SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 FEATURES • • • • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage VCC Isolation Feature – If Either VCC Input Is at GND, All Outputs Are in the High-Impedance State Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications Fully Configurable Dual-Rail Design Allows Each Port to Operate Over Full 1.2-V to 3.6-V Power-Supply Range • • • • Ioff Supports Partial-Power-Down Mode Operation I/Os Are 4.6-V Tolerant Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 8000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) DESCRIPTION/ORDERING INFORMATION This 24-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74AVC24T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes. The SN74AVC24T245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are effectively isolated. The SN74AVC24T245 is designed so that the control pins (1DIR, 2DIR, 3DIR, 4DIR, 5DIR, 6DIR, 1OE, 2OE, 3OE, 4OE, 5OE, and 6OE) are supplied by VCCA. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCCA through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ORDERING INFORMATION PACKAGE (1) TA –40°C to 85°C (1) ORDERABLE PART NUMBER LFBGA – GRG Tape and reel SN74AVC24T245GRGR LFBGA – ZRG (Pb-free) Tape and reel SN74AVC24T245ZRGR TOP-SIDE MARKING WH245 Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2005, Texas Instruments Incorporated SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 GRG OR ZRG PACKAGE (TOP VIEW) 1 2 3 4 5 6 A B C D E F G H J K L M N P TERMINAL FUNCTIONS 1 2 3 4 5 6 A 6OE 5OE 4OE 3OE 2OE 1OE B 1B1 1B2 VCCB VCCA 1A2 1A1 C 1B3 1B4 GND GND 1A4 1A3 D 2B1 2B2 VCCB VCCA 2A2 2A1 E 2B3 2B4 GND GND 2A4 2A3 F 3B1 3B2 GND GND 3A2 3A1 G 3B3 3B4 GND 3A4 3A3 H 4B1 4B2 VCCB VCCA 4A2 4A1 J 4B3 4B4 GND GND 4A4 4A3 K 5B1 5B2 GND GND 5A2 5A1 L 5B3 5B4 VCCB VCCA 5A4 5A3 M 6B1 6B2 GND GND 6A2 6A1 N 6B3 6B4 VCCB VCCA 6A4 6A3 P 6DIR 5DIR 4DIR 3DIR 2DIR 1DIR FUNCTION TABLE (EACH 4-BIT SECTION) INPUTS OE 2 DIR OPERATION L L B data to A bus L H A data to B bus H X Isolation www.ti.com SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 LOGIC DIAGRAM (POSITIVE LOGIC) 1DIR P6 2DIR A6 1A1 A5 1OE B6 2A1 B1 P5 D6 D1 1B1 P4 4DIR A4 3A1 P3 A3 3OE F6 4A1 F1 H1 3B1 P2 6DIR A1 6A1 K1 P1 5OE K6 To Three Other Channels 4B1 To Three Other Channels A2 5A1 4OE H6 To Three Other Channels 5DIR 2B1 To Three Other Channels To Three Other Channels 3DIR 2OE 6OE M6 M1 5B1 6B1 To Three Other Channels 3 SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) VCCA VCCB Supply voltage range VI Input voltge range (2) MIN MAX –0.5 4.6 I/O ports (A port) –0.5 4.6 I/O ports (B port) –0.5 4.6 Control inputs –0.5 4.6 A port –0.5 4.6 B port –0.5 4.6 A port –0.5 VCCA + 0.5 B port –0.5 VCCB + 0.5 UNIT V V VO Voltage range applied to any output in the high-impedance or power-off state (2) VO Voltage range applied to any output in the high or low state (2) (3) IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 Continuous current through each VCCA, VCCB, and GND θJA Package thermal impedance (4) Tstg Storage temperature range (1) (2) (3) (4) 4 GRG/ZRG package –65 V V mA 50 °C/W 150 °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed. The package thermal impedance is calculated in accordance with JESD 51-7. www.ti.com SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Recommended Operating Conditions (1) (2) (3) VCCI VCCO MIN MAX UNIT VCCA Supply voltage 1.2 3.6 V VCCB Supply voltage 1.2 3.6 V High-level input voltage VIH Low-level input voltage VIL High-level input voltage VIH VIL Low-level input voltage VI Input voltage VO Output voltage IOH Data inputs (4) Data inputs (4) DIR (referenced to VCCA) (5) DIR (referenced to VCCA) (5) 1.6 2.7 V to 3.6 V 2 V 1.2 V to 1.95 V VCCI × 0.35 1.95 V to 2.7 V 0.7 2.7 V to 3.6 V 0.8 1.2 V to 1.95 V VCCA × 0.65 1.95 V to 2.7 V 1.6 2.7 V to 3.6 V 2 1.2 V to 1.95 V VCCA × 0.35 1.95 V to 2.7 V 0.7 2.7 V to 3.6 V 3.6 3-state 0 3.6 TA Operating free-air temperature V 0.8 VCCO Low-level output current V V 0 Input transition rise or fall rate (4) (5) 1.95 V to 2.7 V Active state ∆t/∆v (1) (2) (3) VCCI × 0.65 0 High-level output current IOL 1.2 V to 1.95 V 1.2 V –3 1.4 V to 1.6 V –6 1.65 V to 1.95 V –8 2.3 V to 2.7 V –9 3 V to 3.6 V –12 1.2 V 3 1.4 V to 1.6 V 6 1.65 V to 1.95 V 8 2.3 V to 2.7 V 9 3 V to 3.6 V 12 –40 V V mA mA 5 ns/V 85 °C VCCI is the VCC associated with the data input port. VCCO is the VCC associated with the output port. All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V. For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V. 5 SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) (1) (2) PARAMETER TEST CONDITIONS 1.2 V to 3.6 V 1.2 V to 3.6 V IOH = –3 mA 1.2 V 1.2 V IOH = –6 mA 1.4 V 1.4 V 1.05 1.65 V 1.65 V 1.2 IOH = –9 mA 2.3 V 2.3 V 1.75 IOH = –12 m 3V 3V 2.3 IOL = 100 µA 1.2 V to 3.6 V 1.2 V to 3.6 V IOL = 3 mA 1.2 V 1.2 V IOL = 6 mA 1.4 V 1.4 V 0.35 1.65 V 1.65 V 0.45 IOL = 9 mA 2.3 V 2.3 V 0.55 IOL = 12 mA 3V 3V 0.7 1.2 V to 3.6 V 1.2 V to 3.6 V 0V IOH = –8 mA VOL IOL = 8 mA Control inputs II A or B port Ioff A or B port IOZ (3) A or B port VI = VIH VI = VIL VI = VCCA or GND VO = VCCO or GND, VI = VCCI or GND, OE = VIH VI = VCCI or GND, IO = 0 ICCB ICCA + ICCB MIN TYP MAX MIN MAX UNIT VCCO – 0.2 0.95 V 0.2 0.15 ±0.025 ±0.25 ±1 0 to 3.6 V ±0.1 ±2.5 ±5 0 to 3.6 V 0V ±0.1 ±2.5 ±5 3.6 V 3.6 V ±0.5 ±2.5 ±5 1.2 V to 3.6 V 1.2 V to 3.6 V 40 V µA µA VI or VO = 0 to 3.6 V VI = VCCI or GND, IO = 0 ICCA –40°C to 85°C VCCB IOH = –100 µA VOH TA = 25°C VCCA 0V 3.6 V –5 3.6 V 0V 40 1.2 V to 3.6 V 1.2 V to 3.6 V 40 0V 3.6 V 40 3.6 V 0V –5 VI = VCCI or GND, IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V 75 µA µA µA µA Ci Control inputs VI = 3.3 V or GND 3.3 V 3.3 V 3.5 pF Cio A or B port VO = 3.3 V or GND 3.3 V 3.3 V 7 pF (1) (2) (3) 6 VCCO is the VCC associated with the output port. VCCI is the VCC associated with the input port. For I/O ports, the parameter IOZ includes the input leakage current. SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Switching Characteristics over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 1) PARAMETER tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ FROM (INPUT) TO (OUTPUT) A B B A OE A OE B OE A OE B VCCB = 1.2 V VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V TYP TYP TYP TYP TYP 4.1 3.3 3 2.8 3.2 4.1 3.3 3 2.8 3.2 4.4 4 3.8 3.6 3.5 4.4 4 3.8 3.6 3.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6 4.6 4 3.4 3.2 6 4.6 4 3.4 3.2 6.6 6.6 6.6 6.6 6.8 6.6 6.6 6.6 6.6 6.8 6 4.9 4.9 4.2 5.3 6 4.9 4.9 4.2 5.3 UNIT ns ns ns ns ns ns Switching Characteristics over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (see Figure 1) PARAMETER tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ FROM (INPUT) TO (OUTPUT) A B B A OE A OE B OE A OE B VCCB = 1.2 V VCCB = 1.5 V ± 0.1 V VCCB = 1.8 V ± 0.15 V VCCB = 2.5 V ± 0.2 V VCCB = 3.3 V ± 0.3 V TYP MIN MAX MIN MAX MIN MAX MIN MAX 3.6 0.5 6.2 0.5 5.2 0.5 4.1 0.5 3.7 3.6 0.5 6.2 0.5 5.2 0.5 4.1 0.5 3.7 3.3 0.5 6.2 0.5 5.9 0.5 5.6 0.5 5.5 3.3 0.5 6.2 0.5 5.9 0.5 5.6 0.5 5.5 4.3 1 10.1 1 10.1 1 10.1 1 10.1 4.3 1 10.1 1 10.1 1 10.1 1 10.1 5.6 1 10.1 0.5 8.1 0.5 5.9 0.5 5.2 5.6 1 10.1 0.5 8.1 0.5 5.9 0.5 5.2 4.5 1.5 9.1 1.5 9.1 1.5 9.1 1.5 9.1 4.5 1.5 9.1 1.5 9.1 1.5 9.1 1.5 9.1 5.5 1.5 8.7 1.5 7.5 1 6.5 1 6.3 5.5 1.5 8.7 1.5 7.5 1 6.5 1 6.3 UNIT ns ns ns ns ns ns 7 SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Switching Characteristics over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (see Figure 1) PARAMETER tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ FROM (INPUT) TO (OUTPUT) A B B A OE A OE B OE A OE B VCCB = 1.2 V VCCB = 1.5 V ± 0.1 V VCCB = 1.8 V ± 0.15 V VCCB = 2.5 V ± 0.2 V VCCB = 3.3 V ± 0.3 V TYP MIN MAX MIN MAX MIN MAX MIN MAX 3.4 0.5 5.9 0.5 4.8 0.5 3.7 0.5 3.3 3.4 0.5 5.9 0.5 4.8 0.5 3.7 0.5 3.3 3 0.5 5.2 0.5 4.8 0.5 4.5 0.5 4.4 3 0.5 5.2 0.5 4.8 0.5 4.5 0.5 4.4 3.4 1 7.8 1 7.8 1 7.8 1 7.8 3.4 1 7.8 1 7.8 1 7.8 1 7.8 5.4 1 9.2 0.5 7.4 0.5 5.3 0.5 4.5 5.4 1 9.2 0.5 7.4 0.5 5.3 0.5 4.5 4.2 1.5 7.7 1.5 7.7 1.5 7.7 1.5 7.7 4.2 1.5 7.7 1.5 7.7 1.5 7.7 1.5 7.7 5.2 1.5 8.4 1.5 7.1 1 5.9 1 5.7 5.2 1.5 8.4 1.5 7.1 1 5.9 1 5.7 UNIT ns ns ns ns ns ns Switching Characteristics over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (see Figure 1) PARAMETER tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ 8 FROM (INPUT) TO (OUTPUT) A B B A OE A OE B OE A OE B VCCB = 1.2 V VCCB = 1.5 V ± 0.1 V VCCB = 1.8 V ± 0.15 V VCCB = 2.5 V ± 0.2 V VCCB = 3.3 V ± 0.3 V TYP MIN MAX MIN MAX MIN MAX MIN MAX 3.2 0.5 5.6 0.5 4.5 0.5 3.3 0.5 2.8 3.2 0.5 5.6 0.5 4.5 0.5 3.3 0.5 2.8 2.6 0.5 4.1 0.5 3.7 0.5 3.3 0.5 3.2 2.6 0.5 4.1 0.5 3.7 0.5 3.3 0.5 3.2 2.5 0.5 5.3 0.5 5.3 0.5 5.3 0.5 5.3 2.5 0.5 5.3 0.5 5.3 0.5 5.3 0.5 5.3 5.2 0.5 9.4 0.5 7.3 0.5 5.1 0.5 4.5 5.2 0.5 9.4 0.5 7.3 0.5 5.1 0.5 4.5 3 1 6.1 1 6.1 1 6.1 1 6.1 3 1 6.1 1 6.1 1 6.1 1 6.1 5 1 7.9 1 6.6 1 6.1 1 5.2 5 1 7.9 1 6.6 1 6.1 1 5.2 UNIT ns ns ns ns ns ns SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 Switching Charactertistics over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) A B B A OE A OE B OE A OE B tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ VCCB = 1.2 V VCCB = 1.5 V ± 0.1 V VCCB = 1.8 V ± 0.15 V VCCB = 2.5 V ± 0.2 V VCCB = 3.3 V ± 0.3 V TYP MIN MAX MIN MAX MIN MAX MIN MAX 3.2 0.5 5.5 0.5 4.4 0.5 3.2 0.5 2.7 3.2 0.5 5.5 0.5 4.4 0.5 3.2 0.5 2.7 2.8 0.5 3.7 0.5 3.3 0.5 2.8 0.5 2.7 2.8 0.5 3.7 0.5 3.3 0.5 2.8 0.5 2.7 2.2 0.5 4.3 0.5 4.2 0.5 4.1 0.5 4 2.2 0.5 4.3 0.5 4.2 0.5 4.1 0.5 4 5.1 0.5 9.3 0.5 7.2 0.5 4.9 0.5 4 5.1 0.5 9.3 0.5 7.2 0.5 4.9 0.5 4 3.4 0.5 5 0.5 5 0.5 5 0.5 5 3.4 0.5 5 0.5 5 0.5 5 0.5 5 4.9 1 7.7 1 6.5 1 5.2 0.5 5 4.9 1 7.7 1 6.5 1 5.2 0.5 5 UNIT ns ns ns ns ns ns Operating Characteristics VCCA and VCCB = 3.3 V, TA = 25°C VCCA = VCCB = 1.5 V VCCA = VCCB = 1.2 V VCCA = VCCB = 1.8 V VCCA = VCCB = 2.5 V VCCA = VCCB = 3.3 V TYP TYP TYP TYP TYP 1 1 1 2 2 1 1 1 1 2 19 19 20 21 22 Outputs disabled 1 1 1 1 1 Outputs enabled 19 19 20 21 22 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 PARAMETER A to B CpdA (1) B to A A to B CpdB (1) B to A (1) TEST CONDITIONS Outputs enabled Outputs disabled Outputs enabled Outputs disabled Outputs enabled CL = 0, f = 10 MHz, tr = tf = 1 ns CL = 0, f = 10 MHz, tr = tf = 1 ns Outputs disabled UNIT pF pF Power dissipation capacitance per transceiver 9 SN74AVC24T245 24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS www.ti.com SCES552C – FEBRUARY 2004 – REVISED AUGUST 2005 PARAMETER MEASUREMENT INFORMATION 2 × VCCO S1 RL From Output Under Test Open GND CL (see Note A) TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 × VCCO GND RL tw LOAD CIRCUIT VCCI VCCI/2 Input VCCO CL RL VTP 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 15 pF 15 pF 15 pF 15 pF 2 kΩ 2 kΩ 2 kΩ 2 kΩ 0.1 V 0.15 V 0.15 V 0.3 V VCCI/2 0V VOLTAGE WAVEFORMS PULSE DURATION VCCA Output Control (low-level enabling) VCCA/2 VCCA/2 0V tPZL VCCI Input VCCI/2 VCCI/2 0V tPLH Output tPHL VCCO/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VOH VCCO/2 VOL tPLZ VCCO Output Waveform 1 S1 at 2 × VCCO (see Note B) VCCO/2 VOL + VTP VOL tPZH Output Waveform 2 S1 at GND (see Note B) tPHZ VCCO/2 VOH − VTP VOH 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR10 MHz, ZO = 50 Ω, dv/dt ≥ 1 V/ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. VCCI is the VCC associated with the input port. I. VCCO is the VCC associated with the output port. Figure 1. Load Circuit and Voltage Waveforms 10 PACKAGE OPTION ADDENDUM www.ti.com 18-Jul-2006 PACKAGING INFORMATION Orderable Device Status (1) SN74AVC24T245GRGR ACTIVE BGA MI CROSTA R JUNI OR GRG 83 1000 SN74AVC24T245ZRGR ACTIVE BGA MI CROSTA R JUNI OR ZRG 83 1000 Green (RoHS & no Sb/Br) Package Type Package Drawing Pins Package Eco Plan (2) Qty TBD Lead/Ball Finish MSL Peak Temp (3) SNPB Level-1-240C-UNLIM SNAGCU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated