HITACHI HA17741

HA17741/PS
General-Purpose Operational Amplifier
(Frequency Compensated)
Description
The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is
appropriate for use in a wide range of applications in the test and control fields.
Features
•
•
•
•
•
High voltage gain
: 106 dB (Typ)
Wide output amplitude : ±13 V (Typ) (at RL ≥ 2 kΩ)
Shorted output protection
Adjustable offset voltage
Internal phase compensation
Ordering Information
Application
Type No.
Package
Industrial use
HA17741PS
DP-8
Commercial use
HA17741
Pin Arrangement
Offset
Null
1
Vin(−)
2
Vin(+)
3
VEE
4
8
NC
−
7
VCC
+
6
Vout
5
Offset
Null
(Top view)
HA17741/PS
Circuit Structure
VCC
Vin(+)
Vin(−)
Vout
To VCC
To VCC
VEE
1 Pin
5 Pin
Offset Null
Absolute Maximum Ratings (Ta = 25°C)
Ratings
Item
Symbol
HA17741PS
HA17741
Unit
Power-supply voltage
VCC
+18
+18
V
VEE
–18
–18
V
Input voltage
Vin
±15
±15
V
Differential input voltage
Vin(diff)
±30
±30
V
Allowable power dissipation
PT
670 *
670 *
mW
Operating temperature
Topr
–20 to +75
–20 to +75
°C
Storage temperature
Tstg
–55 to +125
–55 to +125
°C
Note: These are the allowable values up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.
2
HA17741/PS
Electrical Characteristics
Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Input offset voltage
VIO
—
1.0
6.0
mV
RS ≤ 10 kΩ
Input offset current
I IO
—
18
200
nA
Input bias current
I IB
—
75
500
nA
Power-supply
∆VIO/∆VCC
—
30
150
µV/V
RS ≤ 10 kΩ
rejection ratio
∆VIO/∆VEE
—
30
150
µV/V
RS ≤ 10 kΩ
Voltage gain
AVD
86
106
—
dB
RL ≥ 2 kΩ, Vout = ±10 V
Common-mode
rejection ratio
CMR
70
90
—
dB
RS ≤ 10 kΩ
Common-mode input
voltage range
VCM
±12
±13
—
V
RS ≤ 10 kΩ
Maximum output
VOP-P
±12
±14
—
V
RL ≥ 10 kΩ
±10
±13
—
V
RL ≥ 2 kΩ
voltage amplitude
Power dissipation
Pd
—
65
100
mW
No load
Slew rate
SR
—
1.0
—
V/µs
RL ≥ 2 kΩ
Rise time
tr
—
0.3
—
µs
Vin = 20 mV, RL = 2 kΩ,
Overshoot
Vover
—
5.0
—
%
CL = 100 pF
Input resistance
Rin
0.3
1.0
—
MΩ
Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Input offset voltage
VIO
—
—
9.0
mV
RS ≤ 10 kΩ
Input offset current
I IO
—
—
400
nA
Input bias current
I IB
—
—
1,100
nA
Voltage gain
AVD
80
—
—
dB
RL ≥ 2 kΩ, Vout = ±10 V
Maximum output
voltage amplitude
VOP-P
±10
—
—
V
RL ≥ 2 kΩ
3
HA17741/PS
IC Operational Amplifier Application Examples
Multivibrator
A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate
the waveform. Multivibrators are widely used as the square wave source in such applications as power
supplies and electronic switches.
Multivibrators are classified into three types, astable multivibrators, which have no stable states,
monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable
states.
1. Astable Multivibrator
R3
Vin(−)
−
VCC
Vout
Vin(+)
C1
+
VEE
R1
RL
R2
Figure 1 Astable Multivibrator Operating Circuit
Vin(+) 0
Vin(−) 0
Vertical:
5 V/div
Horizontal: 2 ms/div
Vout 0
Circuit constants
R1 = 8 kΩ, R2 = 4 kΩ
R3 = 100 kΩ, C1 = 0.1 µF
RL = ∞
VCC = 15 V, VEE = −15 V
Figure 2 HA17741 Astable Multivibrator Operating Waveform
4
HA17741/PS
2. Monostable Multivibrator
R3
C1
VCC
−
Vout
Input
+
0
VEE
C2
RL
R2
R1
Figure 3 Monostable Multivibrator Operating Circuit
Trigger input 0
Vin(+) 0
Vin(−) 0
Vertical:
Horizontal:
Circuit constants
R1 = 10 kΩ, R2 = 2 kΩ
R3 = 40 kΩ, C1 = 0.47 µF
C2 = 0.0068 µF
RL = ∞
VCC = 15 V, VEE = −15 V
Vout 0
Figure 4 HA17741 Monostable Multivibrator Operating Waveform
3. Bistable Multivibrator
Vin(−)
VCC
−
Vout
Vin(+)
+
VEE
Input
0
C
R2
R1
RL
Figure 5 Bistable Multivibrator Operating Circuit
5
HA17741/PS
Trigger input 0
Vin(+) 0
Vertical:
5 V/div
Horizontal: 2 ms/div
Circuit constants
R1 = 10 kΩ, R2 = 2 kΩ
C = 0.0068 µF
RL = ∞
VCC = 15 V, VEE = −15 V
Vout 0
Figure 6 HA17741 Bistable Multivibrator Operating Waveform
Wien Bridge Sine Wave Oscillator
1S2074 H
R4
470 kΩ
R3 1 MΩ
C3
2SK16 H
5.1 kΩ
RS
−
500 Ω
Rin
Vout
+
R2
C2
C1
50 kΩ
RL
R1
Figure 7 Wien Bridge Sine Wave Oscillator
30 k
VOP-P = 2 V
Oscillator Frequency f (Hz)
10 k
3k
VOP-P = 20 V
VCC = 15 V,
VEE = −15 V
C1 = C2/10
R1 = 110 kΩ,
R2 = 11 kΩ
1k
300
100
30
10
30 p
100 p
300 p
1,000 p 3,000 p
0.01 µ 0.03 µ
0.1 µ
C1 Capacitance (F)
Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics
6
HA17741/PS
Vertical:
5 V/div
Horizontal: 0.5 ms/div
Test circuit condition
VCC = 15 V, VEE = −15 V
R1 = 110 kΩ, R2 = 11 kΩ
C1 = 0.0015 µF, C2 = 0.015 µF
Test results
f = 929.7 Hz, T.H.P = 0.06%
Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform
Quadrature Oscillator
Sin out
CT2
CT1
−
V4
Cos out
RT2
A1
R11
D1
R22
−
+
A2
+
RT1
R44
C1
R1
D2
R33
V8
Figure 10 Quadrature Sine Wave Oscillator
Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two
integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is,
it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter
circuit.
7
HA17741/PS
30
VCC = −VEE = 15 V
RT1 = 150 kΩ, RT2 = 150 kΩ
R1 = 151.2 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 15 kΩ, R44 = 10 kΩ
CT1, CT2, C1 → 1,000 pF
Use a Mylar capacitor.
With VOP-P = 21 VP-P and
R22 = R44 = 10 kΩ
the frequency of the sine
wave will be under 10 kHz.
CT1 = 102 pF
CT2 = 99 pF
C1 = 106 pF
10
3
1.0
Sin out
Cos out
0.3
0.1
0.03
0.01
100 p
0.01 µ
1,000 p
0.1 µ
CT1, CT2, C1 (F)
Figure 11 HA17741 Quadrature Sine Wave Oscillator
f−CT1, CT2, C1 Characteristics
Vertical:
5 V/div
Horizontal: 0.2 ms/div
Circuit constants
CT1 = 1000 pF (990), CT2 = 1000 pF (990)
RT1 = 150 kΩ, RT2 = 150 kΩ
C1 = 1000 pF (990), R1 = 160 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 16 V, R44 = 10 kΩ
VCC = 15 V, VEE = −15 V
← Sin out
0
← Cos out
Figure 12 Sine and Cosine Output Waveforms
Triangular Wave Generator
C
Integrator
D1
R3
−
A1
D2
R4
Vout1
+
R1
R2
VA
+
Vout2
A2
−
R1/R2
Hysteresis comparator
Figure 13 Triangular Wave Generator Operating Circuit
8
HA17741/PS
0
Vout1
Vout2
0
Vertical:
10 V/div
Horizontal: 10 ms/div
VA
Circuit constants
VCC = 15 V, VEE = −15 V
R1 = 10 kΩ, R2 = 20 kΩ
R3 = 100 kΩ, R4 = 200 kΩ
C = 0.1 µF
0
Figure 14 HA17741 Triangular Wave Generator Operating Waveform
Sawtooth Waveform Generator
R3
R2
Vin
VA
6 kΩ
+
VB
6 kΩ
R4
3 kΩ
−
R5
2.7 kΩ
R1
VC
+
Vout
I
−
R6
2.7 kΩ
R7
2.7 kΩ
2SC1706 H
C1
Q1
R8
2.7 kΩ
5 kΩ
VR
Figure 15 Sawtooth Waveform Generator
VR
0
Vertical:
5 V/div
Horizontal: 2 ms/div
0
Circuit constants
VCC = 15 V, VEE = −15 V
R1 = 100 kΩ, C1 = 0.1 µF
Vin = 10 V
Vout
Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform
9
HA17741/PS
Characteristic Curves
Input Offset Current vs.
Power-Supply Voltage Characteristics
Voltage Offset Adjustment Circuit
20
Input offset current IIO (nA)
R2
R1
2
5 6
3
R1
1
R
R2
a = 0%
16
12
8
4
a = 100%
VEE
0
±3
±6
±9
±12
±15
±18
Power-supply voltage VCC, VEE (V)
Power Dissipation vs.
Power-Supply Voltage Characteristics
Voltage Gain vs.
Power-Supply Voltage Characteristics
100
120
80
Voltage gain AVD (dB)
Power dissipation Pd (mW)
No load
60
40
20
0
±3
±6
±9
±12
±15
±18
Power-supply voltage VCC, VEE (V)
10
110
100
90
RL ≥ 2 kΩ
80
70
±3
±6
±9
±12
±15
±18
Power-supply voltage VCC, VEE (V)
HA17741/PS
Maximum Output Voltage Amplitude vs.
Power-Supply Voltage Characteristics
5
Input offset voltage VIO (mV)
RL ≥ 2 kΩ
16
O
8
PP
+V
O
PP
12
−V
Maximum output voltage amplitude
±VOP-P (V)
20
4
0
Input Offset Voltage vs.
Ambient Temperature Characteristics
±3
±6
±9
±12
±15
VCC = +15 V
VEE = −15 V
RS ≤ 10 kΩ
4
3
2
1
0
−20
±18
0
Power-supply voltage VCC, VEE (V)
Input Offset Current vs.
Ambient Temperature Characteristics
60
80
120
Input bias current IIB (nA)
Input offset current IIO (nA)
40
Input Bias Current vs.
Ambient Temperature Characteristics
20
16
12
8
VCC = +15 V
VEE = −15 V
4
0
−20
20
Ambient temperature Ta (°C)
0
20
40
60
Ambient temperature Ta (°C)
80
100
80
60
40
VCC = +15 V
VEE = −15 V
20
0
−20
0
20
40
60
80
Ambient temperature Ta (°C)
11
HA17741/PS
Power Dissipation vs.
Ambient Temperature Characteristics
Voltage Gain vs.
Ambient Temperature Characteristics
120
VCC = +15 V
VEE = −15 V
No load
80
Voltage gain AVD (dB)
Power dissipation Pd (mW)
90
70
60
50
40
−20
0
20
40
60
110
100
90
80
VCC = +15 V
VEE = −15 V
RL ≥ 2 kΩ
70
−20
80
Ambient temperature Ta (°C)
Maximum Output Voltage Amplitude vs.
Ambient Temperature Characteristics
12
8
4
0
VCC = +15 V
VEE = −15 V
RL = 10 kΩ
−4
−8
0
20
40
60
80
Ambient temperature Ta (°C)
Output shorted current IOS (mA)
Maximum output voltage amplitude
VOP-P (V)
40
60
80
20
−12
12
20
Output Shorted Current vs.
Ambient Temperature Characteristics
16
−20
0
Ambient temperature Ta (°C)
VO = VCC
VCC = +15 V
VEE = −15 V
16
12
8
4
0
−20
0
20
40
60
Ambient temperature Ta (°C)
80
HA17741/PS
Offset Adjustment
Characteristics
16
1.6
12
1.2
Output voltage Vout (V)
Maximum output voltage amplitude
VOP-P (V)
Maximum Output Voltage Amplitude vs.
Load Resistance Characteristics
8
4
0
VCC = +15 V
VEE = −15 V
−4
−8
R = 10 kΩ
0.4
R = 5 kΩ
0
−0.4
R = 20 kΩ
−0.8
−1.6
200
500 1 k
2k
5 k 10 k
0
20
40
60
80
100
Load resistance RL (Ω)
Resistor position a (%)
Maximum Output Voltage Amplitude vs.
Frequency Characteristics
Input Resistance vs.
Frequency Characteristics
28
1.4
24
1.2
Input resistance Rin (MΩ)
Maximum output voltage amplitude
VOP-P (V)
0.8
−1.2
−12
20
16
12
8
VCC = +15 V, VEE = −15 V
R1 = 51 Ω, R2 = 5.1 kΩ
See the voltage offset
adjustment circuit diagram.
VCC = +15 V
VEE = −15 V
RL = 10 kΩ
4
1.0
0.8
0.6
0.4
0.2
0
100 200
500
1k
2k
5k
10 k
20 k
Frequency f (Hz)
50 k 100 k 200 k
500 k
0
100 200
500
1k
2k
5k
10 k
20 k
50 k 100 k 200 k
500 k
1M
Frequency f (Hz)
13
HA17741/PS
Voltage Gain vs
Frequency Characteristics
Phase vs.
Frequency Characteristics
40
120
VCC = +15 V
VEE = −15 V
Open loop
−40
−80
−120
−160
−200
80
60
40
20
0
−20
40
50
100
200
500
1k
2k
5k
10 k 20 k
50 k 100 k 200 k
500 k 1 M
2M
10 20
50
Voltage Gain and Phase vs.
Frequency Characteristics (1)
120
0
80
60
−60
φ
40
−120
AVD
20
−180
0
−20
10 20
50 100 200 500
1k
2k
5 k 10 k 20 k
50 k 100 k 200 k 500 k 1 M 2 M
Voltage gain AVD (dB)
100
50 k 100 k 200 k 500 k 1 M 2 M
VCC = +15 V
VEE = −15 V
Closed loop gain = 40 dB
100
φ
60
−60
40
−120
20
AVD
−180
0
−20
10 20
50 100 200 500
1k 2k
5 k 10 k 20 k
50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
14
0
80
−40
Frequency f (Hz)
5 k 10 k 20 k
Voltage Gain and Phase vs.
Frequency Characteristics (2)
Phase φ (deg.)
Voltage gain AVD (dB)
VCC = +15 V
VEE = −15 V
Closed loop gain = 60 dB
500 1 k 2 k
Frequency f (Hz)
Frequency f (Hz)
120
100 200
Phase φ (deg.)
−240
VCC = +15 V
VEE = −15 V
Open loop
100
Voltage gain AVD (dB)
Phase φ (deg.)
0
HA17741/PS
Voltage Gain and Phase vs.
Frequency Characteristics (3)
Voltage Gain and Phase vs.
Frequency Characteristics (4)
0
80
60
40
−60
VCC = +15 V
VEE = −15 V
Closed loop gain = 20 dB
−120
AVD
20
−180
0
−20
100
φ
0
80
VCC = +15 V
VEE = −15 V
Closed loop gain = 0 dB
60
40
−60
−120
20
AVD
0
Phase φ (deg.)
φ
Voltage gain AVD (dB)
120
100
Phase φ (deg.)
−180
−20
−40
10 20
50 100 200 500
−40
1k
2k
5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M
10 20
50 100 200 500
Frequency f (Hz)
1k
2k
5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
Impulse Response
Characteristics Test Circuit
Rise time vs.
Power-Supply Voltage Characteristics
0.8
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF
2
Vout
6
3
CL
Vin
RL
Vout =
90%
V2
Vout
V2
× 100 (%)
V1
0.6
Rise time tr (µs)
Voltage gain AVD (dB)
120
0.4
0.2
V1
0
±3
10%
tr
±6
±9
±12
±15
±18
Power-supply voltage VCC, VEE (V)
15
HA17741/PS
Impulse Response
Characteristics
Overshoot vs.
Power-Supply Voltage Characteristics
40
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF
30
20
10
0
±3
±6
±9
±12
±15
±18
Power-supply voltage VCC, VEE (V)
16
Output voltage Vout (mV)
Overshoot Vover (%)
40
VCC = +15 V
VEE = −15 V
RL = 2 kΩ
CL = 100 pF
Vin = 20 mV
30
20
10
0
0
0.4
0.8
Time t (µs)
1.2
1.6
HA17741/PS
Package Dimensions
Unit: mm
6.3
7.4 Max
9.6
10.6 Max
8
5
4
1.3
0.1 Min
1.27 Max
2.54 ± 0.25
7.62
2.54 Min 5.06 Max
1
0.89
0.48 ± 0.10
+ 0.10
0.25 – 0.05
0° – 15°
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
DP-8
Conforms
Conforms
0.54 g
17
HA17741/PS
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
18