SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 D Member of Texas Instruments Widebus+ D D D D Supports Unregulated Battery Operation Family Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C Ioff and Power-Up 3-State Support Hot Insertion Supports Mixed-Mode Signal Operation (5-V Input/Output Voltage With 3.3-V VCC) GKE OR ZKE PACKAGE (TOP VIEW) 1 2 3 4 5 Down to 2.7 V Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 200-V Machine Model (A115-A) − 1000-V Charged-Device Model (C101) D D terminal assignments 6 1 2 3 4 5 6 A A 1Y2 1Y1 1OE 2OE 1A1 1A2 B B 1Y4 1Y3 GND GND 1A3 1A4 C C 2Y2 2Y1 2A2 D 2Y2 2Y3 1VCC GND 2A1 D 1VCC GND 2A3 2A4 E 3Y2 3Y1 GND GND 3A1 3A2 F 3Y4 3Y3 3A4 4Y2 4Y1 1VCC GND 3A3 G 1VCC GND 4A1 4A2 H 4Y3 4Y4 4OE 3OE 4A4 4A3 J 5Y2 5Y1 5OE 6OE 5A1 5A2 E F G H J K 5Y4 5Y3 GND GND 5A3 5A4 K L 6Y2 6Y1 6A2 M 6Y4 6Y3 2VCC GND 6A1 L 2VCC GND 6A3 6A4 M N 7Y2 7Y1 GND GND 7A1 7A2 N P 7Y4 7Y3 7A4 R 8Y2 8Y1 2VCC GND 7A3 P 2VCC GND 8A1 8A2 R T 8Y3 8Y4 8OE 7OE 8A4 8A3 T description/ordering information The SN74LVT32240 is a 32-bit buffer and line driver designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. This device can be used as eight 4-bit buffers, four 8-bit buffers, two 16-bit buffers, or one 32-bit buffer. The device provides inverted outputs and symmetrical active-low output-enable (OE) inputs. It is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA LFBGA − GKE −40°C to 85°C LFBGA − ZKE (Pb-free) TOP-SIDE MARKING SN74LVT32240GKER Tape and reel SN74LVT32240ZKER VJ240 † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus+ is a trademark of Texas Instruments. Copyright 2003, Texas Instruments Incorporated !"# $ %&'# "$ (&)*%"# +"#' +&%#$ %! # $('%%"#$ (' #,' #'!$ '-"$ $#&!'#$ $#"+"+ .""#/ +&%# (%'$$0 +'$ # '%'$$"*/ %*&+' #'$#0 "** (""!'#'$ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 description/ordering information (continued) When VCC is between 0 and 1.5-V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5-V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. FUNCTION TABLE (each 4-bit buffer/driver) INPUTS 2 OE A OUTPUT Y L H L L L H H X Z POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 logic diagram (positive logic) 1OE 1A1 1A2 1A3 1A4 2OE 2A1 2A2 2A3 2A4 5OE 5A1 5A2 5A3 5A4 6OE 6A1 6A2 6A3 6A4 A3 3OE A5 A2 A6 A1 B5 B2 B6 B1 1Y1 3A1 1Y2 3A2 1Y3 3A3 1Y4 3A4 A4 4OE C5 C2 C6 C1 D5 D2 D6 D1 2Y1 4A1 2Y2 4A2 2Y3 4A3 2Y4 4A4 J3 7OE J5 J2 J6 J1 K5 K2 K6 K1 5Y1 7A1 5Y2 7A2 5Y3 7A3 5Y4 7A4 J4 8OE L5 L2 L6 L1 M5 M2 M6 M1 6Y1 8A1 6Y2 8A2 6Y3 8A3 6Y4 8A4 POST OFFICE BOX 655303 H4 E5 E2 E6 E1 F5 F2 F6 F1 3Y1 3Y2 3Y3 3Y4 H3 G5 G2 G6 G1 H6 H1 H5 H2 4Y1 4Y2 4Y3 4Y4 T4 N5 N2 N6 N1 P5 P2 P6 P1 7Y1 7Y2 7Y3 7Y4 T3 R5 R2 R6 R1 T6 T1 T5 T2 • DALLAS, TEXAS 75265 8Y1 8Y2 8Y3 8Y4 3 SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Current into any output in the low state, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA Current into any output in the high state, IO (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Package thermal impedance, θJA (see Note 3): GKE/ZKE package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This current flows only when the output is in the high state and VO > VCC. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 4) MIN MAX 2.7 3.6 UNIT VCC VIH Supply voltage VIL VI Low-level input voltage 0.8 V Input voltage 5.5 V IOH IOL High-level output current −32 mA Low-level output current 64 mA ∆t/∆v Input transition rise or fall rate 10 ns/V ∆t/∆VCC TA Power-up ramp rate 200 Operating free-air temperature −40 High-level input voltage 2 Outputs enabled V V µs/V 85 °C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS TYP† MIN MAX UNIT −1.2 V VIK VCC = 2.7 V, VCC = 2.7 V to 3.6 V, II = −18 mA IOH = −100 µA VOH VCC = 2.7 V, VCC = 3 V, IOH = −8 mA IOH = −32 mA IOL = 100 µA IOL = 24 mA 0.2 VCC = 2.7 V IOL = 16 mA IOL = 32 mA 0.4 IOL = 64 mA VI = 5.5 V 0.55 VOL VCC = 3 V Control inputs VCC = 0 or 3.6 V, VCC = 3.6 V, Data inputs VCC = 3.6 V II VCC−0.2 2.4 V 2 0.5 V 0.5 10 ±1 VI = VCC or GND VI = VCC 1 VI = 0 VI or VO = 0 to 4.5 V µA A −5 ±100 µA 5 µA −5 µA ± 100 µA Ioff IOZH VCC = 0, VCC = 3.6 V, IOZL VCC = 3.6 V, IOZPU VCC = 0 to 1.5 V, VO = 0.5 V to 3 V, OE = don’t care IOZPD VCC = 1.5 V to 0, VO = 0.5 V to 3 V, OE = don’t care ±100 µA ICC VCC = 3.6 V, IO = 0, VI = VCC or GND VO = 3 V VO = 0.5 V Outputs high 10 Outputs disabled ∆ICC‡ VCC = 3 V to 3.6 V, One input at VCC − 0.6 V, Other inputs at VCC or GND Ci VI = 3 V or 0 VO = 3 V or 0 Co 0.38 Outputs low mA 0.38 0.2 mA 4 pF 9 pF † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tPLH tPHL A Y tPZH tPZL OE Y tPHZ tPLZ OE Y PARAMETER tsk(o) † All typical values are at VCC = 3.3 V, TA = 25°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC = 3.3 V ± 0.3 V VCC = 2.7 V MIN TYP† MAX 1 2.2 3.5 4 1 2.7 3.5 4 MIN UNIT MAX 1 2.6 4 4.9 1.2 2.6 4.4 4.6 2 3.4 4.5 5 2 3.2 4.2 4.2 0.5 0.5 ns ns ns ns 5 SCBS747C − SEPTEMBER 2000 − REVISED SEPTEMBER 2003 PARAMETER MEASUREMENT INFORMATION 6V 500 Ω From Output Under Test S1 Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 6V GND 2.7 V LOAD CIRCUIT 1.5 V Timing Input 0V tw tsu 2.7 V 1.5 V Input th 2.7 V 1.5 V 1.5 V Data Input 1.5 V 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION 2.7 V Input 1.5 V 1.5 V 0V tPHL tPLH VOH Output 1.5 V 1.5 V VOL 1.5 V Output Waveform 1 S1 at 6 V (see Note B) tPZL tPLZ 3V 1.5 V tPZH VOH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 1.5 V 0V tPLH tPHL Output 2.7 V Output Control Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 1.5 V VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Applications amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2003, Texas Instruments Incorporated