HA17741/PS General-Purpose Operational Amplifier (Frequency Compensated) Description The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields. Features • • • • • High voltage gain : 106 dB (Typ) Wide output amplitude : ±13 V (Typ) (at RL ≥ 2 kΩ) Shorted output protection Adjustable offset voltage Internal phase compensation Ordering Information Application Type No. Package Industrial use HA17741PS DP-8 Commercial use HA17741 Pin Arrangement Offset Null 1 Vin(−) 2 Vin(+) 3 VEE 4 8 NC − 7 VCC + 6 Vout 5 Offset Null (Top view) HA17741/PS Circuit Structure VCC Vin(+) Vin(−) Vout To VCC To VCC VEE 1 Pin 5 Pin Offset Null Absolute Maximum Ratings (Ta = 25°C) Ratings Item Symbol HA17741PS HA17741 Unit Power-supply voltage VCC +18 +18 V VEE –18 –18 V Input voltage Vin ±15 ±15 V Differential input voltage Vin(diff) ±30 ±30 V Allowable power dissipation PT 670 * 670 * mW Operating temperature Topr –20 to +75 –20 to +75 °C Storage temperature Tstg –55 to +125 –55 to +125 °C Note: These are the allowable values up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature. 2 HA17741/PS Electrical Characteristics Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C) Item Symbol Min Typ Max Unit Test Condition Input offset voltage VIO — 1.0 6.0 mV RS ≤ 10 kΩ Input offset current I IO — 18 200 nA Input bias current I IB — 75 500 nA Power-supply ∆VIO/∆VCC — 30 150 µV/V RS ≤ 10 kΩ rejection ratio ∆VIO/∆VEE — 30 150 µV/V RS ≤ 10 kΩ Voltage gain AVD 86 106 — dB RL ≥ 2 kΩ, Vout = ±10 V Common-mode rejection ratio CMR 70 90 — dB RS ≤ 10 kΩ Common-mode input voltage range VCM ±12 ±13 — V RS ≤ 10 kΩ Maximum output VOP-P ±12 ±14 — V RL ≥ 10 kΩ ±10 ±13 — V RL ≥ 2 kΩ voltage amplitude Power dissipation Pd — 65 100 mW No load Slew rate SR — 1.0 — V/µs RL ≥ 2 kΩ Rise time tr — 0.3 — µs Vin = 20 mV, RL = 2 kΩ, Overshoot Vover — 5.0 — % CL = 100 pF Input resistance Rin 0.3 1.0 — MΩ Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C) Item Symbol Min Typ Max Unit Test Condition Input offset voltage VIO — — 9.0 mV RS ≤ 10 kΩ Input offset current I IO — — 400 nA Input bias current I IB — — 1,100 nA Voltage gain AVD 80 — — dB RL ≥ 2 kΩ, Vout = ±10 V Maximum output voltage amplitude VOP-P ±10 — — V RL ≥ 2 kΩ 3 HA17741/PS IC Operational Amplifier Application Examples Multivibrator A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate the waveform. Multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches. Multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states. 1. Astable Multivibrator R3 Vin(−) − VCC Vout Vin(+) C1 + VEE R1 RL R2 Figure 1 Astable Multivibrator Operating Circuit Vin(+) 0 Vin(−) 0 Vertical: 5 V/div Horizontal: 2 ms/div Vout 0 Circuit constants R1 = 8 kΩ, R2 = 4 kΩ R3 = 100 kΩ, C1 = 0.1 µF RL = ∞ VCC = 15 V, VEE = −15 V Figure 2 HA17741 Astable Multivibrator Operating Waveform 4 HA17741/PS 2. Monostable Multivibrator R3 C1 VCC − Vout Input + 0 VEE C2 RL R2 R1 Figure 3 Monostable Multivibrator Operating Circuit Trigger input 0 Vin(+) 0 Vin(−) 0 Vertical: Horizontal: Circuit constants R1 = 10 kΩ, R2 = 2 kΩ R3 = 40 kΩ, C1 = 0.47 µF C2 = 0.0068 µF RL = ∞ VCC = 15 V, VEE = −15 V Vout 0 Figure 4 HA17741 Monostable Multivibrator Operating Waveform 3. Bistable Multivibrator Vin(−) VCC − Vout Vin(+) + VEE Input 0 C R2 R1 RL Figure 5 Bistable Multivibrator Operating Circuit 5 HA17741/PS Trigger input 0 Vin(+) 0 Vertical: 5 V/div Horizontal: 2 ms/div Circuit constants R1 = 10 kΩ, R2 = 2 kΩ C = 0.0068 µF RL = ∞ VCC = 15 V, VEE = −15 V Vout 0 Figure 6 HA17741 Bistable Multivibrator Operating Waveform Wien Bridge Sine Wave Oscillator 1S2074 H R4 470 kΩ R3 1 MΩ C3 2SK16 H 5.1 kΩ RS − 500 Ω Rin Vout + R2 C2 C1 50 kΩ RL R1 Figure 7 Wien Bridge Sine Wave Oscillator 30 k VOP-P = 2 V Oscillator Frequency f (Hz) 10 k 3k VOP-P = 20 V VCC = 15 V, VEE = −15 V C1 = C2/10 R1 = 110 kΩ, R2 = 11 kΩ 1k 300 100 30 10 30 p 100 p 300 p 1,000 p 3,000 p 0.01 µ 0.03 µ 0.1 µ C1 Capacitance (F) Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics 6 HA17741/PS Vertical: 5 V/div Horizontal: 0.5 ms/div Test circuit condition VCC = 15 V, VEE = −15 V R1 = 110 kΩ, R2 = 11 kΩ C1 = 0.0015 µF, C2 = 0.015 µF Test results f = 929.7 Hz, T.H.P = 0.06% Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform Quadrature Oscillator Sin out CT2 CT1 − V4 Cos out RT2 A1 R11 D1 R22 − + A2 + RT1 R44 C1 R1 D2 R33 V8 Figure 10 Quadrature Sine Wave Oscillator Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter circuit. 7 HA17741/PS 30 VCC = −VEE = 15 V RT1 = 150 kΩ, RT2 = 150 kΩ R1 = 151.2 kΩ R11 = 15 kΩ, R22 = 10 kΩ R33 = 15 kΩ, R44 = 10 kΩ CT1, CT2, C1 → 1,000 pF Use a Mylar capacitor. With VOP-P = 21 VP-P and R22 = R44 = 10 kΩ the frequency of the sine wave will be under 10 kHz. CT1 = 102 pF CT2 = 99 pF C1 = 106 pF 10 3 1.0 Sin out Cos out 0.3 0.1 0.03 0.01 100 p 0.01 µ 1,000 p 0.1 µ CT1, CT2, C1 (F) Figure 11 HA17741 Quadrature Sine Wave Oscillator f−CT1, CT2, C1 Characteristics Vertical: 5 V/div Horizontal: 0.2 ms/div Circuit constants CT1 = 1000 pF (990), CT2 = 1000 pF (990) RT1 = 150 kΩ, RT2 = 150 kΩ C1 = 1000 pF (990), R1 = 160 kΩ R11 = 15 kΩ, R22 = 10 kΩ R33 = 16 V, R44 = 10 kΩ VCC = 15 V, VEE = −15 V ← Sin out 0 ← Cos out Figure 12 Sine and Cosine Output Waveforms Triangular Wave Generator C Integrator D1 R3 − A1 D2 R4 Vout1 + R1 R2 VA + Vout2 A2 − R1/R2 Hysteresis comparator Figure 13 Triangular Wave Generator Operating Circuit 8 HA17741/PS 0 Vout1 Vout2 0 Vertical: 10 V/div Horizontal: 10 ms/div VA Circuit constants VCC = 15 V, VEE = −15 V R1 = 10 kΩ, R2 = 20 kΩ R3 = 100 kΩ, R4 = 200 kΩ C = 0.1 µF 0 Figure 14 HA17741 Triangular Wave Generator Operating Waveform Sawtooth Waveform Generator R3 R2 Vin VA 6 kΩ + VB 6 kΩ R4 3 kΩ − R5 2.7 kΩ R1 VC + Vout I − R6 2.7 kΩ R7 2.7 kΩ 2SC1706 H C1 Q1 R8 2.7 kΩ 5 kΩ VR Figure 15 Sawtooth Waveform Generator VR 0 Vertical: 5 V/div Horizontal: 2 ms/div 0 Circuit constants VCC = 15 V, VEE = −15 V R1 = 100 kΩ, C1 = 0.1 µF Vin = 10 V Vout Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform 9 HA17741/PS Characteristic Curves Input Offset Current vs. Power-Supply Voltage Characteristics Voltage Offset Adjustment Circuit 20 Input offset current IIO (nA) R2 R1 2 5 6 3 R1 1 R R2 a = 0% 16 12 8 4 a = 100% VEE 0 ±3 ±6 ±9 ±12 ±15 ±18 Power-supply voltage VCC, VEE (V) Power Dissipation vs. Power-Supply Voltage Characteristics Voltage Gain vs. Power-Supply Voltage Characteristics 100 120 80 Voltage gain AVD (dB) Power dissipation Pd (mW) No load 60 40 20 0 ±3 ±6 ±9 ±12 ±15 ±18 Power-supply voltage VCC, VEE (V) 10 110 100 90 RL ≥ 2 kΩ 80 70 ±3 ±6 ±9 ±12 ±15 ±18 Power-supply voltage VCC, VEE (V) HA17741/PS Maximum Output Voltage Amplitude vs. Power-Supply Voltage Characteristics 5 Input offset voltage VIO (mV) RL ≥ 2 kΩ 16 O 8 PP +V O PP 12 −V Maximum output voltage amplitude ±VOP-P (V) 20 4 0 Input Offset Voltage vs. Ambient Temperature Characteristics ±3 ±6 ±9 ±12 ±15 VCC = +15 V VEE = −15 V RS ≤ 10 kΩ 4 3 2 1 0 −20 ±18 0 Power-supply voltage VCC, VEE (V) Input Offset Current vs. Ambient Temperature Characteristics 60 80 120 Input bias current IIB (nA) Input offset current IIO (nA) 40 Input Bias Current vs. Ambient Temperature Characteristics 20 16 12 8 VCC = +15 V VEE = −15 V 4 0 −20 20 Ambient temperature Ta (°C) 0 20 40 60 Ambient temperature Ta (°C) 80 100 80 60 40 VCC = +15 V VEE = −15 V 20 0 −20 0 20 40 60 80 Ambient temperature Ta (°C) 11 HA17741/PS Power Dissipation vs. Ambient Temperature Characteristics Voltage Gain vs. Ambient Temperature Characteristics 120 VCC = +15 V VEE = −15 V No load 80 Voltage gain AVD (dB) Power dissipation Pd (mW) 90 70 60 50 40 −20 0 20 40 60 110 100 90 80 VCC = +15 V VEE = −15 V RL ≥ 2 kΩ 70 −20 80 Ambient temperature Ta (°C) Maximum Output Voltage Amplitude vs. Ambient Temperature Characteristics 12 8 4 0 VCC = +15 V VEE = −15 V RL = 10 kΩ −4 −8 0 20 40 60 80 Ambient temperature Ta (°C) Output shorted current IOS (mA) Maximum output voltage amplitude VOP-P (V) 40 60 80 20 −12 12 20 Output Shorted Current vs. Ambient Temperature Characteristics 16 −20 0 Ambient temperature Ta (°C) VO = VCC VCC = +15 V VEE = −15 V 16 12 8 4 0 −20 0 20 40 60 Ambient temperature Ta (°C) 80 HA17741/PS Offset Adjustment Characteristics 16 1.6 12 1.2 Output voltage Vout (V) Maximum output voltage amplitude VOP-P (V) Maximum Output Voltage Amplitude vs. Load Resistance Characteristics 8 4 0 VCC = +15 V VEE = −15 V −4 −8 R = 10 kΩ 0.4 R = 5 kΩ 0 −0.4 R = 20 kΩ −0.8 −1.6 200 500 1 k 2k 5 k 10 k 0 20 40 60 80 100 Load resistance RL (Ω) Resistor position a (%) Maximum Output Voltage Amplitude vs. Frequency Characteristics Input Resistance vs. Frequency Characteristics 28 1.4 24 1.2 Input resistance Rin (MΩ) Maximum output voltage amplitude VOP-P (V) 0.8 −1.2 −12 20 16 12 8 VCC = +15 V, VEE = −15 V R1 = 51 Ω, R2 = 5.1 kΩ See the voltage offset adjustment circuit diagram. VCC = +15 V VEE = −15 V RL = 10 kΩ 4 1.0 0.8 0.6 0.4 0.2 0 100 200 500 1k 2k 5k 10 k 20 k Frequency f (Hz) 50 k 100 k 200 k 500 k 0 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k 200 k 500 k 1M Frequency f (Hz) 13 HA17741/PS Voltage Gain vs Frequency Characteristics Phase vs. Frequency Characteristics 40 120 VCC = +15 V VEE = −15 V Open loop −40 −80 −120 −160 −200 80 60 40 20 0 −20 40 50 100 200 500 1k 2k 5k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2M 10 20 50 Voltage Gain and Phase vs. Frequency Characteristics (1) 120 0 80 60 −60 φ 40 −120 AVD 20 −180 0 −20 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Voltage gain AVD (dB) 100 50 k 100 k 200 k 500 k 1 M 2 M VCC = +15 V VEE = −15 V Closed loop gain = 40 dB 100 φ 60 −60 40 −120 20 AVD −180 0 −20 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) 14 0 80 −40 Frequency f (Hz) 5 k 10 k 20 k Voltage Gain and Phase vs. Frequency Characteristics (2) Phase φ (deg.) Voltage gain AVD (dB) VCC = +15 V VEE = −15 V Closed loop gain = 60 dB 500 1 k 2 k Frequency f (Hz) Frequency f (Hz) 120 100 200 Phase φ (deg.) −240 VCC = +15 V VEE = −15 V Open loop 100 Voltage gain AVD (dB) Phase φ (deg.) 0 HA17741/PS Voltage Gain and Phase vs. Frequency Characteristics (3) Voltage Gain and Phase vs. Frequency Characteristics (4) 0 80 60 40 −60 VCC = +15 V VEE = −15 V Closed loop gain = 20 dB −120 AVD 20 −180 0 −20 100 φ 0 80 VCC = +15 V VEE = −15 V Closed loop gain = 0 dB 60 40 −60 −120 20 AVD 0 Phase φ (deg.) φ Voltage gain AVD (dB) 120 100 Phase φ (deg.) −180 −20 −40 10 20 50 100 200 500 −40 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M 10 20 50 100 200 500 Frequency f (Hz) 1k 2k 5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M Frequency f (Hz) Impulse Response Characteristics Test Circuit Rise time vs. Power-Supply Voltage Characteristics 0.8 Vin = 20 mV RL = 2 kΩ CL = 100 pF 2 Vout 6 3 CL Vin RL Vout = 90% V2 Vout V2 × 100 (%) V1 0.6 Rise time tr (µs) Voltage gain AVD (dB) 120 0.4 0.2 V1 0 ±3 10% tr ±6 ±9 ±12 ±15 ±18 Power-supply voltage VCC, VEE (V) 15 HA17741/PS Impulse Response Characteristics Overshoot vs. Power-Supply Voltage Characteristics 40 Vin = 20 mV RL = 2 kΩ CL = 100 pF 30 20 10 0 ±3 ±6 ±9 ±12 ±15 ±18 Power-supply voltage VCC, VEE (V) 16 Output voltage Vout (mV) Overshoot Vover (%) 40 VCC = +15 V VEE = −15 V RL = 2 kΩ CL = 100 pF Vin = 20 mV 30 20 10 0 0 0.4 0.8 Time t (µs) 1.2 1.6 HA17741/PS Package Dimensions Unit: mm 6.3 7.4 Max 9.6 10.6 Max 8 5 4 1.3 0.1 Min 1.27 Max 2.54 ± 0.25 7.62 2.54 Min 5.06 Max 1 0.89 0.48 ± 0.10 + 0.10 0.25 – 0.05 0° – 15° Hitachi Code JEDEC EIAJ Mass (reference value) DP-8 Conforms Conforms 0.54 g 17 HA17741/PS Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 18