SGLS216 − NOVEMBER 2003 D Controlled Baseline D D D D D − One Assembly/Test Site, One Fabrication Site Extended Temperature Performance of −40°C to 125°C Enhanced Diminishing Manufacturing Sources (DMS) Support Enhanced Product-Change Notification Qualification Pedigree† ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 150 V (TLC2252/52A) and 100 V (TLC2254/54A) Using Machine Model (C = 200 pF, R = 0) D D D D D D D D D † Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. Output Swing Includes Both Supply Rails Low Noise . . . 19 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Very Low Power . . . 35 µA Per Channel Typ Common-Mode Input Voltage Range Includes Negative Rail Low Input Offset Voltage 850 µV Max at TA = 25°C (TLC225xA) Macromodel Included Performance Upgrades for the TS27L2/L4 and TLC27L2/L4 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY description 60 V n − Equivalent Input Noise Voltage − nV/ VN nv//HzHz The TLC2252 and TLC2254 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC225x family consumes only 35 µA of supply current per channel. This micropower operation makes them good choices for battery-powered applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Looking at Figure 1, the TLC225x has a noise level of 19 nV/√Hz at 1kHz; four times lower than competitive micropower solutions. 50 VDD = 5 V RS = 20 Ω TA = 25°C 40 30 20 10 The TLC225x amplifiers, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance 0 101 10 2 10 3 10 4 sources, such as piezoelectric transducers. f − Frequency − Hz Because of the micropower dissipation levels, these devices work well in hand-held monitoring Figure 1 and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV. This family is fully characterized at 5 V and ± 5 V. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright 2003 Texas Instruments Incorporated !"#$%" & '##% & "! (')*%" %+ #"'%& "!"#$ %" &(!%"& (# %, %#$& "! & &%#'$%& &%# -##%.+ #"'%" (#"&&/ "& "% &&#*. *' %&%/ "! ** (#$%#&+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SGLS216 − NOVEMBER 2003 description/ordering information (continued) The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. ORDERING INFORMATION VIO max AT 25°C TA −40°C to 125°C ORDERABLE PART NUMBER PACKAGE† TOP-SIDE MARKING 850 µV SOIC (D) Tape and reel TLC2252AQDREP 2252AE 1550 µV SOIC (D) Tape and reel TLC2252QDREP 2252EP 850 µV SOIC (D) Tape and reel TLC2254AQDREP TLC2254AEP 1550 µV SOIC (D) Tape and reel TLC2254QDREP TLC2254EP † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. TLC2254, TLC2254A D PACKAGE (TOP VIEW) TLC2252, TLC2252A D PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VDD − /GND 2 1 8 2 7 3 6 4 5 VDD + 2OUT 2IN − 2IN + 1OUT 1IN − 1IN + VDD + 2IN + 2IN − 2OUT POST OFFICE BOX 655303 1 14 2 13 3 12 4 11 5 10 6 9 7 8 • DALLAS, TEXAS 75265 4OUT 4IN − 4IN + VDD − / GND 3IN + 3IN − 3OUT SGLS216 − NOVEMBER 2003 equivalent schematic (each amplifier) VDD + Q3 Q6 Q9 Q12 Q14 Q16 R6 IN + OUT C1 IN − R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 R2 VDD −/ GND ACTUAL DEVICE COMPONENT COUNT† TLC2252 TLC2254 Transistors COMPONENT 38 76 Resistors 30 56 9 18 Diodes Capacitors 3 6 † Includes both amplifiers and all ESD, bias, and trim circuitry POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SGLS216 − NOVEMBER 2003 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Supply voltage, VDD − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 8 V Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD − . 2. Differential voltages are at IN+ with respect to IN −. Excessive current flows when input is brought below VDD − − 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C 25 C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70 70°C C POWER RATING TA = 85 85°C C POWER RATING TA = 125 125°C C POWER RATING D−8 724 mW 5.8 mW/°C 464 mW 377 mW 144 mW D−14 950 mW 7.6 mW/°C 608 mW 450 mW 190 mW recommended operating conditions MIN Supply voltage, VDD ± ± 2.2 Input voltage range, VI VDD − VDD − Common-mode input voltage, VIC Operating free-air temperature, TA ‡ Referenced to 2.5 V 4 −40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT ±8 V VDD + − 1.5 VDD + − 1.5 V 125 V °C SGLS216 − NOVEMBER 2003 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH Common-mode input voltage range High-level output voltage TEST CONDITIONS Low-level output voltage Large-signal differential voltage amplification MAX 200 1500 VIC = 0, RS = 50 Ω µV/mo 25°C 0.5 1 0.5 25°C 0 to 4 60 Full range 0 to 3.5 25°C 4.9 4.8 25°C 4.8 −0.3 to 4.2 1 0 to 4 −0.3 to 4.2 4.9 4.94 4.88 0.09 Full range 4.8 4.88 0.01 0.15 0.09 0.15 0.8 Full range Full range 10 350 0.15 0.15 1 0.7 1.2 100 V 4.8 25°C pA 4.98 4.94 0.01 pA V 0 to 3.5 25°C 25°C 60 1000 4.98 25°C 60 1000 1000 Full range RL = 1 MΩ‡ 60 1000 IOH = − 75 µA RL = 100 kΩ‡ µV 0.003 25°C VIC = 2.5 V, VO = 1 V to 4 V 1000 0.003 IOH = − 20 µA IOL = 4 mA 850 25°C |VIO | ≤ 5 mV IOL = 500 µA 200 UNIT µV/°C 25°C VIC = 2.5 V, MAX 0.5 Full range IOL = 50 µA TYP 0.5 Full range RS = 50 Ω Ω, MIN 1750 25°C to 125°C VDD ± = ± 2.5 V, VO = 0, TLC2252A-EP TYP Full range VIC = 2.5 V, AVD TLC2252-EP MIN 25°C IOH = − 150 µA VIC = 2.5 V, VOL TA† V 1 1.2 100 350 10 V/mV 25°C 1700 1700 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, f = 10 kHz, 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 Ω VO = 2.5 V, kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply current VO = 2.5 V, Full range No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C 80 70 125 150 70 125 150 µA † Full range is −40°C to 125°C for Q suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SGLS216 − NOVEMBER 2003 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TA† TEST CONDITIONS TLC2252-EP MIN TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2252A-EP MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain VO = 0.5 V to 3.5 V, RL = 100 kΩ‡, Equivalent input noise voltage f = 10 Hz 25°C 36 36 Vn f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 10 kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 CL = 100 pF‡ nV/√Hz µV V fA√Hz 25°C AV = 10 Gain margin † Full range is −40°C to 125°C for Q suffix. ‡ Referenced to 2.5 V 6 V/µs 0.05 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB SGLS216 − NOVEMBER 2003 electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2252-EP MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current Common-mode input voltage range 25°C to 125°C VO = 0, Ω RS = 50 Ω, IO = 4 mA VIC = 0, RL = 100 kΩ 850 1000 UNIT µV V µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 1 −5 to 4 Full range −5 to 3.5 60 −5.3 to 4.2 4.9 Full range 4.7 25°C 4.8 25°C 1 −5 to 4 −4.85 Full range −4.85 40 Full range 10 V 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 −4.99 −4.91 −4.85 −4.91 −4.85 −4.3 −4 −3.8 25°C pA −5.3 to 4.2 −5 to 3.5 −4 pA 60 1000 −4.99 25°C 60 1000 4.98 25°C Full range 0.5 1000 25°C 25°C 60 1000 25°C IO = 500 µA A VIC = 0, 200 MAX 0.5 |VIO | ≤ 5 mV A IO = − 100 µA TYP 0.5 Full range IO = − 200 µA VIC = 0, IO = 50 µA Maximum negative VOM − peak output voltage 1500 Full range IO = − 20 µA Maximum positive peak VOM + output voltage 200 MIN 1750 25°C VICR MAX Full range VIC = 0, RS = 50 Ω TLC2252A-EP TYP V −4.3 −3.8 150 40 150 AVD Large-signal differential voltage amplification 25°C 3000 3000 rid Differential input resistance 25°C 1012 1012 Ω ric Common-mode input resistance 25°C 1012 1012 Ω cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω Common-mode rejection ratio VIC = − 5 V to 2.7 V, VO = 0, RS = 50 Ω 25°C 75 CMRR Full range 75 Supply-voltage rejection ratio (∆VDD ± /∆VIO) VDD = ±2.2 V to ±8 V, VIC = 0, No load 25°C 80 kSVR Full range 80 IDD Supply current VO = 2.5 V, Full range VO = ± 4 V RL = 1 MΩ 10 25°C No load 88 75 V/mV 88 dB 75 95 80 95 dB 80 80 125 150 80 125 150 A µA † Full range is −40°C to 125°C for Q suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SGLS216 − NOVEMBER 2003 operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TA† TEST CONDITIONS VO = ± 2 V, CL = 100 pF RL = 100 kΩ, TLC2252-EP MIN TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2252A-EP MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain Equivalent input noise voltage f = 10 Hz 25°C 38 38 Vn f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 10 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 50 kΩ, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain 25°C 63° 63° 25°C 15 15 RL = 50 kΩ, nV/√Hz µV V fA√Hz 25°C AV = 10 CL = 100 pF Gain margin † Full range is −40°C to 125°C for Q suffix. 8 V/µs 0.05 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB SGLS216 − NOVEMBER 2003 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range TA† TEST CONDITIONS 25°C VOH VOL Large-signal differential voltage amplification 1500 VIC = 0, RS = 50 Ω IOL = 500 µA IOL = 4 mA VIC = 2.5 V, VO = 1 V to 4 V RL = 100 kΩ‡ 1000 µV 0.003 µV/mo 25°C 0.5 60 0.5 1000 1 60 Full range 0 to 3.5 −0.3 to 4.2 1 4.9 Full range 4.8 25°C 4.8 0 to 4 −0.3 to 4.2 4.9 4.94 4.88 0.09 Full range 4.8 4.88 0.01 0.15 0.09 0.15 25°C 0.8 Full range Full range 10 350 0.15 0.15 1 0.7 1.2 100 V 4.8 25°C pA 4.98 4.94 0.01 pA V 0 to 3.5 25°C 25°C 60 1000 4.98 25°C 60 1000 1000 0 to 4 RL = 1 MΩ‡ 850 0.003 25°C VIC = 2.5 V, 200 UNIT 25°C 25°C IOL = 50 µA MAX µV/°C |VIO | ≤ 5 mV IOH = − 75 µA TYP 0.5 25°C RS = 50 Ω Ω, MIN 0.5 125°C VIC = 2.5 V, AVD 200 125°C IOH = − 150 µA VIC = 2.5 V, Low-level output voltage MAX 1750 25°C to 125°C VDD ± = ± 2.5 V, VO = 0, TLC2254A-EP TYP Full range IOH = − 20 µA High-level output voltage TLC2254-EP MIN V 1 1.2 100 350 10 V/mV 25°C 1700 1700 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200 200 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply current (four amplifiers) VO = 2.5 V, Full range No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 dB 70 95 80 95 dB 25°C 80 140 250 300 140 250 300 µA † Full range is −40°C to 125°C for Q suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SGLS216 − NOVEMBER 2003 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TA† TEST CONDITIONS TLC2254-EP MIN TYP 0.12 MAX TLC2254A-EP MIN TYP 0.07 0.12 MAX UNIT VO = 0.5 V to 3.5 V, RL = 100 kΩ‡, CL = 100 pF‡ 25°C 0.07 Full range 0.05 Equivalent input noise voltage f = 10 Hz 25°C 36 36 f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ‡ AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 30 30 kHz φm Phase margin at unity gain RL = 50 kΩ‡, CL = 100 pF‡ 25°C 63° 63° 25°C 15 15 SR Slew rate at unity gain Vn nV/√Hz µV V fA /√Hz 25°C AV = 10 Gain margin † Full range is −40°C to 125°C for Q suffix. ‡ Referenced to 2.5 V 10 V/µs 0.05 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB SGLS216 − NOVEMBER 2003 electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2254-EP MIN 25°C VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current Common-mode input voltage range 25°C to 125°C VO = 0, RS = 50 Ω Ω, IO = 4 mA VIC = 0, RL = 100 kΩ 850 1000 UNIT µV V µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 1 −5 to 4 Full range −5 to 3.5 60 −5.3 to 4.2 4.9 Full range 4.7 25°C 4.8 25°C 1 −5 to 4 −4.85 Full range −4.85 40 Full range 10 V 4.98 4.93 4.9 4.93 V 4.7 4.86 4.8 4.86 −4.99 −4.91 −4.85 −4.91 −4.85 −4.3 −4 −3.8 25°C pA −5.3 to 4.2 −5 to 3.5 −4 pA 60 1000 −4.99 25°C 60 1000 4.98 25°C Full range 0.5 1000 25°C 25°C 60 1000 25°C IO = 500 µA A VIC = 0, 200 MAX 0.5 |VIO | ≤ 5 mV IO = − 100 µA A TYP 0.5 125°C IO = − 200 µA VIC = 0, IO = 50 µA Maximum negative peak VOM − output voltage 1500 125°C IO = − 20 µA Maximum positive peak VOM + output voltage 200 MIN 1750 25°C VICR MAX Full range VIC = 0, RS = 50 Ω TLC2254A-EP TYP V −4.3 −3.8 150 40 150 AVD Large-signal differential voltage amplification 25°C 3000 3000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190 190 Ω CMRR Common-mode rejection ratio VIC = − 5 V to 2.7 V, VO = 0, RS = 50 Ω kSVR Supply-voltage rejection ratio (∆VDD ± /∆VIO) VDD± = ±ā 2.2 V to ±ā 8 V, VIC = VDD /2, No load IDD Supply current (four amplifiers) VO = 0, VO = ± 4 V RL = 1 MΩ 25°C 75 Full range 75 25°C 80 Full range 80 10 25°C No load Full range 88 75 V/mV 88 dB 75 95 80 95 dB 80 160 250 300 160 250 300 µA A † Full range is −40°C to 125°C for Q suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SGLS216 − NOVEMBER 2003 operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TA† TEST CONDITIONS VO = ± 2 V, CL = 100 pF RL = 100 kΩ, TLC2254-EP MIN TYP 25°C 0.07 0.12 Full range 0.05 MAX TLC2254A-EP MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain Equivalent input noise voltage f = 10 Hz 25°C 38 38 Vn f = 1 kHz 25°C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f =10 kHz, CL = 100 pF RL = 50 kΩ, 25°C 0.21 0.21 MHz BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF 25°C 14 14 kHz φm Phase margin at unity gain RL = 50 kΩ, CL = 100 pF 25°C 63° 63° 25°C 15 15 nV/√Hz µV V fA /√Hz 25°C AV = 10 Gain margin † Full range is −40°C to 125°C for Q suffix. 12 V/µs 0.05 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2−5 6, 7 αVIO IIB/IIO Input offset voltage temperature coefficient Distribution 8 − 11 Input bias and input offset currents vs Free-air temperature 12 VI Input voltage range vs Supply voltage vs Free-air temperature 13 14 VOH VOL High-level output voltage vs High-level output current 15 Low-level output voltage vs Low-level output current 16, 17 VOM + VOM − Maximum positive peak output voltage vs Output current 18 Maximum negative peak output voltage vs Output current 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 21 22 VO Output voltage vs Differential input voltage Differential gain vs Load resistance AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature 32 33 kSVR Supply-voltage rejection ratio vs Frequency vs Free-air temperature 34, 35 36 IDD Supply current vs Supply voltage vs Free-air temperature 37 38 SR Slew rate vs Load capacitance vs Free-air temperature 39 40 VO VO Inverting large-signal pulse response 41, 42 Voltage-follower large-signal pulse response 43, 44 VO VO Inverting small-signal pulse response 45, 46 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period 51 Integrated noise voltage vs Frequency 52 Total harmonic distortion plus noise vs Frequency 53 Gain-bandwidth product vs Free-air temperature vs Supply voltage 54 55 φm Phase margin vs Frequency vs Load capacitance 26, 27 56 Am Gain margin vs Load capacitance 57 B1 Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59 THD + N Voltage-follower small-signal pulse response POST OFFICE BOX 655303 23, 24 25 47, 48 • DALLAS, TEXAS 75265 49, 50 13 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE 35 30 Percentage of Amplifiers − % Percentage of Amplifiers − % 30 35 682 Amplifiers From 1 Wafer Lots VDD± = ± 2.5 V P Package TA = 25°C 25 20 15 10 5 682 Amplifiers From 1 Wafer Lots VDD± = ± 5 V P Package TA = 25°C 25 20 15 10 5 0 −1.6 −0.8 0 0.8 0 −1.6 1.6 −0.8 VIO − Input Offset Voltage − mV Figure 2 0.8 1.6 Figure 3 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE 20 25 Percentage of Amplifiers − % 1020 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C Percentage of Amplifiers − % 0 VIO − Input Offset Voltage − mV 15 10 5 20 1020 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V TA = 25°C 15 10 5 0 −1.6 −0.8 0 0.8 VIO − Input Offset Voltage − mV 1.6 0 −1.6 Figure 4 14 0 0.8 −0.8 VIO − Input Offset Voltage − mV Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.6 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 0.6 0.4 0.2 0 −0.2 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ −0.4 −0.6 −0.8 −1 −1 0 VDD± = ± 5 V RS = 50 Ω TA = 25°C 0.8 VVIO IO − Input Offset Voltage − mV VVIO IO − Input Offset Voltage − mV 1 VDD = 5 V RS = 50 Ω TA = 25°C 0.8 1 2 3 4 5 VIC − Common-Mode Input Voltage − V 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −6 −5 −4 −3 −2 −1 0 1 2 3 4 VIC − Common-Mode Input Voltage − V Figure 6 Figure 7 DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 62 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V 62 Amplifiers From 1 Wafer Lot VDD = ± 5 V P Package TA = 25°C to 125°C P Package TA = 25°C to 125°C Percentage of Amplifiers − % Precentage of Amplifiers − % 25 20 5 15 10 20 15 10 5 5 0 0 −1 0 1 αVIO − Temperature Coefficient − µV / °C 2 −1 0 1 αVIO − Temperature Coefficient − µV / °C 2 Figure 9 Figure 8 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 25 62 Amplifiers From 1 Wafer Lot VDD ± = ± 2.5 V P Package TA = 25°C to 125°C Percentage of Amplifiers − % Percentage of Amplifiers − % 25 15 10 5 0 −2 DISTRIBUTION OF TLC2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT −1 0 1 αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C 62 Amplifiers From 1 Wafer Lot VDD ± = ± 5 V P Package TA = 25°C to 125°C 20 15 10 5 0 −2 2 −1 ÁÁ ÁÁ 1 INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE 10 35 VDD± = ± 2.5 V VIC = 0 VO = 0 RS = 50 Ω RS = 50 Ω TA = 25°C 8 25 IIB 20 15 IIO 10 5 6 4 2 0 | VIO | ≤ 5 mV −2 −4 −6 −8 −10 0 25 45 65 85 105 TA − Free-Air Temperature − °C 125 2 Figure 12 3 6 7 4 5 | VDD ± | − Supply Voltage − V Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 16 2 Figure 11 V VII − Input Voltage Range − V IIO − Input Bias and Input Offset Currents − pA IIIB IB and IIO Figure 10 30 0 αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT INPUT VOLTAGE RANGE† vs FREE-AIR TEMPERATURE 5 5 VDD = 5 V VOH − High-Level Output Voltage − V VOH VDD = 5 V V VII − Input Voltage Range − V 4 3 2 ÁÁ ÁÁ 1 0 −1 −75 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C ÁÁ ÁÁ ÁÁ TA = − 55°C 4 TA = − 40°C 3 TA = 25°C 2 TA = 125°C 1 0 0 600 200 400 | IOH| − High-Level Output Current − µA Figure 14 Figure 15 LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT 1.4 VDD = 5 V TA = 25°C 1 V VOL OL − Low-Level Output Voltage − V VOL VOL − Low-Level Output Voltage − V 1.2 VIC = 1.25 V VIC = 0 0.8 0.6 VIC = 2.5 V ÁÁ ÁÁ ÁÁ 800 ÁÁ ÁÁ ÁÁ 0.4 0.2 0 0 1 2 3 4 5 IOL − Low-Level Output Current − mA VDD = 5 V VIC = 2.5 V 1.2 TA = 125°C 1 0.8 TA = 25°C 0.6 TA = − 40°C TA = − 55°C 0.4 0.2 0 0 1 2 3 4 5 6 IOL − Low-Level Output Current − mA Figure 16 Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS ÁÁ ÁÁ ÁÁ MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT 5 4 3 TA = 25°C 2 TA = 125°C TA = − 40°C TA = − 55°C 1 VDD = ± 5 V 0 0 600 200 400 IO − Output Current − µA 800 VOM − VOM − − Maximum Negative Peak Output Voltage − V VVOM OM ++ − Maximum Positive Peak Output Voltage − V MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE† vs OUTPUT CURRENT −3.8 VDD± = ± 5 V VIC = 0 −4 TA = 125°C −4.2 TA = 25°C TA = − 40°C −4.4 −4.6 TA = − 55°C ÁÁ ÁÁ ÁÁ −4.8 −5 0 1 2 Figure 18 RL = 50 kΩ TA = 25°C VDD± = ± 5 V 8 7 6 VDD = 5 V 4 3 2 1 0 10 2 10 3 6 10 4 10 5 10 I OS − Short-Circuit Output Current − mA IOS VO(PP) VO(PP) − Maximum Peak-to-Peak Output Voltage − V ÁÁ ÁÁ ÁÁ 5 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 10 5 4 Figure 19 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡ vs FREQUENCY 9 3 IO − Output Current − mA 9 8 VID = − 100 mV 7 VO = 0 TA = 25°C VIC = 0 6 5 4 3 2 1 0 −1 VID = 100 mV 2 f − Frequency − Hz 3 4 5 6 7 | VDD ± | − Supply Voltage − V Figure 20 Figure 21 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE‡ vs DIFFERENTIAL INPUT VOLTAGE 5 VDD = 5 V RL = 50 kΩ VIC = 2.5 V TA = 25°C VO = 0 VDD± = ± 5 V 10 9 8 4 VID = − 100 mV VO − Output Voltage − V IIOS OS − Short-Circuit Output Current − mA 11 7 6 5 4 3 3 2 2 1 1 VID = 100 mV 0 −1 −75 −50 −25 0 25 50 75 100 0 0 250 500 750 1000 −1000 −750 −500 −250 VID − Differential Input Voltage − µV 125 TA − Free-Air Temperature − °C Figure 23 Figure 22 DIFFERENTIAL GAIN‡ vs LOAD RESISTANCE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE VO − Output Voltage − V 3 104 VDD± = ± 5 V VIC = 0 RL = 50 kΩ TA = 25°C VO (PP) = 2 V TA = 25°C Differential Gain − V/ mV 5 1 −1 103 VDD = ± 5 V VDD = 5 V 102 −3 −5 0 250 500 750 1000 −1000 −750 −500 −250 VID − Differential Input Voltage − µV 10 1 101 102 RL − Load Resistance − kΩ 103 Figure 25 Figure 24 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY AVD AVD − Large-Signal Differential Voltage Amplification − dB 60 180° VDD = 5 V RL = 50 kΩ CL= 100 pF TA = 25°C 135° 40 90° Phase Margin 20 ÁÁ ÁÁ ÁÁ 45° Gain 0 0° −20 φom m − Phase Margin 80 −45° −40 10 3 10 4 10 5 10 6 −90° 10 7 f − Frequency − Hz Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 60 180° VDD = ± 10 V RL= 50 kΩ CL= 100 pF TA = 25°C 135° 40 Phase Margin 20 ÁÁ ÁÁ ÁÁ 45° Gain 0 0° −20 −40 10 3 −45° 10 4 10 5 10 6 f − Frequency − Hz Figure 27 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 20 90° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 −90° 10 7 φom m − Phase Margin AVD AVD − Large-Signal Differential Voltage Amplification − dB 80 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE RL = 1 MΩ 10 3 ÁÁ ÁÁ 10 4 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD − Large-Signal Differential Voltage Amplification − V/mV AVD AVD − Large-Signal Differential Voltage Amplification − V/mV 10 4 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE RL = 50 kΩ 10 2 101 −75 −50 ÁÁ ÁÁ −25 0 25 50 75 100 TA − Free-Air Temperature − °C VDD± = ± 5 V VIC = 0 VO = ± 4 V RL = 1 MΩ 10 3 RL = 50 kΩ 10 2 101 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 28 Figure 29 OUTPUT IMPEDANCE‡ vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 1000 VDD± = ± 5 V TA = 25°C z o − Output Impedance − 0 zo Ω VDD = 5 V TA = 25°C z o − Output Impedance − 0 zo Ω 125 100 AV = 100 10 AV = 10 1 AV = 1 100 AV = 100 10 AV = 10 1 AV = 1 0.1 10 2 10 3 10 4 10 5 f − Frequency − Hz 10 6 0.1 10 2 10 3 10 4 10 5 f − Frequency − Hz 10 6 Figure 31 Figure 30 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO† vs FREQUENCY 94 CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rejection Ratio − dB 100 VDD± = ± 5 V 80 VDD = 5 V 60 40 20 0 101 10 2 10 3 10 4 10 5 VDD± = ± 5 V 92 90 86 84 82 80 −75 16 6 VDD = 5 V 88 −50 f − Frequency − Hz −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 32 Figure 33 SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 kSVR + VDD = 5 V TA = 25°C KSVR k SVR − Supply-Voltage Rejection Ratio − dB KSVR k SVR − Supply-Voltage Rejection Ratio − dB 100 80 60 kSVR − 40 20 ÁÁ ÁÁ ÁÁ 0 −20 101 10 2 10 3 10 4 f − Frequency − Hz 10 5 10 6 ÁÁ ÁÁ ÁÁ VDD± = ± 5 V TA = 25°C kSVR + 80 60 kSVR − 40 20 0 −20 101 Figure 34 10 2 10 3 10 4 f − Frequency − Hz 10 5 Figure 35 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 22 125 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 6 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE SUPPLY CURRENT† vs SUPPLY VOLTAGE 110 240 k KSVR SVR − Supply-Voltage Rejection Ratio − dB VDD± = ± 2.2 V to ± 8 V VO = 0 VO = 0 No Load 200 IDD µA I DD − Supply Current − uA 105 100 ÁÁ ÁÁ ÁÁ TA = − 55°C 160 TA = 25°C 120 ÁÁ ÁÁ ÁÁ 95 TA = 125°C TA = − 40°C 80 40 90 −75 −50 −25 0 25 50 75 100 0 125 0 1 TA − Free-Air Temperature − °C 2 Figure 36 5 6 7 8 SLEW RATE‡ vs LOAD CAPACITANCE 0.2 240 0.18 VDD± = ± 5 V VO = 0 160 VDD = 5 V VO = 2.5 V 120 VDD = 5 V AV = − 1 TA = 25°C 0.16 SR − Slew Rate − V/ v/us µs 200 µA IDD I DD − Supply Current − uA 4 Figure 37 SUPPLY CURRENT†‡ vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 3 | VDD ± | − Supply Voltage − V 80 0.14 SR − 0.12 0.1 SR + 0.08 0.06 0.04 40 0.02 0 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 0 101 Figure 38 10 2 10 3 CL − Load Capacitance − pF 10 4 Figure 39 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS SLEW RATE†‡ vs FREE-AIR TEMPERATURE INVERTING LARGE-SIGNAL PULSE RESPONSE‡ 0.2 5 SR − Slew Rate − v/uss V/ µ 0.16 VO VO − Output Voltage − V VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 SR − 0.12 SR + 0.08 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A = −1 V TA = 25°C 3 2 1 0.04 0 −75 0 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 0 125 10 20 VO VO − Output Voltage − V 2 60 70 80 90 100 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE‡ 5 VO VO − Output Voltage − V VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 3 50 Figure 41 INVERTING LARGE-SIGNAL PULSE RESPONSE 4 40 t − Time − µs Figure 40 5 30 1 0 −1 −2 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A =1 V TA = 25°C 3 2 1 −3 −4 0 −5 0 10 20 30 40 50 60 t − Time − µs 70 80 90 100 0 10 Figure 42 20 30 40 50 60 70 t − Time − µs 80 90 100 Figure 43 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE† VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2.65 5 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C VO VO − Output Voltage − V 3 2 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 2.6 VO VO − Output Voltage − V 4 1 0 −1 −2 −3 2.55 2.5 2.45 −4 −5 2.4 0 10 20 30 40 50 60 t − Time − µs 70 80 0 90 100 10 INVERTING SMALL-SIGNAL PULSE RESPONSE 50 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† 0.1 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 0 −0.05 2.65 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 2.6 VO VO − Output Voltage − V VO VO − Output Voltage − mV 40 Figure 45 Figure 44 0.05 20 30 t − Time − µs 2.55 2.5 2.45 −0.1 0 2.4 10 20 30 40 50 0 t − Time − µs Figure 46 10 20 30 t − Time − µs 40 50 Figure 47 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 60 VDD ± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 0.05 V n − Equivalent Input Noise Voltage − nV/ VN nv//HzHz VO VO − Output Voltage − V 0.1 0 −0.05 −0.1 0 10 20 30 t − Time − µs 40 50 VDD = 5 V RS = 20 Ω TA = 25°C 50 40 30 20 10 0 101 10 2 10 3 f − Frequency − Hz Figure 49 Figure 48 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 1000 VDD± = ± 5 V RS = 20 Ω TA = 25°C VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 750 500 Noise Voltage − nV V n − Equivalent Input Noise Voltage − nv//Hz VN nV/ Hz 60 50 40 30 20 250 0 −250 −500 10 −750 0 101 10 2 10 3 f − Frequency − Hz 10 4 −1000 0 Figure 50 2 4 6 t − Time − s Figure 51 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 26 10 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 10 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY THD + N − Total Harmonic Distortion Plus Noise − % INTEGRATED NOISE VOLTAGE vs FREQUENCY Integrated Noise Voltage − µ V 100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C 10 1 0.1 1 101 10 2 10 3 f − Frequency − Hz 10 4 10 5 1 AV = 100 0.1 AV = 10 0.01 AV = 1 VDD = 5 V RL = 50 kΩ TA = 25°C 0.001 101 10 2 10 5 Figure 53 GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 280 250 TA = 25°C VDD = 5 V f = 10 kHz RL = 50 kΩ CL = 100 pF 240 Gain-Bandwidth Product − kHz Gain-Bandwidth Product − kHz 10 4 f − Frequency − Hz Figure 52 200 160 120 80 −75 10 3 230 210 190 170 150 −50 −25 0 25 50 75 100 125 0 1 TA − Free-Air Temperature − °C 2 3 4 5 6 7 8 | VDD ± | − Supply Voltage − V Figure 54 Figure 55 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SGLS216 − NOVEMBER 2003 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE 75° GAIN MARGIN vs LOAD CAPACITANCE 20 Rnull = 200 Ω TA = 25°C Rnull = 500 Ω Rnull = 500 Ω 60° Gain Margin − dB φom m − Phase Margin 15 45° Rnull = 100 Ω Rnull = 50 Ω 30° Rnull = 10 Ω 50 kΩ VI Rnull = 50 Ω 5 VDD + Rnull − + Rnull = 0 Rnull = 0 CL TA = 25°C VDD − 0° 101 Rnull = 100 Ω 10 Rnull = 10 Ω 50 kΩ 15° Rnull = 200 Ω 10 4 10 2 10 3 CL − Load Capacitance − pF 0 101 10 5 10 2 10 3 Figure 57 OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE UNITY-GAIN BANDWIDTH† vs LOAD CAPACITANCE 25 200 TA = 25°C TA = 25°C Rnull = 500 Ω Overestimation of Phase Margin B1 − Unity-Gain Bandwidth − kHz 175 150 125 100 75 50 20 15 Rnull = 100 Ω 10 Rnull = 200 Ω Rnull = 50 Ω Rnull = 10 Ω 5 25 0 101 10 2 10 3 10 4 10 5 0 101 CL − Load Capacitance − pF Figure 58 10 2 10 3 10 4 CL − Load Capacitance − pF Figure 59 † See application information 28 10 5 CL − Load Capacitance − pF Figure 56 ÁÁ ÁÁ 10 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 5 SGLS216 − NOVEMBER 2003 APPLICATION INFORMATION driving large capacitive loads The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ǒ ∆φ m1 + tan –1 2 × π × UGBW × R null ×C Ǔ (1) L Where : ∆φ m1 + Improvement in phase margin UGBW + Unity-gain bandwidth frequency R null + Output series resistance C L + Load capacitance The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58. Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 kΩ VDD + 50 kΩ VI Rnull − + CL VDD −/ GND Figure 60. Series-Resistance Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SGLS216 − NOVEMBER 2003 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using MicroSim Parts, the model generation software used with MicroSim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using the TLC225x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 − 53 HLIM − + C2 6 − − + + GCM GA − RD2 − RO1 DE 5 + VE .SUBCKT TLC225x 1 2 3 4 5 C1 11 12 6.369E−12 C2 6 7 25.00E−12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 −60E6 60E6 60E6 −60E6 GA 6 0 11 12 26.86E−6 GCM 0 6 10 99 2.686E−9 ISS 3 10 DC 3.1E−6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 OUT RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 −.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC −.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=500.0E−15 BETA=139E−6 + VTO=−.05) .ENDS Figure 61. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 30 − VLIM 8 54 4 91 + VLP 7 60 + − + DLP 90 RO2 VB IN − VCC − 92 FB − + ISS RP 2 1 DLN EGND + POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VLN PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC2252AQDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2252QDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254AQDREP ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2254QDREP ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04682-01XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04682-02XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04682-03YE ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04682-04YE ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLC2252-EP, TLC2252A-EP, TLC2254-EP, TLC2254A-EP : TLC2252, TLC2252A, TLC2254, TLC2254A • Catalog: TLC2252-Q1, TLC2252A-Q1, TLC2254-Q1, TLC2254A-Q1 • Automotive: • Military: TLC2252M, TLC2252AM, TLC2254M, TLC2254AM Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 NOTE: Qualified Version Definitions: - TI's standard catalog product • Catalog - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Automotive Military QML certified for Military and Defense Applications • Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 5-Nov-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing TLC2252AQDREP SOIC D SPQ Reel Reel Diameter Width (mm) W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2252QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLC2254AQDREP SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLC2254QDREP SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 5-Nov-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLC2252AQDREP SOIC D 8 2500 346.0 346.0 29.0 TLC2252QDREP SOIC D 8 2500 346.0 346.0 29.0 TLC2254AQDREP SOIC D 14 2500 333.2 345.9 28.6 TLC2254QDREP SOIC D 14 2500 333.2 345.9 28.6 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DLP® Products DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com www.dlp.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated