TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 D Controlled Baseline D D D D D D † − One Assembly/Test Site, One Fabrication Site Extended Temperature Performance of −40°C to 125°C Also Available in −55°C to 125°C Enhanced Diminishing Manufacturing Sources (DMS) Support Enhanced Product-Change Notification Qualification Pedigree† Supply Current . . . 300 μA Max Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. D High Unity-Gain Bandwidth . . . 2 MHz Typ D High Slew Rate . . . 0.45 V/μs Min D Supply-Current Change Over Full Temp D D D D D D D Range . . . 10 μA Typ at VCC ± = ± 15 V Specified for Both 5-V Single-Supply and ±15-V Operation Phase-Reversal Protection High Open-Loop Gain . . . 6.5 V/μV (136 dB) Typ Low Offset Voltage . . . 100 μV Max Offset Voltage Drift With Time 0.005 μV/mo Typ Low Input Bias Current . . . 50 nA Max Low Noise Voltage . . . 19 nV/√Hz Typ description The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use. This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of options are available in small-outline packaging for high-density systems applications. The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2007 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 ORDERING INFORMATION VIOmax AT 25°C TA 40°C to 125°C −40°C −55°C to 125°C † ORDERABLE PART NUMBER PACKAGE† TOP-SIDE MARKING 300 μV SOIC (D) Tape and reel TLE2021AQDREP 2021AE 500 μV SOIC (D) Tape and reel TLE2021QDREP 2021QE 300 μV SOIC (D) Tape and reel TLE2022AQDREP 2022AE 500 μV SOIC (D) Tape and reel TLE2022QDREP 2022QE 750 μV SOP (DW) Tape and reel TLE2024AQDWREP 2024AE 1000 μV SOP (DW) Tape and reel TLE2024QDWREP 2024QE SOIC (D) Tape and reel TLE2021MDREP 500 μV 2021ME Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. TLE2021 D PACKAGE (TOP VIEW) OFFSET N1 IN− IN+ VCC − /GND 1 8 2 7 3 6 4 5 TLE2022 D PACKAGE (TOP VIEW) NC VCC+ OUT OFFSET N2 1OUT 1IN− 1IN+ VCC − /GND 1 8 2 7 3 6 4 5 TLE2024 DW PACKAGE (TOP VIEW) VCC+ 2OUT 2IN− 2IN+ 1OUT 1IN − 1IN + VCC + 2IN + 2IN − 2OUT NC 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN− 4IN + VCC − /GND 3IN + 3IN − 3OUT NC NC − No internal connection 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 equivalent schematic (each amplifier) VCC+ Q3 Q13 Q7 Q22 Q17 Q28 IN − IN + Q34 Q39 Q36 Q38 Q11 D3 Q2 Q32 Q24 Q20 Q8 Q35 Q29 Q19 Q1 Q5 Q31 C4 Q4 Q12 D4 Q14 D1 D2 R7 Q23 Q25 C2 Q10 OUT Q40 C3 Q21 Q27 R6 R1 C1 OFFSET N1 (see Note A) Q6 Q9 R2 R4 R3 R5 Q15 Q30 Q33 Q26 Q18 Q37 Q16 OFFSET N2 (see Note A) VCC − /GND ACTUAL DEVICE COMPONENT COUNT COMPONENT Transistors TLE2021 TLE2022 TLE2024 40 80 160 Resistors 7 14 28 Diodes 4 8 16 Capacitors 4 8 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.6 V Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C Package thermal impedance, RθJA (see Notes 4 and 5): D (8-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W DW (16-pin) . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D package . . . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − . 2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. 4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability. 5. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions MIN MAX UNIT ±2 ±20 V 0 3.2 VCC ± = ±15 V −15 13.2 Q suffix −40 125 M suffix −55 125 Supply voltage, VCC VCC = ± 5 V Common mode input voltage, Common-mode voltage VIC Operating free-air free air temperature temperature, TA 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V °C TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH Common mode input Common-mode voltage range High level output High-level voltage TA† TEST CONDITIONS TLE2021-EP MIN 25°C MAX 120 600 Full range RS = 50 Ω μV/mo 25°C 0.2 CMRR Common mode Common-mode rejection ratio VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current ΔICC Supply current change over operating temperature range 25 0.2 25°C 0 to 3.5 70 Full range 0 to 3.2 4 −0.3 to 4 25 −0.3 to 4 4.3 4 4.3 0.8 0.7 Full range 0.1 25°C 85 Full range 80 25°C 105 Full range 100 25°C 1.5 0.8 0.95 0.3 1.5 85 110 dB 80 120 105 120 dB 100 170 Full range 300 170 300 V V/ V V/μV 0.1 110 nA V 3.8 0.95 nA V 0 to 3.2 0.7 0.3 70 90 0 to 3.5 3.8 25°C 6 10 90 Full range VO = 2.5 V, 6 10 25°C RL = 10 kΩ μV V 0.005 25°C VO = 1 1.4 4 V to 4 V V, 550 0.005 Full range Large-signal differential voltage amplification 400 25°C RS = 50 Ω AVD 100 UNIT μV/°C 25°C Low level output Low-level voltage MAX 2 Full range VOL TYP 2 Full range RL = 10 kΩ MIN 800 Full range VIC = 0, TLE2021A-EP TYP 300 300 μA A No load Full range 9 9 μA † Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLE2021MDREP MIN 25 C 25°C TYP MAX 120 600 UNIT VIO I Input t offset ff t voltage lt αVIO Temperature coefficient of input offset voltage Full range 2 μV/°C Input offset voltage long-term drift (see Note 4) 25°C 0.005 μV/mo 25°C 0.2 IIO Input offset current IIB Input bias current VICR Full range 0 VIC = 0, RS = 50 Ω Full range 0 to 3.5 Full range 0 to 3.2 25°C VOL Low level output voltage Low-level AVD Large signal differential voltage amplification Large-signal VO = 1 1.4 4 V to 4 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio (ΔVCC ± /ΔVIO) Supply-voltage VCC = 5 V to 30 V ICC Supply current Full range RL = 10 kΩ 4 −0.3 to 4 0.7 2 5 V, V VO = 2.5 No load 25°C 0.3 0.1 25°C 85 Full range 80 25°C 105 Full range 100 † 1.5 dB 300 300 9 V dB 120 170 nA V/ V V/μV 110 Full range Full range 0.8 0.95 Full range nA V 3.8 25°C μV V V 4.3 Full range 25°C 70 90 25°C RS = 50 Ω High level output voltage High-level Supply current change over operating temperature range 25 Full range Common mode input voltage range Common-mode 6 10 25°C VOH ΔICC 850 μA A μA Full range is −55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common mode input Common-mode voltage range TA† TEST CONDITIONS TLE2021-EP MIN 25°C MAX 120 500 Full range RS = 50 Ω VOM − AVD Large-signal differential voltage amplification VO = ± 0 V, V RL = 10 kΩ CMRR Common mode Common-mode rejection ratio min, VIC = VICRmin RS = 50 Ω kSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC ± = ± 2 2.5 5 V to ±15 V ICC Supply current ΔICC Supply current change over operating temperature range 450 μV V 0.006 0.006 μV/mo 25°C 0.2 25 0.2 70 Full range −15 to 13.2 −15.3 to 14 25 13.8 25°C −13.7 Full range −13.6 0.5 25°C 100 Full range 96 25°C 105 Full range 100 90 −15 to 13.5 14.3 −15.3 to 14 14 −14.1 25°C −13.7 14.3 1 −14.1 V 6.5 V/ V V/μV 0.5 115 100 115 dB 96 120 105 120 dB 100 200 Full range 350 200 350 nA V −13.6 6.5 nA V 13.8 1 Full range 70 −15 to 13.2 14 Full range 6 10 90 −15 to 13.5 25°C 6 10 25°C 25°C VO = 0, 300 25°C RS = 50 Ω RL = 10 kΩ 80 UNIT μV/°C 25°C Maximum negative peak output voltage swing MAX 2 Full range Maximum positive peak output voltage swing TYP 2 Full range VOM + MIN 700 Full range VIC = 0, TLE2021A-EP TYP 350 350 A μA No load Full range 10 10 μA † Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLE2021MDREP MIN 25 C 25°C TYP MAX 120 500 UNIT VIO I Input t offset ff t voltage lt αVIO Temperature coefficient of input offset voltage Full range 2 μV/°C Input offset voltage long-term drift (see Note 4) 25°C 0.006 μV/mo 25°C 0.2 IIO Input offset current IIB Input bias current VICR Full range 0 VIC = 0, RS = 50 Ω Full range −15 to 13.5 Full range −15 to 13.5 25°C VOM− Maximum negative peak output voltage swing AVD Large signal differential voltage amplification Large-signal VO = ±0 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection ratio (ΔVCC ± /ΔVIO) Supply-voltage VCC± = 2.5 2 5 V to ±ℑ° V ICC Supply current RL = 10 kΩ 13.8 25°C −13.7 Full range −13.6 No load 0.5 25°C 100 Full range 96 25°C 105 Full range 100 −15.3 to 14 nA V 6.5 V/ V V/μV 115 dB 120 dB 350 350 10 nA V −14.1 200 μV V V 14.3 Full range Full range † 1 Full range 25°C 0 VO = 0, 14 Full range 25°C 70 90 25°C RS = 50 Ω Maximum positive peak output voltage swing Supply current change over operating temperature range 25 Full range Common mode input voltage range Common-mode 6 10 25°C VOM+ ΔICC 800 μA A μA Full range is −55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common mode input Common-mode voltage range TA† TEST CONDITIONS TLE2022-EP MIN RS = 50 Ω 800 550 AVD Large signal differential Large-signal voltage amplification 1 4 V to 4 V V, VO = 1.4 RL = 10 kΩ CMRR Common mode rejection Common-mode ratio min, VIC = VICRmin RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V ICC Supply current ΔICC Supply current change over operating temperature range μV/°C V/°C 25°C 0 005 0.005 0 005 0.005 μV/mo V/mo 25°C 0.5 35 0.4 0 to 3.5 70 Full range 0 to 3.2 4 −0.3 to 4 33 −0.3 to 4 4.3 4 4.3 0.8 0.7 25°C 0.3 0.1 25°C 85 Full range 80 25°C 100 Full range 95 25°C 1.5 0.8 0.95 0.4 1.5 87 102 dB 82 115 103 118 dB 98 450 Full range 600 450 600 V V/ V V/μV 0.1 100 nA V 3.8 0.95 nA V 0 to 3.2 0.7 Full range 70 90 0 to 3.5 3.8 25°C 6 10 90 25°C 25 C Full range 6 10 Full range VO = 2.5 V, μV V 2 25°C RL = 10 kΩ UNIT 2 RS = 50 Ω Low level output voltage Low-level MAX Full range Full range VOL TYP 400 25°C High level output voltage High-level MIN 600 Full range VOH TLE2022A-EP MAX 25°C Full range 0, VIC = 0 TYP 600 600 A μA No load Full range 37 37 μA † Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long term drift long-term (see Note 4) IIO Input offset current IIB Input bias current TA† TEST CONDITIONS 25°C Common-mode Common mode input voltage range Maximum positive peak output voltage swing 150 500 RS = 50 Ω 25°C 0.5 25°C RL = 10 kΩ CMRR Common mode rejection Common-mode ratio min, VIC = VICRmin RS = 50 Ω kSVR Supply-voltage Supply voltage rejection ratio (ΔVCC ± /ΔVIO) 5 V to ±15 V ±2.5 VCC ± = ±2 ICC Supply current ΔICC Supply current change over operating temperature range Full range 6 0.4 10 35 70 33 −15 −15.3 to to 13.5 14 −15 to 13.2 −15 to 13.2 14 14.3 14 14.3 −13.7 −14.1 −13.6 −13.6 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 4 1 97 V 7 V/ V V/μV 109 dB 93 115 103 118 dB 98 550 Full range 700 550 700 nA V 1 106 nA V 13.8 −13.7 −14.1 25°C 70 90 −15 −15.3 to to 13.5 14 13.8 6 10 90 25°C VO = 0, μV V μV/mo V/mo 25°C V VO = ±10 V, 450 0 006 0.006 Full range Large signal differential Large-signal voltage amplification 300 0 006 0.006 RS = 50 Ω AVD 120 UNIT 25°C 25°C Maximum negative peak output voltage swing MAX μV/°C V/°C Full range VOM − TYP 2 Full range RL = 10 kΩ MIN 2 Full range VOM + MAX 700 Full range 0, VIC = 0 TLE2022A-EP TYP Full range 25°C 25 C VICR TLE2022-EP MIN 700 700 μA A No load Full range † 60 60 μA Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR VOH Common mode input Common-mode voltage range TEST CONDITIONS TA† TLE2024-EP MIN RS = 50 Ω 850 1050 Large signal differential Large-signal voltage amplification 1.4 4 V to 4 V V, VO = 1 RL = 10 kΩ CMRR Common mode rejection Common-mode ratio min, VIC = VICRmin RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (ΔVCC± /ΔVIO) ±2.5 5 V to ±15 V VCC ± = ±2 ICC Supply current ΔICC Supply current change over operating temperature range μV/°C 25°C 0.005 0.005 μV/mo 25°C 0.6 6 0.5 10 45 25°C 0 to 3.5 70 Full range 0 to 3.2 25°C 3.9 Full range 3.7 −0.3 to 4 40 90 0 to 3.5 −0.3 to 4 4.2 3.9 0.8 4.2 0.7 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 25°C 1.5 0.8 1.5 82 92 dB 82 112 100 115 dB 95 800 Full range 1200 800 1200 V V/ V V/μV 0.1 90 nA V 0.95 0.3 nA V 3.7 0.95 0.2 70 0 to 3.2 0.7 25°C 6 10 90 Full range VO = 0, μV V 2 25°C AVD UNIT 2 RS = 50 Ω Low level output voltage Low-level MAX 1100 Full range VOL TYP 1300 25°C RL = 10 kΩ MIN 25°C Full range High level output voltage High-level TLE2024A-EP MAX Full range Full range VIC = 0, TYP 1200 1200 μA A No load Full range 50 50 μA † Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TEST CONDITIONS TA† RS = 50 Ω VOM + Common mode input Common-mode voltage range Maximum positive peak output voltage swing 950 VO = ±10 V, V RL = 10 kΩ CMRR Common mode rejection Common-mode ratio VIC = VICRmin min, RS = 50 Ω kSVR Supply voltage rejection Supply-voltage ratio (ΔVCC ± /ΔVIO) VCC ± = ± 2 2.5 5 V to ±15 V ICC Supply current ΔICC Supply current change over operating temperature range μV/°C 25°C 0.006 0.006 μV/mo 25°C 0.6 6 0.2 10 50 70 45 90 Full range −15 to 13.2 −15 to 13.2 25°C 13.8 Full range 13.7 13.8 14.2 −13.7 −14.1 −13.6 −13.6 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 25°C 2 0.8 94 V 4 V/ V V/μV 105 dB 90 112 100 115 dB 95 1050 Full range 1400 1050 1400 nA V 0.8 102 nA V 13.7 −13.7 −14.1 25°C 70 90 −15 −15.3 to to 13.5 14 14.1 6 10 −15 −15.3 to to 13.5 14 Full range VO = 0, μV V 2 25°C Large signal differential Large-signal voltage amplification UNIT 2 RS = 50 Ω AVD MAX 750 Full range Maximum negative peak output voltage swing TYP 1200 25°C VOM − MIN 1000 Full range RL = 10 kΩ TLE2024A-EP MAX 25°C Full range VIC = 0, TYP Full range 25°C VICR TLE2024-EP MIN 1400 1400 μA A No load Full range † 85 85 μA Full range is −40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2021 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER TEST CONDITIONS TA See Figure 1 MIN TYP MAX UNIT SR Slew rate at unity gain VO = 1 V to 3 V, 25°C 0.5 Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 21 V/μs f = 1 kHz 25°C 17 VN(PP) Peak to peak equivalent input Peak-to-peak noise voltage f = 0.1 to 1 Hz 25°C 0.16 f = 0.1 to 10 Hz 25°C 0.47 In Equivalent input noise current 25°C 0.9 pA/Hz B1 Unity-gain bandwidth See Figure 3 25°C 1.2 MHz φm Phase margin at unity gain See Figure 3 25°C 42° nV/Hz μV V TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V PARAMETER † TEST CONDITIONS See Figure 1 TA† MIN TYP 25°C 0.45 0.65 Full range 0.4 SR Slew rate at unity gain V VO = ± 10 V, Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 f = 1 kHz 25°C 15 VN(PP) Peak to peak equivalent input Peak-to-peak noise voltage f = 0.1 to 1 Hz 25°C 0.16 f = 0.1 to 10 Hz 25°C 0.47 In Equivalent input noise current 25°C 0.09 B1 Unity-gain bandwidth See Figure 3 25°C 2 φm Phase margin at unity gain See Figure 3 25°C 46° MAX UNIT V/ s V/μs nV/Hz μV V pA/Hz MHz Full range is −40°C to 125°C for the Q-suffix devices. TLE2022 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER TEST CONDITIONS TYP SR Slew rate at unity gain VO = 1 V to 3 V, Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 21 f = 1 kHz 17 VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 Unity-gain bandwidth φm Phase margin at unity gain POST OFFICE BOX 655303 See Figure 1 MIN 0.5 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 MAX UNIT V/μs nV/√Hz μV V 0.1 pA/√Hz See Figure 3 1.7 MHz See Figure 3 47° • DALLAS, TEXAS 75265 13 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V PARAMETER † TEST CONDITIONS See Figure 1 TA† MIN TYP 25°C 0.45 0.65 Full range 0.4 MAX UNIT SR Slew rate at unity gain V VO = ±10 V, V/ s V/μs Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 f = 1 kHz 25°C 15 VN(PP) Peak to peak equivalent Peak-to-peak input noise voltage f = 0.1 to 1 Hz 25°C 0.16 f = 0.1 to 10 Hz 25°C 0.47 In Equivalent input noise current 25°C 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 25°C 2.8 MHz φm Phase margin at unity gain See Figure 3 25°C 52° nV/√Hz μV V Full range is −40°C to 125°C. TLE2024 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 Unity-gain bandwidth φm Phase margin at unity gain MIN See Figure 1 TYP MAX 0.5 f = 10 Hz 21 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 UNIT V/μs nV/√ Hz μV V 0.1 pA/√Hz See Figure 3 1.7 MHz See Figure 3 47° TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER † TEST CONDITIONS See Figure 1 TA† MIN TYP 25°C 0.45 0.7 Full range 0.4 MAX UNIT SR Slew rate at unity gain VO = ±10 V V, Vn Equivalent input noise voltage (see Figure 2) f = 10 Hz 25°C 19 f = 1 kHz 25°C 15 VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak f = 0.1 to 1 Hz 25°C 0.16 f = 0.1 to 10 Hz 25°C 0.47 In Equivalent input noise current 25°C 0.1 pA/√Hz B1 Unity-gain bandwidth See Figure 3 25°C 2.8 MHz φm Phase margin at unity gain See Figure 3 25°C 52° Full range is −40°C to 125°C. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/ s V/μs nV/√Hz μV V TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 PARAMETER MEASUREMENT INFORMATION 20 kΩ 20 kΩ 5V 15 V − VO VI + 30 pF (see Note A) VO + − VI −15 V 30 pF (see Note A) 20 kΩ (a) SINGLE SUPPLY 20 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit 2 kΩ 2 kΩ 15 V 5V − 20 Ω VO − VO + 2.5 V + 20 Ω −15 V 20 Ω 20 Ω (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 2. Noise-Voltage Test Circuit VI 100 Ω 10 kΩ 10 kΩ 5V 15 V − VI VO 2.5 V − + + 30 pF (see Note A) VO 100 Ω −15 V 30 pF (see Note A) 10 kΩ (a) SINGLE SUPPLY 10 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 PARAMETER MEASUREMENT INFORMATION 5V VO VI + 10 kΩ VO + − 10 kΩ − 0.1 μF VI 15 V − 15 V 10 kΩ 30 pF (see Note A) 30 pF (see Note A) (a) SINGLE SUPPLY 10 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 4. Small-Signal Pulse-Response Test Circuit typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution IIB Input bias current vs Common-mode input voltage vs Free-air temperature II Input current vs Differential input voltage VOM Maximum peak output voltage vs Output current vs Free-air temperature VOH High-level output voltage vs High-level output current vs Free-air temperature 19, 20 21 VOL Low-level output voltage vs Low-level output current vs Free-air temperature 22 23 VO(PP) Maximum peak-to-peak output voltage vs Frequency AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26 27, 28, 29 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 30 − 33 34 − 37 ICC Supply current vs Supply voltage vs Free-air temperature 38, 39, 40 41, 42, 43 CMRR Common-mode rejection ratio vs Frequency 44, 45, 46 SR Slew rate vs Free-air temperature 47, 48, 49 Voltage-follower small-signal pulse response 5, 6, 7 8, 9, 10 11, 12, 13 14 15, 16, 17 18 24, 25 50, 51 Voltage-follower large-signal pulse response 52 − 57 VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz 0.1 to 10 Hz Vn Equivalent input noise voltage vs Frequency B1 Unity-gain bandwidth vs Supply voltage vs Free-air temperature 61, 62 63, 64 φm Phase margin vs Supply voltage vs Load capacitance vs Free-air temperature 65, 66 67, 68 69, 70 Phase shift vs Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 58 59 60 26 17 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2022 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2021 INPUT OFFSET VOLTAGE 20 ÎÎÎÎ TA = 25°C 16 Percentage of Units − % Percentage of Units − % 398 Amplifiers Tested From 1 Wafer Lot VCC ± = ±15 V TA = 25°C P Package 16 ÎÎÎÎÎÎÎÎÎÎÎ 20 231 Units Tested From 1 Wafer Lot VCC ± = ±15 V 12 8 4 P Package 12 8 4 0 −600 −450 −300 −150 150 300 450 0 VIO − Input Offset Voltage − μV 0 −600 600 −400 Figure 5 12 600 Figure 6 DISTRIBUTION OF TLE2024 INPUT OFFSET VOLTAGE −40 796 Amplifiers Tested From 1 Wafer Lot VCC ± = ±15 V TA = 25°C N Package TLE2021 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE VCC ± = ±15 V TA = 25°C −35 IIB I IB − Input Bias Current − nA Percentage of Units − % 16 −200 0 200 400 VIO − Input Offset Voltage − μV 8 4 −30 −25 −20 −15 −10 −5 0 −1 −0.5 0 0.5 1 VIO − Input Offset Voltage − mV 0 −15 −10 −5 0 5 10 VIC − Common-Mode Input Voltage − V Figure 8 Figure 7 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE TLE2024 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE −50 −60 VCC ± = ±15 V TA = 25°C TA = 25°C IIIB IB − Input Bias Current − nA IIB I IB − Input Bias Current − nA −45 VCC ± = ±15 V −40 −35 −30 −40 ÁÁ ÁÁ −25 −20 −15 −50 −10 −5 0 5 10 VIC − Common-Mode Input Voltage − V −30 −20 −15 15 −10 −5 −50 −35 VCC ± = ±15 V VO = 0 VIC = 0 IIIB IB − Input Bias Current − nA IIB I IB − Input Bias Current − nA VCC ± = ±15 V VO = 0 VIC = 0 −45 −25 −20 −15 −10 −40 −35 −30 −25 −5 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 −20 −75 −50 −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 11 † 15 10 TLE2022 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE TLE2021 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE 0 5 Figure 10 Figure 9 −30 0 VIC − Common-Mode Input Voltage − V Figure 12 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2024 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ 1 VCC± = ±15 V VO = 0 VIC = 0 −50 VCC± = ±15 V VIC = 0 TA = 25°C 0.9 0.8 I III − Input Current − mA IIB − Input Bias Current − nA IIB −60 ÁÁ ÁÁ INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE −40 −30 0.7 0.6 0.5 0.4 0.3 0.2 0.1 −20 −75 0 −50 −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |VID| − Differential Input Voltage − V Figure 14 Figure 13 TLE2022 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT TLE2021 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16 VCC ± = ±15 V TA = 25°C 14 12 ÎÎÎÎ ÎÎÎÎ 10 VOM − 8 |VVOM| OM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V V OM 16 ÎÎÎÎ ÎÎÎÎ VOM+ 6 ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁ 4 2 0 0 2 4 6 8 IO − Output Current − mA 10 VCC ± = ±15 V TA = 25°C 14 12 ÎÎÎÎ ÎÎÎÎ 10 VOM− 8 20 VOM+ 6 4 2 0 0 2 4 6 8 10 |IO| − Output Current − mA 12 Figure 16 Figure 15 † ÎÎÎ ÎÎÎ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 1 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2024 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 15 ÎÎÎÎ VCC ± = ±5 V TA = 25°C 14 12 ÎÎÎ ÎÎÎ 10 VOM − 8 |VVOM| OM − Maximum Peak Output Voltage − V VOM − Maximum Peak Output Voltage − V VOM 16 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE ÎÎÎ VOM + 6 ÁÁ ÁÁ ÁÁ 4 2 0 0 2 8 10 4 6 IO − Output Current − mA 12 14 14.5 VOM + 14 VOM − 13.5 13 ÁÁÁ ÁÁÁ ÁÁÁ 12.5 12 −75 VCC ± = ±15 V RL = 10 kΩ TA = 25°C −50 Figure 17 TLE2022 AND TLE2024 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 VCC = 5 V TA = 25°C VOH − High-Level Output Voltage − V VOH VOH VOH − High-Level Output Voltage − V 5 4 3 2 ÁÁ ÁÁ 1 0 0 −1 −2 −3 −4 −5 −6 IOH − High-Level Output Current − mA −7 VCC = 5 V TA = 25°C 4 3 2 1 0 0 −2 −4 −6 −8 −10 IOH − High-Level Output Current − mA Figure 20 Figure 19 † 125 Figure 18 TLE2021 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT ÁÁ ÁÁ −25 0 25 50 75 100 TA − Free-Air Temperature − °C Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS 5 HIGH-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 ÁÁ ÁÁ VOL VOL − Low-Level Output Voltage − V VOH VOH − High-Level Output Voltage − V VCC = 5 V 4.8 4.6 No Load 4.4 ÁÁ ÁÁ ÁÁ RL = 10 kΩ 4.2 4 −75 −50 −25 0 25 50 75 100 4 3 2 1 0 125 VCC = 5 V TA = 25°C 0 0.5 1 1.5 2 2.5 IOL − Low-Level Output Current − mA TA − Free-Air Temperature − °C Figure 21 Figure 22 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VOL VOL − Low-Level Output Voltage − V 1 IOL = 1 mA 0.75 IOL = 0 0.5 0.25 VCC ± = ± 5 V 0 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 VVOPP O(PP) − Maximum Peak-to-Peak Output Voltage − V LOW-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE ÁÁÁ ÁÁÁ 5 4 3 2 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁ 1 0 VCC = 5 V RL = 10 kΩ TA = 25°C 100 Figure 23 † 22 3 1k 10 k 100 k f − Frequency − Hz Figure 24 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1M TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VVOPP O(PP) − Maximum Peak-to-Peak Output Voltage − V 30 25 20 15 10 ÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ VCC ± = ±15 V RL = 10 kΩ TA = 25°C 5 0 100 1k 10 k 100 k f − Frequency − Hz 1M Figure 25 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 100 AVD − Large-Signal Differential Voltage Amplification − dB 60° 80° Phase Shift 80 100° VCC ± = ±15 V AVD 60 120° VCC = 5 V 40 140° 20 160° ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ RL = 10 kΩ CL = 30 pF TA = 25°C 0 −20 10 100 Phase Shift 120 180° 1k 10 k 100 k f − Frequency − Hz 1M 10 M 200° Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 10 6 RL = 10 kΩ ÎÎÎÎÎÎ ÎÎÎÎÎÎ 8 5 AVD AVD − Large-Signal Differential Voltage Amplification − V/μV AVD − Large-Signal Differential Voltage Amplification − V/ μ V RL = 10 kΩ VCC ± = ±15 V 6 4 2 ÎÎÎÎ ÎÎÎÎ −50 −25 0 25 50 75 3 ÁÁ ÁÁ ÁÁ VCC = 5 V 0 −75 VCC ± = ±15 V 4 100 2 1 VCC = 5 V 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 28 Figure 27 TLE2024 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 10 10 VCC ± = ±15 V 6 4 2 VCC ± = ± 5 V 0 −75 −50 −25 0 25 50 75 100 125 IIOS OS − Short-Circuit Output Current − mA AVD − Large-Signal Differential Voltage Amplification − V/ μ V RL = 10 kΩ 8 VO = 0 TA = 25°C 8 6 VID = −100 mV 4 2 0 −2 ÁÁ ÁÁ −4 ÎÎÎÎÎ −6 VID = 100 mV −8 −10 0 2 TA − Free-Air Temperature − °C 24 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 Figure 30 Figure 29 † 125 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 16 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 12 VO = 0 TA = 25°C 10 ÎÎÎÎÎ VID = −100 mV 5 0 −5 VID = 100 mV −10 −15 0 2 4 6 8 10 12 14 TA = 25°C IIOS OS − Short-Circuit Output Current − mA I OS − Short-Circuit Output Current − mA IOS 15 16 |VCC ±| − Supply Voltage − V 8 VID = −100 mV VO = VCC 4 0 ÁÁ ÁÁ ÁÁ −4 VID = 100 mV VO = 0 −8 − 12 5 0 10 15 20 25 VCC − Supply Voltage − V Figure 32 Figure 31 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÎÎÎÎ ÎÎÎÎ TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 8 TA = 25°C 10 IOS I OS − Short-Circuit Output Current − mA I OS − Short-Circuit Output CUrrent − mA IOS 15 VID = − 100 mV VO = VCC 5 0 −5 VID = 100 mV VO = 0 −10 −15 0 5 10 15 20 25 30 ÁÁ ÁÁ VCC − Supply Voltage − V VCC = 5 V 6 VID = −100 mV VO = 5 V 4 2 0 −2 VID = 100 mV VO = 0 −4 −6 −8 − 75 − 50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 34 Figure 33 † 30 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 12 VCC = 5 V VCC ± = ±15 V VID = −100 mV VO = 5 V 4 IOS I OS − Short-Circuit Output Current − mA IOS I OS− Short-Circuit Output Current − mA 6 2 0 −2 −4 ÎÎÎ ÎÎÎÎÎ ÎÎÎ −8 −10 −75 −50 −25 0 25 50 75 VID = −100 mV 4 0 −4 ÁÁ ÁÁ VID = 100 mV VO = 0 −6 VO = 0 8 100 −8 VID = 100 mV −12 −75 125 −50 TA − Free-Air Temperature −°C 0 25 50 75 −25 TA − Free-Air Temperature − °C TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE 250 A IICC CC − Supply Current − μua I OS − Short-Circuit Output Current − mA IOS 200 5 VID = − 100 mV 0 VID = 100 mV −10 −50 −25 0 25 50 75 100 125 TA = 125°C TA = 25°C 100 ÁÁ ÁÁ −5 ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 150 TA = − 55°C 50 0 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V Figure 38 Figure 37 26 16 VO = 0 No Load VCC ± = ±15 V VO = 0 TA − Free-Air Temperature − °C † 14 TLE2021 SUPPLY CURRENT vs SUPPLY VOLTAGE 15 −15 −75 125 Figure 36 Figure 35 10 100 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 SUPPLY CURRENT vs SUPPLY VOLTAGE 500 TLE2024 SUPPLY CURRENT vs SUPPLY VOLTAGE 1000 VO = 0 No Load 800 I CC − Supply Current − μ A IICC A CC − Supply Current − μua TA = 125°C No Load 400 TA = 25°C 300 TA = 125°C TA = − 55°C ÁÁ ÁÁ ÁÁ 200 100 0 ÎÎÎÎ VO = 0 TA = 25°C 600 TA = − 55°C 400 200 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 0 16 0 2 4 ÎÎÎÎÎÎ ÎÎÎÎÎÎ 150 VCC ± = ± 2.5 V 125 100 ÁÁ ÁÁ 75 50 VO = 0 No Load −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C VCC ± = ±15 V 400 IICC A CC − Supply Current − μua A IICC CC − Supply Current − μua 16 500 125 VCC ± = ±2.5 V 300 200 100 VO = 0 No Load 0 −75 −50 Figure 41 † 14 VCC ± = ±15 V 175 0 −75 12 TLE2022 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ 200 25 10 Figure 40 TLE2021 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 8 |VCC ±| − Supply Voltage − V Figure 39 225 6 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 Figure 42 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS 1000 120 CMRR − Common-Mode Rejection Ratio − dB ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC ± = ±15 V 800 I CC − Supply Current − μ A TLE2021 COMMON-MODE REJECTION RATIO vs FREQUENCY TLE2024 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE VCC ± = ±2.5 V 600 400 200 VO = 0 No Load 0 −75 −50 −25 0 25 50 75 100 VCC ± = ±15 V 80 VCC = 5 V 60 40 20 TA = 25°C 0 125 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 100 10 100 TA − Free-Air Temperature − °C Figure 43 CMRR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rehection Ratio − dB ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 120 VCC ± = ±15 V 80 VCC = 5 V 60 40 20 0 100 1k 10 k 100 k f − Frequency − Hz 1M 10 M VCC ± = ±15 V 100 VCC = 5 V 80 60 40 20 TA = 25°C 0 10 10 100 28 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 45 † 10 M TLE2024 COMMON-MODE REJECTION RATIO vs FREQUENCY TA = 25°C 100 1M Figure 44 TLE2022 COMMON-MODE REJECTION RATIO vs FREQUENCY 120 1k 10 k 100 k f − Frequency − Hz Figure 46 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 SLEW RATE† vs FREE-AIR TEMPERATURE TLE2021 SLEW RATE† vs FREE-AIR TEMPERATURE 1 1 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ VCC ± = ±15 V 0.8 VCC = 5 V 0.6 0.4 0.2 0 −75 VCC ± = ±15 V SR − Slew Rate − V/ μ uss SR − Slew Rate − V/us μs 0.8 0.6 VCC = 5 V 0.4 0.2 RL = 20 kΩ CL = 30 pF See Figure 1 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C RL = 20 kΩ CL = 30 pF See Figure 1 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 48 Figure 47 TLE2024 SLEW RATE† vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1 ÎÎÎÎÎ SR − Slew Rate − V/ V/sμ s VCC ± = ±15 V 0.6 VCC = 5 V 0.4 0.2 0 −75 −25 50 0 25 50 75 100 125 VCC ± = ±15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÎÎÎÎÎ ÎÎÎÎÎ 0 ÁÁ ÁÁ RL = 20 kΩ CL = 30 pF See Figure 1 −50 VO − Output Voltage − mV VO 100 0.8 −50 −100 TA − Free-Air Temperature − °C Figure 49 † 125 0 20 40 t − Time − μs 60 80 Figure 50 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÎÎÎÎÎ 2.55 VO − Output Voltage − V VO VO − Output Voltage − V VO 2.6 TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2.5 ÁÁÁ ÁÁÁ VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 ÎÎÎÎÎ ÎÎÎÎÎ 3 2 ÁÁ ÁÁ 2.45 2.4 0 20 40 t − Time − μs 60 1 0 80 0 Figure 51 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 2 ÁÁÁ ÁÁÁ 1 0 3 VCC ± = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 2 1 0 0 20 40 t − Time − μs 60 80 0 20 40 t − Time − μs Figure 53 30 80 TLE2024 VOLTAGE-FOLLOWER LARGE-SCALE PULSE RESPONSE VO − Output Voltage − V VO VO VO − Output Voltage − V 3 60 Figure 52 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 20 40 t − Time − μs Figure 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 60 80 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VO − Output Voltage − V VO 10 VCC ± = ±15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 15 10 VO VO − Output Voltage − V 15 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 0 ÁÁ ÁÁ ÁÁ ÁÁ −5 −10 −15 0 20 40 t − Time − μs 60 ÎÎÎÎÎÎ ÎÎÎÎÎÎ VCC ± = ±15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 0 −5 −10 −15 80 0 TLE2024 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 15 VO − Output Voltage − V VO 10 VCC ± = ±15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 0 −5 −10 −15 0 20 t − Time − μs Figure 57 60 80 Figure 56 40 60 80 VN(PP) VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV μV Figure 55 20 40 t − Time − μs ÁÁ ÁÁ ÁÁ POST OFFICE BOX 655303 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 1 Hz ÎÎÎÎÎÎ ÎÎÎÎÎÎ 0.5 VCC ± = ±15 V 0.4 TA = 25°C 0.3 0.2 0.1 0 − 0.1 − 0.2 − 0.3 − 0.4 − 0.5 0 1 • DALLAS, TEXAS 75265 2 3 4 5 t − Time − s 6 7 8 9 10 Figure 58 31 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz 0.5 VCC ± = ±15 V 0.4 TA = 25°C 0.3 0.2 0.1 0 − 0.1 − 0.2 − 0.3 ÁÁÁ ÁÁÁ ÁÁÁ − 0.4 − 0.5 0 1 2 3 4 5 6 t − Time − s 7 8 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁ ÁÁ ÁÁ VVn nV/ Hz n − Equivalent Input Noise Voltage − nVHz VN(PP) VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV μV TYPICAL CHARACTERISTICS 9 VCC ± = ±15 V RS = 20 Ω TA = 25°C See Figure 2 160 120 80 40 0 10 ÎÎÎÎÎ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁÁ ÎÎÎÎ ÎÎÎÎÎ ÁÁÁÁÁÁ ÎÎÎÎÎ 200 1 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 2 1 0 2 4 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 4 RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 3 10 k Figure 60 B1 B1 − Unity-Gain Bandwidth − MHz B1 B 1 − Unity-Gain Bandwidth − MHz 4 6 8 10 12 14 |VCC±| − Supply Voltage − V 16 RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 3 2 1 0 0 2 Figure 61 32 100 1k f − Frequency − Hz Figure 59 TLE2021 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 0 10 4 6 8 10 12 |VCC±| − Supply Voltage − V Figure 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 16 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2021 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4 RL = 10 kΩ 3 VCC ± = ± 15 V 2 ÎÎÎÎÎ 1 VCC = 5 V 0 −75 −50 −25 0 25 50 75 TA − Free-Air Temperature − °C 100 3 ÎÎÎÎÎÎ ÎÎÎÎÎÎ VCC ± = ± 15 V 2 VCC = 5 V 1 0 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 63 TLE2022 AND TLE2024 PHASE MARGIN vs SUPPLY VOLTAGE 53° φm m − Phase Margin φm m − Phase Margin 55° RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 48° 46° ÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 51° ÁÁ ÁÁ 44° 49° 47° 42° 40° 0 2 4 6 8 10 12 |VCC ±| − Supply Voltage − V 14 16 45° 0 2 4 6 8 10 12 |VCC±| − Supply Voltage − V 14 16 Figure 66 Figure 65 † 125 Figure 64 TLE2021 PHASE MARGIN vs SUPPLY VOLTAGE 50° ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF See Figure 3 B1 B1 − Unity-Gain Bandwidth − MHz B B1 1 − Unity-Gain Bandwidth − MHz CL = 30 pF See Figure 3 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 PHASE MARGIN vs LOAD CAPACITANCE TLE2021 PHASE MARGIN vs LOAD CAPACITANCE 60° 60° 50° 40° VCC = 5 V 30° VCC = 5 V 30° 10° 20° 10° 0 20 40 60 80 CL − Load Capacitance − pF 0° 100 0 20 40 60 80 CL − Load Capacitance − pF 50° 48° TLE2022 AND TLE2024 PHASE MARGIN† vs FREE-AIR TEMPERATURE 54° RL = 10 kΩ CL = 30 pF See Figure 3 52° VCC ± = ±15 V VCC ± = ±15 V 50° φm m − Phase Margin φm m − Phase Margin 46° 44° 42° VCC = 5 V 40° 38° 36° −75 48° ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ 44° 42° −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 VCC = 5 V 46° 40° −75 RL = 10 kΩ CL = 30 pF See Figure 3 −50 Figure 69 34 100 Figure 68 TLE2021 PHASE MARGIN† vs FREE-AIR TEMPERATURE † RL = 10 kΩ TA = 25°C See Figure 3 40° Figure 67 Á Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁ 20° 0 VCC ± = ±15 V VCC ± = ±15 V φm m − Phase Margin φm m − Phase Margin 50° ÁÁ ÁÁ ÁÁ 70° RL = 10 kΩ TA = 30 pF See Figure 3 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 70 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 APPLICATION INFORMATION voltage-follower applications The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71). CF = 20 pF to 50 pF IF ≤ 1 mA RF VCC + − VO VI + VCC − Figure 71. Voltage Follower Input offset voltage nulling The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected. OFFSET N1 OFFSET N2 + IN + − IN − 5 kΩ VCC − (split supply) 1 kΩ GND (single supply) Figure 72. Input Offset Voltage Null Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts™, the model generation software used with Microsim PSpice ™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + egnd ree cee Iee 9 din fb − + rp + re1 IN − IN+ 1 2 re2 14 13 Q1 Q2 C1 dp r2 − 53 dc 11 C2 6 gcm 54 − ve de 5 − ro1 + OUT Figure 73. Boyle Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 36 vlim 8 rc2 4 7 + ga 12 rc1 VCC − vc hlim − + 90 ro2 vb POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 92 + dip 91 + vip − − − + vin TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010 .SUBCKT TLE2021 1 2 3 4 5 * c1 11 12 6.244E−12 c2 6 7 13.4E−12 c3 87 0 10.64E−9 cpsr 85 86 15.9E−9 dcm+ 81 82 dx dcm− 83 81 dx dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx ecmr 84 99 (2 99) 1 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6 ense 89 2 poly(1) (88,0) 120E−6 1 fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6 + −50E7 50E7 50E7 −50E7 547E6 ga 6 0 11 12 188.5E−6 gcm 0 6 10 99 335.2E−12 gpsr 85 86 (85,86) 100E−6 grc1 4 11 (4,11) 1.885E−4 grc2 4 12 (4,12) 1.885E−4 gre1 13 10 (13,10) 6.82E−4 gre2 14 10 (14,10) 6.82E−4 hlim 90 0 vlim 1k hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2 irp 3 4 185E−6 iee 3 10 dc 15.67E−6 iio 2 0 2E−9 i1 88 0 1E−21 q1 11 89 13 qx q2 12 80 14 qx R2 6 9 100.0E3 rcm 84 81 1K ree 10 99 14.76E6 rn1 87 0 2.55E8 rn2 87 88 11.67E3 ro1 8 5 62 ro2 7 99 63 vcm+ 82 99 13.3 vcm− 83 99 −14.6 vb 9 0 dc 0 vc 3 53 dc 1.300 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 3.600 vln 0 92 dc 3.600 vpsr 0 86 dc 0 .model dx d(is=800.0E−18) .model qx pnp(is=800.0E−18 bf=270) .ends Figure 74. Boyle Macromodel for the TLE2021 .SUBCKT TLE2022 1 2 3 4 5 * c1 11 12 6.814E−12 c2 6 7 20.00E−12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 + 45.47E6 −50E6 50E6 50E6 −50E6 ga 6 0 11 12 377.9E−6 gcm 0 6 10 99 7.84E−10 iee 3 10 DC 18.07E−6 hlim 90 0 vlim 1k q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 rc2 ge1 ge2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends 4 4 13 14 10 8 7 3 9 3 54 7 91 0 dx qx 11 2.842E3 12 2.842E3 10 (10,13) 31.299E−3 10 (10,14) 31.299E−3 99 11.07E6 5 250 99 250 4 137.2E3 0 dc 0 53 dc 1.300 4 dc 1.500 8 dc 0 0 dc 3 92 dc 3 d(is=800.0E−18) pnp(is=800.0E−18 bf=257.1) Figure 75. Boyle Macromodel for the TLE2022 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 PACKAGE OPTION ADDENDUM www.ti.com 31-Jan-2011 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp TLE2021AQDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2021MDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2021QDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2022AQDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2022QDREP ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2024AQDWREP ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLE2024QDWREP ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-01XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-02XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-03XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-04XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-05YE ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-06YE ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM V62/04755-07XE ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 (3) Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com 31-Jan-2011 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP : • Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A • Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1 • Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Military - QML certified for Military and Defense Applications Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TLE2021AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2021MDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2021QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2022AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2022QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLE2024AQDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 TLE2024QDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLE2021AQDREP SOIC D 8 2500 367.0 367.0 35.0 TLE2021MDREP SOIC D 8 2500 340.5 338.1 20.6 TLE2021QDREP SOIC D 8 2500 367.0 367.0 35.0 TLE2022AQDREP SOIC D 8 2500 367.0 367.0 35.0 TLE2022QDREP SOIC D 8 2500 367.0 367.0 35.0 TLE2024AQDWREP SOIC DW 16 2000 367.0 367.0 38.0 TLE2024QDWREP SOIC DW 16 2000 367.0 367.0 38.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated