TI TLE2021QDRQ1

SGLS199A − JANUARY 2004 − REVISED APRIL 2004
D Qualification in Accordance With
D
D
D
D
D
D
AEC-Q100†
Qualified for Automotive Applications
Customer-Specific Configuration Control
Can Be Supported Along With
Major-Change Approval
ESD Protection Exceeds 1000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Supply Current . . . 300 µA Max
High Unity-Gain Bandwidth . . . 2 MHz Typ
High Slew Rate . . . 0.45 V/µs Min
† Contact factory for details. Q100 qualification data available on
request.
D Supply-Current Change Over Full Temp
D
D
D
D
D
D
D
Range . . . 10 µA Typ at VCC ± = ± 15 V
Specified for Both 5-V Single-Supply and
±15-V Operation
Phase-Reversal Protection
High Open-Loop Gain . . . 6.5 V/µV
(136 dB) Typ
Low Offset Voltage . . . 100 µV Max
Offset Voltage Drift With Time
0.005 µV/mo Typ
Low Input Bias Current . . . 50 nA Max
Low Noise Voltage . . . 19 nV/√Hz Typ
description
The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new
Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly
improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline versions for high-density systems applications.
The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to
125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"#$%! & '("")% $& ! *(+,'$%! -$%).
"!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )$& &%"(#)%&
&%$-$"- 0$""$%1. "!-('%! *"!')&&2 -!)& !% )')&&$",1 ',(-)
%)&%2 ! $,, *$"$#)%)"&.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
ORDERING INFORMATION
VIOmax
AT 25°C
TA
200 µV
V
−40°C to 125°C
V
500 µV
300 µV
V
−40°C to 125°C
500 µV
V
750 µV
−40°C to 125°C
ORDERABLE
PART NUMBER
PACKAGE†
SOIC (D)
TOP-SIDE
MARKING
Tape and reel
TLE2021AQDRQ1
2021AQ
TSSOP (PW)
Tape and reel
TLE2021AQPWRQ1‡
2021AQ
SOIC (D)
Tape and reel
TLE2021QDRQ1
2021Q1
TSSOP (PW)
Tape and reel
TLE2021QPWRQ1‡
2021Q1
SOIC (D)
Tape and reel
TLE2022AQDRQ1
2021AQ
TSSOP (PW)
Tape and reel
TLE2022AQPWRQ1‡
2022AQ1
SOIC (D)
Tape and reel
TLE2022QDRQ1
2022Q1
TSSOP (PW)
Tape and reel
TLE2022QPWRQ1‡
2022Q1
SOP (DW)
Tape and reel
TLE2024AQDWRQ1
2024AQ1
1000 µV
SOP (DW)
Tape and reel
TLE2024QDWRQ1
2024Q1
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available
at www.ti.com/sc/package.
‡ Product preview
TLE2021
D OR PW PACKAGE
(TOP VIEW)
OFFSET N1
IN−
IN+
VCC − /GND
1
8
2
7
3
6
4
5
NC
VCC+
OUT
OFFSET N2
TLE2022
D OR PW PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VCC − /GND
1
8
2
7
3
6
4
5
VCC+
2OUT
2IN−
2IN+
TLE2024
DW PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
NC
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN−
4IN +
VCC − /GND
3IN +
3IN −
3OUT
NC
NC − No internal connection
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
equivalent schematic (each amplifier)
VCC+
Q13
Q3
Q22
Q17
Q7
Q28
Q35
Q31
Q29
Q19
Q1
Q32
Q24
Q39
Q20
Q8
Q5
Q34
Q38
Q11
D3
Q2
Q36
C4
IN −
Q4
Q12
D4
IN +
R7
Q23 Q25
C2
Q10
D1 D2
OUT
Q14
Q40
C3
Q21
Q27
R6
R1
C1
OFFSET N1
(see Note A)
Q6
Q9
R2
R4
R3
R5
Q15
Q30 Q33
Q26
Q18
Q37
Q16
OFFSET N2
(see Note A)
VCC − /GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Transistors
TLE2021
TLE2022
TLE2024
40
80
160
Resistors
7
14
28
Diodes
4
8
16
Capacitors
4
8
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.6 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Package thermal impedance, RθJA (see Notes 4 and 5): D (8 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W
DW (16 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W
PW (8 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . 149°C/W
PW (14 pin) . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D or PW package . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
Supply voltage, VCC
VCC = ± 5 V
VCC ± = ±15 V
Common-mode input voltage, VIC
Operating free-air temperature, TA
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
MAX
UNIT
±2
±20
V
0
3.2
−15
13.2
−40
125
V
°C
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TA†
TEST CONDITIONS
TLE2021-Q1
MIN
25°C
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VOH
Common-mode input
voltage range
120
600
µV/mo
25°C
0.2
VO = 1.4 V to 4 V,
RL = 10 kΩ
CMRR
Common-mode
rejection ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VCC ± /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
∆ICC
Supply current
change over operating
temperature range
25
0.2
25°C
0
to
3.5
70
Full range
0
to
3.2
4
−0.3
to
4
25
4
V
4.3
V
3.8
0.7
0.8
0.7
0.95
0.3
Full range
0.1
25°C
85
Full range
80
25°C
105
Full range
100
1.5
0.8
0.95
0.3
nA
−0.3
to
4
0
to
3.2
4.3
nA
70
90
0
to
3.5
3.8
25°C
6
10
90
Full range
V
1.5
V/ V
V/µV
0.1
110
85
110
dB
80
120
105
120
dB
25°C
100
170
Full range
VO = 2.5 V,
6
10
25°C
Large-signal
differential
voltage amplification
µV
V
0.005
Full range
AVD
550
0.005
25°C
Low-level output
voltage
400
25°C
RS = 50 Ω
VOL
100
UNIT
µV/°C
Full range
RL = 10 kΩ
MAX
2
Full range
High-level output
voltage
TYP
2
Full range
RS = 50 Ω
MIN
800
25°C
VICR
MAX
Full range
VIC = 0,
TLE2021A-Q1
TYP
300
170
300
300
300
µA
A
No load
Full range
9
9
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TA†
TEST CONDITIONS
TLE2021-Q1
MIN
25°C
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
Common-mode input
voltage range
120
500
VOM −
AVD
Large-signal
differential voltage
amplification
VO = ± 10 V,
RL = 10 kΩ
CMRR
Common-mode
rejection ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(∆VCC ± /∆VIO)
VCC ± = ±2.5 V to ± 15 V
ICC
Supply current
∆ICC
Supply current
change over
operating temperature
range
300
450
µV
V
25°C
0.006
0.006
µV/mo
25°C
0.2
25
0.2
70
Full range
−15
to
13.2
14
−15.3
to
14
6
10
25
90
−15
to
13.5
25°C
6
10
25°C
RS = 50 Ω
Maximum negative
peak output voltage
swing
80
UNIT
µV/°C
Full range
Maximum positive
peak output voltage
swing
MAX
2
Full range
VOM +
TYP
2
Full range
RS = 50 Ω
MIN
700
25°C
VICR
MAX
Full range
VIC = 0,
TLE2021A-Q1
TYP
70
90
−15
to
13.5
14
nA
−15.3
to
14
V
−15
to
13.2
14.3
nA
14.3
V
Full range
13.8
25°C
−13.7
Full range
−13.6
RL = 10 kΩ
13.8
−14.1
−13.7
−14.1
V
25°C
1
−13.6
6.5
6.5
V/ V
V/µV
Full range
0.5
25°C
100
Full range
96
25°C
105
Full range
100
0.5
115
100
115
dB
96
120
105
120
dB
25°C
100
200
Full range
VO = 0,
1
350
200
350
350
350
A
µA
No load
Full range
10
10
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TA†
TEST CONDITIONS
TLE2022-Q1
MIN
RS = 50 Ω
Common-mode input
voltage range
MAX
Full range
800
550
UNIT
µV
V
2
2
µV/°C
V/°C
25°C
0.005
0.005
µV/mo
V/mo
25°C
0.5
35
0
to
3.5
Full range
0
to
3.2
25°C
4
VOH
High-level output voltage
VOL
Low-level output voltage
Large-signal differential
voltage amplification
25°C
0.3
AVD
VO = 1.4 V to 4 V,
RL = 10 kΩ
Full range
0.1
Common-mode rejection
ratio
85
VIC = VICRmin,
RS = 50 Ω
25°C
CMRR
Full range
80
Supply-voltage rejection
ratio (∆VCC ± /∆VIO)
25°C
100
kSVR
VCC = 5 V to 30 V
Full range
95
ICC
Supply current
∆ICC
Supply current change over
operating temperature
range
Full range
0.4
70
−0.3
to
4
33
−0.3
to
4
4
4.3
V
3.8
0.7
Full range
0.8
0.7
0.95
25°C
1.5
0.8
0.95
0.4
87
V/ V
V/µV
102
dB
82
115
103
118
dB
98
450
Full range
600
V
1.5
0.1
100
nA
V
0
to
3.2
4.3
nA
70
90
0
to
3.5
3.8
25°C
6
10
90
25°C
25
C
RS = 50 Ω
6
10
Full range
VO = 2.5 V,
TYP
400
Full range
RL = 10 kΩ
MIN
600
25°C
VICR
TLE2022A-Q1
MAX
25°C
Full range
VIC = 0,
TYP
450
600
600
600
A
µA
No load
Full range
37
37
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
TA†
TEST CONDITIONS
TLE2022-Q1
MIN
25°C
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
RS = 50 Ω
450
µV
V
0.006
0.006
µV/mo
V/mo
25°C
0.5
RS = 50 Ω
25°C
Full range
25°C
35
0.4
70
33
−15 −15.3
to
to
13.5
14
−15
to
13.2
−15
to
13.2
14
14.3
14
14.3
V
−13.7 −14.1
−13.6
−13.6
Large-signal differential
voltage amplification
VO = ±10 V,
25°C
0.8
RL = 10 kΩ
Full range
0.8
Common-mode rejection
ratio
95
VIC = VICRmin,
RS = 50 Ω
25°C
CMRR
Full range
91
Supply-voltage rejection
ratio (∆VCC ± /∆VIO)
VCC ± = ±2.5 V to ±15 V
25°C
100
kSVR
Full range
95
ICC
Supply current
∆ICC
Supply current change
over operating
temperature range
25°C
4
1
V
7
V/ V
V/µV
1
106
97
109
dB
93
115
103
118
dB
98
550
Full range
700
nA
V
13.8
−13.7 −14.1
AVD
nA
70
90
−15 −15.3
to
to
13.5
14
13.8
6
10
90
Maximum negative peak
output voltage swing
Full range
6
10
VOM −
VO = 0,
300
25°C
Full range
RL = 10 kΩ
120
UNIT
µV/°C
V/°C
Full range
Maximum positive peak
output voltage swing
MAX
2
Full range
VOM +
500
TYP
2
Full range
25°C
25
C
Common-mode input
voltage range
150
MIN
700
25°C
VICR
MAX
Full range
VIC = 0,
TLE2022A-Q1
TYP
550
700
700
700
µA
A
No load
Full range
60
60
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
TLE2024-Q1
MIN
RS = 50 Ω
VOH
Common-mode input
voltage range
850
1050
AVD
Large-signal differential
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
CMRR
Common-mode rejection
ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply-voltage rejection
ratio (∆VCC± /∆VIO)
VCC ± = ±2.5 V to ±15 V
ICC
Supply current
∆ICC
Supply current change
over operating
temperature range
µV/°C
25°C
0.005
0.005
µV/mo
25°C
0.6
6
0.5
10
45
25°C
0
to
3.5
70
Full range
0
to
3.2
25°C
3.9
Full range
3.7
−0.3
to
4
40
90
0
to
3.5
4.2
3.9
V
4.2
V
0.7
0.95
0.2
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
25°C
1.5
0.8
0.95
0.3
82
V/ V
V/µV
92
dB
82
112
100
115
dB
95
800
Full range
1200
V
1.5
0.1
90
nA
−0.3
to
4
3.7
0.8
nA
70
0
to
3.2
0.7
25°C
6
10
90
Full range
VO = 0,
µV
V
2
25°C
Low-level output voltage
UNIT
2
RS = 50 Ω
VOL
MAX
1100
Full range
RL = 10 kΩ
TYP
1300
Full range
High-level output voltage
MIN
25°C
25°C
VICR
TLE2024A-Q1
MAX
Full range
Full range
VIC = 0,
TYP
800
1200
1200
1200
µA
A
No load
Full range
50
50
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
TLE2024-Q1
MIN
RS = 50 Ω
VOM +
750
950
µV/°C
25°C
0.006
0.006
µV/mo
25°C
0.6
AVD
Large-signal differential
voltage amplification
VO = ±10 V,
RL = 10 kΩ
CMRR
Common-mode rejection
ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply-voltage rejection
ratio (∆VCC ± /∆VIO)
VCC ± = ± 2.5 V to ±15 V
ICC
Supply current
∆ICC
Supply current change
over operating
temperature range
0.2
50
70
45
90
Full range
−15
to
13.2
25°C
13.8
Full range
13.7
13.8
14.2
V
13.7
−13.7 −14.1
−13.6
−13.6
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
25°C
2
0.8
V
4
V/ V
V/µV
0.8
102
94
105
dB
90
112
100
115
dB
95
1050
Full range
1400
nA
V
−13.7 −14.1
25°C
nA
70
90
−15
to
13.2
14.1
6
10
−15 −15.3
to
to
13.5
14
Full range
VO = 0,
6
10
−15 −15.3
to
to
13.5
14
25°C
Maximum negative peak
output voltage swing
µV
V
2
RS = 50 Ω
VOM −
UNIT
2
Full range
RL = 10 kΩ
MAX
1200
Full range
Maximum positive peak
output voltage swing
TYP
1000
25°C
Common-mode input
voltage range
MIN
25°C
25°C
VICR
TLE2024A-Q1
MAX
Full range
Full range
VIC = 0,
TYP
1050
1400
1400
1400
µA
A
No load
Full range
85
85
µA
† Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
(see Figure 2)
VN(PP)
Peak-to-peak equivalent input
noise voltage
TEST CONDITIONS
VO = 1 V to 3 V,
f = 10 Hz
See Figure 1
TA
25°C
MIN
TYP
MAX
0.5
UNIT
V/µs
25°C
21
f = 1 kHz
25°C
17
f = 0.1 to 1 Hz
25°C
0.16
f = 0.1 to 10 Hz
25°C
0.47
25°C
0.9
pA/Hz
MHz
In
B1
Equivalent input noise current
Unity-gain bandwidth
See Figure 3
25°C
1.2
φm
Phase margin at unity gain
See Figure 3
25°C
42°
nV/Hz
µV
V
TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER
TEST CONDITIONS
TA†
MIN
TYP
25°C
0.45
0.65
Full range
0.4
SR
Slew rate at unity gain
VO = ±10 V,
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
Vn
f = 1 kHz
25°C
15
Peak-to-peak equivalent input
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
VN(PP)
f = 0.1 to 10 Hz
25°C
0.47
In
B1
See Figure 1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
† Full range is −40°C to 125°C for the Q-suffix devices.
MAX
UNIT
V/ s
V/µs
25°C
0.09
See Figure 3
25°C
2
See Figure 3
25°C
46°
nV/Hz
µV
V
pA/Hz
MHz
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
(see Figure 2)
VO = 1 V to 3 V,
f = 10 Hz
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
B1
φm
Unity-gain bandwidth
Phase margin at unity gain
f = 1 kHz
POST OFFICE BOX 655303
See Figure 1
MIN
TYP
0.5
MAX
UNIT
V/µs
21
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
nV/√Hz
µV
V
0.1
pA/√Hz
See Figure 3
1.7
MHz
See Figure 3
47°
• DALLAS, TEXAS 75265
11
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V
PARAMETER
TEST CONDITIONS
TA†
25°C
MIN
TYP
0.45
0.65
Full range
0.4
SR
Slew rate at unity gain
VO = ±10 V,
Equivalent input noise
voltage (see Figure 2)
f = 10 Hz
25°C
19
Vn
f = 1 kHz
25°C
15
Peak-to-peak equivalent
input noise voltage
f = 0.1 to 1 Hz
25°C
0.16
VN(PP)
f = 0.1 to 10 Hz
25°C
0.47
In
B1
See Figure 1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
† Full range is −40°C to 125°C.
MAX
UNIT
V/ s
V/µs
nV/√Hz
µV
V
25°C
0.1
pA/√Hz
See Figure 3
25°C
2.8
MHz
See Figure 3
25°C
52°
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
B1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
MIN
See Figure 1
TYP
MAX
0.5
UNIT
V/µs
21
f = 1 kHz
nV/√ Hz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
µV
V
0.1
pA/√Hz
See Figure 3
1.7
MHz
See Figure 3
47°
TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA†
25°C
MIN
TYP
0.45
0.7
Full range
0.4
SR
Slew rate at unity gain
VO = ±10 V,
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
Vn
f = 1 kHz
25°C
15
f = 0.1 to 1 Hz
25°C
0.16
VN(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 to 10 Hz
25°C
0.47
In
B1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
† Full range is −40°C to 125°C.
12
See Figure 1
MAX
UNIT
V/ s
V/µs
nV/√Hz
µV
V
25°C
0.1
pA/√Hz
See Figure 3
25°C
2.8
MHz
See Figure 3
25°C
52°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
PARAMETER MEASUREMENT INFORMATION
20 kΩ
20 kΩ
5V
15 V
−
−
VO
VO
VI
+
30 pF
(see Note A)
+
VI
−15 V
30 pF
(see Note A)
20 kΩ
(a) SINGLE SUPPLY
20 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
2 kΩ
2 kΩ
15 V
5V
−
20 Ω
VO
−
+
VO
2.5 V
+
−15 V
20 Ω
20 Ω
20 Ω
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
100 Ω
VI
10 kΩ
10 kΩ
5V
15 V
−
VI
VO
2.5 V
−
100 Ω
VO
+
+
30 pF
(see Note A)
−15 V
30 pF
(see Note A)
10 kΩ
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
PARAMETER MEASUREMENT INFORMATION
5V
−
−
10 kΩ
VI
VO
VO
VI
+
10 kΩ
+
0.1 µF
15 V
− 15 V
10 kΩ
30 pF
(see Note A)
30 pF
(see Note A)
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
II
Input current
vs Differential input voltage
VOM
Maximum peak output voltage
vs Output current
vs Free-air temperature
VOH
High-level output voltage
vs High-level output current
vs Free-air temperature
19, 20
21
VOL
Low-level output voltage
vs Low-level output current
vs Free-air temperature
22
23
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
30 − 33
34 − 37
ICC
Supply current
vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR
Common-mode rejection ratio
vs Frequency
44, 45, 46
SR
Slew rate
vs Free-air temperature
47, 48, 49
Voltage-follower small-signal pulse response
5, 6, 7
8, 9, 10
11, 12, 13
14
15, 16, 17
18
24, 25
50, 51
Voltage-follower large-signal pulse response
52 − 57
VN(PP)
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
Vn
Equivalent input noise voltage
vs Frequency
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
58
59
60
26
15
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
20
ÎÎÎÎÎÎÎÎÎÎÎ
20
231 Units Tested From 1 Wafer Lot
VCC ± = ±15 V
ÎÎÎÎ
TA = 25°C
P Package
16
Percentage of Units − %
Percentage of Units − %
16
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
12
8
P Package
12
8
4
4
0
−600 −450 −300 −150
150 300
450
0
VIO − Input Offset Voltage − µV
0
−600
600
−400
−200
0
200
400
VIO − Input Offset Voltage − µV
Figure 5
Figure 6
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
16
−40
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
N Package
VCC ± = ±15 V
TA = 25°C
−35
IIB
I IB − Input Bias Current − nA
Percentage of Units − %
600
12
8
4
−30
−25
−20
−15
−10
−5
0
−1
−0.5
0
0.5
1
VIO − Input Offset Voltage − mV
0
−15
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
Figure 8
Figure 7
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
−50
−60
VCC ± = ±15 V
TA = 25°C
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
−45
VCC ± = ±15 V
TA = 25°C
−40
−35
−40
ÁÁ
ÁÁ
−30
−25
−20
−15
−50
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
−30
−20
−15
15
−10
−5
15
10
TLE2022
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
−50
−35
VCC ± = ±15 V
VO = 0
VIC = 0
VCC ± = ±15 V
VO = 0
VIC = 0
−45
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
5
Figure 10
Figure 9
−30
0
VIC − Common-Mode Input Voltage − V
−25
−20
−15
−10
−40
−35
−30
−25
−5
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
−20
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 11
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2024
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
−60
1
ÁÁ
ÁÁ
−50
VCC± = ±15 V
VIC = 0
TA = 25°C
0.9
0.8
I III − Input Current − mA
IIB − Input Bias Current − nA
IIB
VCC± = ±15 V
VO = 0
VIC = 0
−40
−30
0.7
0.6
0.5
0.4
0.3
0.2
0.1
−20
−75
0
−50
−25
0
25
50
75
100
0
125
TA − Free-Air Temperature − °C
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
|VID| − Differential Input Voltage − V
Figure 14
Figure 13
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
VCC ± = ±15 V
TA = 25°C
14
12
ÎÎÎÎ
ÎÎÎÎ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
V
OM
16
ÎÎÎÎ
ÎÎÎÎ
VOM+
6
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
IO − Output Current − mA
10
VCC ± = ±15 V
TA = 25°C
14
12
ÎÎÎÎ
ÎÎÎÎ
10
VOM−
8
ÎÎÎ
ÎÎÎ
VOM+
6
4
2
0
0
2
4
6
8
10
|IO| − Output Current − mA
12
Figure 16
Figure 15
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
1
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
15
ÎÎÎÎ
VCC ± = ± 5 V
TA = 25°C
14
12
ÎÎÎ
ÎÎÎ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
VOM
16
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÎÎÎ
VOM +
6
ÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
8
10
4
6
IO − Output Current − mA
12
14
14.5
VOM +
14
VOM −
13.5
13
ÁÁÁ
ÁÁÁ
ÁÁÁ
12.5
12
−75
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
−50
Figure 17
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
5
VCC = 5 V
TA = 25°C
VOH − High-Level Output Voltage − V
VOH
VOH
VOH − High-Level Output Voltage − V
125
Figure 18
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
4
3
2
ÁÁ
ÁÁ
1
VCC = 5 V
TA = 25°C
4
3
2
1
0
0
0
−1
−2
−3
−4
−5
−6
IOH − High-Level Output Current − mA
−7
0
−2
−4
−6
−8
−10
IOH − High-Level Output Current − mA
Figure 20
Figure 19
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
5
HIGH-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
VCC = 5 V
TA = 25°C
ÁÁ
ÁÁ
VOL
VOL − Low-Level Output Voltage − V
VOH
VOH − High-Level Output Voltage − V
VCC = 5 V
4.8
4.6
No Load
4.4
ÁÁ
ÁÁ
ÁÁ
RL = 10 kΩ
4.2
4
−75
−50 −25
0
25
50
75
100
4
3
2
1
0
125
0
0.5
1
1.5
2
2.5
IOL − Low-Level Output Current − mA
TA − Free-Air Temperature − °C
Figure 21
Figure 22
LOW-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VOL
VOL − Low-Level Output Voltage − V
1
IOL = 1 mA
0.75
IOL = 0
0.5
ÁÁÁ
ÁÁÁ
0.25
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
5
4
3
2
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
1
VCC = 5 V
RL = 10 kΩ
TA = 25°C
0
100
Figure 23
1k
10 k
100 k
f − Frequency − Hz
Figure 24
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
20
3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1M
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
30
25
20
15
10
ÁÁ ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
5
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
AVD − Large-Signal Differential
Voltage Amplification − dB
60°
80°
Phase Shift
80
100°
VCC ± = ± 15 V
AVD
60
120°
VCC = 5 V
40
140°
20
160°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
0
180°
−20
10
100
Phase Shift
120
200°
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
10
6
RL = 10 kΩ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
8
5
AVD
AVD − Large-Signal Differential
Voltage Amplification − V/µV
AVD − Large-Signal Differential
Voltage Amplification − V/ µ V
RL = 10 kΩ
VCC ± = ±15 V
6
4
2
ÎÎÎÎ
ÎÎÎÎ
−50
−25
0
25
50
75
3
ÁÁ
ÁÁ
ÁÁ
2
1
VCC = 5 V
0
−75
VCC ± = ± 15 V
4
100
VCC = 5 V
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
Figure 28
Figure 27
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
10
10
VCC ± = ±15 V
6
4
2
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75
100
125
IIOS
OS − Short-Circuit Output Current − mA
AVD − Large-Signal Differential
Voltage Amplification − V/ µ V
RL = 10 kΩ
8
125
VO = 0
TA = 25°C
8
6
VID = −100 mV
4
2
0
−2
ÁÁ
ÁÁ
−4
ÎÎÎÎÎ
ÎÎÎÎÎ
−6
VID = 100 mV
−8
−10
0
2
TA − Free-Air Temperature − °C
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 30
Figure 29
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
VO = 0
TA = 25°C
10
ÎÎÎÎÎ
VID = −100 mV
5
0
−5
VID = 100 mV
−10
−15
0
2
4
6
8
10
12
14
TA = 25°C
IIOS
OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output Current − mA
IOS
15
16
8
VID = −100 mV
VO = VCC
4
0
ÁÁ
ÁÁ
ÁÁ
−4
VID = 100 mV
VO = 0
−8
− 12
5
0
|VCC ±| − Supply Voltage − V
10
15
20
25
VCC − Supply Voltage − V
Figure 32
Figure 31
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÎÎÎÎ
ÎÎÎÎ
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
8
VCC = 5 V
TA = 25°C
10
IOS
I OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output CUrrent − mA
IOS
15
VID = − 100 mV
VO = VCC
5
0
−5
VID = 100 mV
VO = 0
−10
−15
0
5
10
30
15
20
25
30
ÁÁ
ÁÁ
6
VID = −100 mV
VO = 5 V
4
2
0
−2
VID = 100 mV
VO = 0
−4
−6
−8
− 75
− 50
VCC − Supply Voltage − V
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Figure 34
Figure 33
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
12
VCC = 5 V
VID = −100 mV
VO = 5 V
4
IOS
I OS − Short-Circuit Output Current − mA
IOS
I OS− Short-Circuit Output Current − mA
6
2
0
−2
−4
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
−8
−10
−75
−50
−25
0
25
50
75
8
VID = −100 mV
4
0
−4
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
−6
VCC ± = ± 15 V
VO = 0
100
−8
VID = 100 mV
−12
−75
125
−50
TA − Free-Air Temperature −°C
0
25
50
75 100
−25
TA − Free-Air Temperature − °C
Figure 36
Figure 35
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
250
VO = 0
No Load
VCC ± = ±15 V
VO = 0
200
A
IICC
CC − Supply Current − µua
I OS − Short-Circuit Output Current − mA
IOS
15
10
5
VID = − 100 mV
0
VID = 100 mV
−10
−50
−25
0
25
50
75
100
125
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
150
TA = 125°C
TA = 25°C
100
ÁÁ
ÁÁ
−5
−15
−75
TA = − 55°C
50
0
0
2
TA − Free-Air Temperature − °C
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 38
Figure 37
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
24
125
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
500
VO = 0
No Load
TA = 125°C
800
I CC − Supply Current − µ A
IICC
A
CC − Supply Current − µua
400
TA = 25°C
300
TA = 125°C
TA = − 55°C
ÁÁ
ÁÁ
ÁÁ
200
100
0
ÎÎÎÎ
1000
VO = 0
No Load
TA = 25°C
600
TA = − 55°C
400
200
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
0
16
0
2
4
16
500
VCC ± = ±15 V
400
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
150
VCC ± = ± 2.5 V
125
100
ÁÁ
ÁÁ
75
50
VO = 0
No Load
−50
IICC
A
CC − Supply Current − µua
A
IICC
CC − Supply Current − µua
14
VCC ± = ±15 V
175
0
−75
12
TLE2022
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
200
25
10
Figure 40
TLE2021
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
8
|VCC ±| − Supply Voltage − V
Figure 39
225
6
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
VCC ± = ±2.5 V
300
200
100
VO = 0
No Load
0
−75
−50
Figure 41
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
Figure 42
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2024
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
1000
CMRR − Common-Mode Rejection Ratio − dB
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
800
I CC − Supply Current − µ A
120
VCC ± = ±2.5 V
600
400
200
VO = 0
No Load
0
−75
−50
−25
0
25
50
75
100
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
VCC ± = ±15 V
80
VCC = 5 V
60
40
20
TA = 25°C
0
125
10
100
1k
10 k
100 k
f − Frequency − Hz
TA − Free-Air Temperature − °C
Figure 43
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rehection Ratio − dB
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
120
TA = 25°C
100
10 M
Figure 44
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
1M
VCC ± = ±15 V
80
VCC = 5 V
60
40
20
VCC ± = ±15 V
100
VCC = 5 V
80
60
40
20
TA = 25°C
0
0
10
100
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
10
100
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 45
Figure 46
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TLE2021
SLEW RATE†
vs
FREE-AIR TEMPERATURE
1
1
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
0.8
VCC = 5 V
0.6
0.4
0.2
0
−75
VCC ± = ±15 V
SR − Slew Rate − V/ µ
uss
SR − Slew Rate − V/us
µs
0.8
0.6
VCC = 5 V
0.4
0.2
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
RL = 20 kΩ
CL = 30 pF
See Figure 1
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 48
Figure 47
TLE2024
SLEW RATE†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
1
ÎÎÎÎÎ
SR − Slew Rate − V/
V/sµ s
VCC ± = ±15 V
0.6
VCC = 5 V
0.4
0.2
0
−75
−25
50
0
25
50
75
100
125
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÎÎÎÎÎ
ÎÎÎÎÎ
0
ÁÁ
ÁÁ
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
VO − Output Voltage − mV
VO
100
0.8
125
−50
−100
0
TA − Free-Air Temperature − °C
Figure 49
20
40
t − Time − µs
60
80
Figure 50
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÎÎÎÎÎ
2.55
VO − Output Voltage − V
VO
VO − Output Voltage − V
VO
2.6
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
2.5
ÁÁÁ
ÁÁÁ
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÎÎÎÎÎ
ÎÎÎÎÎ
3
2
ÁÁ
ÁÁ
1
2.45
2.4
0
0
20
40
t − Time − µs
60
80
0
Figure 51
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO − Output Voltage − V
VO
VO
VO − Output Voltage − V
80
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
4
2
ÁÁÁ
ÁÁÁ
1
3
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
1
0
0
0
20
40
t − Time − µs
60
0
80
20
40
t − Time − µs
Figure 53
28
60
Figure 52
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
20
40
t − Time − µs
Figure 54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
80
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
15
10
VO
VO − Output Voltage − V
15
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−5
−10
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
40
t − Time − µs
60
−15
80
0
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
VO − Output Voltage − V
VO
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
t − Time − µs
Figure 57
60
80
Figure 56
40
60
80
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
µV
Figure 55
20
40
t − Time − µs
ÁÁ
ÁÁ
ÁÁ
POST OFFICE BOX 655303
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
0.5
VCC ± = ±15 V
0.4
TA = 25°C
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
− 0.4
− 0.5
0
1
• DALLAS, TEXAS 75265
2
3
4
5
t − Time − s
6
7
8
9
10
Figure 58
29
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
0.5
VCC ± = ±15 V
TA = 25°C
0.4
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
ÁÁÁ
ÁÁÁ
ÁÁÁ
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VVn
nV/ Hz
n − Equivalent Input Noise Voltage − nVHz
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
µV
TYPICAL CHARACTERISTICS
− 0.4
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
200
VCC ± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 2
160
120
80
40
0
− 0.5
0
1
2
3
4
5
6
t − Time − s
7
8
9
10
1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4
B1
B1 − Unity-Gain Bandwidth − MHz
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
10 k
Figure 60
4
2
1
0
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
2
1
0
0
2
4
6
8
10
12
14
|VCC±| − Supply Voltage − V
16
0
2
Figure 61
30
100
1k
f − Frequency − Hz
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1
B
1 − Unity-Gain Bandwidth − MHz
10
4
6
8
10
12
|VCC±| − Supply Voltage − V
Figure 62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
16
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
RL = 10 kΩ
3
VCC ± = ± 15 V
2
ÎÎÎÎÎ
1
VCC = 5 V
−50 −25
0
25
50
75
TA − Free-Air Temperature − °C
100
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
3
VCC ± = ± 15 V
2
VCC = 5 V
1
0
−75
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 63
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
53°
φm
m − Phase Margin
φm
m − Phase Margin
55°
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
48°
125
Figure 64
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
See Figure 3
B1
B1 − Unity-Gain Bandwidth − MHz
B
B1
1 − Unity-Gain Bandwidth − MHz
CL = 30 pF
See Figure 3
46°
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
51°
ÁÁ
ÁÁ
44°
49°
47°
42°
45°
40°
0
2
4
6
8
10
12
14
|VCC ±| − Supply Voltage − V
16
0
2
4
6
8
10
12
|VCC±| − Supply Voltage − V
14
16
Figure 66
Figure 65
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
60°
70°
RL = 10 kΩ
TA = 30 pF
See Figure 3
50°
60°
VCC ± = ±15 V
VCC ± = ±15 V
ÁÁ
ÁÁ
ÁÁ
φm
m − Phase Margin
φm
m − Phase Margin
50°
40°
VCC = 5 V
30°
VCC = 5 V
40°
30°
20°
10°
10°
0
20
40
60
80
CL − Load Capacitance − pF
0°
100
0
20
40
60
80
CL − Load Capacitance − pF
Figure 67
50°
48°
TLE2022 AND TLE2024
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
54°
RL = 10 kΩ
CL = 30 pF
See Figure 3
52°
VCC ± = ±15 V
VCC ± = ±15 V
46°
φm
m − Phase Margin
50°
44°
42°
VCC = 5 V
40°
38°
36°
−75
48°
ÁÁ
ÁÁ ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
44°
42°
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VCC = 5 V
46°
40°
−75
RL = 10 kΩ
CL = 30 pF
See Figure 3
−50
Figure 69
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 70
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
32
100
Figure 68
TLE2021
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
φm
m − Phase Margin
RL = 10 kΩ
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
20°
0
Á
Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF ≤ 1 mA
RF
VCC +
−
VO
VI
+
VCC −
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
−
IN −
OFFSET N2
OFFSET N1
+
IN +
5 kΩ
1 kΩ
VCC − (split supply)
GND (single supply)
Figure 72. Input Offset Voltage Null Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and
Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
egnd
ree
cee
Iee
+
din
9
−
+
rp
92
fb
re1
IN −
IN+
1
re2
14
13
Q1
2
Q2
r2
−
53
dc
C1
dp
11
C2
6
gcm
54
−
ve
de
5
−
ro1
+
OUT
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
34
vlim
8
rc2
4
7
+
ga
12
rc1
VCC −
vc
hlim
−
+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
+ dip
−
−
−
+
90
ro2
vb
91
+
vip
vin
SGLS199A − JANUARY 2004 − REVISED APRIL 2004
.SUBCKT TLE2021 1 2 3 4 5
*
c1
11 12 6.244E−12
c2
6
7 13.4E−12
c3
87 0 10.64E−9
cpsr 85 86 15.9E−9
dcm+ 81 82 dx
dcm− 83 81 dx
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6
ense 89 2 poly(1) (88,0) 120E−6 1
fb
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ −50E7 50E7 50E7 −50E7 547E6
ga
6
0 11 12 188.5E−6
gcm 0
6 10 99 335.2E−12
gpsr 85 86 (85,86) 100E−6
grc1 4
11 (4,11) 1.885E−4
grc2 4
12 (4,12) 1.885E−4
gre1 13 10 (13,10) 6.82E−4
gre2 14 10 (14,10) 6.82E−4
hlim
90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2
irp
3
4 185E−6
iee
3
10 dc 15.67E−6
iio
2
0 2E−9
i1
88 0 1E−21
q1
11 89 13 qx
q2
12 80 14 qx
R2
6
9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8
5 62
ro2 7
99 63
vcm+ 82 99 13.3
vcm− 83 99 −14.6
vb
9
0 dc 0
vc
3
53 dc 1.300
ve
54 4 dc 1.500
vlim 7
8 dc 0
vlp
91 0 dc 3.600
vln
0
92 dc 3.600
vpsr 0
86 dc 0
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1
11 12 6.814E−12
c2
6
7 20.00E−12
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 −50E6 50E6 50E6 −50E6
ga 6 0
11 12 377.9E−6
gcm 0 6
10 99 7.84E−10
iee
3
10 DC 18.07E−6
hlim 90 0 vlim 1k
q1
11 2 13 qx
q2
12 1 14 qx
r2
6
9 100.0E3
rc1
rc2
ge1
ge2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
4
4
13
14
10
8
7
3
9
3
54
7
91
0
dx
qx
11 2.842E3
12 2.842E3
10 (10,13) 31.299E−3
10 (10,14) 31.299E−3
99 11.07E6
5 250
99 250
4 137.2E3
0 dc 0
53 dc 1.300
4 dc 1.500
8 dc 0
0 dc 3
92 dc 3
d(is=800.0E−18)
pnp(is=800.0E−18 bf=257.1)
Figure 75. Boyle Macromodel for the TLE2022
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
PACKAGE OPTION ADDENDUM
www.ti.com
4-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLE2021AQDRG4Q1
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021AQDRQ1
ACTIVE
SOIC
D
8
2500
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLE2021QDRG4Q1
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021QDRQ1
ACTIVE
SOIC
D
8
2500
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLE2022AQDRG4Q1
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AQDRQ1
ACTIVE
SOIC
D
8
2500
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLE2022QDRG4Q1
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022QDRQ1
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLE2024AQDWRQ1
ACTIVE
SOIC
DW
16
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLE2024QDWRQ1
ACTIVE
SOIC
DW
16
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated