TI ONET4251PARGTRG4

ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
1 Gbps to 4.25 Gbps Limiting Amplifier With LOS and RSSI
FEATURES
•
•
•
•
•
•
•
•
Multi-Rate Operation from 1 Gbps up to
4.25 Gbps
89-mW Power Consumption
Input Offset Cancellation
High Input Dynamic Range
Output Disable
CML Data Outputs
Receive Signal Strength Indicator (RSSI)
Loss of Signal Detection
•
•
•
Polarity Select
Single 3.3-V Supply
Surface Mount Small Footprint 3-mm × 3-mm
16-Pin QFN Package
APPLICATIONS
•
•
•
Cable Driver and Receiver
1.0625 Gbps, 2.125 Gbps, and 4.25 Gbps Fibre
Channel Receivers
Gigabit Ethernet Receivers
DESCRIPTION
The ONET4251PA is a versatile high-speed limiting amplifier for copper cable and fiber optic applications with
data rates up to 4.25 Gbps.
This device provides a gain of about 50 dB, which ensures a full 800-mVp-p differential output swing over its wide
input signal dynamic range.
The high input signal dynamic range ensures low jitter output signals even when overdriven with input signal
swings as high as 1200 mVp-p.
The ONET4251PA comprises a loss of signal detection as well as a received signal strength indicator.
The part is available in a small footprint 3-mm × 3-mm 16-pin QFN package. It requires a single 3.3-V supply.
This power efficient limiting amplifier dissipates less than 89 mW typical. It is characterized for operation from
–40°C to 85°C.
BLOCK DIAGRAM
A simplified block diagram of the ONET4251PA is shown in Figure 1.
This compact 3.3 V, low power 4.25 Gbps limiting amplifier consists of a high-speed data path with offset
cancellation block, a loss of signal and RSSI detection block, and a bandgap voltage reference and bias current
generation block.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005, Texas Instruments Incorporated
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
COC2
COC1
Bandgap Voltage
Reference and
Bias Current
Generation
Offset
Cancellation
OUTPOL
DIN+
+
+
+
+
+
DIN−
−
−
−
−
−
Gain Stage
Gain Stage
Input Buffer
Gain Stage
DOUT+
DOUT−
CML
Output
Buffer
Stage
Loss of Signal
and
RSSI Detection
VCC
GND
TH
DISABLE
LOS
RSSI
B0052-01
Figure 1. Simplified Block Diagram of the ONET4251PA
HIGH SPEED DATA PATH
The high-speed data signal is applied to the data path by means of the input signal pins DIN+/DIN–. The data
path consists of the input stage with 2 × 50-Ω on-chip line termination to VCC, three gain stages, which provide
the required typical gain of about 50 dB, and a CML output stage. The amplified data output signal is available at
the output pins DOUT+/DOUT–, which provide 2 × 50-Ω back-termination to VCC. The output stage also includes
a data polarity switching function, which is controlled by the OUTPOL input, and a disable function, controlled by
the signal applied to the DISABLE input pin.
An offset cancellation compensates for internal offset voltages and thus ensures proper operation even for very
small input data signals.
The low frequency cutoff is typically as low as 50 kHz with the built-in filter capacitor.
For applications which require even lower cutoff frequencies, an additional external filter capacitor may be
connected to the COC1/COC2 pins.
LOSS OF SIGNAL AND RSSI DETECTION
The output signal of the input buffer is monitored by the loss of signal and RSSI detection circuitry. In this block,
a signal is generated that is linear proportional to the input amplitude over a wide input voltage range. This signal
is available at the RSSI output pin.
Furthermore, this circuit block compares the input signal to a threshold which can be programmed by means of
an external resistor connected to the TH pin. If the input signal falls below the specified threshold, a loss of signal
is indicated at the LOS pin.
The relation between the LOS assert voltage VAST (in mVp-p) and the external resistor RTH (in kΩ) connected to
the TH pin can be approximated as given below:
2
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
R
TH
V
AST
22.4 k
VASTmVpp 1
22.4 mV pp
R
k 0.56
TH
560 (1)
1 mV pp
(2)
BANDGAP VOLTAGE AND BIAS GENERATION
The ONET4251PA limiting amplifier is supplied by a single 3.3-V ±10% supply voltage connected to the VCC
pins. This voltage is referred to ground (GND).
An on-chip bandgap voltage circuitry generates a supply voltage independent reference from which all other
internally required voltages and bias currents are derived.
PACKAGE
For the ONET4251PA a small footprint 3-mm × 3-mm 16-pin QFN package, with a lead pitch of 0,5 mm is used.
The pin out is shown in Figure 2.
2
RSSI
DIN+
COC1
1
COC2
VCC
GND
RGT PACKAGE
(TOP VIEW)
16
15
14
13
12
VCC
11
DOUT+
10
DOUT−
9
OUTPOL
4
5
6
7
8
GND
VCC
LOS
3
DISABLE
DIN−
TH
EP
P0019-01
Figure 2. Pinout of ONET4251PA in a 3 mm x 3 mm 16-Pin QFN Package (Top View)
TERMINAL FUNCTIONS
TERMINAL
NO.
NAME
TYPE
DESCRIPTION
3.3-V ±10% supply voltage
1, 4, 12
VCC
supply
2
DIN+
analog-in
Non-inverted data input. On-chip 50-Ω terminated to VCC.
3
DIN-
analog-in
Inverted data input. On-chip 50-Ω terminated to VCC.
5
TH
analog-in
LOS threshold adjustment with resistor to GND.
6
DISABLE
CMOS-in
Disables CML output stage when set to high level.
7
LOS
CMOS-out
8, 16, EP
GND
supply
OUTPOL
CMOS-in
Output data signal polarity select (internally pulled high). Setting to a high level or leaving the pin
open selects normal polarity. Low level selects inverted polarity.
10
DOUT-
CML-out
Inverted data output. On-chip 50-Ω back-terminated to VCC.
11
DOUT+
CML-out
Non-inverted data output. On-chip 50-Ω back-terminated to VCC
9
High level indicates that the input signal amplitude is below the programmed threshold level.
Circuit ground. Exposed die pad (EP) must be grounded.
3
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
TERMINAL FUNCTIONS (continued)
TERMINAL
TYPE
DESCRIPTION
NO.
NAME
13
RSSI
analog-out
14
COC1
analog
Offset cancellation filter capacitor terminal 1. Connect an additional filter capacitor between this pin
and COC2 (pin 15).
To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).
15
COC2
analog
Offset cancellation filter capacitor terminal 2. Connect an additional filter capacitor between this pin
and COC1 (pin 14).
To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).
Analog output voltage proportional to the input data amplitude. Indicates the strength of the
received signal (RSSI).
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted) (1)
VALUE/UNIT
(2)
VCC
Supply voltage
VDIN+, VDIN-
Voltage at DIN+, DIN– (2)
0.5 V to 4 V
VTH, VDISABLE, VLOS, VOUTPOL, VDOUT+,
VDOUT–, VRSSI, VCOC1, VCOC2
Voltage at TH, DISABLE, LOS, OUTPOL, DOUT+, DOUT-, RSSI,
COC1, COC2 (2)
–0.3 V to 4 V
VCOC,DIFF
Differential voltage between COC1 and COC2
VDIN,DIFF
Differential voltage between DIN+ and DIN–
ILOS
Current into LOS
IDIN+, IDIN–, IDOUT+, IDOUT–
Continuous current at inputs and outputs
ESD
ESD rating at all pins
TJ(max)
Maximum junction temperature
TSTG
Storage temperature range
–65 to 85°C
TA
Characterized free-air operating temperature range
–40 to 85°C
TLEAD
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
(1)
(2)
–0.3 V to 4 V
±1 V
±2.5 V
– 1 to 9 mA
–25 mA to 25 mA
2 kV (HBM)
125°C
260°C
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
RECOMMENDED OPERATING CONDITIONS
MIN
TYP
MAX
3.3
3.6
V
85
°C
VCC
Supply voltage
3.0
TA
Operating free-air temperature
–40
VIH
CMOS input high voltage
2.1
VIL
CMOS input low voltage
4
UNIT
V
0.6
V
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
DC ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
VCC
Supply voltage
IVCC
Supply current
VOD
Differential data output voltage swing
RIN, ROUT
Data input/output resistance
VRSSI
RSSI output voltage
RSSI Linearity
VIN(MIN)
Minimum data input voltage
VIN(MAX)
Data input overload
TEST CONDITIONS
MIN
TYP
MAX
3
3.3
3.6
V
27
40
mA
DISABLE = low (excludes CML output current)
DISABLE = high
DISABLE = low
600
Single-ended
0.25
10
760
1200
UNIT
mVp-p
Ω
50
Input = 8 mVp-p, RRSSI ≥ 10 kΩ
180
Input = 80 mVp-p, RRSSI ≥ 10 kΩ
1900
8 mVp-p ≤ VIN ≤ 80 mVp-p
±3%
mV
50
1200
LOS high voltage
ISOURCE = 30 µA
LOS low voltage
ISINK = 1 mA
mVp-p
mVp-p
2.4
V
0.4
V
AC ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted), typical operating condition is at VCC = 3.3 V and TA = 25°C
PARAMETER
Low frequency –3 dB bandwidth
TEST CONDITIONS
50
COC = 0.1 µF
0.8
UNIT
kHz
Gb/s
230
K28.5 pattern at 4.25 Gbps
Deterministic jitter
MAX
4.25
Input referred noise
DJ
TYP
COC = open
Data rate
vNI
MIN
µVRMS
6
19
K28.5 pattern at 2.125 Gbps
8
22
K28.5 pattern at 1.0625 Gbps
11
28
RJ
Random jitter
Input = 50 mVpp
tr
Output rise time
20% to 80%
35
70
ps
tf
Output fall time
20% to 80%
35
70
ps
LOS hysteresis
K28.5 pattern at 4.25 Gbps
RTH
LOS threshold adjustment resistor
See
VAST
LOS assert voltage
RTH = 4 kΩ K28.5 pattern at 4.25 Gbps
VDEA
LOS deassert voltage
RTH = 4 kΩ K28.5 pattern at 4.25 Gbps
tLOS
LOS assert/deassert time
tDIS
Disable response time
(1)
1
psp-p
2.5
(1)
3
psRMS
4.5
dB
4
kΩ
7
mVp-p
11
2
50
mVp-p
100
µs
20
ns
For a given external resistor connected to the TH pin, the LOS assert voltage value may vary due to part-to-part variations. If high
precision is required, adjustment of this resistor for each device is mandatory.
5
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
TYPICAL CHARACTERISTICS
Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted).
VOD − Differential Output Voltage − 160 mV/Div
OUTPUT EYE-DIAGRAM AT 4.25 GBPS
AND MAXIMUM INPUT VOLTAGE (1200 mVp-p)
VOD − Differential Output Voltage − 160 mV/Div
OUTPUT EYE-DIAGRAM AT 4.25 GBPS
AND MINIMUM INPUT VOLTAGE (50 mVp-p)
t − Time − 50 ps/Div
t − Time − 50 ps/Div
G005
G006
Figure 3.
Figure 4.
OUTPUT EYE-DIAGRAM AT 4.25 GBPS AND 85°C
AND MINIMUM INPUT VOLTAGE (50 mVp-p)
FREQUENCY RESPONSE
VOD − Differential Output Voltage − 160 mV/Div
60
55
50
Small Signal Gain − dB
45
40
35
30
25
20
15
10
5
0
10
t − Time − 50 ps/Div
G007
Figure 5.
6
100
1k
10k
f − Frequency − MHz
G004
Figure 6.
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
TYPICAL CHARACTERISTICS (continued)
Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted).
OUTPUT EYE-DIAGRAM AT 2.125 GBPS
AND MAXIMUM INPUT VOLTAGE (1200 mVp-p)
VOD − Differential Output Voltage − 160 mV/Div
VOD − Differential Output Voltage − 160 mV/Div
OUTPUT EYE-DIAGRAM AT 2.125 GBPS
AND MINIMUM INPUT VOLTAGE (50 mVp-p)
t − Time − 100 ps/Div
t − Time − 100 ps/Div
G008
G009
Figure 8.
OUTPUT EYE-DIAGRAM AT 1.0625 GBPS
AND MINIMUM INPUT VOLTAGE (50 mVp-p)
OUTPUT EYE-DIAGRAM AT 1.0625 GBPS
AND MAXIMUM INPUT VOLTAGE (1200 mVp-p)
VOD − Differential Output Voltage − 160 mV/Div
VOD − Differential Output Voltage − 160 mV/Div
Figure 7.
t − Time − 200 ps/Div
G010
Figure 9.
t − Time − 200 ps/Div
G011
Figure 10.
7
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
TYPICAL CHARACTERISTICS (continued)
Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted).
ASSERT/DEASSERT VOLTAGE
vs THRESHOLD RESISTANCE
DIFFERENTIAL INPUT RETURN GAIN
vs FREQUENCY
60
0
SDD11 − Differential Input Return Gain − dB
LOS Assert/Deassert Voltage − mVP-P
55
50
45
40
35
30
25
20
LOS Deassert Voltage
15
10
LOS Assert Voltage
5
0
1
2
3
4
5
6
7
RTH − Threshold Resistance − kΩ
SDD22 − Differential Input Return Gain − dB
−25
−30
−35
−40
−45
−50
−55
100
1k
G013
Figure 11.
Figure 12.
DIFFERENTIAL OUTPUT RETURN GAIN
vs FREQUENCY
RSSI VOLTAGE
vs INPUT AMPLITUDE
−5
−10
−15
−20
−25
−30
−35
−40
−45
−50
−55
100
1k
10k
G014
Figure 13.
10k
f − Frequency − MHz
f − Frequency − MHz
8
−20
G012
0
−60
10
−15
−60
10
8
RSSI − Receive Signals Strength Indicator Voltage − mV
0
−5
−10
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
0
0
10
20
30
40
50
60
70
80
90 100
VID − Differential Input Voltage − mVP-P
Figure 14.
G015
ONET4251PA
www.ti.com
SLLS663A – SEPTEMBER 2005 – REVISED NOVEMBER 2005
APPLICATION INFORMATION
Figure 15 shows the ONET4251PA connected with an ac-coupled interface to the data signal source as well as
to the output load.
Besides the ac-coupling capacitors C1 through C4 in the input and output data signal lines, the only required
external component is the LOS threshold setting resistor RTH. In addition, if a low cutoff frequency is required, as
an option, an external filter capacitor COC may be used.
RSSI
RSSI
COC1
COC2
GND
COC
Optional
VCC
DIN−
DOUT+
ONET4251PA
16-Pin QFN
TH
VCC
DOUT−
VCC
C3
DOUT+
C4
DOUT−
OUTPOL
OUTPOL
GND
DIN+
LOS
DIN−
C2
VCC
DISABLE
DIN+
C1
DISABLE
LOS
RTH
Optional connection
for squelch function
S0072-01
Figure 15. Basic Application Circuit With AC Coupled I/Os
9
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
ONET4251PARGTR
ACTIVE
QFN
RGT
16
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
ONET4251PARGTRG4
ACTIVE
QFN
RGT
16
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
ONET4251PARGTT
ACTIVE
QFN
RGT
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
ONET4251PARGTTG4
ACTIVE
QFN
RGT
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
ONET4251PARGTR
QFN
RGT
16
3000
330.0
12.4
3.3
3.3
1.1
8.0
12.0
Q2
ONET4251PARGTT
QFN
RGT
16
250
330.0
12.4
3.3
3.3
1.1
8.0
12.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
ONET4251PARGTR
QFN
RGT
16
3000
340.5
333.0
20.6
ONET4251PARGTT
QFN
RGT
16
250
340.5
333.0
20.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated