AMICC A67L06181

A67L06181/A67L93361
Preliminary
1M X 18, 512K X 36 LVTTL, Flow-through ZeBLTM SRAM
Document Title
1M X 18, 512K X 36 LVTTL, Flow-through ZeBLTM SRAM
Revision History
Rev. No.
0.0
PRELIMINARY
History
Issue Date
Remark
Initial issue
August, 20, 2005
Preliminary
(August, 2005, Version 0.0)
AMIC Technology, Corp.
A67L06181/A67L93361
Preliminary
1M X 18, 512K X 36 LVTTL, Flow-through ZeBLTM SRAM
Features
Fast access time: 6.5/7.5/8.5 ns
(153, 133, 117 MHz)
Zero Bus Latency between READ and WRITE cycles
allows 100% bus utilization
Signal +3.3V ± 5% power supply
Individual Byte Write control capability
Clock enable ( CEN ) pin to enable clock and suspend
operations
Clock-controlled and registered address, data and
control signals
Registered output for pipelined applications
Three separate chip enables allow wide range of options
for CE control, address pipelining
Internally self-timed write cycle
Selectable BURST mode (Linear or Interleaved)
SLEEP mode (ZZ pin) provided
Available in 100 pin LQFP package
General Description
The AMIC Zero Bus Latency (ZeBLTM) SRAM family
employs high-speed, low-power CMOS designs using an
advanced CMOS process.
The A67L06181, A67L93361 SRAMs integrate a 1M X 18,
512K X 36 SRAM core with advanced synchronous
peripheral circuitry and a 2-bit burst counter. These SRAMs
are optimized for 100 percent bus utilization without the
insertion of any wait cycles during Write-Read alternation.
The positive edge triggered single clock input (CLK)
controls all synchronous inputs passing through the
registers. The synchronous inputs include all address, all
data inputs, active low chip enable ( CE ), two additional chip
enables for easy depth expansion (CE2, CE2 ), cycle start
input (ADV/ LD ), synchronous clock enable ( CEN ), byte
write enables ( BW1 , BW2 , BW3 , BW4 ) and read/write
generated by the chip and controlled by the same input pin
ADV/ LD in High state.
Write cycles are internally self-time and synchronous with
the rising edge of the clock input and when R/ W is Low.
The feature simplified the write interface. Individual Byte
enables allow individual bytes to be written. BW1 controls
I/Oa pins; BW2 controls I/Ob pins; BW3 controls I/Oc pins;
and BW4 controls I/Od pins. Cycle types can only be
defined when an address is loaded.
The SRAM operates from a +3.3V power supply, and all
inputs and outputs are LVTTL-compatible. The device is
ideally suited for high bandwidth utilization systems.
(R/ W ).
Asynchronous inputs include the output enable ( OE ), clock
(CLK), SLEEP mode (ZZ, tied LOW if unused) and burst
mode (MODE). Burst Mode can provide either interleaved
or linear operation, burst operation can be initiated by
synchronous address Advance/Load (ADV/ LD ) pin in Low
state. Subsequent burst address can be internally
PRELIMINARY
(August, 2005, Version 0.0)
2
AMIC Technology, Corp.
A67L06181/A67L93361
Pin Configuration
OE
ADV/
LD
A18
A17
A8
A9
VSS
CLK
R/W
CEN
OE
ADV/
LD
A19
A18
A8
A9
90
89
88
87
86
84
83
82
81
85
CEN
VCC
91
CLK
R/W
CE2
92
VSS
BW1
93
VCC
BW1
BW2
94
CE2
BW2
NC
95
BW3
BW4
NC
96
CE
CE2
CE
CE2
A7
99
97
A7
A6
100
1M X 18
98
A6
512K X 36
I/Oc8
NC
1
80
A10
I/Ob 8
I/Oc0
NC
2
79
NC
I/Ob 7
I/Oc1
NC
3
78
NC
I/Ob6
VCCQ
VCCQ
4
77
VCCQ
VCCQ
VSSQ
VSSQ
5
76
VSSQ
VSSQ
I/Oc2
NC
6
75
NC
I/Ob5
I/Oc3
NC
7
74
I/Oa0
I/Ob4
I/Oc4
I/Ob8
8
73
I/Oa1
I/Ob3
9
72
I/Oa2
I/Ob2
I/Oc5
I/Ob7
VSSQ
VSSQ
10
71
VSSQ
VSSQ
VCCQ
VCCQ
11
70
VCCQ
VCCQ
I/Oc6
I/Ob6
12
69
I/Oa3
I/Ob1
I/Oc 7
I/Ob5
13
68
I/Oa4
I/Ob0
VSS
VSS
14
67
VSS
VSS
VCC
VCC
15
66
VSS
VSS
VCC
VCC
16
65
VCC
VCC
VSS
VSS
17
64
ZZ
ZZ
I/Od 0
I/Ob4
18
63
I/Oa5
I/Oa7
I/Od 1
I/Ob3
19
62
I/Oa6
I/Oa6
VCCQ
VCCQ
20
61
VCCQ
VCCQ
VSSQ
VSSQ
21
60
VSSQ
VSSQ
I/Od 2
I/Ob 2
22
59
I/Oa7
I/Oa5
I/Od 3
I/Ob 1
23
58
I/Oa8
I/Oa4
I/Od 4
I/Ob 0
24
57
NC
I/Oa3
I/Od 5
NC
25
56
NC
I/Oa2
A67L06181E
A67L93361E
(August, 2005, Version 0.0)
3
50
A17
A16
49
A16
A15
48
A15
A14
47
A14
A13
46
A13
A12
45
A12
A11
44
A11
A10
43
NC
NC
42
NC
41
VCC
NC
VSS
VSS
VCC
NC
NC
40
A0
NC
A0
NC
MODE MODE
PRELIMINARY
39
I/Oa8
38
NC
37
51
36
30
35
NC
A1
I/Oa0
I/Od8
A2
I/Oa1
NC
A1
NC
52
A2
53
29
34
28
NC
A3
NC
I/Od7
A3
I/Od6
33
VCCQ
A4
VSSQ
VCCQ
A4
VSSQ
54
32
55
27
31
26
VCCQ
A5
VSSQ
A5
VSSQ
VCCQ
AMIC Technology, Corp.
A67L06181/A67L93361
Block Diagram (512K X 36)
ZZ
MODE
LOGIC
MODE
ADV/LD
CLK
LOGIC
CEN
CLK
A0-A18
BURST
LOGIC
ADDRESS
COUNTER
CLR
WRITE
ADDRESS
REGISTER
ADDRESS
REGISTERS
9
9
ADV/LD
R/W
BW1
BW2
WRITE
REGISTRY
&
CONTROL
LOGIC
BW3
BW4
9
9
BYTEa
WRITE
DRIVER
9
BYTEb
WRITE
DRIVER
9
512KX9X4
MEMORY
BYTEc
WRITE
DRIVER
9
BYTEd
WRITE
DRIVER
9
SENSE
AMPS
OUTPUT
BUFFERS
I/O s
ARRAY
DATA-IN
REGISTERS
CE
CHIP
ENABLE
LOGIC
CE2
CE2
FLOW-THROUGH
ENABLE
LOGIC
OUTPUT
ENABLE
LOGIC
OE
PRELIMINARY
(August, 2005, Version 0.0)
4
AMIC Technology, Corp.
A67L06181/A67L93361
Block Diagram (1M X 18)
ZZ
MODE
LOGIC
MODE
ADV/LD
CLK
LOGIC
CEN
CLK
A0- A19
BURST
LOGIC
ADDRESS
COUNTER
CLR
WRITE
ADDRESS
REGISTER
ADDRESS
REGISTERS
9
ADV/LD
R/W
BW1
WRITE
REGISTRY
&
CONTROL
LOGIC
BW2
BYTEa
WRITE
DRIVER
9
1MX9X2
MEMORY
9
BYTEb
WRITE
DRIVER
9
SENSE
AMPS
OUTPUT
BUFFERS
I/O S
ARRAY
DATA-IN
REGISTERS
CE
CHIP
ENABLE
LOGIC
CE2
CE2
FLOWTHROUGH
ENABLE LOGIC
OUTPUT
ENABLE
LOGIC
OE
PRELIMINARY
(August, 2005, Version 0.0)
5
AMIC Technology, Corp.
A67L06181/A67L93361
Pin Description
Pin No.
Symbol
Description
A0
A1
A2 – A9
Synchronous Address Inputs : These inputs are registered
and must meet the setup and hold times around the rising
edge of CLK. Pins 83 and 84 are reserved as address bits
for higher-density 9Mb and 18Mb DBA SRAMs, respectively.
A0 and A1 are the two lest significant bits (LSB) of the
address field and set the internal burst counter if burst is
desired.
LQFP (X18)
LQFP (X36)
37
36
35,34,33,32,
100,99,82,81
44,45,46,47,
48,49,50,83
84
80
37
36
35,34,33,32,
100,99,82,81
45,46,47,48,
49,50,83,84
93 ( BW1)
94 ( BW2 )
93 ( BW1)
94 ( BW2 )
95 ( BW3 )
96 ( BW4 )
BW1
BW2
BW3
89
89
CLK
98
98
CE
Synchronous Chip Enable : This active low input is used to
enable the device. This input is sampled only when a new
external address is loaded (ADV/ LD LOW).
92
92
CE2
Synchronous Chip Enable : This active low input is used to
enable the device and is sampled only when a new external
address is loaded (ADV/ LD LOW). This input can be used
for memory depth expansion.
97
97
CE2
Synchronous Chip Enable : This active high input is used to
enable the device and is sampled only when a new external
address is loaded (ADV/ LD LOW). This input can be used
for memory depth expansion.
86
86
OE
Output Enable : This active low asynchronous input enables
the data I/O output drivers.
85
85
ADV/ LD
Synchronous Address Advance/Load : When HIGH, this
input is used to advance the internal burst counter,
controlling burst access after the external address is loaded.
When HIGH, R/ W is ignored. A LOW on this pin permits a
new address to be loaded at CLK rising edge.
87
87
CEN
Synchronous Clock Enable : This active low input permits
CLK to propagate throughout the device. When HIGH, the
device ignores the CLK input and effectively internally
extends the previous CLK cycle. This input must meet setup
and hold times around the rising edge of CLK.
PRELIMINARY
A11-A18
A19
A10
44
BW4
(August, 2005, Version 0.0)
Synchronous Byte Write Enables : These active low inputs
allow individual bytes to be written when a WRITE cycle is
active and must meet the setup and hold times around the
rising edge of CLK. BYTE WRITEs need to be asserted on
the same cycle as the address, BWs are associated with
addresses and apply to subsequent data. BW1 controls I/Oa
pins; BW2 controls I/Ob pins; BW3 controls I/Oc pins;
BW4 controls I/Od pins.
Clock : This signal registers the address, data, chip enables,
byte write enables and burst control inputs on its rising edge.
All synchronous inputs must meet setup and hold times
around the clock’s rising edge.
6
AMIC Technology, Corp.
A67L06181/A67L93361
Pin Description (continued)
Pin No.
Symbol
Description
LQFP (X18)
LQFP (X36)
64
64
ZZ
Snooze Enable : This active high asynchronous input causes
the device to enter a low-power standby mode in which all
data in the memory array is retained. When active, all other
inputs are ignored.
88
88
R/ W
Read/Write : This active input determines the cycle type
when ADV/ LD is LOW. This is the only means for
determining READs and WRITEs. READ cycles may not be
converted into WRITEs (and vice versa) other than by
loading a new address. A LOW on this pin permits BYTE
WRITE operations and must meet the setup and hold times
around the rising edge of CLK. Full bus width WRITEs occur
if all byte write enables are LOW.
52, 53, 56, 57,
58, 59, 62, 63, 51
68, 69, 72, 73, 74,
75, 78, 79, 80
2, 3, 6, 7, 8, 9, 12,
13,1
18, 19, 22, 23, 24,
25, 28, 29, 30
I/Oa
SRAM Data I/O : Byte “a” is I/Oa pins; Byte “b” is I/Ob pins;
Byte “c” is I/Oc pins; Byte “d” is I/Od pins. Input data must
meet setup and hold times around CLK rising edge.
31
31
MODE
Mode: This input selects the burst sequence. A LOW on this
pin selects linear burst. NC or HIGH on this pin selects
interleaved burst. Do not alter input state while device is
operating.
1, 2, 3, 6, 7, 25, 28,
29, 30, 38, 39,
42,43 51, 52, 53,
56, 57, 75, 78, 79,
95, 96
38,39,42,43
NC
No Connect : These pins can be left floating or connected to
GND to minimize thermal impedance.
15, 16, 41, 65, 91
15, 16, 41, 65, 91
VCC
4, 11, 20, 27,
54, 61, 70, 77
4, 11, 20, 27,
54, 61, 70, 77
VCCQ
14, 17, 40, 66, 90
14, 17, 40, 66, 90
VSS
5,10,21,26,
55,60,71,76
5,10,21,26,
55,60,71,76
VSSQ
74, 73, 72, 69, 68
63, 62, 59, 58
24, 23, 22, 19, 18
13, 12, 9, 8
PRELIMINARY
(August, 2005, Version 0.0)
I/Ob
I/Oc
I/Od
Power Supply
Isolated Output Buffer Supply
Ground : GND.
Isolated Output Buffer Ground
7
AMIC Technology, Corp.
A67L06181/A67L93361
Truth Table (Notes 5 - 7)
Operation
Address
Used
None
CE
CE2
CE2
ZZ
ADV/
LD
L
R/ W
BWx
OE
CEN
CLK
I/O
Notes
Deselected Cycle,
H
X
X
L
X
X
X
L
L→H
High-Z
Power-down
Deselected Cycle,
None
X
H
X
L
L
X
X
X
L
L→H
High-Z
Power-down
Deselected Cycle,
None
X
X
L
L
L
X
X
X
L
L→H
High-Z
Power-down
Continue Deselect
None
X
X
X
L
H
X
X
X
L
L→H
High-Z
1
Cycle
READ Cycle
External
L
L
H
L
L
H
X
L
L
L→H
Q
(Begin Burst)
READ Cycle
Next
X
X
X
L
H
X
X
L
L
L→H
Q
1,7
(Continue Burst)
NOP/Dummy READ
External
L
L
H
L
L
H
X
H
L
L→H
High-Z
2
(Begin Burst)
Dummy READ
Next
X
X
X
L
H
X
X
H
L
L→H
High-Z
1,2,7
(Continue Burst)
WRITE Cycle
External
L
L
H
L
L
L
L
X
L
L→H
D
3
(Begin Burst)
WRITE Cycle
Next
X
X
X
L
H
X
L
X
L
L→H
D
1,3,7
(Continue Burst)
NOP/WRITE Abort
None
L
L
H
L
L
L
H
X
L
L→H
High-Z
2,3
(Begin Burst)
WRITE Abort
Next
X
X
X
L
H
X
H
X
L
L→H
High-Z 1,2,3,7
(Continue Burst)
IGNORE Clock Edge
Current
X
X
X
L
X
X
X
X
H
L→ H
4
(Stall)
SLEEP Mode
None
X
X
X
H
X
X
X
X
X
X
High-Z
Notes:
1. Continue Burst cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ or
WRITE) is chosen in the initial Begin Burst cycle. A Continue Deselect cycle can only be entered if a Deselect cycle is
executed first.
2. Dummy READ and WRITE Abort cycles can be considered NOPs because the device performs no operation. A WRITE
Abort means a WRITE command is given, but no operation is performed.
3. OE may be wired LOW to minimize the number of control signals to the SRAM. The device will automatically turn off the
output drivers during a WRITE cycle. Some users may use OE when the bus turn-on and turn-off times do not meet their
requirements.
4. If an Ignore Clock Edge command occurs during a READ operation, the I/O bus will remain active (Low-Z). If it occurs
during a WRITE cycle, the bus will remain in High-Z. No WRITE operations will be performed during the Ignored Clock
Edge cycle.
5. X means “Don’t Care.” H means logic HIGH. L means logic LOW. BWx = H means all byte write signals ( BW1, BW2 , BW3
and BW4 ) are HIGH. BWx = L means one or more byte write signals are LOW.
6. BW1enables WRITEs to Byte “a” (I/Oa pins); BW2 enables WRITEs to Byte “b” (I/Ob pins); BW3 enables WRITEs to
Byte “c” (I/Oc pins); BW4 enables WRITEs to Byte “d” (I/Od pins).
7. The address counter is incremented for all Continue Burst cycles.
PRELIMINARY
(August, 2005, Version 0.0)
8
AMIC Technology, Corp.
A67L06181/A67L93361
Partial Truth Table for READ/WRITE Commands (X18)
Operation
R/ W
BW1
BW2
READ
H
X
X
WRITE Byte “a”
L
L
H
WRITE Byte “b”
L
H
L
WRITE all bytes
L
L
L
WRITE Abort/NOP
L
H
H
Note : Using R/ W and BYTE WRITE(s), any one or more bytes may be written.
Partial Truth Table for READ/WRITE Commands (X36)
Operation
R/ W
BW1
BW2
BW3
BW4
READ
H
X
X
X
X
WRITE Byte “a”
L
L
H
H
H
WRITE Byte “b”
L
H
L
H
H
WRITE Byte “c”
L
H
H
L
H
WRITE Byte “d”
L
H
H
H
L
WRITE all bytes
L
L
L
L
L
WRITE Abort/NOP
L
H
H
H
H
Note : Using R/ W and BYTE WRITE(s), any one or more bytes may be written.
Linear Burst Address Table (MODE = LOW)
First Address (External)
Second Address (Internal)
Third Address (Internal)
Fourth Address (Internal)
X . . . X00
X . . . X01
X . . . X10
X . . . X11
X . . . X01
X . . . X10
X . . . X11
X . . . X00
X . . . X10
X . . . X11
X . . . X00
X . . . X01
X . . . X11
X . . . X00
X . . . X01
X . . . X10
Interleaved Burst Address Table (MODE = HIGH or NC)
First Address (External)
Second Address (Internal)
Third Address (Internal)
Fourth Address (Internal)
X . . . X00
X . . . X01
X . . . X10
X . . . X11
X . . . X01
X . . . X00
X . . . X11
X . . . X10
X . . . X10
X . . . X11
X . . . X00
X . . . X01
X . . . X11
X . . . X10
X . . . X01
X . . . X00
PRELIMINARY
(August, 2005, Version 0.0)
9
AMIC Technology, Corp.
A67L06181/A67L93361
Absolute Maximum Ratings*
*Comments
Power Supply Voltage (VCC) . . . . . . . . . . -0.3V to +4.6V
Voltage Relative to GND for any Pin Except VCC (Vin,
Vout) . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VCC +0.3V
Operating Temperature (Topr) . . . . . . . . . . . 0°C to 70°C
Storage Temperature (Tbias) . . . . . . . . . . -10°C to 85 °C
Storage Temperature (Tstg) . . . . . . . . . . -55°C to 125°C
Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to this device.
These are stress ratings only. Functional operation of
this device at these or any other conditions above those
indicated in the operational sections of this specification
is not implied or intended. Exposure to the absolute
maximum rating conditions for extended periods may
affect device reliability.
DC Electrical Characteristics and Operating Conditions
(0°C ≤ TA ≤ 70°C, VCC, VCCQ = +3.3V± 5% unless otherwise noted)
Symbol
Parameter
Conditions
Min.
Max.
Unit
Note
VIH
Input High Voltage
1.7
VCC+0.3
V
1,2
VIL
Input Low Voltage
-0.3
0.8
V
1,2
ILI
Input Leakage Current
0V ≤ VIH ≤ VCC
-2.0
2.0
µA
ILO
Output Leakage Current
Output(s) disabled,
-2.0
2.0
µA
0V ≤ VIN≤ VCC
VOH
Output High Voltage
IOH = -1.0mA
VOL
Output Low Voltage
IOL = 1.0mA
VCC
Supply Voltage
Isolated Output Buffer Supply
VCCQ
2.0
V
1,3
0.4
V
1,3
3.135
3.465
V
1
3.135
VCC
V
1,4
Conditions
Typ.
Max.
Unit
Note
Capacitance
Symbol
Parameter
CI
Control Input Capacitance
TA = 25°C; f = 1MHz
3
4
pF
6
CO
Input/Output Capacitance (I/O)
VCC = 3.3V
4
5
pF
6
CA
Address Capacitance
3
3.5
pF
6
Note : 1. All voltages referenced to VSS (GND).
2. Overshoot :
VIH ≤ +4.6V for t ≤ tKHKH/2 for I ≤ 20mA
Undershoot : VIL ≥ -0.7V for t ≤ tKHKH/2 for I ≤ 20mA
Power-up :
VIH ≤ +3.465V and VCC ≤ 3.135V for t ≤ 200ms
3. The load used for VOH, VOL testing is shown in Figure 2. AC load current is higher than the shown DC values.
AC I/O curves are available upon request.
4. VCC and VCCQ can be externally wired together to the same power supply.
5. This parameter is sampled.
PRELIMINARY
(August, 2005, Version 0.0)
10
AMIC Technology, Corp.
A67L06181/A67L93361
ICC Operating Condition and Maximum Limits
Max.
Symbol
Parameter
-7.5
-8.5
-10.0
Unit
Conditions
ICC
Power Supply Current :
Operating
TBD
TBD
TBD
mA
Device selected; All inputs ≤ VIL
or ≥ VIH; Cycle time ≥ tKC (MIN);
VCC = MAX; Output open
ISB
Standby
TBD
TBD
TBD
mA
Device deselected; VCC = MAX;
All inputs ≤ VSS+0.2 or ≥ VCC-0.2;
Cycle time ≥ tKC (MIN)
ISB
Standby
TBD
TBD
TBD
mA
Device deselected; VCC = MAX;
All inputs ≤VSS+0.2 or ≥ VCC-0.2;
All inputs static; CLK
frequency=MAX; ZZ ≥ VCC-0.2V
ISB2
Standby
TBD
TBD
TBD
mA
Device deselected; VCC = MAX;
All inputs ≤ VIL; or ≥ VIH;
All inputs static; CLK frequency=0
ISB2Z
SLEEP Mode
TBD
TBD
TBD
mA
ZZ ≥ VIH
PRELIMINARY
(August, 2005, Version 0.0)
11
AMIC Technology, Corp.
A67L06181/A67L93361
AC Characteristics (Note 4)
(0°C ≤ TA ≤ 70°C, VCC = +3.3V± 5%)
Symbol
-7.5
Parameter
-8.5
-10.0
Unit
Min.
Max.
Min.
Max.
Min.
Max.
Note
Clock
tKHKH
Clock cycle time
7.5
-
-8.5
-
10
-
ns
tKF
Clock frequency
-
133
-
117
-
100
MHz
tKHKL
Clock HIGH time
2.5
-
2.8
-
3.0
-
ns
tKLKH
Clock LOW time
2.5
-
2.8
-
3.0
-
ns
-
6.5
-
7.5
-
8.5
ns
Output Times
tKHQV
Clock to output valid
tKHQX
Clock to output invalid
3.0
-
3.0
-
3.0
-
ns
tKHQX1
Clock to output in Low-Z
2.5
-
2.5
-
2.5
-
ns
1,2,3
tKHQZ
Clock to output in High-Z
1.5
3.8
1.5
4.0
1.5
5.0
ns
1,2,3
tGLQV
OE to output valid
-
3.5
-
3.5
-
4.0
ns
4
tGLQX
OE to output in Low-Z
0
-
0
-
0
-
ns
1,2,3
tGHQZ
OE to output in High-Z
-
3.5
-
3.5
-
4.0
ns
1,2,3
Setup Times
tAVKH
Address
1.5
-
2.0
-
2.0
-
ns
5
tEVKH
Clock enable ( CEN)
1.5
-
2.0
-
2.0
-
ns
5
tCVKH
Control signals
1.5
-
2.0
-
2.0
-
ns
5
tDVKH
Data-in
1.5
-
2.0
-
2.0
-
ns
5
Hold Times
tKHAX
Address
0.5
-
0.5
-
0.5
-
ns
5
tKHEX
Clock enable ( CEN)
0.5
-
0.5
-
0.5
-
ns
5
tKHCX
Control signals
0.5
-
0.5
-
0.5
-
ns
5
tKHDX
Data-in
0.5
-
0.5
-
0.5
-
ns
5
Notes: 1. This parameter is sampled.
2. Output loading is specified with C1=5pF as in Figure 2.
3. Transition is measured ±200mV from steady state voltage.
4. OE can be considered a “Don’t Care” during WRITE; however, controlling OE can help fine-tune a system for
turnaround timing.
5. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of
CLK when ADV/ LD is LOW and chip enabled. All other synchronous inputs meet the setup and hold times with
stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each
rising edge of CLK (when ADV/ LD is LOW) to remain enabled.
PRELIMINARY
(August, 2005, Version 0.0)
12
AMIC Technology, Corp.
A67L06181/A67L93361
AC Test Conditions
Input Pulse Levels
GND to 3.0V
Input Rise and Fall Times
1.0ns
Input Timing Reference Levels
1.25V
Output Reference Levels
1.25V
Output Load
See Figures 1 and 2
+3.3V
319 Ω
Q
Q
ZO=50Ω
50Ω
353 Ω
5pF
VT=1.5V
Figure 1
Output Load Equivalent
PRELIMINARY
(August, 2005, Version 0.0)
Figure 2
Output Load Equivalent
13
AMIC Technology, Corp.
A67L06181/A67L93361
SLEEP Mode
SLEEP Mode is a low current “Power-down” mode in which
the device is deselected and current is reduced to ISB2Z. This
duration of SLEEP Mode is dictated by the length of time the
ZZ is in a HIGH state. After entering SLEEP Mode, all inputs
except ZZ become disabled and all outputs go to High-Z.
The ZZ pin is asynchronous, active high input that causes
the device to enter SLEEP Mode. When the ZZ pin
becomes logic HIGH, ISB2Z is guaranteed after the time tZZI
is met. Any operation pending when entering SLEEP Mode
is not guaranteed to successfully complete. Therefore,
SLEEP Mode (READ or WRITE) must not be initiated until
valid pending operations are completed. Similarly, when
exiting SLEEP Mode during tRZZ, only a DESELECT or
READ cycle should be given while the SRAM is transitioning
out of SLEEP Mode.
SLEEP Mode Electrical Characteristics
(VCC, VCCQ = +3.3V±5%)
Symbol
ISB2Z
Parameter
Current during SLEEP Mode
Conditions
Min.
Max.
Unit
ZZ ≥ VIH
-
TBD
mA
Note
tZZ
ZZ active to input ignored
0
2(tKHKH)
ns
1
tRZZ
ZZ inactive to input sampled
0
2(tKHKH)
ns
1
tZZI
ZZ active to snooze current
-
2(tKHKH)
ns
1
tRZZI
ZZ inactive to exit snooze current
0
ns
1
Note : 1. This parameter is sampled.
SLEEP Mode Waveform
CLK
tZZ
tRZZ
ZZ
tZZI
I
SUPPLY
IISB2Z
tRZZI
ALL INPUTS
(except ZZ)
DESELECT or READ Only
Output
(Q)
High-Z
: Don't Care
PRELIMINARY
(August, 2005, Version 0.0)
14
AMIC Technology, Corp.
A67L06181/A67L93361
READ/WRITE Timing
1
2
3
tKHKH
4
5
A3
A4
6
7
8
9
A5
A6
A7
10
CLK
tEVK
tKHE
H
X
tCVKH
tKHCX
tKHKL
tKLKH
CEN
CE
ADV/
LD
R/W
BWx
ADDRESS
A2
A1
tAVKH
tKHAX
tKHQV
tKHQX1
tDVKH
I/O
tKHQX
tGLQV
tKHDX
D(A1)
D(A2)
D(A2+1)
Q(A3)
Q(A4)
tKHQZ
D(A5)
Q(A4+1)
Q(A6)
D(A7)
tKHQX
tGHQZ
tGLQX
OE
COMMAND
WRITE
D(A1)
WRITE
D(A2)
BURST
WRITE
D(A2+1)
READ
Q(A3)
BURST
READ
Q(A4+1)
READ
Q(A4)
WRITE
D(A5)
READ
Q(A6)
: Don't Care
WRITE
D(A7)
DESELECT
: Undefined
Note : 1. For this waveform, ZZ is tied LOW.
2. Burst sequence order is determined by MODE (0 = linear, 1 = interleaved). BRST operations are optional.
3. CE represents three signals. When CE = 0, it represents CE = 0, CE2 = 0, CE2 = 1.
4. Data coherency is provided for all possible operations. If a READ is initiated the most current data is used. The
most recent data may be from the input data register.
PRELIMINARY
(August, 2005, Version 0.0)
15
AMIC Technology, Corp.
A67L06181/A67L93361
NOP, STALL and Deselect Cycles
1
2
A1
A2
3
4
5
A3
A4
6
7
8
9
10
CLK
CEN
CE
ADV/
LD
R/W
BWx
ADDRESS
A5
tKHQZ
I/O
D(A1)
Q(A2)
Q(A3)
Q(A5)
D(A4)
tKHQX
COMMAND
WRITE
D(A1)
READ
Q(A2)
STALL
READ
Q(A3)
WRITE
D(A4)
STALL
NOP
READ
Q(A5)
: Don't Care
DESELECT
CONTINUE
DESELECT
: Undefined
Note : 1. The IGNORE CLOCK EDGE or STALL cycle (clock 3) illustrates CEN being used to create a “pause.” A WRITE is
not performed during this cycle.
2. For this waveform, ZZ and OE are tied LOW.
3. CE represents three signals. When CE = 0, it represents CE = 0, CE2 = 0, CE2 = 1.
4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The
most recent data may be from the input data register.
PRELIMINARY
(August, 2005, Version 0.0)
16
AMIC Technology, Corp.
A67L06181/A67L93361
Ordering Information
Part No.
Configure
Cycle Time / Access Time
A67L06181E-7.5
7.5ns / 6.5ns
A67L06181E-7.5F
7.5ns / 6.5ns
A67L06181E-8.5
8.5ns / 7.5ns
1M X 18
A67L06181E-8.5F
8.5ns / 7.5ns
A67L06181E-10.0
10ns / 8.5ns
A67L06181E-10.0F
10ns / 8.5ns
A67L93361E-7.5
7.5ns / 6.5ns
A67L93361E-7.5F
7.5ns / 6.5ns
A67L93361E-8.5
8.5ns / 7.5ns
512K X 36
A67L93361E-8.5F
8.5ns / 7.5ns
A67L93361E-10.0
10ns / 8.5ns
A67L93361E-10.0F
10ns / 8.5ns
PRELIMINARY
(August, 2005, Version 0.0)
17
Package
100L LQFP
100L Pb-Free LQFP
100L LQFP
100L Pb-Free LQFP
100L LQFP
100L Pb-Free LQFP
100L LQFP
100L Pb-Free LQFP
100L LQFP
100L Pb-Free LQFP
100L LQFP
100L Pb-Free LQFP
AMIC Technology, Corp.
A67L06181/A67L93361
Package Information
LQFP 100L Outline Dimensions
unit: inches/mm
HE
A2
A1
D
E
80
51
50
100
31
1
L1
L
HD
D
81
y
30
e
b
c
θ
Symbol
A1
Dimensions in inches
Dimensions in mm
Min.
Nom.
Max.
Min.
Nom.
Max.
0.002
-
0.006
0.05
-
0.15
A2
0.053
0.055
0.057
1.35
1.40
1.45
b
0.009
0.012
0.015
0.22
0.30
0.38
c
0.004
-
0.008
0.09
-
0.20
HE
0.866 BSC
E
0.787 BSC
20.00 BSC
HD
0.630 BSC
16.00 BSC
D
0.551 BSC
14.00 BSC
e
0.026 BSC
L
0.018
L1
0.024
22.00 BSC
0.65 BSC
0.030
0.45
0.039 REF
0.60
0.75
1.00 REF
y
-
-
0.004
-
-
0.10
θ
0°
3.5°
7°
0°
3.5°
7°
Notes:
1. Dimensions D and E do not include mold protrusion.
2. Dimensions b does not include dambar protrusion.
Total in excess of the b dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
PRELIMINARY
(August, 2005, Version 0.0)
18
AMIC Technology, Corp.