1.15 (.045) BSC e 1.15 (.045) REF D h A b TYP A1 L θ DIMENSIONS SYMBOL A A1 b C D E e h E1 L θ MAX. MIN. 1.00 (0.039) 0.80 (0.031) 0.10 (0.004) 0 (0) 0.35 (0.014) 0.25 (0.010) 0.20 (0.008) 0.10 (0.004) 2.10 (0.083) 1.90 (0.075) 2.20 (0.087) 2.00 (0.079) 0.65 (0.025) 0.55 (0.022) 0.450 TYP (0.018) 1.35 (0.053) 1.15 (0.045) 0.35 (0.014) 0.10 (0.004) 10 0 DIMENSIONS ARE IN MILLIMETERS (INCHES) C TYP 12 Device Orientation REEL TOP VIEW END VIEW 4 mm CARRIER TAPE 8 mm 8Px 3Px USER FEED DIRECTION 8Px 3Px 8Px 3Px 8Px 3Px COVER TAPE Tape Dimensions For Outline 4T P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 8° MAX. A0 DESCRIPTION 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 www.semiconductor.agilent.com Data subject to change. Copyright © 2000 Agilent Technologies, Inc. 5968-7868E (2/00)