AVAGO ATF-33143-TR1G

ATF-33143
Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Data Sheet
Description
Features
Avago’s ATF-33143 is a high dynamic range, low noise
PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount
plastic package.
 Lead-free Option Available
Based on its featured performance, ATF-33143 is ideal for
the first or second stage of base station LNA due to the
excellent combination of low noise figure and enhanced
linearity[1]. The device is also suitable for applications in
Wireless LAN, WLL/RLL, MMDS, and other systems requiring
super low noise figure with good intercept in the 450 MHz
to 10 GHz frequency range.
 1600 micron Gate Width
 Low Noise Figure
 Excellent Uniformity in Product Specifications
 Low Cost Surface Mount Small Plastic Package
SOT-343 (4 lead SC-70)
 Tape-and-Reel Packaging Option Available
Specifications
Note:
1.9 GHz; 4V, 80 mA (Typ.)
1. From the same PHEMT FET family, the smaller geometry ATF34143 may also be considered for the higher gain performance,
particularly in the higher frequency band (1.8 GHz and up).
 0.5 dB Noise Figure
Surface Mount Package SOT-343
 15 dB Associated Gain
 22 dBm Output Power at 1 dB Gain Compression
 33.5 dBm Output 3rd Order Intercept
Applications
 Tower Mounted Amplifier, Low Noise Amplifier and
Driver Amplifier for GSM/TDMA/CDMA Base Stations
DRAIN
SOURCE
3Px
Pin Connections and Package Marking
SOURCE
GATE
Note:
Top View. Package marking provides
orientation and identification.
“3P” = Device code
“x” = Date code character. A new character
is assigned for each month, year.
 LNA for Wireless LAN, WLL/RLL and MMDS
Applications
 General Purpose Discrete PHEMT for other Ultra Low
Noise Applications
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 0)
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
ATF-33143 Absolute Maximum Ratings[1]
Symbol
Parameter
Drain - Source Voltage [2]
VDS
Source Voltage [2]
Units
Absolute
Maximum
V
5.5
VGS
Gate -
V
-5
VGD
Gate Drain Voltage [2]
V
-5
IDS
Drain
Current[2]
mA
Idss[3]
Pdiss
Total Power Dissipation[4]
mW
600
RF Input Power
dBm
20
°C
160
Pin max
Channel Temperature [5]
TCH
TSTG
Storage Temperature
°C
-65 to 160
jc
Thermal Resistance [6]
°C/W
145
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiesent conditions.
3. VGS = 0 V
4. Source lead temperature is 25°C. Derate
6 mW/°C for TL > 60°C.
5. Please refer to failure rates in reliability
section to assess the reliability impact
of running devices above a channel
temperature of 140°C.
6. Thermal resistance measured using 150°C
Liquid Crystal Measurement method.
Product Consistency Distribution Charts [8, 9]
500
120
Cpk = 1.7
Std = 0.05
+0.6 V
100
400
I DS (mA)
80
300
+3 Std
-3 Std
0V
60
200
40
100
–0.6 V
20
0
0
2
4
V DS (V)
6
0
0.2
8
0.3
0.4
0.5
0.6
0.7
0.8
NF (dB)
Figure 1. Typical Pulsed I-V Curves[7]. (VGS = -0.2 V per step)
100
Cpk = 1.21
Std = 0.94
Figure 2. NF @ 2 GHz, 4 V, 80 mA.
LSL=0.2, Nominal=0.53, USL=0.8
120
Cpk = 2.3
Std = 0.2
100
80
80
60
-3 Std
+3 Std
-3 Std
+3 Std
60
40
40
20
20
0
29
31
33
35
OIP3 (dBm)
Figure 3. OIP3 @ 2 GHz, 4 V, 80 mA.
LSL=30.0, Nominal=33.3, USL=37.0
37
0
13
14
15
16
17
GAIN (dB)
Figure 4. Gain @ 2 GHz, 4 V, 80 mA.
LSL=13.5, Nominal=14.8, USL=16.5
Notes:
7. Under large signal conditions, VGS may swing positive and the drain current may exceed Idss. These conditions are acceptable as long as the maximum
Pdiss and Pin max ratings are not exceeded.
8. Distribution data sample size is 450 samples taken from 9 different wafers. Future wafers allocated to this product may have nominal values
anywhere within the upper and lower spec limits.
9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based
on production test requirements. Circuit losses have been de-embedded from actual measurements.
10. The probability of a parameter being between ±1 is 68.3%, between ±2σ is 95.4% and between ±3σ is 99.7%.
2
ATF-33143 DC Electrical Specifications TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Idss
[1]
VP [1]
Id
Parameters and Test Conditions
Saturated Drain Current
VDS = 1.5 V, VGS = 0 V
Pinchoff Voltage
Quiescent Bias Current
VGS = -0.5 V, VDS = 4 V
Transconductance
IGDO
Gate to Drain Leakage Current
Igss
Gate Leakage Current
VDS = 1.5 V, gm = Idss /VP
Associated Gain[3]
OIP3
Output 3rd Order
Intercept Point [3]
P1dB
1 dB Compressed
Compressed Power [3]
Typ.[2]
Max.
175
237
305
V
-0.65
-0.5
-0.35
mA
—
80
—
mmho
360
440
—
—
42
600
0.8
VGD = 5 V
μA
VGD = VGS = -4 V
μA
f = 2 GHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dB
0.5
0.5
f = 900 MHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dB
0.4
0.4
f = 2 GHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dB
f = 900 MHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dB
f = 2 GHz
5 dBm Pout/Tone
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dBm
f = 900 MHz
5 dBm Pout/Tone
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dBm
32.5
31
f = 2 GHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dBm
22
21
f = 900 MHz
VDS = 4 V, IDS = 80 mA
VDS = 4 V, IDS = 60 mA
dBm
21
20
Noise Figure
Ga
Min.
mA
VDS = 1.5 V, IDS = 10% of Idss
gm[1]
NF
Units
1000
13.5
15
15
16.5
21
21
30
33.5
32
Notes:
1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 9 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input
50 Ohm
Transmission
Line Including
Gate Bias T
(0.5 dB loss)
Input
Matching Circuit
G_mag = 0.20
G_ang = 124
(0.3 dB loss)
DUT
50 Ohm
Transmission
Line Including
Drain Bias T
(0.5 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a
trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been de-embedded from
actual measurements.
3
40
40
30
30
OIP3, IIP3 (dBm)
OIP3, IIP3 (dBm)
ATF-33143 Typical Performance Curves
20
10
2V
3V
4V
20
10
2V
3V
4V
0
0
0
20
40
60
80
120
100
0
20
40
IDSQ (mA)
80
100
120
Figure 7. OIP3, IIP3 vs. Bias[1] at 900 MHz.
25
25
20
20
P1dB (dBm)
15
10
2V
3V
4V
5
15
10
2V
3V
4V
5
0
0
0
20
40
60
80
100
120
0
20
40
IDSQ (mA)
Figure 8. P1dB vs. Bias[1,2] at 2 GHz.
1.2
1.2
21
1.0
0.8
13
0.6
NF
11
10
60
80
IDSQ (mA)
Figure 10. NF and Ga vs. Bias[1] at 2 GHz.
100
Ga
0.6
19
NF
18
0.4
17
0.2
120
16
2V
3V
4V
0.8
20
Ga (dB)
1.0
14
40
120
22
Ga
20
100
1.4
NOISE FIGURE (dB)
15
0
80
Figure 9. P1dB vs. Bias[1,2] Tuned for NF @ 4V, 80 mA at
900 MHz.
16
12
60
IDSQ (mA)
0.4
2V
3V
4V
0
20
40
60
80
100
NOISE FIGURE (dB)
P1dB (dBm)
Figure 6. OIP3, IIP3 vs. Bias[1] at 2 GHz.
Ga (dB)
60
IDSQ (mA)
0.2
0
120
IDSQ (mA)
Figure 11. NF and Ga vs. Bias[1] at 900 MHz.
Notes:
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA
bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on production test
board requirements. Circuit losses have been de-embedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on
frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher
P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with
active biasing.
4
ATF-33143 Typical Performance Curves, continued
1.5
30
80 mA
60 mA
80 mA
60 mA
25
20
Ga (dB)
Fmin (dB)
1.0
15
10
0.5
5
0
0
2
4
6
8
10
0
2
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and Current at 4V.
15
1.0
0.5
10
8
30
25
20
15
0
10
5
6
0
2000
3.5
3.0
2.5
20
2.0
15
1.5
10
1.0
5
0.5
0
40
60
80
100
0
120
IDSQ (mA)
Figure 16. OIP3, P1dB, NF and Gain vs. Bias[1,2] at
3.9 GHz.
OIP3, P1dB (dBm), GAIN (dB)
P1dB
OIP3
Gain
NF
20
8000
35
NOISE FIGURE (dB)
OIP3, P1dB (dBm), GAIN (dB)
35
0
6000
Figure 15. P1dB, OIP3 vs. Frequency and Temp at
VDS = 4V, IDS = 80 mA.
Figure 14. Fmin and Ga vs. Frequency and Temp at
VDS = 4V, IDS = 80 mA.
25
4000
FREQUENCY (MHz)
FREQUENCY (GHz)
30
10
25C
-40C
85C
35
P1dB, OIP3 (dBm)
1.5
NOISE FIGURE (dB)
Ga (dB)
20
4
8
40
2.0
25C
-40C
85C
2
6
Figure 13. Associated Gain vs. Frequency and
Current at 4V.
25
0
4
FREQUENCY (GHz)
30
3
25
2
20
15
1
10
5
P1dB
OIP3
Gain
NF
0
0
20
40
60
NOISE FIGURE (dB)
0
80
100
0
120
IDSQ (mA)
Figure 17. OIP3, P1dB, NF and Gain vs. Bias[1,2] at
5.8 GHz.
Notes:
1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4V 80 mA bias. This circuit represents a trade-off between
optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have been deembedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on
frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches P1dB. This results in higher
P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with
active biasing.
5
25
25
20
20
15
15
P 1d B (dBm)
P 1dB (dBm)
ATF-33143 Typical Performance Curves, continued
10
10
5
5
0
0
0
20
40
60
80
100
120
I DS (mA)
Figure 18. P1dB vs. IDS Active Bias[1] Tuned for NF @
4V, 80 mA at 2 GHz.
0
20
40
60
80
100
120
I DS (mA)
Figure 19. P1dB vs. IDS Active Bias[1] Tuned for NF @
4V, 80 mA at 900 MHz.
Note:
1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias. This
circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board
requirements. Circuit losses have been de-embedded from actual measurements.
6
ATF-33143 Power Parameters Tuned for Max P1dB, VDS = 4 V, IDSQ = 80 mA
Freq
(GHz)
P1dB
(dBm)
Id
(mA)
G1dB
(dB)
PAE1dB
(%)
P3dB
(dBm)
Id
(mA)
PAE3dB
(%)
Out_mag
(Mag.)
Out_ang
(°)
0.9
1.5
1.8
2.0
4.0
6.0
20.7
21.2
21.1
21.6
23.0
24.0
89
91
80
81
97
130
23.2
20.7
19.2
18.1
11.9
5.9
33
36
40
44
48
36
23.2
23.8
23.0
23.2
24.6
25.2
102
116
94
89
135
136
51
51
52
57
48
36
0.39
0.43
0.43
0.42
0.40
0.37
160
165
170
174
-150
-124
Pout (dBm), G (dB), PAE (%)
70
Pout
Gain
PAE
60
50
40
30
20
10
0
-10
-20
-40
-30
-20
-10
0
10
20
Pin (dBm)
Figure 20. Swept Power Tuned for Max P1dB
VDS =4V, IDSQ = 80 mA, 2 GHz.
Notes:
1. Measurements made on ATN LP1 power load pull system.
2. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending
on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in
higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done
with active biasing.
3. PAE (%) = ((Pout – Pin) / Pdc) X 100
4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.
7
ATF-33143 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
dB
S21
Mag.
22.08
19.46
18.86
16.11
14.70
13.84
11.98
10.37
7.95
6.20
4.69
3.12
1.68
0.48
-0.46
-1.50
-2.70
-4.24
-5.49
-6.42
-7.26
-8.20
-9.51
12.81
9.41
8.86
6.44
5.47
4.94
3.98
3.31
2.50
2.05
1.73
1.44
1.22
1.07
0.96
0.85
0.74
0.62
0.54
0.49
0.44
0.40
0.34
S11
Mag.
0.88
0.79
0.78
0.75
0.74
0.74
0.74
0.75
0.75
0.76
0.78
0.80
0.83
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-72.70
-112.10
-119.80
-149.60
-162.80
-170.10
172.30
159.10
137.00
117.20
98.10
80.10
64.50
50.30
36.30
21.50
7.20
-5.00
-15.50
-27.50
-40.50
-52.30
-61.20
Ang.
134.40
111.20
106.50
88.30
79.80
74.80
63.00
53.10
35.00
17.20
-1.30
-19.30
-35.20
-49.30
-64.30
-80.20
-95.80
-110.20
-121.90
-134.20
-146.80
-160.40
-171.00
dB
-27.02
-24.13
-23.93
-22.57
-22.14
-21.84
-21.24
-20.68
-19.59
-18.56
-17.83
-17.42
-17.29
-17.08
-16.59
-16.53
-16.81
-17.38
-17.78
-18.00
-17.87
-18.07
-18.79
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.045
0.062
0.064
0.075
0.079
0.082
0.088
0.094
0.106
0.119
0.129
0.135
0.137
0.140
0.148
0.149
0.144
0.135
0.129
0.126
0.128
0.125
0.115
54.50
40.70
38.00
29.80
26.80
24.90
20.80
17.10
9.30
-0.70
-12.80
-26.00
-37.30
-46.80
-58.30
-71.30
-83.90
-95.60
-103.90
-113.70
-124.20
-136.40
-145.10
0.28
0.37
0.38
0.42
0.45
0.46
0.49
0.51
0.53
0.54
0.54
0.57
0.60
0.63
0.65
0.68
0.72
0.75
0.77
0.80
0.82
0.83
0.85
-118.70
-149.90
-155.40
-176.20
174.70
169.40
160.10
152.10
139.20
124.70
108.00
90.40
74.80
62.70
50.90
37.40
21.40
5.80
-5.70
-15.80
-25.70
-37.90
-49.70
24.54
21.81
21.41
19.34
18.40
17.80
16.56
15.46
13.73
11.44
9.80
8.35
7.43
6.45
6.41
6.14
5.64
4.60
3.64
3.44
3.22
3.11
1.79
ATF-33143 Typical Noise Parameters
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.26
0.30
0.31
0.34
0.34
0.39
0.51
0.53
0.61
0.70
0.82
0.93
1.04
1.12
1.21
0.45
0.38
0.36
0.31
0.26
0.27
0.28
0.32
0.41
0.49
0.53
0.59
0.62
0.67
0.69
40
Ang.
26.00
42.20
44.80
69.50
93.60
108.60
150.70
165.60
-162.10
-136.80
-113.60
-91.50
-72.60
-55.90
-42.20
Rn/50
0.07
0.07
0.07
0.06
0.04
0.05
0.03
0.03
0.04
0.06
0.11
0.23
0.38
0.59
0.77
Ga
dB
24.74
21.02
20.36
17.40
16.50
15.82
14.59
13.13
11.27
9.92
8.70
7.71
6.69
6.04
5.73
MSG/MAG and |S21|2 (dB)
VDS = 2V, IDS = 40 mA
Freq.
Fmin      opt
GHz
dB
Mag.
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 21. MSG/MAG and |S21|2 vs. Frequency at 2V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
8
ATF-33143 Typical Scattering Parameters, VDS = 3 V, IDS = 40 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
S11
Mag.
0.87
0.78
0.77
0.74
0.73
0.73
0.73
0.74
0.74
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-72.20
-111.60
-119.30
-149.00
-162.20
-169.50
172.90
159.70
137.60
117.70
98.60
80.60
64.90
50.70
36.60
21.90
7.50
-4.80
-15.40
-27.40
-40.40
-52.30
-61.30
dB
S21
Mag.
22.51
19.88
19.28
16.52
15.11
14.24
12.38
10.78
8.37
6.63
5.10
3.54
2.10
0.92
-0.04
-1.11
-2.32
-3.86
-5.11
-6.05
-6.95
-7.91
-9.25
13.42
9.87
9.26
6.73
5.72
5.17
4.17
3.46
2.62
2.15
1.80
1.51
1.28
1.12
1.00
0.89
0.77
0.64
0.56
0.50
0.45
0.41
0.35
Ang.
134.40
111.20
106.50
88.30
79.90
74.80
63.10
53.30
35.20
17.30
-1.30
-19.50
-35.50
-49.60
-64.90
-81.00
-96.80
-111.40
-123.30
-135.90
-148.70
-162.30
-172.90
dB
-27.20
-24.27
-24.06
-22.79
-22.34
-22.13
-21.41
-20.91
-19.79
-18.80
-17.99
-17.58
-17.44
-17.13
-16.64
-16.58
-16.81
-17.38
-17.78
-17.93
-17.87
-18.00
-18.72
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.044
0.061
0.063
0.073
0.077
0.079
0.086
0.091
0.103
0.115
0.126
0.132
0.134
0.139
0.147
0.148
0.144
0.135
0.129
0.127
0.128
0.126
0.116
54.40
40.60
37.90
29.80
26.90
25.00
21.10
17.50
10.00
0.00
-11.90
-24.90
-36.00
-45.50
-57.00
-70.10
-82.70
-94.40
-103.00
-112.80
-123.40
-135.70
-144.30
0.27
0.35
0.36
0.40
0.42
0.43
0.46
0.48
0.50
0.51
0.52
0.55
0.57
0.60
0.63
0.66
0.70
0.73
0.76
0.79
0.81
0.82
0.84
-109.80
-143.70
-150.10
-172.10
178.40
172.90
163.10
154.80
141.20
126.50
109.80
92.10
76.20
64.00
52.10
38.60
22.60
6.80
-5.00
-15.10
-25.10
-37.30
-49.10
24.84
22.09
21.67
19.64
18.71
18.16
16.85
15.80
14.06
11.53
9.99
8.57
7.64
6.69
6.65
6.38
6.00
4.90
3.90
3.71
3.48
3.41
1.94
ATF-33143 Typical Noise Parameters
40
Freq.
GHz
Fmin
dB
     opt
Mag.
Ang.
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.24
0.29
0.31
0.37
0.34
0.38
0.51
0.52
0.58
0.68
0.80
0.89
1.01
1.09
1.18
0.45
0.38
0.34
0.28
0.25
0.25
0.28
0.31
0.40
0.46
0.54
0.57
0.61
0.65
0.68
28.40
40.90
42.60
66.30
90.10
105.80
147.40
162.80
-165.20
-138.50
-115.00
-92.50
-72.80
-56.40
-42.60
Rn/50
0.07
0.07
0.07
0.07
0.05
0.05
0.03
0.03
0.03
0.05
0.09
0.20
0.35
0.53
0.69
Ga
dB
25.26
21.26
20.50
17.67
16.57
15.93
14.72
13.29
11.45
10.05
8.97
7.90
6.90
6.26
5.99
MSG/MAG and |S21|2 (dB)
VDS = 3 V, IDS = 40 mA
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 22. MSG/MAG and |S21|2 vs. Frequency at 3V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
9
ATF-33143 Typical Scattering Parameters, VDS = 3 V, IDS = 60 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
S11
Mag.
0.87
0.78
0.77
0.74
0.73
0.73
0.73
0.74
0.75
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-75.30
-114.70
-122.30
-151.60
-164.60
-171.80
171.00
158.10
136.40
116.90
97.80
79.90
64.50
50.40
36.40
21.60
7.30
-5.00
-15.50
-27.50
-40.60
-52.30
-61.40
dB
S21
Mag.
22.95
20.22
19.59
16.78
15.35
14.47
12.60
10.99
8.56
6.80
5.28
3.71
2.26
1.07
0.12
-0.94
-2.13
-3.67
-4.93
-5.85
-6.70
-7.61
-8.97
14.06
10.26
9.56
6.91
5.87
5.30
4.27
3.54
2.68
2.19
1.84
1.53
1.30
1.13
1.02
0.90
0.78
0.66
0.57
0.51
0.46
0.42
0.36
Ang.
133.00
110.00
105.50
87.60
79.30
74.40
62.80
53.10
35.40
17.70
-0.60
-18.60
-34.40
-48.50
-63.50
-79.50
-95.10
-109.70
-121.40
-133.90
-146.60
-160.30
-170.90
dB
-28.18
-25.19
-24.89
-23.37
-22.87
-22.53
-21.76
-21.07
-19.79
-18.68
-17.88
-17.42
-17.29
-17.03
-16.49
-16.43
-16.71
-17.27
-17.72
-17.86
-17.72
-17.92
-18.64
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.039
0.055
0.057
0.068
0.072
0.075
0.082
0.089
0.103
0.117
0.128
0.135
0.137
0.141
0.150
0.151
0.146
0.137
0.130
0.128
0.130
0.127
0.117
55.10
42.60
40.50
33.50
30.80
29.00
25.10
21.40
13.20
2.80
-9.70
-23.20
-34.60
-44.50
-56.20
-69.40
-82.10
-94.00
-102.70
-112.40
-123.00
-135.30
-144.00
0.27
0.36
0.37
0.41
0.43
0.44
0.47
0.50
0.52
0.52
0.53
0.56
0.59
0.62
0.65
0.68
0.71
0.74
0.77
0.80
0.82
0.82
0.84
-124.20
-153.90
-158.80
-178.70
172.60
167.50
158.50
151.00
138.60
124.40
107.80
90.20
74.70
62.70
50.90
37.40
21.40
5.80
-6.10
-15.80
-25.80
-37.90
-49.70
25.57
22.71
22.24
20.07
19.11
18.49
17.17
16.00
14.15
11.53
10.03
8.66
7.75
6.81
6.72
6.46
6.04
4.99
3.98
3.78
3.54
3.45
2.08
ATF-33143 Typical Noise Parameters
40
Freq.
GHz
Fmin
dB
     opt
Mag.
Ang.
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.23
0.28
0.29
0.34
0.34
0.38
0.52
0.53
0.61
0.68
0.83
0.91
1.04
1.09
1.13
0.43
0.35
0.35
0.26
0.23
0.22
0.25
0.30
0.39
0.47
0.52
0.58
0.61
0.66
0.70
29.20
42.40
45.00
68.80
93.30
109.70
150.60
167.50
-160.30
-134.70
-112.10
-89.70
-71.50
-54.80
-41.40
Rn/50
0.06
0.06
0.07
0.06
0.04
0.05
0.03
0.03
0.04
0.06
0.11
0.22
0.36
0.56
0.73
Ga
dB
25.64
21.62
20.87
17.84
16.89
16.24
14.93
13.52
11.65
10.28
9.09
8.09
7.07
6.43
6.15
MSG/MAG and |S21|2 (dB)
VDS = 3 V, IDS = 60 mA
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 23. MSG/MAG and |S21|2 vs. Frequency at 3V, 60 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
10
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 40 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
S11
Mag.
0.87
0.78
0.77
0.73
0.72
0.72
0.72
0.73
0.74
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-72.50
-111.80
-119.40
-149.10
-162.20
-169.50
173.00
159.80
137.70
117.90
98.80
80.80
65.10
50.90
36.80
22.00
7.60
-4.70
-15.30
-27.20
-40.30
-52.20
-61.20
dB
S21
Mag.
22.73
20.07
19.46
16.69
15.28
14.41
12.55
10.95
8.54
6.80
5.28
3.72
2.29
1.10
0.15
-0.93
-2.14
-3.69
-4.97
-5.92
-6.85
-7.83
-9.19
13.74
10.09
9.43
6.85
5.82
5.26
4.24
3.53
2.68
2.19
1.84
1.54
1.30
1.14
1.02
0.90
0.78
0.66
0.57
0.51
0.46
0.41
0.35
Ang.
134.30
111.00
106.40
88.20
79.80
74.70
63.00
53.20
35.10
17.10
-1.60
-19.80
-35.90
-50.20
-65.60
-81.80
-97.60
-112.40
-124.50
-137.30
-150.10
-163.80
-174.60
dB
-27.39
-24.42
-24.20
-22.90
-22.44
-22.23
-21.58
-21.07
-19.93
-18.92
-18.11
-17.68
-17.50
-17.23
-16.69
-16.58
-16.81
-17.32
-17.78
-17.93
-17.79
-18.00
-18.72
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.043
0.060
0.062
0.072
0.076
0.078
0.084
0.089
0.101
0.113
0.124
0.130
0.133
0.137
0.146
0.148
0.144
0.136
0.129
0.127
0.129
0.126
0.116
54.10
40.40
37.70
29.80
26.90
25.00
21.20
17.80
10.40
0.70
-11.20
-24.10
-35.10
-44.60
-56.10
-69.10
-81.70
-93.50
-102.10
-112.20
-122.80
-135.10
-143.80
0.26
0.33
0.34
0.38
0.40
0.41
0.44
0.46
0.48
0.49
0.50
0.53
0.56
0.59
0.62
0.65
0.69
0.72
0.76
0.79
0.81
0.82
0.84
-104.90
-140.20
-147.10
-169.70
-179.30
175.10
165.10
156.50
142.50
127.70
111.00
93.40
77.30
64.90
53.00
39.50
23.50
7.50
-4.30
-14.60
-24.50
-36.80
-48.70
25.04
22.26
21.82
19.78
18.84
18.29
17.03
15.98
14.23
11.54
10.07
8.68
7.77
6.80
6.78
6.55
6.13
5.03
4.06
3.87
3.62
3.54
2.05
ATF-33143 Typical Noise Parameters
40
Freq.
GHz
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Fmin
dB
0.30
0.33
0.34
0.38
0.37
0.40
0.53
0.54
0.60
0.68
0.82
0.89
1.00
1.07
1.16
     opt
Mag.
0.44
0.36
0.33
0.26
0.25
0.23
0.27
0.31
0.38
0.46
0.49
0.56
0.60
0.66
0.68
Ang.
31.50
42.70
44.50
68.70
90.70
106.40
145.80
162.00
-165.30
-138.80
-115.40
-93.20
-73.10
-56.60
-42.80
Rn/50
0.08
0.07
0.08
0.06
0.05
0.05
0.04
0.03
0.04
0.05
0.09
0.19
0.33
0.50
0.65
Ga
dB
25.59
21.43
20.63
17.72
16.65
15.99
14.70
13.32
11.47
10.17
8.93
7.99
7.00
6.40
6.11
MSG/MAG and |S21|2 (dB)
VDS = 4 V, IDS = 40 mA
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 24. MSG/MAG and |S21|2 vs. Frequency at 4V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
11
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
S11
Mag.
0.86
0.77
0.76
0.73
0.72
0.72
0.72
0.73
0.74
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-75.60
-115.00
-122.50
-151.80
-164.60
-171.80
171.00
158.20
136.50
117.00
98.00
80.20
64.70
50.60
36.60
21.80
7.50
-4.80
-15.40
-27.30
-40.40
-52.20
-61.20
dB
S21
Mag.
23.20
20.45
19.80
16.98
15.55
14.66
12.79
11.17
8.76
7.00
5.48
3.92
2.48
1.29
0.34
-0.72
-1.94
-3.48
-4.73
-5.68
-6.56
-7.54
-8.87
14.45
10.53
9.77
7.06
5.99
5.41
4.36
3.62
2.74
2.24
1.88
1.57
1.33
1.16
1.04
0.92
0.80
0.67
0.58
0.52
0.47
0.42
0.36
Ang.
132.90
109.80
105.30
87.50
79.20
74.20
62.70
53.00
35.20
17.50
-1.00
-19.00
-34.90
-49.10
-64.30
-80.40
-96.20
-110.80
-122.80
-135.40
-148.30
-162.10
-172.80
dB
-28.18
-25.35
-25.04
-23.61
-22.97
-22.73
-21.94
-21.31
-20.00
-18.86
-17.99
-17.52
-17.39
-17.08
-16.54
-16.48
-16.71
-17.27
-17.65
-17.79
-17.72
-17.92
-18.56
S12
Mag.
S22
Ang.
Mag.
Ang.
MSG/MAG
(dB)
0.039
0.054
0.056
0.066
0.071
0.073
0.080
0.086
0.100
0.114
0.126
0.133
0.135
0.140
0.149
0.150
0.146
0.137
0.131
0.129
0.130
0.127
0.118
54.80
42.20
40.20
33.20
30.60
28.90
25.10
21.60
13.70
3.40
-8.90
-22.30
-33.60
-43.40
-55.20
-68.40
-81.10
-92.90
-101.60
-111.60
-122.20
-134.70
-143.30
0.26
0.34
0.35
0.39
0.41
0.42
0.45
0.47
0.49
0.50
0.51
0.54
0.57
0.60
0.63
0.66
0.70
0.73
0.76
0.79
0.81
0.82
0.84
-118.50
-150.00
-155.50
-176.10
175.00
169.80
160.60
152.70
139.90
125.70
109.10
91.60
75.90
63.70
52.00
38.50
22.50
6.70
-5.20
-15.20
-25.10
-37.30
-49.20
25.69
22.90
22.42
20.29
19.26
18.70
17.36
16.24
13.79
11.57
10.15
8.80
7.88
6.92
6.92
6.69
6.27
5.14
4.12
3.90
3.72
3.59
2.19
ATF-33143 Typical Noise Parameters
40
Freq.
GHz
Fmin
dB
     opt
Mag.
Ang.
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.29
0.33
0.34
0.38
0.39
0.42
0.47
0.51
0.63
0.72
0.82
0.93
1.03
1.13
1.22
0.42
0.33
0.32
0.26
0.22
0.22
0.25
0.29
0.39
0.46
0.51
0.57
0.61
0.66
0.69
31.40
44.70
48.00
71.90
94.00
109.70
149.40
166.80
-160.60
-135.30
-112.40
-90.90
-71.80
-55.50
-41.80
Rn/50
0.08
0.07
0.07
0.06
0.05
0.05
0.03
0.03
0.04
0.06
0.11
0.21
0.37
0.55
0.72
Ga
dB
25.91
21.80
21.00
18.14
16.96
16.29
14.95
13.58
11.74
10.36
9.17
8.18
7.19
6.56
6.29
MSG/MAG and |S21|2 (dB)
VDS = 4 V, IDS = 60 mA
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 25. MSG/MAG and |S21|2 vs. Frequency at 4V, 60 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
12
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 80 mA
Freq.
(GHz)
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
S11
Mag.
0.86
0.77
0.76
0.73
0.72
0.72
0.72
0.73
0.74
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
Ang.
-77.20
-116.60
-124.00
-153.00
-165.80
-172.90
170.10
157.40
136.00
116.70
97.70
80.00
64.50
50.50
36.50
21.70
7.40
-4.80
-15.40
-27.30
-40.40
-52.20
-61.20
dB
S21
Mag.
23.39
20.60
19.93
17.09
15.66
14.77
12.89
11.27
8.84
7.09
5.57
4.00
2.55
1.36
0.43
-0.65
-1.85
-3.39
-4.64
-5.57
-6.46
-7.40
-8.75
14.76
10.71
9.91
7.15
6.06
5.47
4.41
3.66
2.77
2.26
1.90
1.58
1.34
1.17
1.05
0.93
0.81
0.68
0.59
0.53
0.47
0.43
0.36
Ang.
132.20
109.20
104.80
87.10
78.90
74.00
62.50
53.00
35.30
17.70
-0.70
-18.70
-34.50
-48.70
-63.80
-79.90
-95.60
-110.20
-122.00
-134.80
-147.60
-161.40
-172.10
dB
-28.82
-25.86
-25.49
-23.86
-23.31
-22.95
-22.03
-21.39
-20.00
-18.86
-17.99
-17.47
-17.34
-17.03
-16.49
-16.38
-16.66
-17.21
-17.59
-17.79
-17.65
-17.85
-18.56
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
(dB)
0.036
0.051
0.053
0.064
0.068
0.071
0.079
0.085
0.100
0.114
0.126
0.134
0.136
0.141
0.150
0.152
0.147
0.138
0.132
0.129
0.131
0.128
0.118
55.30
43.40
41.70
35.20
32.70
31.00
27.20
23.50
15.30
4.80
-7.80
-21.30
-32.80
-42.80
-54.60
-67.80
-80.60
-92.60
-101.10
-111.20
-121.90
-134.30
-143.10
0.26
0.34
0.36
0.39
0.41
0.42
0.45
0.48
0.50
0.51
0.52
0.55
0.58
0.61
0.63
0.66
0.70
0.73
0.76
0.79
0.81
0.82
0.84
-125.40
-154.80
-159.50
-179.10
172.40
167.30
158.50
151.00
138.80
124.80
108.40
90.90
75.40
63.30
51.60
38.10
22.10
6.40
-5.00
-15.40
-25.30
-37.50
-49.30
26.13
23.22
22.72
20.48
19.50
18.87
17.47
16.34
13.59
11.56
10.17
8.84
7.93
6.98
6.96
6.73
6.26
5.21
4.20
3.98
3.73
3.65
2.24
ATF-33143 Typical Noise Parameters
40
Freq.
GHz
Fmin
dB
     opt
Mag.
Ang.
0.5
0.9
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.30
0.35
0.35
0.40
0.42
0.45
0.49
0.55
0.68
0.75
0.90
1.00
1.12
1.19
1.33
0.42
0.32
0.32
0.23
0.20
0.19
0.23
0.28
0.38
0.48
0.52
0.57
0.62
0.67
0.69
34.50
46.40
50.40
74.80
98.80
114.10
153.70
171.50
-156.70
-133.30
-110.70
-89.60
-70.80
-54.60
-40.80
Rn/50
0.08
0.07
0.07
0.06
0.05
0.05
0.04
0.03
0.04
0.07
0.13
0.25
0.43
0.65
0.85
Ga
dB
26.23
21.96
21.16
18.47
17.18
16.48
15.09
13.70
11.85
10.49
9.27
8.27
7.28
6.66
6.31
MSG/MAG and |S21|2 (dB)
VDS = 4 V, IDS = 80 mA
30
MSG
20
MAG
10
0
-10
|S21|2
0
5
10
15
20
FREQUENCY (GHz)
Figure 26. MSG/MAG and |S21|2 vs. Frequency at 4V, 80 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
13
Noise Parameter Applications Information
Fmin values at 2 GHz and higher are based on
measurements while the Fmins below 2 GHz have been
extrapolated. The Fmin values are based on a set of
16 noise figure measurements made at 16 different
impedances using an ATN NP5 test system. From these
measurements, a true Fmin is calculated. Fmin represents
the true minimum noise figure of the device when the
device is presented with an impedance matching network
that transforms the source impedance, typically 50Ω, to
an impedance represented by the reflection coefficient
o. The designer must design a matching network that
will present o to the device with minimal associated
circuit losses. The noise figure of the completed amplifier
is equal to the noise figure of the device plus the losses
of the matching network preceding the device. The
noise figure of the device is equal to Fmin only when the
device is presented with o. If the reflection coefficient
of the matching network is other than o, then the noise
figure of the device will be greater than Fmin based on
the following equation.
NF = Fmin + 4 Rn
Zo
|s – o | 2
(|1 + o| 2)(1 –s| 2)
Where Rn /Zo is the normalized noise resistance, o is
the optimum reflection coefficient required to produce
Fmin and s is the reflection coefficient of the source
impedance actually presented to the device. The losses
of the matching networks are non-zero and they will
also add to the noise figure of the device creating a
higher amplifier noise figure. The losses of the matching
networks are related to the Q of the components and
associated printed circuit board loss. o is typically fairly
low at higher frequencies and increases as frequency is
lowered. Larger gate width devices will typically have a
lower o as compared to narrower gate width devices.
Typically for FETs, the higher o usually infers that an
impedance much higher than 50Ω is required for the
device to produce Fmin. At VHF frequencies and even
lower L Band frequencies, the required impedance can
be in the vicinity of several thousand ohms. Matching to
such a high impedance requires very hi-Q components
in order to minimize circuit losses. As an example at
900 MHz, when airwwound coils (Q > 100) are used for
matching networks, the loss can still be up to 0.25 dB
which will add directly to the noise figure of the device.
Using muiltilayer molded inductors with Qs in the 30 to
50 range results in additional loss over the airwound coil.
Losses as high as 0.5 dB or greater add to the typical 0.15
dB Fmin of the device creating an amplifier noise figure
of nearly 0.65 dB. A discussion concerning calculated
and measured circuit losses and their effect on amplifier
noise figure is covered in Avago Application 1085.
Reliability Data
Channel
Temperature
(oC)
Nominal Failures per million (FPM)
for different durations
(FITs)
1 year
5 year
10 year
1000
hours
30 year
90% confidence Failures per million (FPM)
for different durations
(FITs)
1 year
5 year
10 year
30 year
1000
hours
100
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
125
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
11
140
<0.1
<0.1
<0.1
<0.1
160
<0.1
<0.1
6
160
9.3K
150
<0.1
<0.1
2
140
26K
<0.1
0.3
780
8800
131K
160
<0.1
<0.1
920
21K
370K
<0.1
67
24K
120K
520K
180
NOT
recommended
<0.1
4400
450K
830K
1000K
21
53K
590K
850K
1000K
Predicted failures with temperature extrapolated from failure distribution and activation energy data of higher temperature
operational life STRIFE of PHEMT process
14
ATF-33143 Die Model
Statz Model
MESFETM1
NFET=yes
PFET=no
Vto=–0.95
Beta=0.48
Lambda=0.09
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
Al lParams=
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Cgs=1.6 pF
Gdcap=3
Cgd=0.32 pF
Rgd=
Tqm=
Vmax=
Fc=
Rd=.125
Rg=1
Rs=0.0625
Ld=0.00375 nH
Lg-0.00375 nH
Ls=0.00125 nH
Cds=0.08 pF
Crf=0.1
This model can be used as a design tool. It has been tested
on MDS for various specifications. However, for more precise
and accurate design, please refer to the measured data in
this data sheet. For future improvements Avago reserves
the right to change these models without prior notice.
ATF-33143 Model
INSIDE Package
Var
Ean
VAR
VAR1
K=5
Z2=85
Z1=30
C
C1
C=0.1 pF
GATE
Port
G
Num=1 VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L6
L=0.2 nH
R=0.001
L
L1
L=0.6 nH
R=0.001
GaAsFET
FET1
Model=MESFETN1
Mode=nonlinear
SOURCE
Port
S1
Num=2
15
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINPTL9
Z=Z2 Ohm
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L4
L=0.2 nH
R=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
MSub
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=D
Rough=D mil
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=0.001
SOURCE
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
Port
S2
Num=4
DRAIN
Port
D
Num=4
Part Number Ordering Information
No. of
Devices
Part Number
Container
ATF-33143-TR1G
3000
7” Reel
ATF-33143-TR2G
10000
13” Reel
ATF-33143-BLKG
100
antistatic bag
Package Dimensions
Recommended PCB Pad Layout for
Avago’s SC70 4L/SOT-343 Products
SC-70 4L/SOT-343
1.30 (.051)
BSC
1.30
(0.051)
1.00
(0.039)
HE
E
2.00
(0.079)
0.60
(0.024)
1.15 (.045) BSC
0.9
(0.035)
b1
1.15
(0.045)
D
Dimensions in
A2
A
A1
b
L
C
DIMENSIONS (mm)
SYMBOL
E
D
HE
A
A2
A1
b
b1
c
L
16
MIN.
1.15
1.85
1.80
0.80
0.80
0.00
0.15
0.55
0.10
0.10
MAX.
1.35
2.25
2.40
1.10
1.00
0.10
0.40
0.70
0.20
0.46
NOTES:
1. All dimensions are in mm.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash & metal burr.
4. All specifications comply to EIAJ SC70.
5. Die is facing up for mold and facing down for trim/form,
ie: reverse trim/form.
6. Package surface to be mirror finish.
mm
(inches)
Device Orientation
REEL
TOP VIEW
END VIEW
4 mm
CARRIER
TAPE
8 mm
3Px
3Px
3Px
3Px
USER
FEED
DIRECTION
COVER TAPE
Tape Dimensions and Product Orientation For Outline 4T
P
P2
D
Po
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Ko
10 MAX.
Ao
DESCRIPTION
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
PERFORATION
DIAMETER
PITCH
POSITION
CARRIER TAPE
WIDTH
THICKNESS
COVER TAPE
WIDTH
TAPE THICKNESS
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
Tt (COVER TAPE THICKNESS)
10 MAX.
Bo
SYMBOL
SIZE (mm)
SIZE (INCHES)
Ao
Bo
Ko
P
D1
D
Po
E
2.40 ± 0.10
2.40 ± 0.10
1.20 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.094 ± 0.004
0.094 ± 0.004
0.047 ± 0.004
0.157 ± 0.004
0.039 + 0.010
1.55 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
0.061 + 0.002
0.157 ± 0.004
0.069 ± 0.004
W
t1
C
Tt
F
8.00 + 0.30 - 0.10
0.254 0.02
0.315 + 0.012
0.0100 ± 0.0008
5.40 ± 0.10
0.062 ± 0.001
0.205 + 0.004
0.0025 ± 0.0004
3.50 ± 0.05
0.138 ± 0.002
2.00 ± 0.05
0.079 ± 0.002
P2
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-3747EN
AV02-1442EN - June 8, 2012