FUJITSU SEMICONDUCTOR DATA SHEET DS07-16507-1E 32-bit Proprietary Microcontroller CMOS FR60Lite MB91260B Series MB91263B/MB91F264B ■ DESCRIPTION The MB91260B series is a 32-bit RISC microcontroller designed by Fujitsu for embedded control applications which require high-speed processing. The CPU is used the FR family and the compatibility of FR60Lite. ■ FEATURES • FR60Lite CPU • 32-bit RISC, load/store architecture with a five-stage pipeline • Maximum operating frequency : 33 MHz (oscillation frequency 4.192 MHz, oscillation frequency 8-multiplier (PLL clock multiplication method) • 16-bit fixed length instructions (basic instructions) • Execution speed of instructions : 1 instruction per cycle • Memory-to-memory transfer, bit handling, barrel shift instructions, etc : Instructions suitable for embedded applications • Function entry/exit instructions, multiple-register load/store instructions : Instructions adapted for C-language (Continued) ■ PACKAGES 100-pin plastic QFP 100-pin plastic LQFP (FTP-100P-M06) (FTP-100P-M05) MB91260B Series (Continued) • Register interlock function : Facilitates coding in assembler. • Built-in multiplier with instruction-level support • 32 bit multiplication with sign : 5 cycles • 16 bit multiplication with sign : 3 cycles • Interrupt (PC, PS save) : 6 cycles, 16 priority levels • Harvard architecture allowing program access and data access to be executed simultaneously • FR family instruction compatible • Internal peripheral functions • Capacity of internal ROM and ROM type MASK ROM : 128 KB (MB91263B) FLASH ROM : 256 KB (MB91F264B) • Capacity of internal RAM : 8 KB • A/D converter (sequential comparison type) • Resolution : 10 bits : 2 ch × 2 units, 8 ch × 1 unit • Conversion time : 1.2 µs (Minimum conversion time system clock at 33 MHz) 1.35 µs (Minimum conversion time system clock at 20 MHz) • External interrupt input : 10 ch • Bit search module (for REALOS) Function for searching the MSB in each word for the first 1-to-0 inverted bit position • UART (Full-duplex double buffer) : 3 ch Selectable parity On/Off Asynchronous (start-stop synchronized) or clock-synchronous communications selectable Internal timer for dedicated baud rate (U-Timer) on each channel External clock can be used as transfer clock Error detection function for parity, frame and overrun errors • 8/16-bit PPG timer : 16 ch (at 8-bit) / 8 ch (at 16-bit) • Reload timer : 3 ch (with cascade mode, without output of reload timer 0) • Free-run timer : 1 ch • PWC timer : 2 ch • Input capture : 4 ch (interface with free-run timer) • Output compare : 6 ch (interface with free-run timer) • Waveform generator Various waveforms which are generated by using output compare, 16-bit PPG timer 0 and 16-bit dead timer • SUM of products macro (simple DSP) RAM : instruction RAM 256 × 16-bit XRAM 64 × 16-bit YRAM 64 × 16-bit Execution of 1 cycle product addition (16-bit × 16-bit + 40 bits) Operation results are extracted rounded from 40 to 16 bits • DMAC (DMA Controller) : 5 ch Operation of transfer and activation by internal peripheral interrupts and software • Watchdog timer • Low Power Consumption Mode Sleep/stop function • Package : QFP-100, LQFP-100 • Technology : CMOS 0.35 µm • Power supply : 1-power supply [Vcc = 4.0 V to 5.5 V] 2 MB91260B Series ■ PIN ASSIGNMENT 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 P22/SCK0 P21/SOT0 P20/SIN0 P17 P16/PPG15 X0 X1 VSS VCC P15/PPG14 P14/PPG13 P13/PPG12 P12/PPG11 P11/PPG10 P10/PPG9 P07/PPG8 P06/PPG7 P05/PPG6 P04/PPG5 P03/PPG4 (TOP VIEW) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P02/PPG3 P01/PPG2 P00/PPG1 INIT MD0 MD1 MD2 NMI P77/ADTG2 P76/ADTG1 P75/ADTG0 P74/PWI1 VSS VCC P73/PWI0 P72/DTTI P71/TOT2 P70/TOT1 P63/INT9 P62/INT8 P61/IC3 P60/IC2 P37/IC1 P36/IC0 P35/RTO5 P34/RTO4 P33/RTO3 P32/RTO2 P31/RTO1 P30/RTO0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 PE1/AN11 PE0/AN10 AVRH2 ACC AVCC AVRH1 AVSS PD1/AN9 PD0/AN8 AVRH0 PC7/AN7 PC6/AN6 PC5/AN5 PC4/AN4 PC3/AN3 PC2/AN2 PC1/AN1 PC0/AN0 VCC VSS P23/SIN1 P24/SOT1 P25/SCK1 P26/INT6 P27/INT7 P50 P51/TIN0 P52/TIN1 P53/TIN2 P54/INT0 P55/INT1 P56/INT2 P57/INT3 PG0/CKI/INT4 PG1/PPG0/INT5 PG2 VCC VSS C PG3/SIN2 PG4/SOT2 PG5/SCK2 P40 P41 P42 P43 P44 P45 P46 P47 (FPT-100-M06) (Continued) 3 MB91260B Series (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P24/SOT1 P23/SIN1 P22/SCK0 P21/SOT0 P20/SIN0 P17 P16/PPG15 X0 X1 VSS VCC P15/PPG14 P14/PPG13 P13/PPG12 P12/PPG11 P11/PPG10 P10/PPG9 P07/PPG8 P06/PPG7 P05/PPG6 P04/PPG5 P03/PPG4 P02/PPG3 P01/PPG2 P00/PPG1 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P45 P46 P47 PE1/AN11 PE0/AN10 AVRH2 ACC AVCC AVRH1 AVSS PD1/AN9 PD0/AN8 AVRH0 PC7/AN7 PC6/AN6 PC5/AN5 PC4/AN4 PC3/AN3 PC2/AN2 PC1/AN1 PC0/AN0 VCC VSS P30/RTO0 P31/RTO1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P25/SCK1 P26/INT6 P27/INT7 P50 P51/TIN0 P52/TIN1 P53/TIN2 P54/INT0 P55/INT1 P56/INT2 P57/INT3 PG0/CKI/INT4 PG1/PPG0/INT5 PG2 VCC VSS C PG3/SIN2 PG4/SOT2 PG5/SCK2 P40 P41 P42 P43 P44 (FPT-100-M05) 4 INIT MD0 MD1 MD2 NMI P77/ADTG2 P76/ADTG1 P75/ADTG0 P74/PWI1 VSS VCC P73/PWI0 P72/DTTI P71/TOT2 P70/TOT1 P63/INT9 P62/INT8 P61/IC3 P60/IC2 P37/IC1 P36/IC0 P35/RTO5 P34/RTO4 P33/RTO3 P32/RTO2 MB91260B Series ■ PIN DESCRIPTION Pin no. Pin Circuit QFP LQFP name type SIN1 1 99 D SOT1 100 D P24 SCK1 3 4 5 1 D 8 UART1 clock input/output terminal. This function becomes valid when clock input/output is set to enabled. INT6 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. E P26 General purpose input/output port. This function is always valid. INT7 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. 3 E General purpose input/output port. This function is always valid. P50 C General purpose input/output port. C External trigger input terminal of reload timer 0. When use the terminal as trigger input, set the corresponding data direction resister (DDR) to input. TIN0 7 General purpose input/output port. This function becomes valid when data output of UART1 is set to disabled. General purpose input/output port. This function becomes valid when clock input/output is set to disabled. 2 4 UART1 data output terminal. This function becomes valid when data output of UART1 is set to enabled. P25 P27 6 UART1 data input terminal. When use the terminal as data input of UART1, set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function is always valid. P23 2 Description 5 P51 General purpose input/output port. This function is always valid. TIN1 External trigger input terminal of reload timer 1. When use the terminal as external trigger input, set the corresponding data direction resister (DDR) to input. 6 C P52 General purpose input/output port. This function is always valid. (Continued) 5 MB91260B Series Pin no. Pin Circuit type QFP LQFP name TIN2 9 10 11 12 13 14 7 C External trigger input terminal of reload timer 2. When use the terminal as external trigger input, set the corresponding data direction resister (DDR) to input. P53 General purpose input/output port. This function is always valid. INT0 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. 8 E P54 General purpose input/output port. This function is always valid. INT1 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. 9 E P55 General purpose input/output port. This function is always valid. INT2 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. 10 E P56 General purpose input/output port. This function is always valid. INT3 External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. 11 12 Description E P57 General purpose input/output port. This function is always valid. CKI External clock input terminal for free-run timer. When use the terminal as external clock input of free-run timer, set the corresponding data direction resister (DDR) to input. INT4 PG0 E External interrupt input terminal. When use the terminal as external interrupt input, set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function is always valid. (Continued) 6 MB91260B Series Pin no. Pin Circuit QFP LQFP name type Output terminal of PPG timer 0. This function becomes valid when output of PPG timer 0 is set to enabled. PPG0 15 13 INT5 E 14 PG2 C General purpose input/output port. D UART2 data input terminal. When use the terminal as data input of UART2, set the corresponding data direction resister (DDR) to input. SIN2 20 18 General purpose input/output port. This function is always valid. PG3 SOT2 21 19 D PG4 SCK2 22 20 External interrupt input terminal. When use the terminal as external input, output of PPG timer 0 is set to disabled, and set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function becomes valid when output of PPG temer 0 is set to disabled. PG1 16 Description D PG5 UART2 data output terminal. This function becomes valid when data output of UART2 is set to enabled. General purpose input/output port. This function becomes valid when data output of UART2 is set to disabled. UART2 clock input/output terminal. This function becomes valid when clock input/output of UART2 is set to enabled. General purpose input/output port. This function becomes valid when clock input/output of UART2 is set to disabled. 23 21 P40 C General purpose input/output port. 24 22 P41 C General purpose input/output port. 25 23 P42 C General purpose input/output port. 26 24 P43 C General purpose input/output port. 27 25 P44 C General purpose input/output port. 28 26 P45 C General purpose input/output port. 29 27 P46 C General purpose input/output port. 30 28 P47 C General purpose input/output port. G Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR2 resister to analog input. AN11 31 29 PE1 General purpose input/output port. This function becomes valid when set the corresponding AICR2 resister to port. (Continued) 7 MB91260B Series Pin no. Pin Circuit QFP LQFP name type AN10 32 38 39 41 42 43 44 45 30 G Description Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR2 resister to analog input. PE0 General purpose input/output port. This function becomes valid when set the corresponding AICR2 resister to port. AN9 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR1 resister to analog input. 36 G PD1 General purpose input/output port. This function becomes valid when set the corresponding AICR1 resister to port. AN8 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR1 resister to analog input. 37 G PD0 General purpose input/output port. This function becomes valid when set the corresponding AICR1 resister to port. AN7 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 39 G PC7 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN6 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 40 G PC6 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN5 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 41 G PC5 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN4 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 42 G PC4 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN3 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 43 G PC3 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. (Continued) 8 MB91260B Series Pin no. Pin Circuit type QFP LQFP name AN2 46 47 48 51 44 G General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN1 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 45 G PC1 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. AN0 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. 46 G PC0 General purpose input/output port. This function becomes valid when set the corresponding AICR0 resister to port. RTO0 Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. 49 J General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. RTO1 50 J RTO2 51 J RTO3 52 J P33 Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. P32 54 Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. P31 53 Analog input terminal of A/D converter. This function becomes valid when set the corresponding AICR0 resister to analog input. PC2 P30 52 Description Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. (Continued) 9 MB91260B Series Pin no. Pin Circuit QFP LQFP name type RTO4 55 53 J RTO5 57 58 59 60 61 62 54 Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. P34 56 Description J Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled. P35 General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled. IC0 Trigger input terminal of input capture 0. When use the terminal as trigger input of input capture, set the corresponding data direction resister (DDR) to input. 55 D P36 General purpose input/output port. This function is always valid. IC1 Trigger input terminal of input capture 1. When use the terminal as trigger input of input capture, set the corresponding data direction resister (DDR) to input. 56 D P37 General purpose input/output port. This function is always valid. IC2 Trigger input terminal of input capture 2. When use the terminal as trigger input of input capture, set the corresponding data direction resister (DDR) to input. 57 D P60 General purpose input/output port. This function is always valid. IC3 Trigger input terminal of input capture 3. When use the terminal as trigger input of input capture, set the corresponding data direction resister (DDR) to input. 58 D P61 General purpose input/output port. This function is always valid. INT8 External interrupt input terminal. When use the terminal as external input, set the corresponding data direction resister (DDR) to input. 59 E P62 General purpose input/output port. This function is always valid. INT9 External interrupt input terminal. When use the terminal as external input, set the corresponding data direction resister (DDR) to input. 60 E P63 General purpose input/output port. This function is always valid. (Continued) 10 MB91260B Series Pin no. QFP LQFP Pin name Circuit type TOT1 63 64 65 61 C General purpose input/output port. This function becomes valid when reload timer output is set to disabled. TOT2 Output terminal of reload timer 2. This function becomes valid when reload timer output is set to enabled. 62 C P71 General purpose input/output port. This function becomes valid when reload timer output is set to disabled. DTTI Outputcontrol input terminal of waveform generator output terminal RTO0 to RTO5 of multi-function timer. This function becomes valid when DTTI input is set to enabled by waveform generator of multi-function timer. 63 D General purpose input/output port. This function is always valid. PWI0 64 D PWI1 67 D ADTG0 68 C ADTG1 69 C ADTG2 70 C 71 NMI External trigger input terminal of A/D converter 2. When use the external trigger as activation factor of A/D convertor, set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function is always valid. P77 73 External trigger input terminal of A/D converter 1. When use the external trigger as activation factor of A/D convertor, set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function is always valid. P76 72 External trigger input terminal of A/D converter 0. When use the external trigger as activation factor of A/D convertor, set the corresponding data direction resister (DDR) to input. General purpose input/output port. This function is always valid. P75 71 Pulse width counter input terminal of PWC timer 1. This function becomes valid when pulse width counter input of PWC timer 1 is set to enabled. General purpose input/output port. This function is always valid. P74 70 Pulse width counter input terminal of PWC timer 0. This function becomes valid when pulse width counter input of PWC timer 0 is set to enabled. General purpose input/output port. This function is always valid. P73 69 Output terminal of reload timer 1. This function becomes valid when reload timer output is set to enabled. P70 P72 66 Description H NMI (Non Maskable Interrupt) input terminal. (Continued) 11 MB91260B Series Pin no. QFP Pin Circuit LQFP name type Description 74 72 MD2 K Mode terminal 2. Set operating mode. Connect to VCC or VSS. 75 73 MD1 K Mode terminal 1. Set operating mode. Connect to VCC or VSS. 76 74 MD0 K Mode terminal 0. Set operating mode. Connect to VCC or VSS. 77 75 INIT I External reset input terminal. PPG1 78 79 80 81 82 83 84 76 C Output terminal of PPG timer 1. This function becomes valid when output of PPG timer 1 is set to enabled. P00 General purpose input/output port. This function becomes valid when output of PPG timer 1 is set to disabled. PPG2 Output terminal of PPG timer 2. This function becomes valid when output of PPG timer 2 is set to enabled. 77 C P01 General purpose input/output port. This function becomes valid when output of PPG timer 2 is set to disabled. PPG3 Output terminal of PPG timer 3. This function becomes valid when output of PPG timer 3 is set to enabled. 78 C P02 General purpose input/output port. This function becomes valid when output of PPG timer 3 is set to disabled. PPG4 Output terminal of PPG timer 4. This function becomes valid when output of PPG timer 4 is set to enabled. 79 C P03 General purpose input/output port. This function becomes valid when output of PPG timer 4 is set to disabled. PPG5 Output terminal of PPG timer 5. This function becomes valid when output of PPG timer 5 is set to enabled. 80 C P04 General purpose input/output port. This function becomes valid when output of PPG timer 5 is set to disabled. PPG6 Output terminal of PPG timer 6. This function becomes valid when output of PPG timer 6 is set to enabled. 81 C P05 General purpose input/output port. This function becomes valid when output of PPG timer 6 is set to disabled. PPG7 Output terminal of PPG timer 7. This function becomes valid when output of PPG timer 7 is set to enabled. 82 C P06 General purpose input/output port. This function becomes valid when output of PPG timer 7 is set to disabled. (Continued) 12 MB91260B Series Pin no. QFP LQFP Pin name Circuit type PPG8 85 86 87 88 89 90 91 83 C Description Output terminal of PPG timer 8. This function becomes valid when output of PPG timer 8 is set to enabled. P07 General purpose input/output port. This function becomes valid when output of PPG timer 8 is set to disabled. PPG9 Output terminal of PPG timer 9. This function becomes valid when output of PPG timer 9 is set to enabled. 84 C P10 General purpose input/output port. This function becomes valid when output of PPG timer 9 is set to disabled. PPG10 Output terminal of PPG timer 10. This function becomes valid when output of PPG timer 10 is set to enabled. 85 C P11 General purpose input/output port. This function becomes valid when output of PPG timer 10 is set to disabled. PPG11 Output terminal of PPG timer 11. This function becomes valid when output of PPG timer 11 is set to enabled. 86 C P12 General purpose input/output port. This function becomes valid when output of PPG timer 11 is set to disabled. PPG12 Output terminal of PPG timer 12. This function becomes valid when output of PPG timer 12 is set to enabled. 87 C P13 General purpose input/output port. This function becomes valid when output of PPG timer 12 is set to disabled. PPG13 Output terminal of PPG timer 13. This function becomes valid when output of PPG timer 13 is set to enabled. 88 C P14 General purpose input/output port. This function becomes valid when output of PPG timer 13 is set to disabled. PPG14 Output terminal of PPG timer 14. This function becomes valid when output of PPG timer 14 is set to enabled. 89 C P15 General purpose input/output port. This function becomes valid when output of PPG timer 14 is set to disabled. 94 92 X1 A Main clock oscillation output terminal. 95 93 X0 A Main clock oscillation input terminal. PPG15 96 94 C P16 97 95 P17 96 P20 General purpose input/output port. This function becomes valid when output of PPG timer 15 is set to disabled. C General purpose input/output port. D UART0 data input terminal. When use the terminal as data input of UART0, set the corresponding data direction resister (DDR) to input. SIN0 98 Output terminal of PPG timer 15. This function becomes valid when output of PPG timer 15 is set to enabled. General purpose input/output port. This function is always valid. (Continued) 13 MB91260B Series (Continued) Pin no. QFP Pin Circuit LQFP name type SOT0 99 97 D P21 SCK0 100 98 D P22 Description UART0 data output terminal. This function becomes valid when data output of UART0 is set to enabled. General purpose input/output port. This function becomes valid when data output of UART0 is set to disabled. UART0 clock input/output terminal. This function becomes valid when clock input/output of UART0 is set to enabled. General purpose input/output port. This function becomes valid when clock input/output of UART0 is set to disabled. • Power supply and GND pins Pin no. 14 Pin name Description QFP LQFP 18, 50, 68, 93 16, 48, 66, 91 Vss GND pins. Apply equal potential to all of the pins. 17, 49, 67, 92 15, 47, 65, 90 Vcc Power supply pin. Apply equal potential to all of the pins. 35 33 AVcc 33 31 AVRH2 Analog reference power supply pin for A/D converter 2. 36 34 AVRH1 Analog reference power supply pin for A/D converter 1. 40 38 AVRH0 Analog reference power supply pin for A/D converter 0. 37 35 AVss 19 17 C 34 32 ACC Analog power supply pin for A/D converter. Analog GND pin for A/D converter. Condencer connection pin for internal regulator. Condencer connection pin for analog. MB91260B Series ■ I/O CIRCUIT TYPE Type Circuit type Remarks X1 Clock input A • Oscillation circuit • Oscillation feedback resistance : approx. 1 MΩ X0 Standby control P-ch Pull-up control • CMOS level output • CMOS level input. Digital output • With standby control • With Pull-up control • Pull-up resistance value = approx. 50 kΩ (Typ) P-ch C Digital output R N-ch • IOL = 4 mA Digital input Standby control Pull-up control P-ch Digital output P-ch D Digital output R N-ch • CMOS level output • CMOS level hysteresis input. • With standby control • With Pull-up control • Pull-up resistance value = approx. 50 kΩ (Typ) • IOL = 4 mA Digital input Standby control (Continued) 15 MB91260B Series Type Circuit type P-ch Remarks Pull-up control • CMOS level output • CMOS level hysteresis input. Digital output • Without standby control • With Pull-up control • Pull-up resistance value = approx. 50 kΩ (Typ) P-ch E Digital output N-ch R • IOL = 4 mA Digital input Digital output P-ch Digital output G N-ch R Digital input • Analog/CMOS level input/output pin • CMOS level output • CMOS level input. (attached with standby control) • Analog input (Analog input is enabled when AICR’s corresponding bit is set to “1”.) • IOL = 4 mA Standby control Analog input • CMOS level hysteresis input. • Without standby control P-ch H R N-ch Digital input (Continued) 16 MB91260B Series (Continued) Type Circuit type Remarks • CMOS level hysteresis input. P-ch • With pull-up resistor • Pull-up resistance value = approx. 50 kΩ (Typ) P-ch I • Without standby control R N-ch Digital input • CMOS level output • CMOS level hysteresis input. Digital output • With standby control P-ch Digital output J R • IOL = 12 mA N-ch Digital input Standby control • CMOS level input. • Without standby control P-ch K R N-ch Digital input 17 MB91260B Series ■ HANDLING DEVICES • Preventing Latchup Latch-up may occur in a CMOS IC if a voltage greater than VCC or less than VSS is applied to an input or output pin or if an above-rating voltage is applied between VCC and VSS. A latchup, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating. • Treatment of Unused Input Pins Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor. • About power supply pins In products with multiple VCC or VSS pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to external a same potential power supply and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating. The power pins should be connected to VCC and VSS of this device at the lowest possible impedance from the current supply source. It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 µF between VCC and VSS near this device. • About Crystal oscillator circuit Noise near the X0 and X1 pin may cause the device to malfunction. Design the circuit board so that X0 and X1, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended to design the PC board artwork with the X0 and XI pins surrounded by ground plane because stable operation can be expected with such a layout. • Mode pins (MD0 to MD2) These pins should be connected directly to VCC or VSS. To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and VCC or VSS is as short as possible and the connection impedance is low. • Operation at start-up Be sure to execute setting initialized reset (INIT) with INIT pin immediately after start-up. Also, in order to provide a delay while the oscillator circuit stabilize immediately after start-up, maintain the "L" level input to the INIT pin for the required stabilization wait time. (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value.) • About oscillation input at power on When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state. 18 MB91260B Series • Caution operation during PLL clock mode Even if the oscillator comes off or the clock input stops with the PLL clock selected for this device, the device may continue to operate at the free-run frequency of the PLL’s internal self-oscillating oscillator circuit. Performance of this operation, however, cannot be guaranteed. • External clock When external clock is selected, the opposite phase clock to X0 pin must be supplied to X1 pin simultaneously. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately 1 kΩ of resistance should be added externally to avoid the conclift of output. The following figure shows using an external clock. X0 X1 MB91260B series Using an external clock • C pin A bypass capacitor of approximately 0.1 µF should be connected the C pin for built-in regulator. C MB91260B series 0.1 µF VSS GND • ACC pin A capacitor of approximately 0.1 µF should be inserted between the ACC pin and the AVcc pin as this product has built-in A/D convertor. ACC MB91260B series 0.1 µF AVSS 19 MB91260B Series • Clock control block Take the oscillation stabilization wait time during Low level input to the INIT pin. • Switch shared port function To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR). • Low Power Consumption Mode (1) To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR: or time-base counter control register) and be sure to use the following seaquence (LDI #value_of_standby, R0) : Value_of standby is write data to STCR. (LDI #_STCR, R12) : _STCR is address (481H) of STCR. STB R0, @R12 : Writing to standby control register (STCR) LDUB @R12, R0 : STCR read for synchronous standby LDUB @R12, R0 : Dummy re-read of STCR NOP : NOP × 5 for arrangement of timing NOP NOP NOP NOP In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns. (2) Please do not do the following when the monitor debugger is used. • Break point setting for above instruction lines • Step execution for above instruction lines • Notes on the PS register As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case. 1. The following operations are performed when the instruction followed by a DIV0U/DIV0S instruction results in : (a) acceptance of a user interrupt or NMI, (b) step execution, or (c) a break at a data event or emulator menu. (1) The D0 and D1 flags are updated in advance. (2) An EIT handling routine (user interrupt, NMI, or emulator) is executed. (3) Upon returning from the EIT, the DIV0U/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as in (1). 2. The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed to enable interruptions when a user interrupt or NMI trigger even has occurred. (1) The PS register is updated in advance. (2) An EIT handling routine (user interrupt, NMI) is executed. (3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1). 20 MB91260B Series • Watch dog timer The watchdog timer built in this model monitors a program that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on operating programs until it resets the CPU. As an exception, the watchdog timer defers a reset timing automatically under the condition in which the CPU stops program execution. 21 MB91260B Series ■ NOTE ON DEBUGGER • Step execution of RETI command If an interrupt occurs frequently during step execution, the corresponding interrupt handling routine is executed repeatedly after step execution. This will prevent the main routine and low-interrupt-level programs from being executed. Do not execute step of RETI instruction for escape. Disable the corresponding interrupt and execute debugger when the corresponding interrupt handling routine no longer needs debugging. • Operand break Do not apply a data event break to access to the area containing the address of a system stack pointer. • Execution in an unused area of FLASH memory Accidentally executing an instruction in an unused area of FLASH memory (with data placed at 0XFFFF) prevents breaks from being accepted. To prevent this, the code event address mask function of the debugger should be used to cause a break when accessing an instruction in an unused area. • Power-on debugging All of the following three conditions must be satisfied when the power supply is turned off by power-on debugging. (1) The time for the user power to fall from 0.9 VCC to 0.5 VCC is 25 µs or longer. Note : In a dual-power system, VCC indicates the external I/O power supply voltage. (2) CPU operating frequency must be higher than 1 MHz. (3) During execution of user program • Interrupt handler for NMI request (tool) Add the following program to the interrupt handler to prevent the device from malfunctioning in case the factor flag to be set only in response to a break request from the ICE is set, for example, by an adverse effect of noise to the DSU pin while the ICE is not connected. Enable to use the ICE while adding this program. Additional location Next interrupt handler Interrupt source : NMI request (tool) Interrupt number : #13 (decimal) , 0DH (hexa decimal) Offset : 3C8H Address TBR is default : 000FFFC8H Additional program STM (R0, R1) LDI #B00H, R0; LDI #0, R1 STB R1, @R0 LDM (R0, R1) RETI 22 : B00H is the address of DSU break factor register. : Clear the break factor register. MB91260B Series ■ BLOCK DIAGRAM FR60 Lite CPU core 32 32 DMAC 5 ch Bit search SUM of products macro Bus converter ROM 128 KB/ FLASH 256 KB RAM 8 KB X0, X1 MD0 ~ MD2 INIT 32 32 ↔ 16 Adapter Clock control 16 Interrupt controller INT0 ~ INT9 NMI 10 ch External interrupt SCK0 ~ SCK2 3 ch reload timer 2 ch PWC timer SIN0 ~ SIN2 SOT0 ~ SOT2 Port I/F PORT TIN0 ~ TIN2 TOT1, TOT2 PWI0, PWI1 3 ch UART 8 ch 8/16 PPG timer PPG0 ~ PPG15 3 ch U timer AVCC Multi-function timer ADTG0 AN0 ~ AN7 AVRH0 8 ch input 8/10 bit A/D-0 ADTG1 AVRH1 AN8, AN9 ADTG2 AVRH2 AN10, AN11 Free-run timer 1 ch CKI 2 ch input 8/10 bit A/D-1 Input capture 4 ch IC0 ~ IC3 2 ch input 8/10 bit A/D-2 Waveform generator Output compare 6 ch RTO0 ~ RTO5 DTTI 23 MB91260B Series ■ MEMORY SPACE 1. Memory space The FR family has 4 Gbytes of logical address space (232 addresses) available to the CPU by linear access. • Direct Addressing Areas The following address space areas are used as I/O areas. These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction. The size of directly addressable areas depends on the data size to be being accessed as follows. → byte data access → half word data access → word data access : 000-0FFH : 000-1FFH : 000-3FFH 2. Memory Map MB91263B MB91F264B Single chip mode Single chip mode 0000 0000H 0000 0000H I/O Direct addressing area 0000 0400H I/O 0001 0000H Access disallowed 0003 E000H Internal RAM 8 KB 0004 0000H Refer to I/O Map 0001 0000H I/O Refer to I/O Map 0003 E000H Access disallowed Internal RAM 8 KB 0004 0000H Access disallowed 000E 0000H 000C 0000H Internal RAM 256 KB 0010 0000H Internal RAM 128 KB Access disallowed Access disallowed FFFF FFFFH Direct addressing area 0000 0400H Access disallowed 0010 0000H I/O FFFF FFFFH Each mode is set depending on the mode vector fetched after the INIT signal is nagated. (Refer to MODE SETTINGS for mode setting.) 24 MB91260B Series ■ MODE SETTINGS The FR family uses mode pins (MD2 to MD0) and a mode data to set the operation mode. 1. Mode Pins The MD2, MD1, and MD0 pins specify how the mode vector fetch and reset vector fetch is performed. Setting is prohibited other than that shown in the following table. Mode Pins Reset vector access area Mode name MD2 MD1 MD0 0 0 0 Internal ROM mode vector 1 0 0 Flash serial write mode Remarks Internal 2. Mode data Data written to the internal mode register (MODR) by a mode vector fetch is called mode data. After an operation mode has been set in the mode register, the device operates in the operation mode. The mode data is set by all reset source. User programs cannot set data to the mode register. <Details of mode data description> 31 30 29 28 27 26 25 24 0 0 0 0 0 1 1 1 Operation mode setting bits [bit31-24] Reserved bit Be sure to set this bit to “00000111”. Operation is not guaranteed when any value other than “00000111” is set. 3. Note Mode data set in the mode vector must be placed as byte data at 0X000FFFF8. Use the highest byte from bit 31 to bit 24 for placement as the FR family uses the big endian method for byte endian. 31 Incorrect 0x000FFFF8 Correct 0x000FFFF8 0x000FFFFC 24 23 16 15 8 7 0 XXXXXXXX XXXXXXXX XXXXXXXX Mode Data Mode Data XXXXXXXX XXXXXXXX XXXXXXXX Reset Vector 25 MB91260B Series ■ I/O MAP This shows the location of the various peripheral resource registers in the memory space. Address 000000H Register +0 +1 +2 +3 PDR0 [R/W]B XXXXXXXX PDR1 [R/W]B XXXXXXXX PDR2 [R/W]B XXXXXXXX PDR3 [R/W]B XXXXXXXX Block Port data register Read/write attribute, Access unit (B : byte, H : half word, W : word) Initial value after a reset Register name (First-column register at address 4n; second-column register at address 4n + 2) Location of left-most register (When using word access, the register in column 1 is in the MSB side of the data.) Note : Initial values of register bits are represented as follows : “1” : Initial Value : “ 1 ” “0” : Initial Value : “ 0 ” “X” : Initial Value : “ undefined ” “-” : No physical register at this location 26 MB91260B Series Address Register +0 +1 +2 +3 000000H PDR0 [R/W] B XXXXXXXX PDR1 [R/W] B XXXXXXXX PDR2 [R/W] B XXXXXXXX PDR3 [R/W] B XXXXXXXX 000004H PDR4 [R/W] B XXXXXXXX PDR5 [R/W] B XXXXXXXX PDR6 [R/W] B ----XXXX PDR7 [R/W] B XXXXXXXX 000008H Port data register 00000CH PDRC [R/W] B XXXXXXXX PDRD [R/W] B ------XX PDRE [R/W] B ------XX 000010H PDRG [R/W] B --XXXXXX 000014H to 00003CH 000040H EIRR0 [R/W] B, H, W 00000000 ENIR0 [R/W] B, H, W 00000000 000044H DICR [R/W] B, H, W -------0 HRCL [R/W, R] B, H, W 0--11111 Reserved ELVR0 [R/W] B, H, W 00000000 00000000 000048H TMRLR0 [W] H, W XXXXXXXX XXXXXXXX TMR0 [R] H, W XXXXXXXX XXXXXXXX 00004CH TMCSR0 [R/W, R] B, H, W ---00000 00000000 000050H TMRLR1 [W] H, W XXXXXXXX XXXXXXXX TMR1 [R] H, W XXXXXXXX XXXXXXXX 000054H TMCSR1 [R/W, R] B, H, W ---00000 00000000 000058H TMRLR2 [W] H, W XXXXXXXX XXXXXXXX TMR2 [R] H, W XXXXXXXX XXXXXXXX TMCSR2 [R/W, R] B, H, W ---00000 00000000 00005CH 000060H 000064H 000068H 00006CH 000070H 000074H SSR0 [R/W, R] B, H, W 00001000 SIDR0 [R]/SODR0[W] SCR0 [R/W] B, H, W SMR0 [R/W, W] B, H, W B, H, W 00000100 00--0-0XXXXXXXX UTIM0 [R] H / UTIMR0 [W] H 00000000 00000000 SSR1 [R/W, R] B, H, W 00001000 SSR2 [R/W, R] B, H, W 00001000 DRCL0 [W] B -------- SIDR1 [R]/SODR1[W] SCR1 [R/W] B, H, W B, H, W 00000100 XXXXXXXX UTIM1 [R] H / UTIMR1 [W] H 00000000 00000000 DRCL1 [W] B -------- SIDR2 [R]/SODR2[W] SCR2 [R/W] B, H, W B, H, W 00000100 XXXXXXXX UTIM2 [R] H / UTIMR2 [W] H 00000000 00000000 Block DRCL2 [W] B -------- External interrupt (INT0 to INT7) Delay interrupt/ Hold request Reload timer 0 Reload timer 1 Reload timer 2 UART0 UTIMC0 [R/W] B 0--00001 U-timer 0 SMR1 [R/W] B, H, W 00--0-0- UART1 UTIMC1 [R/W] B 0--00001 U-timer 1 SMR2 [R/W] B, H, W 00--0-0- UART2 UTIMC2 [R/W] B 0--00001 U-timer 2 (Continued) 27 MB91260B Series Address Register +0 +1 000078H ADCH0 [R/W] B, H, W XX000000 ADMD0 [R/W] B, H, W 00001111 00007CH ADCS0 [R/W, W] B, H, W 00000X00 000080H ADCH1 [R/W] B, H, W XXXX0XX0 ADMD1 [R/W] B, H, W 00001111 000084H ADCS1 [R/W, W] B, H, W 00000X00 000088H ADCH2 [R/W] B, H, W XXXX0XX0 ADMD2 [R/W] B, H, W 00001111 00008CH ADCS2 [R/W, W] B, H, W 00000X00 +2 +3 ADCD01 [R] B, H, W ADCD00 [R] B, H, W XXXXXXXX XXXXXXXX AICR0 [R/W] B, H, W 00000000 ADCD11 [R] B, H, W ADCD10 [R] B, H, W XXXXXXXX XXXXXXXX AICR1 [R/W] B, H, W ------00 ADCD21 [R] B, H, W ADCD20 [R] B, H, W XXXXXXXX XXXXXXXX AICR2 [R/W] B, H, W ------00 000090H OCCPBH0, OCCPBL0[W]/ OCCPH0, OCCPL0[R] H, W 00000000 00000000 OCCPBH1, OCCPBL1[W]/ OCCPH1, OCCPL1 [R] H, W 00000000 00000000 000094H OCCPBH2, OCCPBL2[W]/ OCCPH2, OCCPL2 [R] H, W 00000000 00000000 OCCPBH3, OCCPBL3[W]/ OCCPH3, OCCPL3 [R] H, W 00000000 00000000 000098H OCCPBH4, OCCPBL4[W]/ OCCPH4, OCCPL4 [R] H, W 00000000 00000000 OCCPBH5, OCCPBL5[W]/ OCCPH5, OCCPL5 [R] H, W 00000000 00000000 00009CH OCSH1 [R/W] B, H, W X1100000 OCSL0 [R/W] B, H, W 00001100 OCSH3 [R/W] B, H, W X1100000 OCSL2 [R/W] B, H, W 00001100 0000A0H OCSH5 [R/W] B, H, W X1100000 OCSL4 [R/W] B, H, W 00001100 OCMOD [R/W] B, H, W XX000000 0000A4H 0000A8H CPCLRBH, CPCLRBL[W]/ CPCLRH, CPCLRL[R] H, W 11111111 11111111 TCCSH [R/W] B, H, W 00000000 TCCSL [R/W] B, H, W 01000000 TCDTH, TCDTL [R/W] H, W 00000000 00000000 ADTRGC [R/W] B, H, W XXXX0000 0000ACH IPCPH0, IPCPL0 [R] H, W XXXXXXXX XXXXXXXX IPCPH1, IPCPL1 [R] H, W XXXXXXXX XXXXXXXX 0000B0H IPCPH2, IPCPL2 [R] H, W XXXXXXXX XXXXXXXX IPCPH3, IPCPL3 [R] H, W XXXXXXXX XXXXXXXX 0000B4H PICSH01 [W] B, H, W 000000-- PICSL01 [R/W] B, H, W 00000000 0000B8H EIRR1 [R/W] B, H, W ------00 ENIR1 [R/W] B, H, W ------00 ICSH23 [R] B, H, W XXXXXX00 Block A/D converter 0/ AICR0 A/D converter 1/ AICR1 A/D converter 2/ AICR2 OCU free-run timer ICU ICSL23 [R/W] B, H, W 00000000 ELVR1 [R/W] B, H, W -------- ----0000 External interrupt (INT8, INT9) (Continued) 28 MB91260B Series Address Register +0 +1 0000BCH TMRRH0, TMRRL0 [R/W] H, W XXXXXXXX XXXXXXXX 0000C0H TMRRH2, TMRRL2 [R/W] H, W XXXXXXXX XXXXXXXX +2 Block +3 TMRRH1, TMRRL1 [R/W] H, W XXXXXXXX XXXXXXXX Waveform generator 0000C4H DTCR0 [R/W] B, H, W 00000000 DTCR1 [R/W] B, H, W 00000000 DTCR2 [R/W] B, H, W 00000000 0000C8H SIGCR1 [R/W] B, H, W 10000000 SIGCR2 [R/W] B, H, W XXXXXXX1 0000CCH ADCOMP0 [R/W] H, W 00000000 00000000 0000D0H ADCOMP2 [R/W] H, W 00000000 00000000 0000D4H to 0000DCH ADCOMP1 [R/W] H, W 00000000 00000000 ADCOMPC [R/W] B, H, W XXXXX000 Reserved 0000E0H PWCSR0 [R/W, R] B, H, W 00000000 00000000 PWCR0 [R] H, W 00000000 00000000 0000E4H PWCSR1 [R/W, R] B, H, W 00000000 00000000 PWCR1 [R] H, W 00000000 00000000 0000E8H PDIVR0 [R/W] B, H, W XXXXX000 0000ECH to 000FCH PWC PDIVR1 [R/W] B, H, W XXXXX000 Reserved 000100H PRLH0 [R/W] B, H, W XXXXXXXX PRLL0 [R/W] B, H, W XXXXXXXX PRLH1 [R/W] B, H, W XXXXXXXX PRLL1 [R/W] B, H, W XXXXXXXX 000104H PRLH2 [R/W] B, H, W XXXXXXXX PRLL2 [R/W] B, H, W XXXXXXXX PRLH3 [R/W] B, H, W XXXXXXXX PRLL3 [R/W] B, H, W XXXXXXXX 000108H PPGC0 [R/W] B, H, W 0000000X PPGC1 [R/W] B, H, W 0000000X PPGC2 [R/W] B, H, W 0000000X PPGC3 [R/W] B, H, W 0000000X 00010CH PRLH4 [R/W] B, H, W XXXXXXXX PRLL4 [R/W] B, H, W XXXXXXXX PRLH5 [R/W] B, H, W XXXXXXXX PRLL5 [R/W] B, H, W XXXXXXXX 000110H PRLH6 [R/W] B, H, W XXXXXXXX PRLL6 [R/W] B, H, W XXXXXXXX PRLH7 [R/W] B, H, W XXXXXXXX PRLL7 [R/W] B, H, W XXXXXXXX 000114H PPGC4 [R/W] B, H, W 0000000X PPGC5 [R/W] B, H, W 0000000X PPGC6 [R/W] B, H, W0000000X PPGC7 [R/W] B, H, W 0000000X 000118H PRLH8 [R/W] B, H, W XXXXXXXX PRLL8 [R/W] B, H, W XXXXXXXX PRLH9 [R/W] B, H, W XXXXXXXX PRLL9 [R/W] B, H, W XXXXXXXX 00011CH PRLH10 [R/W] B, H, W PRLL10 [R/W] B, H, W XXXXXXXX XXXXXXXX PRLH11 [R/W] B, H, W XXXXXXXX PRLL11 [R/W] B, H, W XXXXXXXX 000120H PPGC8 [R/W] B, H, W 0000000X PPGC10 [R/W] B, H, W 0000000X PPGC11 [R/W] B, H, W 0000000X PPGC9 [R/W] B, H, W 0000000X A/D COMP PPG (Continued) 29 MB91260B Series Address Register +0 +1 +2 +3 000124H PRLH12 [R/W] B, H, W PRLL12 [R/W] B, H, W PRLH13 [R/W] B, H, W XXXXXXXX XXXXXXXX XXXXXXXX PRLL13 [R/W] B, H, W XXXXXXXX 000128H PRLH14 [R/W] B, H, W PRLL14 [R/W] B, H, W PRLH15 [R/W] B, H, W XXXXXXXX XXXXXXXX XXXXXXXX PRLL15 [R/W] B, H, W XXXXXXXX 00012CH PPGC12 [R/W] B, H, W PPGC13 [R/W] B, H, W PPGC14 [R/W] B, H, W PPGC15 [R/W] B, H, W 0000000X 0000000X 0000000X 0000000X 000130H TRG [R/W] B, H, W 00000000 00000000 GATEC [R/W] B, H, W XXXXXX00 000134H REVC [R/W] B, H, W 00000000 00000000 Block PPG 000138H to 0001FCH 000200H DMACA0 [R/W] B, H, W *1 00000000 00000000 00000000 00000000 000204H DMACB0 [R/W] B, H, W 00000000 00000000 00000000 00000000 000208H DMACA1 [R/W] B, H, W*1 00000000 00000000 00000000 00000000 00020CH DMACB1 [R/W] B, H, W 00000000 00000000 00000000 00000000 000210H DMACA2 [R/W] B, H, W *1 00000000 00000000 00000000 00000000 000214H DMACB2 [R/W] B, H, W 00000000 00000000 00000000 00000000 000218H DMACA3 [R/W] B, H, W *1 00000000 00000000 00000000 00000000 00021CH DMACB3 [R/W] B, H, W 00000000 00000000 00000000 00000000 000220H DMACA4 [R/W] B, H, W *1 00000000 00000000 00000000 00000000 000224H DMACB4 [R/W] B, H, W 00000000 00000000 00000000 00000000 000228H to 00023CH Reserved 000240H DMACR [R/W] B 0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX DMAC 000244H to 000398H Reserved Reserved DMAC (Continued) 30 MB91260B Series Address Register +0 +1 +2 +3 00039CH 0003A0H DSP-PC [R/W] XXXXXXXX DSP-CSR [R/W, R, W] 00000000 DSP-LY [R/W] XXXXXXXX XXXXXXXX 0003A4H DSP-OT0 [R] XXXXXXXX XXXXXXXX DSP-OT1 [R] XXXXXXXX XXXXXXXX 0003A8H DSP-OT2 [R] XXXXXXXX XXXXXXXX DSP-OT3 [R] XXXXXXXX XXXXXXXX 0003ACH 0003B0H DSP-OT4 [R] XXXXXXXX XXXXXXXX DSP-OT5 [R] XXXXXXXX XXXXXXXX 0003B4H DSP-OT6 [R] XXXXXXXX XXXXXXXX DSP-OT7 [R] XXXXXXXX XXXXXXXX 0003B8H to 0003ECH 0003F0H BSD0 [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0003F4H BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0003F8H BSDC [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0003FCH BSRR [R] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Sum of products Reserved Bit search 000400H DDR0 [R/W] B 00000000 DDR1 [R/W] B 00000000 DDR2 [R/W] B 00000000 DDR3 [R/W] B 00000000 000404H DDR4 [R/W] B 00000000 DDR5 [R/W] B 00000000 DDR6 [R/W] B ----0000 DDR7 [R/W] B 00000000 000408H 00040CH DDRC [R/W] B 00000000 DDRD [R/W] B ------00 DDRE [R/W] B ------00 000410H DDRG [R/W] B --000000 000414H to 00041CH Block Data direction register Reserved 000420H PFR0 [R/W] B 00000000 PFR1 [R/W] B -0000000 PFR2 [R/W] B --00-00- 000424H PFR7 [R/W] B ------00 000428H 00042CH 000430H PFRG [R/W] B --00--0- Port function register (Continued) 31 MB91260B Series Address Register +0 +1 +2 +3 Block 000434H to 00043CH 000440H ICR00 [R/W, R] B, H, W ICR01 [R/W, R] B, H, W ICR02 [R/W, R] B, H, W ICR03 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000444H ICR04 [R/W, R] B, H, W ICR05 [R/W, R] B, H, W ICR06 [R/W, R] B, H, W ICR07 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000448H ICR08 [R/W, R] B, H, W ICR09 [R/W, R] B, H, W ICR10 [R/W, R] B, H, W ICR11 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 00044CH ICR12 [R/W, R] B, H, W ICR13 [R/W, R] B, H, W ICR14 [R/W, R] B, H, W ICR15 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000450H ICR16 [R/W, R] B, H, W ICR17 [R/W, R] B, H, W ICR18 [R/W, R] B, H, W ICR19 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000454H ICR20 [R/W, R] B, H, W ICR21 [R/W, R] B, H, W ICR22 [R/W, R] B, H, W ICR23 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000458H ICR24 [R/W, R] B, H, W ICR25 [R/W, R] B, H, W ICR26 [R/W, R] B, H, W ICR27 [R/W, R] B, H, W controller ----1111 ----1111 ----1111 ----1111 00045CH ICR28 [R/W, R] B, H, W ICR29 [R/W, R] B, H, W ICR30 [R/W, R] B, H, W ICR31 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000460H ICR32 [R/W, R] B, H, W ICR33 [R/W, R] B, H, W ICR34 [R/W, R] B, H, W ICR35 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000464H ICR36 [R/W, R] B, H, W ICR37 [R/W, R] B, H, W ICR38 [R/W, R] B, H, W ICR39 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000468H ICR40 [R/W, R] B, H, W ICR41 [R/W, R] B, H, W ICR42 [R/W, R] B, H, W ICR43 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 00046CH ICR44 [R/W, R] B, H, W ICR45 [R/W, R] B, H, W ICR46 [R/W, R] B, H, W ICR47 [R/W, R] B, H, W ----1111 ----1111 ----1111 ----1111 000470H to 00047CH Reserved Reserved 000480H RSRR [R/W] B, H, W 10000000 STCR [R/W] B, H, W 00110011 TBCR [R/W] B, H, W 00XXXX00 CTBR [W] B, H, W XXXXXXXX 000484H CLKR [R/W] B, H, W 00000000 WPR [W] B, H, W XXXXXXXX DIVR0 [R/W] B, H, W 00000011 DIVR1 [R/W] B, H, W 00000000 000488H to 0005FCH Interrupt Clock control unit Reserved 000600H PCR0 [R/W] B 00000000 PCR1 [R/W] B 00000000 PCR2 [R/W] B 00000000 PCR3 [R/W] B 00------ 000604H PCR4 [R/W] B 00000000 PCR5 [R/W] B 00000000 PCR6 [R/W] B ----0000 PCR7 [R/W] B 00000000 000608H 00060CH Pull-up Control (Continued) 32 MB91260B Series Address 000610H Register +0 +1 +2 +3 PCRG [R/W] B --000000 000614H to 000FFCH 001000H DMASA0 [R/W] W 00000000 00000000 00000000 00000000 001004H DMADA0 [R/W] W 00000000 00000000 00000000 00000000 001008H DMASA1 [R/W] W 00000000 00000000 00000000 00000000 00100CH DMADA1 [R/W] W 00000000 00000000 00000000 00000000 001010H DMASA2 [R/W] W 00000000 00000000 00000000 00000000 001014H DMADA2 [R/W] W 00000000 00000000 00000000 00000000 001018H DMASA3 [R/W] W 00000000 00000000 00000000 00000000 00101CH DMADA3 [R/W] W 00000000 00000000 00000000 00000000 001020H DMASA4 [R/W] W 00000000 00000000 00000000 00000000 001024H DMADA4 [R/W] W 00000000 00000000 00000000 00000000 001028H to 006FFCH DMAC Reserved FLCR [R/W] 0110X000 007004H FLWC [R/W] 00000011*2 007008H 00700CH 007010H Pull-up Control Reserved 007000H 007014H to 00BFFCH Block FLASH Reserved (Continued) 33 MB91260B Series (Continued) Address Register +0 +1 +2 00C000H to 00C07CH X-RAM (coefficient RAM) [R/W] 64 × 16 bit 00C080H to 00C0FCH Y-RAM (variable RAM) [R/W] 64 × 16 bit 00C100H to 00C2FCH I-RAM (instruction RAM) [R/W] 256 × 16 bit 00C300H to 00FFFCH +3 *1 : The lower 16 bits (DTC[15: 0]) of DMACA0 to DMACA4 cannot be accessed in bytes. *2 : The initial value of 1FLWC (7004H) is “00010011B” on EVA tool. Writing “00000011B” on the evaluation model has no effect on its operation. Notes : • Do not excute Read Modify Write instructions on registers having a write-only bit. • Data is undefined in reseved or (-) area. 34 Block Sum of products Reserved MB91260B Series ■ INTERRUPT VECTOR Interrupt number 10 16 Interrupt level Reset 0 00 3FCH 000FFFFCH Mode vector 1 01 3F8H 000FFFF8H System reserved 2 02 3F4H 000FFFF4H System reserved 3 03 3F0H 000FFFF0H System reserved 4 04 3ECH 000FFFECH System reserved 5 05 3E8H 000FFFE8H System reserved 6 06 3E4H 000FFFE4H Coprocessor absent trap 7 07 3E0H 000FFFE0H Coprocessor error trap 8 08 3DCH 000FFFDCH INTE instruction 9 09 3D8H 000FFFD8H Instruction break exception 10 0A 3D4H 000FFFD4H Operand break trap 11 0B 3D0H 000FFFD0H Step trace trap 12 0C 3CCH 000FFFCCH NMI request (tool) 13 0D 3C8H 000FFFC8H Undefined instruction exception 14 0E 3C4H 000FFFC4H NMI request 15 0F 15 (FH) fixed 3C0H 000FFFC0H External interrupt 0 16 10 ICR00 3BCH 000FFFBCH 6 External interrupt 1 17 11 ICR01 3B8H 000FFFB8H 7 External interrupt 2 18 12 ICR02 3B4H 000FFFB4H External interrupt 3 19 13 ICR03 3B0H 000FFFB0H External interrupt 4 20 14 ICR04 3ACH 000FFFACH External interrupt 5 21 15 ICR05 3A8H 000FFFA8H External interrupt 6 22 16 ICR06 3A4H 000FFFA4H External interrupt 7 23 17 ICR07 3A0H 000FFFA0H Reload timer 0 24 18 ICR08 39CH 000FFF9CH 8 Reload timer 1 25 19 ICR09 398H 000FFF98H 9 Reload timer 2 26 1A ICR10 394H 000FFF94H 10 UART0(Reception completed) 27 1B ICR11 390H 000FFF90H 0 UART0 (RX completed) 28 1C ICR12 38CH 000FFF8CH 3 DTTI 29 1D ICR13 388H 000FFF88H DMAC0 (end, error) 30 1E ICR14 384H 000FFF84H DMAC1 (end, error) 31 1F ICR15 380H 000FFF80H DMAC2/3/4 (end, error) 32 20 ICR16 37CH 000FFF7CH Interrupt source Offset TBR default address RN (Continued) 35 MB91260B Series Interrupt number 10 16 Interrupt level Offset TBR default address RN UART1(Reception completed) 33 21 ICR17 378H 000FFF78H 1 UART1 (RX completed) 34 22 ICR18 374H 000FFF74H 4 UART2 (Reception completed) 35 23 ICR19 370H 000FFF70H 2 UART2 (RX completed) 36 24 ICR20 36CH 000FFF6CH 5 SUM of products macro 37 25 ICR21 368H 000FFF68H PPG0 38 26 ICR22 364H 000FFF64H PPG1 39 27 ICR23 360H 000FFF60H PPG2/3 40 28 ICR24 35CH 000FFF5CH PPG4/5/6/7 41 29 ICR25 358H 000FFF58H PPG8/9/10/11/12/13/14/15 42 2A ICR26 354H 000FFF54H External interrupt 8/9 43 2B ICR27 350H 000FFF50H Waveform0 (under flow) 44 2C ICR28 34CH 000FFF4CH Waveform1 (under flow) 45 2D ICR29 348H 000FFF48H Waveform2 (under flow) 46 2E ICR30 344H 000FFF44H Timebase timer overflow 47 2F ICR31 340H 000FFF40H Free-run timer (Compare clear) 48 30 ICR32 33CH 000FFF3CH Free-run timer (zero detection) 49 31 ICR33 338H 000FFF38H A/D0 50 32 ICR34 334H 000FFF34H A/D1 51 33 ICR35 330H 000FFF30H A/D2 52 34 ICR36 32CH 000FFF2CH PWC0 (measurment completed) 53 35 ICR37 328H 000FFF28H PWC1 (measurment completed) 54 36 ICR38 324H 000FFF24H PWC0 (overflow) 55 37 ICR39 320H 000FFF20H PWC1 (overflow) 56 38 ICR40 31CH 000FFF1CH ICU0 (capture) 57 39 ICR41 318H 000FFF18H ICU1 (capture) 58 3A ICR42 314H 000FFF14H ICU2/3 (capture) 59 3B ICR43 310H 000FFF10H OCU0/1 (match) 60 3C ICR44 30CH 000FFF0CH OCU2/3 (match) 61 3D ICR45 308H 000FFF08H OCU4/5 (match) 62 3E ICR46 304H 000FFF04H Delay interrupt source bit 63 3F ICR47 300H 000FFF00H System reserved (Used by REALOS) 64 40 2FCH 000FFEFCH System reserved (Used by REALOS) 65 41 2F8H 000FFEF8H Interrupt source (Continued) 36 MB91260B Series (Continued) Interrupt number 10 16 Interrupt level Offset TBR default address RN System reserved 66 42 2F4H 000FFEF4H System reserved 67 43 2F0H 000FFEF0H System reserved 68 44 2ECH 000FFEECH System reserved 69 45 2E8H 000FFEE8H System reserved 70 46 2E4H 000FFEE4H System reserved 71 47 2E0H 000FFEE0H System reserved 72 48 2DCH 000FFEDCH System reserved 73 49 2D8H 000FFED8H System reserved 74 4A 2D4H 000FFED4H System reserved 75 4B 2D0H 000FFED0H System reserved 76 4C 2CCH 000FFECCH System reserved 77 4D 2C8H 000FFEC8H System reserved 78 4E 2C4H 000FFEC4H System reserved 79 4F 2C0H 000FFEC0H Used by INT instruction 80 to 255 50 to FF 2BCH to 000H 000FFEBCH to 000FFC00H Interrupt source 37 MB91260B Series ■ PIN STATUS IN EACH CPU STATE Terms used as the status of pins mean as follows. • Input enabled • Indicates that the input function can be used. • Input 0 fixed • Indicates that the input level has been internally fixed to be 0 to prevent leakage when the input is released. • Output Hi-Z • Means the placing of a pin in a high impedance state by preventing the transistor for driving the pin from driving. • Output is maintained. • Indicates the output in the output state existing immediately before this mode is established. • If the device enters this mode with an internal output peripheral operating or while serving as an output port, the output is performed by the internal peripheral or the port output is maintained, respectively. • State existing immediately before is maintained. • When the device serves for output or input immediately before entering this mode, the device maintains the output or is ready for the input, respectively. 38 MB91260B Series • List of pin status (single chip mode) Pin no. Pin name Function QFP LQFP 1 99 P23 SIN1 2 100 P24 SOT1 3 1 P25 SCK1 4, 5 2, 3 P26, P27 INT6, INT7 6 to 9 4 to 7 P50 to P53 Ports 10 8 P54 INT0 11 9 P55 INT1 12 10 P56 INT2 13 11 P57 INT3 14 12 PG0 CKI/INT4 15 13 PG1 16 14 PG2 20 18 PG3 21 19 PG4 SOT2 22 20 PG5 SCK2 23 to 30 21 to 28 P40 to P47 INIT = H*2 At Stop mode Hi-Z = 0 Hi-Z = 1 Retention Retention of the of the Output Hi-Z/ immediately immediately Input 0 fixed prior state prior state Input enabled Input enabled Input enabled Retention Retention of the of the Output Hi-Z/ immediately immediately Input 0 fixed prior state prior state Input enabled Input enabled Input enabled Ports 29, 30 PE1, PE0 AN11, AN10 38, 39 36, 37 PD1, PD0 AN9, AN8 PC7 to PC0 AN7 to AN0 51 to 56 49 to 54 P30 to P35 INIT = L*1 At sleep mode PPG0/INT5 Output Hi-Z/ Output Hi-Z/ Input Input Ports disabled disabled SIN2 31, 32 41 to 48 39 to 46 At initializing Retention Retention of the of the Output Hi-Z/ immediately immediately Input 0 fixed prior state prior state RTO0 to RTO5 57, 58 55, 56 P36, P37 IC0, IC1 59, 60 57, 58 P60, P61 IC2, IC3 61, 62 59, 60 P62, P63 INT8, INT9 Input enabled Input enabled Input enabled (Continued) 39 MB91260B Series (Continued) P : Selection of general purpose port, F : Selection of specified function At initializing Pin no. At sleep Pin Function mode name QFP LQFP INIT = L*1 INIT = H*2 63, 64 61, 62 P70, P71 At Stop mode Hi-Z = 0 TOT1, TOT2 65 63 P72 DTTI 66 64 P73 PWI0 69 67 P74 PWI1 70 68 P75 ADTG0 71 69 P76 ADTG1 72 70 P77 ADTG2 73 71 NMI NMI 78 76 P00 PPG1 79 77 P01 PPG2 80 78 P02 PPG3 81 79 P03 PPG4 82 80 P04 PPG5 83 81 P05 PPG6 84 82 P06 PPG7 85 83 P07 PPG8 86 84 P10 PPG9 87 85 P11 PPG10 88 86 P12 PPG11 89 87 P13 PPG12 90 88 P14 PPG13 91 89 P15 PPG14 96 94 P16 PPG15 97 95 P17 Ports 98 96 P20 SIN0 99 97 P21 SOT0 100 98 P22 SCK0 Retention Retention Output Hi-Z/ Output Hi-Z/ of the of the Output Hi-Z/ input disabled input disabled immediately immediately Input 0 fixed prior state prior state Input enabled Input enabled Input enabled Input enabled Input enabled Retention Retention Output Hi-Z/ output Hi-Z/ of the of the Ouptut Hi-Z/ input disabled input disabled immediately immediately input 0 fixed prior state prior state *1 : INIT = L : Indicates the pin status with INIT remaining at the “L” level. *2 : INIT = H : Indicates the pin status existing immediately after INIT transition from “L” to “H” level. 40 Hi-Z = 1 MB91260B Series ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings Parameter Symbol (VSS = AVSS = 0 V) Rating Unit Remarks Min Max VCC VSS − 0.5 VSS + 6.0 V Analog power supply voltage AVCC VSS − 0.5 VSS + 6.0 V *1 Analog reference voltage AVRH VSS − 0.5 VSS + 6.0 V *1 Input voltage VI VSS − 0.3 VCC + 0.3 V Analog pin input voltage VIA VSS − 0.3 AVcc + 0.3 V Output voltage VO VSS − 0.3 VCC + 0.3 V L level maximum output current IOL 10 mA *2 L level average output current IOLAV 8 mA *3 L level total maximum output current ΣIOL 100 mA ΣIOLAV 50 mA *4 IOH − 10 mA *2 H level average output current IOHAV −4 mA *3 H level total maximum output current ΣIOH − 50 mA ΣIOHAV − 20 mA Power supply voltage L level total average output current H level maximum output current H level total average output current 600 Power consumption PD 600 FLASH product mW Storage temperature − 40 + 105 °C MASK product (at single chip operating) − 40 + 85 °C FLASH product (at single chip operating) − 55 125 °C Ta Tstg MASK product Ta ≤ + 85 °C MASK product Ta ≤ + 105 °C *5 360 Operating temperature *4 *1 : Be careful not to exceed VCC + 0.3 V, for example, when the power is turned on. Be careful not to let AVCC exceed VCC, for example, when the power is turned on. *2 : The maximum output current is the peak value for a single pin. *3 : The average output current is the average current for a single pin over a period of 100 ms. *4 : The total average output current is the average current for all pins over a period of 100 ms. *5 : For use at Ta = +105 °C, lower the operating frequency to reduce power consumption. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 41 MB91260B Series 2. Recommended Operating Conditions Parameter Symbol (Vss = AVss = 0 V) Value Min Max Unit Remarks Power supply voltage VCC 4.0 5.5 V Analog power supply voltage AVCC VSS + 4.0 VSS + 5.5 V AVRH0 AVSS AVCC V For A/D converter 0 AVRH1 AVSS AVCC V For A/D converter 1 AVRH2 AVSS AVCC V For A/D converter 2 − 40 + 105 °C MASK product (at single chip operation) − 40 + 85 °C FLASH product (at single chip operation) Analog reference voltage Operating temperature Ta At normal operating WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 42 MB91260B Series 3. DC Characteristics Parameter "H" level input voltage Input Low Voltage "H" level output voltage Output Low Voltage Input leak current Sym bol Pin Conditions VIH Other than hysteresis input pin VIHS Unit Remarks Typ Max 0.8 × Vcc Vcc V Hysteresis input pin Vcc − 0.4 Vcc V VIL Other than hysteresis input pin Vss 0.2 × Vcc V VILS Hysteresis input pin Vss Vss + 0.4 V VOH Other than port 30 VCC = 5.0 V, to 35 IOH = 4.0 mA Vcc − 0.5 V VCC = 5.0 V, IOH = 8.0 mA Vcc − 0.7 V Other than port 30 VCC = 5.0 V, to 35 IOL = 4.0 mA 0.4 V VCC = 5.0 V, IOL = 12 mA 0.6 V VCC = 5.0 V, VSS ≤ VI ≤ VCC −5 5 µA 50 kΩ VCC VCC = 5.0 V, 33 MHz 90 100 mA ICCS VCC VCC = 5.0 V, 33 MHz 60 80 mA At SLEEP ICCH VCC VCC = 5.0 V, Ta = + 25 °C 300 µA 10 pF VOH2 Port 30 to 35 VOL VOL2 Port 30 to 35 ILI ICC Input capacitance Value Min Pullup resistance RPULL Power supply current (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) CIN INIT, Pull-up pin Other than VCC, VSS, AVCC, AVSS, AVRH0, 1, 2 At STOP 43 MB91260B Series 4. FLASH MEMORY write/erase characteristics Parameter Conditions Sector erase time Unit Remarks Min Typ Max Ta = + 25 °C, Vcc = 5.0 V 1 15 s Not including time for internal writing before deletion. Chip erase time Ta = + 25 °C, Vcc = 5.0 V 10 s Not including time for internal writing before deletion. Byte write time Ta = + 25 °C, Vcc = 5.0 V 8 3,600 µs Not including system-level overhead time. Chip write time Ta = + 25 °C, Vcc = 5.0 V 2.1 s Not including system-level overhead time. 10,000 Cycle Erase/write cycle 44 Value MB91260B Series 5. AC Characteristics (1) Clock Timing Ratings (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) Sym bol Pin fC X0 X1 Clock cycle time tC X0 X1 Internal operating clock frequency fCP Parameter Clock frequency Internal operating clock cycle time fCPP tCP tCPP Conditions Value Unit Remarks Min Typ Max 3.6 12 MHz 83.3 278 ns When 4.125 MHz is 2.06* input as the X0 2.06* clock frequency and ×8 multiplication is 30.3 set for the PLL of the oscillator circuit. 30.3 33 MHz CPU 33 MHz Peripheral 485* ns CPU 485* ns Peripheral For using the PLL within the self-oscillation enabled range, set the multiplier for the internal clock not to let the operating frequency exceed 33 MHz. * : The values assume a gear cycle of 1/16. • Conditions for measuring the clock timing ratings tC 0.8 VCC 0.2 VCC Output pin C = 50 pF PWL PWH tCF tCR 45 MB91260B Series • Operation Assurance Range Power supply VCC (V) 5.5 4.0 0 0.25 33 fCP / fCPP (MHz) Internal clock • Internal clock setting range (MHz) CPU (CLKB) : Internal clock 33 Peripheral (CLKP) : 16.5 Oscillation input clock fC = 4.192 MHz (PLL multiplied by 8) 4.125 8:8 4:4 1:1 CPU : Divided ratio for peripherals. Notes : • Oscillation stabilization time of PLL > 600 µs • The internal clock gear setting should be within the value shown in clock timing ratings table. 46 MB91260B Series (2) Reset Input Parameter Init input time (at power-on and STOP mode) Init input time (other than the above) (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) Symbol tINTL Pin INIT Value Conditions Unit Min Max Oscillation time of oscillator + tC × 10 ns tC × 10 ns Remarks tINTL INIT 0.2 VCC 47 MB91260B Series (3) UART Timing Parameter (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) Symbol Pin Serial clock cycle time tSCYC SCK ↓ → SOT delay time Conditions Unit Remarks Min Max SCK0 to SCK2 8 tCYCP ns tSLOV SCK0 to SCK2, SOT0 to SOT2 − 80 80 ns Valid SIN → SCK ↑ tIVSH SCK0 to SCK2, SIN0 to SIN2 100 ns SCK ↑ → valid SIN hold time tSHIX SCK0 to SCK2, SIN0 to SIN2 60 ns Serial clock H pulse width tSHSL SCK0 to SCK2 4 tCYCP ns Serial clock L pulse width tSLSH SCK0 to SCK2 4 tCYCP ns SCK ↓ → SOT delay time tSLOV SCK0 to SCK2, SOT0 to SOT2 150 ns Valid SIN → SCK ↑ tIVSH SCK0 to SCK2, SIN0 to SIN2 60 ns SCK ↑ → valid SIN hold time tSHIX SCK0 to SCK2, SIN0 to SIN2 60 ns Internal shift clock mode External shift clock mode Notes : • There are the AC ratings for CLK synchronous mode. • tCYCP indicates the peripheral clock cycle time. 48 Value MB91260B Series • Internal shift clock mode tSCYC SCK0 to SCK2 VOH VOL VOL tSLOV VOH VOL SOT0 to SOT2 tIVSH tSHIX VOH VOL SIN0 to SIN2 VOH VOL • External shift clock mode tSLSH tSHSL VOH SCK0 to SCK2 VOL VOL VOL tSLOV SOT0 to SOT2 VOH VOL tIVSH SIN0 to SIN2 VOH VOL tSHIX VOH VOL 49 MB91260B Series (4) Free-run Timer Clock, PWC Input and Reload Timer Trigger Timing Parameter Symbol Pin Conditions Input pulse width tTIWH tTIWL CKI PWI0, PWI1 TIN0 to TIN2 Value Min Max 4 tCYCP Note : tCYCP indicates the peripheral clock cycle time. tTIWH 50 (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) tTIWL Unit ns Remarks MB91260B Series (5) Trigger Input Timing Parameter Input capture trigger input A/D activation trigger input (VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V) Symbol Pin Conditions tINP IC0 to IC3 tATGX ADTG0 to ADTG2 Value Unit Min Max 5 tCYCP ns 5 tCYCP ns Remarks Note : tCYCP indicates the peripheral clock cycle time. tATGX, tINP IC0 to IC3 ADTG0 to ADTG2 51 MB91260B Series 6. Electrical Characteristics for the A/D Converter Symbol Pin Resolution Total error*1 Parameter (VCC = AVcc = 5.0 V, VSS = AVSS = 0 V) Value Unit Min Typ Max 10 bit −4 4 LSB Linearity error* − 3.5 3.5 LSB Differential linearity error*1 −3 3 LSB Zero transition voltage*1 VOT AN0 to AN11 Full transition voltage*1 VFST AN0 to AN11 AVRH − 5.5 AVRH − 1.5 AVRH + 2.5 LSB Conversion time 1.2*2 µS Analog port Input current IAIN AN0 to AN11 10 µA Analog input voltage VAIN AN0 to AN11 AVss AVRH V Reference voltage AVRHn AVss AVcc V Analog power supply current (analog + digital) IA 2 100 1 100 µA reference power supply current (between AVRH and AVSS) IAH*3 Remarks At AVRHn*4 = 5.0 V AVss − 3.5 AVss + 0.5 AVss + 4.5 LSB AVcc IR AVRHn IRH*3 mA Per 1 unit µA Per 1 unit Per 1 unit mA AVRHn*4 = 5.0 V, at AVss = 0 V Analog input capacitance 10 pF Inter-channel disparity AN0 to AN11 4 LSB per 1 unit at STOP *1 : Measured in the CPU sleep state *2 : Vcc = AVcc = 5.0 V, machine clock at 33 MHz *3 : The current when the CPU is in stop mode and the A/D converter is not operating (at Vcc = AVcc = AVRHn = 5.0 V) *4: AVRHn = AVRH0, AVRH1, AVRH2 Note : The above does not guarantee the inter-unit accuracy. Set the output impedance of the external circuit ≤ 2 kΩ. 52 MB91260B Series Definition of A/D Converter Terms • Resolution : Analog variation that is recognized by an A/D converter. • Linearity error : Zero transition point (00 0000 0000 ←→ 00 0000 0001) and full-scale transition point. Difference between the line connected (11 1111 1110 ←→ 11 1111 1111) and actual conversion characteristics. • Differential linearity error : Deviation of input voltage, that is required for changing output code by 1 LSB, from an ideal value. • Total error : This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error. Total error 3FF Digital output 1.5 LSB' Actual conversion characteristics 3FE 3FD {1 LSB' (N − 1) + 0.5 LSB'} 004 VNT (measurement value) 003 Actual conversion characteristics 002 Ideal characteristics 001 0.5 LSB' AVSS AVRH Analog input 1LSB’ (Ideal value) = AVRH − AVSS 1024 [V] Total error of digital output N = VNT − {1 LSB’ × (N − 1) + 0.5 LSB’} 1 LSB’ VOT’ (Ideal value) = AVSS + 0.5 LSB’ [V] VFST’ (Ideal value) = AVRH − 1.5 LSB’ [V] VNT : A voltage at which digital output transitions from (N + 1) to N. (Continued) 53 MB91260B Series (Continued) Linearity error 3FF Actual conversion characteristics {1 LSB (N − 1) + VOT} 3FD Actual conversion characteristics N+1 Ideal characteristics VFST (measurement value) 004 VNT 003 (measurement value) 002 Actual conversion characteristics Ideal characteristics Digital output 3FE Digital output Differential linear error N N−1 VFST (measurement value) VNT (measurement value) N−2 001 Actual conversion characteristics V0T (measurement Value) AVSS AVSS AVRH AVRH Analog input Analog input Linearity error in digital output N = Differential linearity error in digital output = N 1 LSB = VNT − { 1 LSB × (N − 1) + VOT } 1 LSB V (N + 1) T − VNT 1 LSB VFST − VOT 1022 [V] VOT : A voltage at which digital output transitions from 000H to 001H. VFST : A voltage at which digital output transitions from 3FEH to 3FFH . 54 −1 [LSB] [LSB] MB91260B Series ■ EXAMPLE CHARACTERISTICS “L” Level Output Voltage vs. “H” Level Output Voltage vs. Power Supply Voltage Power Supply Voltage 6 400 5 350 300 VOL (mV) VOH (V) 4 3 2 250 200 150 1 100 50 0 4.0 4.5 5.0 5.5 0 4.0 VCC (V) 4.5 5.0 5.5 VCC (V) Pull-up Resistor vs. Power Supply Voltage Power Supply Current vs. Power Supply Voltage 80 100 70 90 80 70 ICC (mA) 50 40 30 60 50 40 30 20 20 10 10 0 4.0 4.5 5.0 0 4.0 5.5 VCC (V) 4.5 5.0 5.5 VCC (V) Power Supply Current vs. Internal Operation Frequency (MB91263) 100 90 80 70 ICC (mA) R (kΩ) 60 60 4.0 V 4.5 V 5.0 V 5.5 V 50 40 30 20 10 0 15 20 25 30 35 Internal operation frequency [MHz] (Continued) 55 MB91260B Series (Continued) Power Supply Current (at sleep) vs. Power Supply Voltageage Power Supply Current (at stop) vs. Power Supply Voltage 100 80 90 70 80 70 ICCH (µA) ICCS (mA) 60 50 40 60 50 40 30 30 20 20 10 10 0 4.0 4.5 5.0 0 4.0 5.5 4.5 VCC (V) 2 1.0 1.5 0.8 1 5.5 A/D Conversion Block Per 1 Unit (33 MHz) Reference Voltage Supplying Current vs. Power Supply Voltage IR (mA) IA (mA) A/D Conversion Block Per 1 Unit (33 MHz) Analog Power Supply Current vs. Power Supply Voltage 5.0 VCC (V) 0.6 0.4 0.5 0.2 0 4.0 4.5 5.0 VCC (V) 56 5.5 0.0 4.0 4.5 5.0 VCC (V) 5.5 MB91260B Series ■ ORDERING INFORMATION Part number MB91F264BPF-G MB91F264BPF-G-E1 MB91F264BPFV-G MB91F264BPFV-G-E1 MB91263BPF-G-xxx-BND MB91263BPF-G-xxx-BNDE1 MB91263BPFV-G-xxx-BND MB91263BPFV-G-xxx-BNDE1 Package Remarks 100-pin plastic QFP (FPT-100P-M06) Lead-free Package 100-pin plastic LQFP (FPT-100P-M05) Lead-free Package 100-pin plastic QFP (FPT-100P-M06) Lead-free Package 100-pin plastic LQFP (FPT-100P-M05) Lead-free Package 57 MB91260B Series ■ PACKAGE DIMENSION Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 100 - pin plastic QFP (FPT-100P-M06) 23.90±0.40(.941±.016) * 20.00±0.20(.787±.008) 80 51 81 50 0.10(.004) 17.90±0.40 (.705±.016) *14.00±0.20 (.551±.008) INDEX Details of "A" part 100 1 30 0.65(.026) "A" C 0.25(.010) +0.35 3.00 –0.20 +.014 .118 –.008 (Mounting height) 0~8˚ 31 0.32±0.05 (.013±.002) 0.13(.005) M 0.17±0.06 (.007±.002) 0.80±0.20 (.031±.008) 0.88±0.15 (.035±.006) 0.25±0.20 (.010±.008) (Stand off) 2002 FUJITSU LIMITED F100008S-c-5-5 Dimensions in mm (inches) Note: The values in parentheses are reference values. (Continued) 58 MB91260B Series (Continued) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 100-pin plastic LQFP (FPT-100P-M05) 16.00±0.20(.630±.008)SQ * 14.00±0.10(.551±.004)SQ 75 51 76 50 0.08(.003) Details of "A" part +0.20 100 26 1 25 C 0.20±0.05 (.008±.002) 0.08(.003) M 0.10±0.10 (.004±.004) (Stand off) 0˚~8˚ "A" 0.50(.020) +.008 1.50 –0.10 .059 –.004 (Mounting height) INDEX 0.145±0.055 (.0057±.0022) 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.25(.010) 2003 FUJITSU LIMITED F100007S-c-4-6 Dimensions in mm (inches) Note: The values in parentheses are reference values. 59 MB91260B Series FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F0401 FUJITSU LIMITED Printed in Japan