TI V62/04755-05YE

TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
D Controlled Baseline
D
D
D
D
D
D
†
− One Assembly/Test Site, One Fabrication
Site
Extended Temperature Performance of
−40°C to 125°C
Also Available in −55°C to 125°C
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree†
Supply Current . . . 300 μA Max
Component qualification in accordance with JEDEC and industry
standards to ensure reliable operation over an extended
temperature range. This includes, but is not limited to, Highly
Accelerated Stress Test (HAST) or biased 85/85, temperature
cycle, autoclave or unbiased HAST, electromigration, bond
intermetallic life, and mold compound life. Such qualification
testing should not be viewed as justifying use of this component
beyond specified performance and environmental limits.
D High Unity-Gain Bandwidth . . . 2 MHz Typ
D High Slew Rate . . . 0.45 V/μs Min
D Supply-Current Change Over Full Temp
D
D
D
D
D
D
D
Range . . . 10 μA Typ at VCC ± = ± 15 V
Specified for Both 5-V Single-Supply and
±15-V Operation
Phase-Reversal Protection
High Open-Loop Gain . . . 6.5 V/μV
(136 dB) Typ
Low Offset Voltage . . . 100 μV Max
Offset Voltage Drift With Time
0.005 μV/mo Typ
Low Input Bias Current . . . 50 nA Max
Low Noise Voltage . . . 19 nV/√Hz Typ
description
The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new
Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly
improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of options are available in small-outline packaging for high-density systems applications.
The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to
125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2007 Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
ORDERING INFORMATION
VIOmax
AT 25°C
TA
40°C to 125°C
−40°C
−55°C to 125°C
†
ORDERABLE
PART NUMBER
PACKAGE†
TOP-SIDE
MARKING
300 μV
SOIC (D)
Tape and reel
TLE2021AQDREP
2021AE
500 μV
SOIC (D)
Tape and reel
TLE2021QDREP
2021QE
300 μV
SOIC (D)
Tape and reel
TLE2022AQDREP
2022AE
500 μV
SOIC (D)
Tape and reel
TLE2022QDREP
2022QE
750 μV
SOP (DW)
Tape and reel
TLE2024AQDWREP
2024AE
1000 μV
SOP (DW)
Tape and reel
TLE2024QDWREP
2024QE
SOIC (D)
Tape and reel
TLE2021MDREP
500 μV
2021ME
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available
at www.ti.com/sc/package.
TLE2021
D PACKAGE
(TOP VIEW)
OFFSET N1
IN−
IN+
VCC − /GND
1
8
2
7
3
6
4
5
TLE2022
D PACKAGE
(TOP VIEW)
NC
VCC+
OUT
OFFSET N2
1OUT
1IN−
1IN+
VCC − /GND
1
8
2
7
3
6
4
5
TLE2024
DW PACKAGE
(TOP VIEW)
VCC+
2OUT
2IN−
2IN+
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
NC
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN−
4IN +
VCC − /GND
3IN +
3IN −
3OUT
NC
NC − No internal connection
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
equivalent schematic (each amplifier)
VCC+
Q3
Q13
Q7
Q22
Q17
Q28
IN −
IN +
Q34
Q39
Q36
Q38
Q11
D3
Q2
Q32
Q24
Q20
Q8
Q35
Q29
Q19
Q1
Q5
Q31
C4
Q4
Q12
D4
Q14
D1 D2
R7
Q23 Q25
C2
Q10
OUT
Q40
C3
Q21
Q27
R6
R1
C1
OFFSET N1
(see Note A)
Q6
Q9
R2
R4
R3
R5
Q15
Q30 Q33
Q26
Q18
Q37
Q16
OFFSET N2
(see Note A)
VCC − /GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Transistors
TLE2021
TLE2022
TLE2024
40
80
160
Resistors
7
14
28
Diodes
4
8
16
Capacitors
4
8
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.6 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Package thermal impedance, RθJA (see Notes 4 and 5): D (8-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W
DW (16-pin) . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D package . . . . . . . . . . . . . . . . . . . . . . 300°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN
MAX
UNIT
±2
±20
V
0
3.2
VCC ± = ±15 V
−15
13.2
Q suffix
−40
125
M suffix
−55
125
Supply voltage, VCC
VCC = ± 5 V
Common mode input voltage,
Common-mode
voltage VIC
Operating free-air
free air temperature
temperature, TA
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
°C
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
Common mode input
Common-mode
voltage range
High level output
High-level
voltage
TA†
TEST CONDITIONS
TLE2021-EP
MIN
25°C
MAX
120
600
Full range
RS = 50 Ω
μV/mo
25°C
0.2
CMRR
Common mode
Common-mode
rejection ratio
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
ΔICC
Supply current
change over operating
temperature range
25
0.2
25°C
0
to
3.5
70
Full range
0
to
3.2
4
−0.3
to
4
25
−0.3
to
4
4.3
4
4.3
0.8
0.7
Full range
0.1
25°C
85
Full range
80
25°C
105
Full range
100
25°C
1.5
0.8
0.95
0.3
1.5
85
110
dB
80
120
105
120
dB
100
170
Full range
300
170
300
V
V/ V
V/μV
0.1
110
nA
V
3.8
0.95
nA
V
0
to
3.2
0.7
0.3
70
90
0
to
3.5
3.8
25°C
6
10
90
Full range
VO = 2.5 V,
6
10
25°C
RL = 10 kΩ
μV
V
0.005
25°C
VO = 1
1.4
4 V to 4 V
V,
550
0.005
Full range
Large-signal
differential
voltage amplification
400
25°C
RS = 50 Ω
AVD
100
UNIT
μV/°C
25°C
Low level output
Low-level
voltage
MAX
2
Full range
VOL
TYP
2
Full range
RL = 10 kΩ
MIN
800
Full range
VIC = 0,
TLE2021A-EP
TYP
300
300
μA
A
No load
Full range
9
9
μA
†
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2021MDREP
MIN
25
C
25°C
TYP
MAX
120
600
UNIT
VIO
I
Input
t offset
ff t voltage
lt
αVIO
Temperature coefficient of input offset voltage
Full range
2
μV/°C
Input offset voltage long-term drift (see Note 4)
25°C
0.005
μV/mo
25°C
0.2
IIO
Input offset current
IIB
Input bias current
VICR
Full range
0
VIC = 0,
RS = 50 Ω
Full range
0
to
3.5
Full range
0
to
3.2
25°C
VOL
Low level output voltage
Low-level
AVD
Large signal differential voltage amplification
Large-signal
VO = 1
1.4
4 V to 4 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (ΔVCC ± /ΔVIO)
Supply-voltage
VCC = 5 V to 30 V
ICC
Supply current
Full range
RL = 10 kΩ
4
−0.3
to
4
0.7
2 5 V,
V
VO = 2.5
No load
25°C
0.3
0.1
25°C
85
Full range
80
25°C
105
Full range
100
†
1.5
dB
300
300
9
V
dB
120
170
nA
V/ V
V/μV
110
Full range
Full range
0.8
0.95
Full range
nA
V
3.8
25°C
μV
V
V
4.3
Full range
25°C
70
90
25°C
RS = 50 Ω
High level output voltage
High-level
Supply current change over operating
temperature range
25
Full range
Common mode input voltage range
Common-mode
6
10
25°C
VOH
ΔICC
850
μA
A
μA
Full range is −55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
Common mode input
Common-mode
voltage range
TA†
TEST CONDITIONS
TLE2021-EP
MIN
25°C
MAX
120
500
Full range
RS = 50 Ω
VOM −
AVD
Large-signal
differential voltage
amplification
VO = ± 0 V,
V
RL = 10 kΩ
CMRR
Common mode
Common-mode
rejection ratio
min,
VIC = VICRmin
RS = 50 Ω
kSVR
Supply-voltage
rejection ratio
(ΔVCC ± /ΔVIO)
VCC ± = ± 2
2.5
5 V to ±15 V
ICC
Supply current
ΔICC
Supply current
change over
operating temperature
range
450
μV
V
0.006
0.006
μV/mo
25°C
0.2
25
0.2
70
Full range
−15
to
13.2
−15.3
to
14
25
13.8
25°C
−13.7
Full range
−13.6
0.5
25°C
100
Full range
96
25°C
105
Full range
100
90
−15
to
13.5
14.3
−15.3
to
14
14
−14.1
25°C
−13.7
14.3
1
−14.1
V
6.5
V/ V
V/μV
0.5
115
100
115
dB
96
120
105
120
dB
100
200
Full range
350
200
350
nA
V
−13.6
6.5
nA
V
13.8
1
Full range
70
−15
to
13.2
14
Full range
6
10
90
−15
to
13.5
25°C
6
10
25°C
25°C
VO = 0,
300
25°C
RS = 50 Ω
RL = 10 kΩ
80
UNIT
μV/°C
25°C
Maximum negative
peak output voltage
swing
MAX
2
Full range
Maximum positive
peak output voltage
swing
TYP
2
Full range
VOM +
MIN
700
Full range
VIC = 0,
TLE2021A-EP
TYP
350
350
A
μA
No load
Full range
10
10
μA
†
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2021MDREP
MIN
25
C
25°C
TYP
MAX
120
500
UNIT
VIO
I
Input
t offset
ff t voltage
lt
αVIO
Temperature coefficient of input offset voltage
Full range
2
μV/°C
Input offset voltage long-term drift (see Note 4)
25°C
0.006
μV/mo
25°C
0.2
IIO
Input offset current
IIB
Input bias current
VICR
Full range
0
VIC = 0,
RS = 50 Ω
Full range
−15
to
13.5
Full range
−15
to
13.5
25°C
VOM−
Maximum negative peak output voltage swing
AVD
Large signal differential voltage amplification
Large-signal
VO = ±0 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio (ΔVCC ± /ΔVIO)
Supply-voltage
VCC± = 2.5
2 5 V to ±ℑ° V
ICC
Supply current
RL = 10 kΩ
13.8
25°C
−13.7
Full range
−13.6
No load
0.5
25°C
100
Full range
96
25°C
105
Full range
100
−15.3
to
14
nA
V
6.5
V/ V
V/μV
115
dB
120
dB
350
350
10
nA
V
−14.1
200
μV
V
V
14.3
Full range
Full range
†
1
Full range
25°C
0
VO = 0,
14
Full range
25°C
70
90
25°C
RS = 50 Ω
Maximum positive peak output voltage swing
Supply current change over operating
temperature range
25
Full range
Common mode input voltage range
Common-mode
6
10
25°C
VOM+
ΔICC
800
μA
A
μA
Full range is −55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
Common mode input
Common-mode
voltage range
TA†
TEST CONDITIONS
TLE2022-EP
MIN
RS = 50 Ω
800
550
AVD
Large signal differential
Large-signal
voltage amplification
1 4 V to 4 V
V,
VO = 1.4
RL = 10 kΩ
CMRR
Common mode rejection
Common-mode
ratio
min,
VIC = VICRmin
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
ΔICC
Supply current change over
operating temperature
range
μV/°C
V/°C
25°C
0 005
0.005
0 005
0.005
μV/mo
V/mo
25°C
0.5
35
0.4
0
to
3.5
70
Full range
0
to
3.2
4
−0.3
to
4
33
−0.3
to
4
4.3
4
4.3
0.8
0.7
25°C
0.3
0.1
25°C
85
Full range
80
25°C
100
Full range
95
25°C
1.5
0.8
0.95
0.4
1.5
87
102
dB
82
115
103
118
dB
98
450
Full range
600
450
600
V
V/ V
V/μV
0.1
100
nA
V
3.8
0.95
nA
V
0
to
3.2
0.7
Full range
70
90
0
to
3.5
3.8
25°C
6
10
90
25°C
25
C
Full range
6
10
Full range
VO = 2.5 V,
μV
V
2
25°C
RL = 10 kΩ
UNIT
2
RS = 50 Ω
Low level output voltage
Low-level
MAX
Full range
Full range
VOL
TYP
400
25°C
High level output voltage
High-level
MIN
600
Full range
VOH
TLE2022A-EP
MAX
25°C
Full range
0,
VIC = 0
TYP
600
600
A
μA
No load
Full range
37
37
μA
†
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long term drift
long-term
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TA†
TEST CONDITIONS
25°C
Common-mode
Common
mode input
voltage range
Maximum positive peak
output voltage swing
150
500
RS = 50 Ω
25°C
0.5
25°C
RL = 10 kΩ
CMRR
Common mode rejection
Common-mode
ratio
min,
VIC = VICRmin
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection
ratio (ΔVCC ± /ΔVIO)
5 V to ±15 V
±2.5
VCC ± = ±2
ICC
Supply current
ΔICC
Supply current change
over operating
temperature range
Full range
6
0.4
10
35
70
33
−15 −15.3
to
to
13.5
14
−15
to
13.2
−15
to
13.2
14
14.3
14
14.3
−13.7 −14.1
−13.6
−13.6
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
4
1
97
V
7
V/ V
V/μV
109
dB
93
115
103
118
dB
98
550
Full range
700
550
700
nA
V
1
106
nA
V
13.8
−13.7 −14.1
25°C
70
90
−15 −15.3
to
to
13.5
14
13.8
6
10
90
25°C
VO = 0,
μV
V
μV/mo
V/mo
25°C
V
VO = ±10 V,
450
0 006
0.006
Full range
Large signal differential
Large-signal
voltage amplification
300
0 006
0.006
RS = 50 Ω
AVD
120
UNIT
25°C
25°C
Maximum negative peak
output voltage swing
MAX
μV/°C
V/°C
Full range
VOM −
TYP
2
Full range
RL = 10 kΩ
MIN
2
Full range
VOM +
MAX
700
Full range
0,
VIC = 0
TLE2022A-EP
TYP
Full range
25°C
25
C
VICR
TLE2022-EP
MIN
700
700
μA
A
No load
Full range
†
60
60
μA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
VOH
Common mode input
Common-mode
voltage range
TEST CONDITIONS
TA†
TLE2024-EP
MIN
RS = 50 Ω
850
1050
Large signal differential
Large-signal
voltage amplification
1.4
4 V to 4 V
V,
VO = 1
RL = 10 kΩ
CMRR
Common mode rejection
Common-mode
ratio
min,
VIC = VICRmin
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (ΔVCC± /ΔVIO)
±2.5
5 V to ±15 V
VCC ± = ±2
ICC
Supply current
ΔICC
Supply current change
over operating
temperature range
μV/°C
25°C
0.005
0.005
μV/mo
25°C
0.6
6
0.5
10
45
25°C
0
to
3.5
70
Full range
0
to
3.2
25°C
3.9
Full range
3.7
−0.3
to
4
40
90
0
to
3.5
−0.3
to
4
4.2
3.9
0.8
4.2
0.7
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
25°C
1.5
0.8
1.5
82
92
dB
82
112
100
115
dB
95
800
Full range
1200
800
1200
V
V/ V
V/μV
0.1
90
nA
V
0.95
0.3
nA
V
3.7
0.95
0.2
70
0
to
3.2
0.7
25°C
6
10
90
Full range
VO = 0,
μV
V
2
25°C
AVD
UNIT
2
RS = 50 Ω
Low level output voltage
Low-level
MAX
1100
Full range
VOL
TYP
1300
25°C
RL = 10 kΩ
MIN
25°C
Full range
High level output voltage
High-level
TLE2024A-EP
MAX
Full range
Full range
VIC = 0,
TYP
1200
1200
μA
A
No load
Full range
50
50
μA
†
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
RS = 50 Ω
VOM +
Common mode input
Common-mode
voltage range
Maximum positive peak
output voltage swing
950
VO = ±10 V,
V
RL = 10 kΩ
CMRR
Common mode rejection
Common-mode
ratio
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (ΔVCC ± /ΔVIO)
VCC ± = ± 2
2.5
5 V to ±15 V
ICC
Supply current
ΔICC
Supply current change
over operating
temperature range
μV/°C
25°C
0.006
0.006
μV/mo
25°C
0.6
6
0.2
10
50
70
45
90
Full range
−15
to
13.2
−15
to
13.2
25°C
13.8
Full range
13.7
13.8
14.2
−13.7 −14.1
−13.6
−13.6
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
25°C
2
0.8
94
V
4
V/ V
V/μV
105
dB
90
112
100
115
dB
95
1050
Full range
1400
1050
1400
nA
V
0.8
102
nA
V
13.7
−13.7 −14.1
25°C
70
90
−15 −15.3
to
to
13.5
14
14.1
6
10
−15 −15.3
to
to
13.5
14
Full range
VO = 0,
μV
V
2
25°C
Large signal differential
Large-signal
voltage amplification
UNIT
2
RS = 50 Ω
AVD
MAX
750
Full range
Maximum negative peak
output voltage swing
TYP
1200
25°C
VOM −
MIN
1000
Full range
RL = 10 kΩ
TLE2024A-EP
MAX
25°C
Full range
VIC = 0,
TYP
Full range
25°C
VICR
TLE2024-EP
MIN
1400
1400
μA
A
No load
Full range
†
85
85
μA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TA
See Figure 1
MIN
TYP
MAX
UNIT
SR
Slew rate at unity gain
VO = 1 V to 3 V,
25°C
0.5
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
21
V/μs
f = 1 kHz
25°C
17
VN(PP)
Peak to peak equivalent input
Peak-to-peak
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
f = 0.1 to 10 Hz
25°C
0.47
In
Equivalent input noise current
25°C
0.9
pA/Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
1.2
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
42°
nV/Hz
μV
V
TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER
†
TEST CONDITIONS
See Figure 1
TA†
MIN
TYP
25°C
0.45
0.65
Full range
0.4
SR
Slew rate at unity gain
V
VO = ± 10 V,
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
f = 1 kHz
25°C
15
VN(PP)
Peak to peak equivalent input
Peak-to-peak
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
f = 0.1 to 10 Hz
25°C
0.47
In
Equivalent input noise current
25°C
0.09
B1
Unity-gain bandwidth
See Figure 3
25°C
2
φm
Phase margin at unity gain
See Figure 3
25°C
46°
MAX
UNIT
V/ s
V/μs
nV/Hz
μV
V
pA/Hz
MHz
Full range is −40°C to 125°C for the Q-suffix devices.
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TYP
SR
Slew rate at unity gain
VO = 1 V to 3 V,
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
21
f = 1 kHz
17
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
Unity-gain bandwidth
φm
Phase margin at unity gain
POST OFFICE BOX 655303
See Figure 1
MIN
0.5
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
MAX
UNIT
V/μs
nV/√Hz
μV
V
0.1
pA/√Hz
See Figure 3
1.7
MHz
See Figure 3
47°
• DALLAS, TEXAS 75265
13
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V
PARAMETER
†
TEST CONDITIONS
See Figure 1
TA†
MIN
TYP
25°C
0.45
0.65
Full range
0.4
MAX
UNIT
SR
Slew rate at unity gain
V
VO = ±10 V,
V/ s
V/μs
Vn
Equivalent input noise
voltage (see Figure 2)
f = 10 Hz
25°C
19
f = 1 kHz
25°C
15
VN(PP)
Peak to peak equivalent
Peak-to-peak
input noise voltage
f = 0.1 to 1 Hz
25°C
0.16
f = 0.1 to 10 Hz
25°C
0.47
In
Equivalent input noise current
25°C
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
2.8
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
52°
nV/√Hz
μV
V
Full range is −40°C to 125°C.
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
Unity-gain bandwidth
φm
Phase margin at unity gain
MIN
See Figure 1
TYP
MAX
0.5
f = 10 Hz
21
f = 1 kHz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
UNIT
V/μs
nV/√ Hz
μV
V
0.1
pA/√Hz
See Figure 3
1.7
MHz
See Figure 3
47°
TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise
noted)
PARAMETER
†
TEST CONDITIONS
See Figure 1
TA†
MIN
TYP
25°C
0.45
0.7
Full range
0.4
MAX
UNIT
SR
Slew rate at unity gain
VO = ±10 V
V,
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
f = 1 kHz
25°C
15
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
f = 0.1 to 1 Hz
25°C
0.16
f = 0.1 to 10 Hz
25°C
0.47
In
Equivalent input noise current
25°C
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
2.8
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
52°
Full range is −40°C to 125°C.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/ s
V/μs
nV/√Hz
μV
V
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
PARAMETER MEASUREMENT INFORMATION
20 kΩ
20 kΩ
5V
15 V
−
VO
VI
+
30 pF
(see Note A)
VO
+
−
VI
−15 V
30 pF
(see Note A)
20 kΩ
(a) SINGLE SUPPLY
20 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
2 kΩ
2 kΩ
15 V
5V
−
20 Ω
VO
−
VO
+
2.5 V
+
20 Ω
−15 V
20 Ω
20 Ω
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
VI
100 Ω
10 kΩ
10 kΩ
5V
15 V
−
VI
VO
2.5 V
−
+
+
30 pF
(see Note A)
VO
100 Ω
−15 V
30 pF
(see Note A)
10 kΩ
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
PARAMETER MEASUREMENT INFORMATION
5V
VO
VI
+
10 kΩ
VO
+
−
10 kΩ
−
0.1 μF
VI
15 V
− 15 V
10 kΩ
30 pF
(see Note A)
30 pF
(see Note A)
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
II
Input current
vs Differential input voltage
VOM
Maximum peak output voltage
vs Output current
vs Free-air temperature
VOH
High-level output voltage
vs High-level output current
vs Free-air temperature
19, 20
21
VOL
Low-level output voltage
vs Low-level output current
vs Free-air temperature
22
23
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
30 − 33
34 − 37
ICC
Supply current
vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR
Common-mode rejection ratio
vs Frequency
44, 45, 46
SR
Slew rate
vs Free-air temperature
47, 48, 49
Voltage-follower small-signal pulse response
5, 6, 7
8, 9, 10
11, 12, 13
14
15, 16, 17
18
24, 25
50, 51
Voltage-follower large-signal pulse response
52 − 57
VN(PP)
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
Vn
Equivalent input noise voltage
vs Frequency
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
58
59
60
26
17
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
20
ÎÎÎÎ
TA = 25°C
16
Percentage of Units − %
Percentage of Units − %
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
P Package
16
ÎÎÎÎÎÎÎÎÎÎÎ
20
231 Units Tested From 1 Wafer Lot
VCC ± = ±15 V
12
8
4
P Package
12
8
4
0
−600 −450 −300 −150
150 300
450
0
VIO − Input Offset Voltage − μV
0
−600
600
−400
Figure 5
12
600
Figure 6
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
−40
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
N Package
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VCC ± = ±15 V
TA = 25°C
−35
IIB
I IB − Input Bias Current − nA
Percentage of Units − %
16
−200
0
200
400
VIO − Input Offset Voltage − μV
8
4
−30
−25
−20
−15
−10
−5
0
−1
−0.5
0
0.5
1
VIO − Input Offset Voltage − mV
0
−15
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
Figure 8
Figure 7
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
−50
−60
VCC ± = ±15 V
TA = 25°C
TA = 25°C
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
−45
VCC ± = ±15 V
−40
−35
−30
−40
ÁÁ
ÁÁ
−25
−20
−15
−50
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
−30
−20
−15
15
−10
−5
−50
−35
VCC ± = ±15 V
VO = 0
VIC = 0
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
VCC ± = ±15 V
VO = 0
VIC = 0
−45
−25
−20
−15
−10
−40
−35
−30
−25
−5
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
−20
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 11
†
15
10
TLE2022
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
0
5
Figure 10
Figure 9
−30
0
VIC − Common-Mode Input Voltage − V
Figure 12
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2024
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1
VCC± = ±15 V
VO = 0
VIC = 0
−50
VCC± = ±15 V
VIC = 0
TA = 25°C
0.9
0.8
I III − Input Current − mA
IIB − Input Bias Current − nA
IIB
−60
ÁÁ
ÁÁ
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
−40
−30
0.7
0.6
0.5
0.4
0.3
0.2
0.1
−20
−75
0
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
|VID| − Differential Input Voltage − V
Figure 14
Figure 13
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
VCC ± = ±15 V
TA = 25°C
14
12
ÎÎÎÎ
ÎÎÎÎ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
V
OM
16
ÎÎÎÎ
ÎÎÎÎ
VOM+
6
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
IO − Output Current − mA
10
VCC ± = ±15 V
TA = 25°C
14
12
ÎÎÎÎ
ÎÎÎÎ
10
VOM−
8
20
VOM+
6
4
2
0
0
2
4
6
8
10
|IO| − Output Current − mA
12
Figure 16
Figure 15
†
ÎÎÎ
ÎÎÎ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
1
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
15
ÎÎÎÎ
VCC ± = ±5 V
TA = 25°C
14
12
ÎÎÎ
ÎÎÎ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
VOM
16
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÎÎÎ
VOM +
6
ÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
8
10
4
6
IO − Output Current − mA
12
14
14.5
VOM +
14
VOM −
13.5
13
ÁÁÁ
ÁÁÁ
ÁÁÁ
12.5
12
−75
VCC ± = ±15 V
RL = 10 kΩ
TA = 25°C
−50
Figure 17
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
VCC = 5 V
TA = 25°C
VOH − High-Level Output Voltage − V
VOH
VOH
VOH − High-Level Output Voltage − V
5
4
3
2
ÁÁ
ÁÁ
1
0
0
−1
−2
−3
−4
−5
−6
IOH − High-Level Output Current − mA
−7
VCC = 5 V
TA = 25°C
4
3
2
1
0
0
−2
−4
−6
−8
−10
IOH − High-Level Output Current − mA
Figure 20
Figure 19
†
125
Figure 18
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
5
HIGH-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
ÁÁ
ÁÁ
VOL
VOL − Low-Level Output Voltage − V
VOH
VOH − High-Level Output Voltage − V
VCC = 5 V
4.8
4.6
No Load
4.4
ÁÁ
ÁÁ
ÁÁ
RL = 10 kΩ
4.2
4
−75
−50 −25
0
25
50
75
100
4
3
2
1
0
125
VCC = 5 V
TA = 25°C
0
0.5
1
1.5
2
2.5
IOL − Low-Level Output Current − mA
TA − Free-Air Temperature − °C
Figure 21
Figure 22
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VOL
VOL − Low-Level Output Voltage − V
1
IOL = 1 mA
0.75
IOL = 0
0.5
0.25
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
LOW-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÁÁÁ
ÁÁÁ
5
4
3
2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
1
0
VCC = 5 V
RL = 10 kΩ
TA = 25°C
100
Figure 23
†
22
3
1k
10 k
100 k
f − Frequency − Hz
Figure 24
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1M
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
30
25
20
15
10
ÁÁ
ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
VCC ± = ±15 V
RL = 10 kΩ
TA = 25°C
5
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
AVD − Large-Signal Differential
Voltage Amplification − dB
60°
80°
Phase Shift
80
100°
VCC ± = ±15 V
AVD
60
120°
VCC = 5 V
40
140°
20
160°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
0
−20
10
100
Phase Shift
120
180°
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
200°
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
10
6
RL = 10 kΩ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
8
5
AVD
AVD − Large-Signal Differential
Voltage Amplification − V/μV
AVD − Large-Signal Differential
Voltage Amplification − V/ μ V
RL = 10 kΩ
VCC ± = ±15 V
6
4
2
ÎÎÎÎ
ÎÎÎÎ
−50
−25
0
25
50
75
3
ÁÁ
ÁÁ
ÁÁ
VCC = 5 V
0
−75
VCC ± = ±15 V
4
100
2
1
VCC = 5 V
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
Figure 28
Figure 27
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
10
10
VCC ± = ±15 V
6
4
2
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75
100
125
IIOS
OS − Short-Circuit Output Current − mA
AVD − Large-Signal Differential
Voltage Amplification − V/ μ V
RL = 10 kΩ
8
VO = 0
TA = 25°C
8
6
VID = −100 mV
4
2
0
−2
ÁÁ
ÁÁ
−4
ÎÎÎÎÎ
−6
VID = 100 mV
−8
−10
0
2
TA − Free-Air Temperature − °C
24
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 30
Figure 29
†
125
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
VO = 0
TA = 25°C
10
ÎÎÎÎÎ
VID = −100 mV
5
0
−5
VID = 100 mV
−10
−15
0
2
4
6
8
10
12
14
TA = 25°C
IIOS
OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output Current − mA
IOS
15
16
|VCC ±| − Supply Voltage − V
8
VID = −100 mV
VO = VCC
4
0
ÁÁ
ÁÁ
ÁÁ
−4
VID = 100 mV
VO = 0
−8
− 12
5
0
10
15
20
25
VCC − Supply Voltage − V
Figure 32
Figure 31
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÎÎÎÎ
ÎÎÎÎ
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
8
TA = 25°C
10
IOS
I OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output CUrrent − mA
IOS
15
VID = − 100 mV
VO = VCC
5
0
−5
VID = 100 mV
VO = 0
−10
−15
0
5
10
15
20
25
30
ÁÁ
ÁÁ
VCC − Supply Voltage − V
VCC = 5 V
6
VID = −100 mV
VO = 5 V
4
2
0
−2
VID = 100 mV
VO = 0
−4
−6
−8
− 75
− 50
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Figure 34
Figure 33
†
30
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
12
VCC = 5 V
VCC ± = ±15 V
VID = −100 mV
VO = 5 V
4
IOS
I OS − Short-Circuit Output Current − mA
IOS
I OS− Short-Circuit Output Current − mA
6
2
0
−2
−4
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
−8
−10
−75
−50
−25
0
25
50
75
VID = −100 mV
4
0
−4
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
−6
VO = 0
8
100
−8
VID = 100 mV
−12
−75
125
−50
TA − Free-Air Temperature −°C
0
25
50
75
−25
TA − Free-Air Temperature − °C
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
250
A
IICC
CC − Supply Current − μua
I OS − Short-Circuit Output Current − mA
IOS
200
5
VID = − 100 mV
0
VID = 100 mV
−10
−50
−25
0
25
50
75
100
125
TA = 125°C
TA = 25°C
100
ÁÁ
ÁÁ
−5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
150
TA = − 55°C
50
0
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
Figure 38
Figure 37
26
16
VO = 0
No Load
VCC ± = ±15 V
VO = 0
TA − Free-Air Temperature − °C
†
14
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
15
−15
−75
125
Figure 36
Figure 35
10
100
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
500
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
1000
VO = 0
No Load
800
I CC − Supply Current − μ A
IICC
A
CC − Supply Current − μua
TA = 125°C
No Load
400
TA = 25°C
300
TA = 125°C
TA = − 55°C
ÁÁ
ÁÁ
ÁÁ
200
100
0
ÎÎÎÎ
VO = 0
TA = 25°C
600
TA = − 55°C
400
200
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
0
16
0
2
4
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
150
VCC ± = ± 2.5 V
125
100
ÁÁ
ÁÁ
75
50
VO = 0
No Load
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
VCC ± = ±15 V
400
IICC
A
CC − Supply Current − μua
A
IICC
CC − Supply Current − μua
16
500
125
VCC ± = ±2.5 V
300
200
100
VO = 0
No Load
0
−75
−50
Figure 41
†
14
VCC ± = ±15 V
175
0
−75
12
TLE2022
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
200
25
10
Figure 40
TLE2021
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
8
|VCC ±| − Supply Voltage − V
Figure 39
225
6
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
Figure 42
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
1000
120
CMRR − Common-Mode Rejection Ratio − dB
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
800
I CC − Supply Current − μ A
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2024
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
VCC ± = ±2.5 V
600
400
200
VO = 0
No Load
0
−75
−50
−25
0
25
50
75
100
VCC ± = ±15 V
80
VCC = 5 V
60
40
20
TA = 25°C
0
125
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
10
100
TA − Free-Air Temperature − °C
Figure 43
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rehection Ratio − dB
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
120
VCC ± = ±15 V
80
VCC = 5 V
60
40
20
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
VCC ± = ±15 V
100
VCC = 5 V
80
60
40
20
TA = 25°C
0
10
10
100
28
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 45
†
10 M
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TA = 25°C
100
1M
Figure 44
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
1k
10 k
100 k
f − Frequency − Hz
Figure 46
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TLE2021
SLEW RATE†
vs
FREE-AIR TEMPERATURE
1
1
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC ± = ±15 V
0.8
VCC = 5 V
0.6
0.4
0.2
0
−75
VCC ± = ±15 V
SR − Slew Rate − V/ μ
uss
SR − Slew Rate − V/us
μs
0.8
0.6
VCC = 5 V
0.4
0.2
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
RL = 20 kΩ
CL = 30 pF
See Figure 1
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 48
Figure 47
TLE2024
SLEW RATE†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
1
ÎÎÎÎÎ
SR − Slew Rate − V/
V/sμ s
VCC ± = ±15 V
0.6
VCC = 5 V
0.4
0.2
0
−75
−25
50
0
25
50
75
100
125
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÎÎÎÎÎ
ÎÎÎÎÎ
0
ÁÁ
ÁÁ
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
VO − Output Voltage − mV
VO
100
0.8
−50
−100
TA − Free-Air Temperature − °C
Figure 49
†
125
0
20
40
t − Time − μs
60
80
Figure 50
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÎÎÎÎÎ
2.55
VO − Output Voltage − V
VO
VO − Output Voltage − V
VO
2.6
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
2.5
ÁÁÁ
ÁÁÁ
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÎÎÎÎÎ
ÎÎÎÎÎ
3
2
ÁÁ
ÁÁ
2.45
2.4
0
20
40
t − Time − μs
60
1
0
80
0
Figure 51
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
ÁÁÁ
ÁÁÁ
1
0
3
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
1
0
0
20
40
t − Time − μs
60
80
0
20
40
t − Time − μs
Figure 53
30
80
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
VO − Output Voltage − V
VO
VO
VO − Output Voltage − V
3
60
Figure 52
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
4
20
40
t − Time − μs
Figure 54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
80
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
15
10
VO
VO − Output Voltage − V
15
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−5
−10
−15
0
20
40
t − Time − μs
60
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
80
0
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
VO − Output Voltage − V
VO
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
t − Time − μs
Figure 57
60
80
Figure 56
40
60
80
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
μV
Figure 55
20
40
t − Time − μs
ÁÁ
ÁÁ
ÁÁ
POST OFFICE BOX 655303
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
0.5
VCC ± = ±15 V
0.4
TA = 25°C
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
− 0.4
− 0.5
0
1
• DALLAS, TEXAS 75265
2
3
4
5
t − Time − s
6
7
8
9
10
Figure 58
31
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
0.5
VCC ± = ±15 V
0.4
TA = 25°C
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
ÁÁÁ
ÁÁÁ
ÁÁÁ
− 0.4
− 0.5
0
1
2
3
4
5
6
t − Time − s
7
8
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VVn
nV/ Hz
n − Equivalent Input Noise Voltage − nVHz
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
μV
TYPICAL CHARACTERISTICS
9
VCC ± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 2
160
120
80
40
0
10
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
200
1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
2
1
0
2
4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
10 k
Figure 60
B1
B1 − Unity-Gain Bandwidth − MHz
B1
B
1 − Unity-Gain Bandwidth − MHz
4
6
8
10
12
14
|VCC±| − Supply Voltage − V
16
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
2
1
0
0
2
Figure 61
32
100
1k
f − Frequency − Hz
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
0
10
4
6
8
10
12
|VCC±| − Supply Voltage − V
Figure 62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
16
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
RL = 10 kΩ
3
VCC ± = ± 15 V
2
ÎÎÎÎÎ
1
VCC = 5 V
0
−75
−50 −25
0
25
50
75
TA − Free-Air Temperature − °C
100
3
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ± 15 V
2
VCC = 5 V
1
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 63
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
53°
φm
m − Phase Margin
φm
m − Phase Margin
55°
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
48°
46°
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
51°
ÁÁ
ÁÁ
44°
49°
47°
42°
40°
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
16
45°
0
2
4
6
8
10
12
|VCC±| − Supply Voltage − V
14
16
Figure 66
Figure 65
†
125
Figure 64
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
See Figure 3
B1
B1 − Unity-Gain Bandwidth − MHz
B
B1
1 − Unity-Gain Bandwidth − MHz
CL = 30 pF
See Figure 3
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
60°
60°
50°
40°
VCC = 5 V
30°
VCC = 5 V
30°
10°
20°
10°
0
20
40
60
80
CL − Load Capacitance − pF
0°
100
0
20
40
60
80
CL − Load Capacitance − pF
50°
48°
TLE2022 AND TLE2024
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
54°
RL = 10 kΩ
CL = 30 pF
See Figure 3
52°
VCC ± = ±15 V
VCC ± = ±15 V
50°
φm
m − Phase Margin
φm
m − Phase Margin
46°
44°
42°
VCC = 5 V
40°
38°
36°
−75
48°
ÁÁ
ÁÁ ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
44°
42°
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VCC = 5 V
46°
40°
−75
RL = 10 kΩ
CL = 30 pF
See Figure 3
−50
Figure 69
34
100
Figure 68
TLE2021
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
†
RL = 10 kΩ
TA = 25°C
See Figure 3
40°
Figure 67
Á
Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁ
20°
0
VCC ± = ±15 V
VCC ± = ±15 V
φm
m − Phase Margin
φm
m − Phase Margin
50°
ÁÁ
ÁÁ
ÁÁ
70°
RL = 10 kΩ
TA = 30 pF
See Figure 3
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 70
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF ≤ 1 mA
RF
VCC +
−
VO
VI
+
VCC −
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
OFFSET N1
OFFSET N2
+
IN +
−
IN −
5 kΩ
VCC − (split supply)
1 kΩ GND (single supply)
Figure 72. Input Offset Voltage Null Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts™, the model generation software used
with Microsim PSpice ™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and
Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
egnd
ree
cee
Iee
9
din
fb
−
+
rp
+
re1
IN −
IN+
1
2
re2
14
13
Q1
Q2
C1
dp
r2
−
53
dc
11
C2
6
gcm
54
−
ve
de
5
−
ro1
+
OUT
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
36
vlim
8
rc2
4
7
+
ga
12
rc1
VCC −
vc
hlim
−
+
90
ro2
vb
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
92
+ dip
91
+
vip
−
−
−
+
vin
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010
.SUBCKT TLE2021 1 2 3 4 5
*
c1
11 12 6.244E−12
c2
6
7 13.4E−12
c3
87 0 10.64E−9
cpsr 85 86 15.9E−9
dcm+ 81 82 dx
dcm− 83 81 dx
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6
ense 89 2 poly(1) (88,0) 120E−6 1
fb
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ −50E7 50E7 50E7 −50E7 547E6
ga
6
0 11 12 188.5E−6
gcm 0
6 10 99 335.2E−12
gpsr 85 86 (85,86) 100E−6
grc1 4
11 (4,11) 1.885E−4
grc2 4
12 (4,12) 1.885E−4
gre1 13 10 (13,10) 6.82E−4
gre2 14 10 (14,10) 6.82E−4
hlim
90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2
irp
3
4 185E−6
iee
3
10 dc 15.67E−6
iio
2
0 2E−9
i1
88 0 1E−21
q1
11 89 13 qx
q2
12 80 14 qx
R2
6
9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8
5 62
ro2 7
99 63
vcm+ 82 99 13.3
vcm− 83 99 −14.6
vb
9
0 dc 0
vc
3
53 dc 1.300
ve
54 4 dc 1.500
vlim 7
8 dc 0
vlp
91 0 dc 3.600
vln
0
92 dc 3.600
vpsr 0
86 dc 0
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1
11 12 6.814E−12
c2
6
7 20.00E−12
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 −50E6 50E6 50E6 −50E6
ga 6 0
11 12 377.9E−6
gcm 0 6
10 99 7.84E−10
iee
3
10 DC 18.07E−6
hlim 90 0 vlim 1k
q1
11 2 13 qx
q2
12 1 14 qx
r2
6
9 100.0E3
rc1
rc2
ge1
ge2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
4
4
13
14
10
8
7
3
9
3
54
7
91
0
dx
qx
11 2.842E3
12 2.842E3
10 (10,13) 31.299E−3
10 (10,14) 31.299E−3
99 11.07E6
5 250
99 250
4 137.2E3
0 dc 0
53 dc 1.300
4 dc 1.500
8 dc 0
0 dc 3
92 dc 3
d(is=800.0E−18)
pnp(is=800.0E−18 bf=257.1)
Figure 75. Boyle Macromodel for the TLE2022
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
PACKAGE OPTION ADDENDUM
www.ti.com
31-Jan-2011
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
TLE2021AQDREP
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2021MDREP
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2021QDREP
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2022AQDREP
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2022QDREP
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2024AQDWREP
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2024QDWREP
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-01XE
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-02XE
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-03XE
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-04XE
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-05YE
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-06YE
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
V62/04755-07XE
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
(3)
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
31-Jan-2011
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP :
• Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A
• Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1
• Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLE2021AQDREP
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021MDREP
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021QDREP
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022AQDREP
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022QDREP
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2024AQDWREP
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
TLE2024QDWREP
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLE2021AQDREP
SOIC
D
8
2500
367.0
367.0
35.0
TLE2021MDREP
SOIC
D
8
2500
340.5
338.1
20.6
TLE2021QDREP
SOIC
D
8
2500
367.0
367.0
35.0
TLE2022AQDREP
SOIC
D
8
2500
367.0
367.0
35.0
TLE2022QDREP
SOIC
D
8
2500
367.0
367.0
35.0
TLE2024AQDWREP
SOIC
DW
16
2000
367.0
367.0
38.0
TLE2024QDWREP
SOIC
DW
16
2000
367.0
367.0
38.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated