TI SN74LV161ADGVR

SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
D 2-V to 5.5-V VCC Operation
D Max tpd of 9.5 ns at 5 V
D Typical VOLP (Output Ground Bounce)
D
D
D
D
D
D
D
CLR
CLK
A
B
C
D
ENP
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
RCO
QA
QB
QC
QD
ENT
LOAD
SN54LV161A . . . FK PACKAGE
(TOP VIEW)
A
B
NC
C
D
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
ENP
GND
NC
description/ordering information
4
The ’LV161A devices are 4-bit synchronous
binary counters designed for 2-V to 5.5-V VCC
operation.
QA
QB
NC
QC
QD
LOAD
ENT
D
<0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
>2.3 V at VCC = 3.3 V, TA = 25°C
Support Mixed-Mode Voltage Operation on
All Ports
Internal Look-Ahead for Fast Counting
Carry Output for n-Bit Cascading
Synchronous Counting
Synchronously Programmable
Ioff Supports Partial-Power-Down Mode
Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
CLK
CLR
NC
VCC
RCO
D
SN54LV161A . . . J OR W PACKAGE
SN74LV161A . . . D, DB, DGV, NS, OR PW PACKAGE
(TOP VIEW)
NC − No internal connection
ORDERING INFORMATION
TOP-SIDE
MARKING
Tube of 40
SN74LV161AD
Reel of 2500
SN74LV161ADR
SOP − NS
Reel of 2000
SN74LV161ANSR
74LV161A
SSOP − DB
Reel of 2000
SN74LV161ADBR
LV161A
Tube of 90
SN74LV161APW
Reel of 2000
SN74LV161APWR
Reel of 250
SN74LV161APWT
TVSOP − DGV
Reel of 2000
SN74LV161ADGVR
LV161A
CDIP − J
Tube of 25
SNJ54LV161AJ
SNJ54LV161AJ
CFP − W
Tube of 150
SNJ54LV161AW
SNJ54LV161AW
SOIC − D
−40°C to 85°C
TSSOP − PW
−55°C
125°C
−55
C to 125
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
LV161A
LV161A
LCCC − FK
Tube of 55
SNJ54LV161AFK
SNJ54LV161AFK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005, Texas Instruments Incorporated
!"#$ $%$ &
$'("%$ !((#$ % ' )!*+%$ %#, &(! $'(" )#'%$ )#( # #(" ' #-% $(!"#$ %$%( .%((%$/,
&(!$ )(#$0 # $ $##%(+/ $+!# #$0 ' %++
)%(%"##(,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
description/ordering information (continued)
These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed
counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the
outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and
internal gating. This mode of operation eliminates the output counting spikes that normally are associated with
synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising
(positive-going) edge of the clock waveform.
These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As
presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs
to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.
The clear function for the ’LV161A devices is asynchronous. A low level at the clear (CLR) input sets all four
of the flip-flop outputs low, regardless of the levels of the CLK, load (LOAD), or enable inputs.
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without
additional gating. Instrumental in accomplishing this function are ENP, ENT, and a ripple-carry output (RCO).
Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a
high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse
can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the
level of CLK.
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD) that
modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of
the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the
stable setup and hold times.
These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the
outputs, preventing damaging current backflow through the devices when they are powered down.
FUNCTION TABLE
INPUTS
2
CLR
LOAD
ENP
OUTPUTS
ENT
CLK
QA
QB
QC
QD
FUNCTION
L
X
X
X
X
L
L
L
L
Reset to “0”
H
L
X
X
↑
A
B
C
D
Preset Data
H
H
X
L
↑
No Change
No Count
H
H
L
X
↑
No Change
No Count
H
H
H
H
↑
Count up
Count
H
X
X
X
↑
No Change
No Count
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
logic diagram (positive logic)
LOAD
ENT
ENP
9
10
15
LD†
7
RCO
CK†
CLK
CLR
A
B
C
D
2
1
CK
LD
R
M1
G2
1, 2T/1C3
G4
3D
4R
3
M1
G2
1, 2T/1C3
G4
3D
4R
4
M1
G2
1, 2T/1C3
G4
3D
4R
5
M1
G2
1, 2T/1C3
G4
3D
4R
6
14
13
12
11
QA
QB
QC
QD
† For simplicity, routing of complementary signals LD and CK is not shown on this overall logic diagram. The uses of these signals are shown
on the logic diagram of the D/T flip-flops.
Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
logic symbol, each D/T flip-flop
LD (Load)
M1
TE (Toggle Enable)
G2
CK (Clock)
1, 2T/1C3
G4
D (Inverted Data)
3D
R (Inverted Reset)
4R
Q (Output)
logic diagram, each D/T flip-flop (positive logic)
CK
LD
TE
LD†
TG
TG
LD†
Q
TG
TG
CK†
D
TG
CK†
R
† The origins of LD and CK are shown in the overall logic diagram of the device.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CK†
TG
CK†
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
typical clear, preset, count, and inhibit sequence
The following sequence is illustrated below:
1. Clear outputs to zero (asynchronous)
2. Preset to binary 12
3. Count to 13, 14, 15, 0, 1, and 2
4. Inhibit
CLR
LOAD
A
Data
Inputs
B
C
D
CLK
ENP
ENT
QA
Data
Outputs
QB
QC
QD
RCO
12
13
14
15
0
1
2
Count
Inhibit
Sync Preset
Clear
Async
Clear
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Output voltage range applied in high or low state, VO (see Notes 1 and 2) . . . . . . . . . . −0.5 V to VCC + 0.5 V
Voltage range applied to any output in the power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
recommended operating conditions (see Note 4)
SN54LV161A
VCC
VIH
High-level input voltage
VIL
Low-level input voltage
VI
VO
Input voltage
IOH
IOL
∆t/∆v
MIN
MAX
2
5.5
Supply voltage
VCC = 2 V
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
2
5.5
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
0.5
Output voltage
0
0
VCC
−50
V
VCC × 0.3
5.5
0
VCC
−50
−2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
V
V
V
µA
−2
−6
−6
−12
−12
VCC = 2 V
VCC = 2.3 V to 2.7 V
50
50
2
2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
6
6
12
12
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
V
VCC × 0.3
VCC × 0.3
VCC × 0.3
5.5
VCC = 2 V
VCC = 2.3 V to 2.7 V
UNIT
0.5
VCC × 0.3
VCC × 0.3
0
Input transition rise or fall rate
MAX
1.5
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
Low-level output current
MIN
1.5
VCC = 2 V
VCC = 2.3 V to 2.7 V
High-level output current
SN74LV161A
0
200
0
200
0
100
0
100
0
20
0
20
mA
µA
mA
ns/V
TA
Operating free-air temperature
−55
125
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
SN54LV161A
PARAMETER
VOH
VOL
TEST CONDITIONS
IOH = −50 µA
IOH = −2 mA
2 V to 5.5 V
IOL = 50 µA
IOL = 2 mA
IOL = 6 mA
IOL = 12 mA
VI = 5.5 V or GND
VI = VCC or GND,
Ioff
Ci
VI or VO = 0 to 5.5 V
VI = VCC or GND
IO = 0
MIN
TYP
SN74LV161A
MAX
MIN
VCC−0.1
2
VCC−0.1
2
3V
2.48
2.48
4.5 V
3.8
2.3 V
IOH = −6 mA
IOH = −12 mA
II
ICC
VCC
TYP
MAX
UNIT
V
3.8
2 V to 5.5 V
0.1
0.1
2.3 V
0.4
0.4
3V
0.44
0.44
4.5 V
V
0.55
0.55
0 to 5.5 V
±1
±1
µA
5.5 V
20
20
µA
0
5
5
µA
3.3 V
1.8
1.8
pF
& & $'("%$ $#($ )(! $ # '("%1# (
#0$ )%# ' #1#+)"#$, %(%#( %% %$ #(
)#'%$ %(# #0$ 0%+, #-% $(!"#$ (##(1# # (0 %$0# ( $$!# ## )(! .! $#,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
timing requirements over recommended operating free-air temperature range, VCC = 2.5 V ± 0.2 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
tsu
th
Pulse duration
Setup time before CLK↑
SN54LV161A
MIN
MAX
SN74LV161A
MIN
CLK high or low
7
7
7
CLR low
7
7
7
CLR
4.5
4.5
4.5
Data (A, B, C, and D)
7.5
8.5
8.5
ENP, ENT
9.5
11
11
LOAD low
10
11.5
11.5
1.5
1.5
1.5
Hold time, all synchronous inputs after CLK↑
MAX
UNIT
ns
ns
ns
timing requirements over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
tsu
th
Pulse duration
Setup time before CLK↑
SN54LV161A
MIN
MAX
SN74LV161A
MIN
CLK high or low
5
5
5
CLR low
5
5
5
CLR
2.5
2.5
2.5
Data (A, B, C, and D)
5.5
6.5
6.5
ENP, ENT
7.5
9
9
LOAD low
8
9.5
9.5
1
1
1
Hold time, all synchronous inputs after CLK↑
MAX
UNIT
ns
ns
ns
timing requirements over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
Pulse duration
tsu
Setup time before CLK↑
th
Hold time, all synchronous inputs after CLK↑
MIN
MAX
SN74LV161A
MIN
CLK high or low
5
5
5
CLR low
5
5
5
CLR
1.5
1.5
1.5
Data (A, B, C, and D)
4.5
4.5
4.5
ENP, ENT
5
6
6
LOAD low
5
6
6
1
1
1
& & $'("%$ $#($ )(! $ # '("%1# (
#0$ )%# ' #1#+)"#$, %(%#( %% %$ #(
)#'%$ %(# #0$ 0%+, #-% $(!"#$ (##(1# # (0 %$0# ( $$!# ## )(! .! $#,
8
SN54LV161A
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
UNIT
ns
ns
ns
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
switching characteristics over recommended operating free-air temperature range,
VCC = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
CLK
tpd
tPHL
CLR
CLK
tpd
tPHL
SN74LV161A
CL = 15 pF
50*
125*
40*
40
CL = 50 pF
30
95
25
25
MIN
MAX
MIN
MAX
16.2*
1*
19.5*
1
19.5
RCO
(count mode)
8.9*
17*
1*
20.5*
1
20.5
11.9*
20.6*
1*
24.5*
1
24.5
RCO
8.3*
15.7*
1*
19*
1
19
Q
8.8*
17*
1*
20.5*
1
20.5
RCO
9.8*
16.6*
1*
20*
1
20
Q
10.5
19.2
1
22.5
1
22.5
RCO
(count mode)
11.7
20
1
23.5
1
23.5
14.5
23.6
1
27.5
1
27.5
11
18.7
1
22
1
22
CL = 15 pF
CL = 50 pF
RCO
Q
11.4
20
1
23.5
1
23.5
RCO
12.6
19.6
1
23
1
23
CLR
UNIT
MHz
7.9*
RCO
(preset mode)
ENT
SN54LV161A
MIN
Q
RCO
(preset mode)
ENT
TA = 25°C
TYP
MAX
LOAD
CAPACITANCE
ns
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
& & $'("%$ $#($ )(! $ # '("%1# (
#0$ )%# ' #1#+)"#$, %(%#( %% %$ #(
)#'%$ %(# #0$ 0%+, #-% $(!"#$ (##(1# # (0 %$0# ( $$!# ## )(! .! $#,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
switching characteristics over recommended operating free-air temperature range,
VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
TA = 25°C
TYP
MAX
tpd*
CL = 15 pF*
80*
165*
70*
70
CL = 50 pF
55
125
50
50
tPHL*
CLR
CLK
tpd
tPHL
MIN
MAX
15*
1
15
6.7
13.6
1*
16*
1
16
8.6
17.2
1*
20*
1
20
RCO
6.2
12.3
1*
14.5*
1
14.5
Q
6.5
13.6
1*
16*
1
16
RCO
7.2
13.2
1*
15.5*
1
15.5
Q
7.8
16.3
1
18.5
1
18.5
RCO
(count mode)
8.7
17.1
1
19.5
1
19.5
10.6
20.7
1
23.5
1
23.5
RCO
8.3
15.8
1
18
1
18
Q
8.4
17.1
1
19.5
1
19.5
RCO
9.2
16.7
1
19
1
19
RCO
(count mode)
CL = 15 pF
CL = 50 pF
CLR
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
MHz
1*
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
10
MAX
12.8
RCO
(preset mode)
ENT
MIN
6
RCO
(preset mode)
ENT
SN74LV161A
MIN
Q
CLK
SN54LV161A
LOAD
CAPACITANCE
ns
ns
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
CLK
tpd
220
115*
115
95
165
85
85
MIN
MAX
9.5*
1
9.5
RCO
(count mode)
5.1*
8.1*
1*
9.5*
1
9.5
6.3*
10.3*
1*
12*
1
12
RCO
4.8*
8.1*
1*
9.5*
1
9.5
Q
4.9*
9*
1*
10.5*
1
10.5
RCO
5.5*
8.6*
1*
10*
1
10
Q
5.9
10.1
1
11.5
1
11.5
RCO
(count mode)
6.6
10.1
1
11.5
1
11.5
7.8
12.3
1
14
1
14
RCO
6.1
10.1
1
11.5
1
11.5
Q
6.3
11
1
12.5
1
12.5
RCO
6.9
10.6
1
12
1
12
ENT
CL = 15 pF
CL = 50 pF
CLR
UNIT
MHz
1*
RCO
(preset mode)
tPHL
135*
CL = 50 pF
MAX
8.1*
CLR
CLK
SN74LV161A
CL = 15 pF
MIN
4.5*
ENT
tpd
SN54LV161A
MIN
Q
RCO
(preset mode)
tPHL
TA = 25°C
TYP
MAX
LOAD
CAPACITANCE
ns
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
noise characteristics, VCC = 3.3 V, CL = 50 pF, TA = 25°C (see Note 5)
SN74LV161A
PARAMETER
MIN
TYP
MAX
UNIT
VOL(P)
VOL(V)
Quiet output, maximum dynamic VOL
0.3
0.8
V
Quiet output, minimum dynamic VOL
−0.2
−0.8
V
VOH(V)
VIH(D)
Quiet output, minimum dynamic VOH
3
High-level dynamic input voltage
V
2.31
V
VIL(D)
Low-level dynamic input voltage
NOTE 5: Characteristics are for surface-mount packages only.
0.99
V
VCC
3.3 V
TYP
UNIT
5V
25.8
operating characteristics, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
TEST CONDITIONS
CL = 50 pF,
f = 10 MHz
23.6
pF
& & $'("%$ $#($ )(! $ # '("%1# (
#0$ )%# ' #1#+)"#$, %(%#( %% %$ #(
)#'%$ %(# #0$ 0%+, #-% $(!"#$ (##(1# # (0 %$0# ( $$!# ## )(! .! $#,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SCLS404F − APRIL 1998 − REVISED DECEMBER 2005
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
RL = 1 kΩ
From Output
Under Test
Test
Point
VCC
Open
S1
TEST
GND
CL
(see Note A)
CL
(see Note A)
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Drain
Open
VCC
GND
VCC
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
VCC
50% VCC
Timing Input
0V
tw
tsu
VCC
50% VCC
Input
50% VCC
th
VCC
50% VCC
Data Input
50% VCC
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
50% VCC
Input
50% VCC
tPLH
In-Phase
Output
tPHL
50% VCC
tPHL
Out-of-Phase
Output
0V
VOH
50% VCC
VOL
VOH
50% VCC
VOL
50% VCC
50% VCC
0V
tPZL
Output
Waveform 1
S1 at VCC
(see Note B)
tPLH
50% VCC
VCC
Output
Control
tPLZ
≈VCC
50% VCC
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + 0.3 V
VOL
tPHZ
50% VCC
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns.
D. The outputs are measured one at a time, with one input transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPHL and tPLH are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
PACKAGING INFORMATION
(1)
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LV161AD
ACTIVE
SOIC
D
16
SN74LV161ADBR
ACTIVE
SSOP
DB
SN74LV161ADBRE4
ACTIVE
SSOP
SN74LV161ADBRG4
ACTIVE
SN74LV161ADE4
40
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADGVR
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADGVRE4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADGVRG4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ADRG4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ANSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ANSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161ANSRG4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV161APWTG4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
The marketing status values are defined as follows:
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
6.6
2.5
12.0
16.0
Q1
SN74LV161ADBR
SSOP
DB
16
2000
330.0
16.4
8.2
SN74LV161ADGVR
TVSOP
DGV
16
2000
330.0
12.4
6.8
4.0
1.6
8.0
12.0
Q1
SN74LV161ADR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
SN74LV161ANSR
SO
NS
16
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
SN74LV161APWR
TSSOP
PW
16
2000
330.0
12.4
7.0
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LV161ADBR
SSOP
DB
16
2000
346.0
346.0
33.0
SN74LV161ADGVR
TVSOP
DGV
16
2000
346.0
346.0
29.0
SN74LV161ADR
SOIC
D
16
2500
333.2
345.9
28.6
SN74LV161ANSR
SO
NS
16
2000
346.0
346.0
33.0
SN74LV161APWR
TSSOP
PW
16
2000
346.0
346.0
29.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated