LOGIC L2330QC25

L2330
L2330
DEVICES INCORPORATED
Coordinate Transformer
Coordinate Transformer
DEVICES INCORPORATED
FEATURES
DESCRIPTION
❑ Rectangular-to-Polar or Polar-toRectangular at 50 MHz
❑ Performs Direct Digital Synthesis
(DDS) functions along with PM and
FM Modulation
❑ 24-Bit Polar Phase Angle Accuracy
❑ Replaces Fairchild TMC2330A
❑ 120-pin PQFP
The L2330 is a coordinate transformer
that converts bidirectionally between
Rectangular and Polar coordinates.
seen at the output after 22 clock cycles
and will continue upon every clock
cycle thereafter.
When in Rectangular-to-Polar mode,
the L2330 is able to retrieve phase and
magnitude information or backward
map from a rectangular raster display
to a radial data set.
When in Rectangular-to-Polar mode,
the user inputs a 16-bit Rectangular
coordinate and the output generates a
Polar transformation with 16-bit
magnitude and 16-bit phase. The user
may select the data format to be either
two’s complement or sign-andmagnitude Cartesian data format.
Polar Magnitude data is always in
magnitude format only. Polar Phase
Angle data is modulo 2π so it may be
regarded as either unsigned or two’s
complement format.
When in Polar-to-Rectangular mode,
the L2330 is able to execute direct
digital waveform synthesis and
modulation. Real-time image-space
conversions are achieved from radially-generated images, such as RADAR,
SONAR, and ultrasound to raster
display formats.
Functional Description
The L2330 converts bidirectionally
between Rectangular (Cartesian) and
Polar (Phase and Magnitude) coordinates. The user selects the numeric
format. A valid transformed result is
When in Polar-to-Rectangular mode,
the user inputs 16-bit Polar Magnitude
and 32-bit Phase data and the output
generates a 16-bit Rectangular coordinate. The use may select the data
format to be either two’s complement
or sign-and-magnitude Cartesian data
format.
L2330 BLOCK DIAGRAM
OERX
ENXR
XRIN 15-0
ENYP 1-0
YPIN 31-0
16
2
POLAR
16
RXOUT 15-0
32
OEPY
ACC 1-0
2
RECTANGULAR
16
PYOUT 15-0
TCXY
RTP
OVF
CLK
Special Arithmetic Functions
1
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
Outputs
L2330 FUNCTIONAL BLOCK DIAGRAM
XRIN15-0 ENXR
16
ENYP1-0
YPIN31-0
32
RXOUT15-0 — x-coordinate/Magnitude
Data Output
ACC0
RXOUT15-0 is the 16-bit Cartesian
x-coordinate/Polar Magnitude Data
output port. When OERX is HIGH,
RXOUT15-0 is forced into the highimpedance state.
2
32
M
ACC1
C
AM
32
PM
FM
PYOUT15-0 — y-coordinate/Phase Angle
Data Output
32
PYOUT15-0 is the 16-bit Cartesian
y-coordinate/Polar Phase Angle Data
output port. When OEPY is HIGH,
PYOUT15-0 is forced into the highimpedance state.
32
**n
16
16
TCXY
RTP
Controls
**n
ENXR — x-coordinate/Magnitude Data
Input Enable
* TRANSFORM
PROCESSOR
16
16
16
16
OERX
When ENXR is HIGH, XRIN is latched
into the input register on the rising
edge of clock. When ENXR is LOW,
the value stored in the register is
unchanged.
OEPY
RXOUT15-0
OVF
ENYP1-0 — y-coordinate/Phase Angle
Data Input Control
PYOUT15-0
* REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED
** WHEN RTP IS HIGH ’n’ IS 16-BITS, WHEN RTP IS LOW ’n’ IS 24-BITS
ENYP1-0 is the 2-bit y-coordinate/
Phase Angle Data Input Control that
determines four modes as shown in
SIGNAL DEFINITIONS
Inputs
Power
XRIN15-0 — x-coordinate/Magnitude
Data Input
VCC and GND
+5V power supply. All pins must be
connected.
Clock
CLK — Master Clock
The rising edge of CLK strobes all
enabled registers.
TABLE 1. REGISTER OPERATION
XRIN15-0 is the 16-bit Cartesian
x-coordinate/Polar Magnitude Data
input port. XRIN15-0 is latched on the
rising edge of CLK.
ENYP1-0
M
C
00
Hold
Hold
01
Load
Hold
10
Hold
Load
11
Clear
Load
YPIN31-0 — y-coordinate/Phase Angle
Data Input
YPIN31-0 is the 32-bit Cartesian
y-coordinate/Polar Phase Angle Data
input port. When RTP is HIGH, the input
accumulators should not be used. When
ACC is LOW, the upper 16 bits of YPIN
are the input port and the lower 16 bits
become “don’t cares”. YPIN31-0 is latched
on the rising edge of CLK.
TABLE 2. ACCUMULATOR CONTROL
ACC1-0 Configuration
00
No accumulation (normal operation)
01
PM accumulator path enabled
10
FM accumulator path enabled
11
Logical OR of PM and FM (Nonsensical)
Special Arithmetic Functions
2
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
Table 1. ‘M’ is the Modulation
Register and ‘C’ is the Carrier Register
as shown in the Functional Block
Diagram.
RTP — Rectangular-to-Polar
When RTP is HIGH, Rectangular-toPolar conversion mode is selected.
When RTP is LOW, Polar-to-Rectangular conversion mode is selected.
FIGURE 1A.
ACC1-0 — Accumulator Control
ACC1-0 is the 2-bit accumulator
control that determines four modes as
shown in Table 2. Changing of the
internal phase Accumulator structure
is very useful when RTP is LOW
allowing for waveform synthesis and
modulation. ACC1-0 set to ‘00’ is most
commonly used when RTP is HIGH
unless performing backward mapping
from Cartesian to Polar coordinates.
TCXY — Data Input/Output Format
Select
When TCXY is HIGH, two’s complement format is selected. When TCXY
is LOW, sign-and-magnitude format is
selected.
INPUT FORMATS
XRIN
YPIN
Integer Unsigned Magnitude
15 14 13
215 214 213
(RTP = 0)
Fract. Unsigned Mag./Two's Comp.
2 1 0
22 21 20
31 30 29
*±20 2–1 2–2
2 1 0
2–29 2–30 2–31
Integer Signed Magnitude (RTP = 1, TCXY = 0)
15 14 13
NS 214 213
2 1 0
22 21 20
31 30 29
NS 214 213
18 17 16
22 21 20
Integer Two's Complement (RTP = 1, TCXY = 1)
15 14 13
–215 214 213
2 1 0
22 21 20
31 30 29
–215 214 213
18 17 16
22 21 20
(RTP = 0)
Fractional Unsigned Magnitude
Fract. Unsigned Mag./Two's Comp.
15 14 13
20 2–1 2–2
2 1 0
2–13 2–14 2–15
31 30 29
*±20 2–1 2–2
2 1 0
2–29 2–30 2–31
Fractional Signed Magnitude (RTP = 1, TCXY = 0)
15 14 13
NS 2–1 2–2
2 1 0
2–13 2–14 2–15
31 30 29
NS 2–1 2–2
18 17 16
2–13 2–14 2–15
Fractional Two's Complement (RTP = 1, TCXY = 1)
15 14 13
–20 2–1 2–2
2 1 0
2–13 2–14 2–15
31 30 29
–20 2–1 2–2
18 17 16
2–13 2–14 2–15
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π
and phase accumulator is modulo 232, this bit may be regarded as ±π.
NS denotes negative sign. (i.e. '1' negates the number)
Special Arithmetic Functions
3
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
OVF — Overflow Flag
OVF will go HIGH on the clock the
magnitude of either of the current
Cartesian coordinate outputs exceed
the maximum range. OVF will return
LOW on the clock that the Cartesian
output value(s) return within range.
An overflow condition can only occur
when RTP is LOW.
FIGURE 1B.
OERX — x-coordinate/Magnitude Data
Output Enable
OEPY — y-coordinate/Phase Angle Data
Output Enable
When OERX is LOW, RXOUT15-0 is
enabled for output. When OERX is
HIGH, RXOUT15-0 is placed in a
high-impedance state.
When OEPY is LOW, PYOUT15-0 is
enabled for output. When OEPY is
HIGH, PYOUT15-0 is placed in a
high-impedance state.
OUTPUT FORMATS
RXOUT
PYOUT
Integer Signed Magnitude (RTP = 0, TCXY = 0)
15 14 13
NS 214 213
2 1 0
22 21 20
15 14 13
NS 214 213
2 1 0
22 21 20
Integer Two's Complement (RTP = 0, TCXY = 1)
15 14 13
–215 214 213
2 1 0
22 21 20
15 14 13
–215 214 213
Integer Unsigned Magnitude
15 14 13
215 214 213
2 1 0
22 21 20
(RTP = 1)
Fract. Unsigned Mag./Two's Comp.
2 1 0
22 21 20
15 14 13
*±20 2–1 2–2
2 1 0
2–13 2–14 2–15
Fractional Signed Magnitude (RTP = 0, TCXY = 0)
15 14 13
NS 2–1 2–2
2 1 0
2–13 2–14 2–15
15 14 13
NS 2–1 2–2
2 1 0
2–13 2–14 2–15
Fractional Two's Complement (RTP = 0, TCXY = 1)
15 14 13
–20 2–1 2–2
2 1 0
2–13 2–14 2–15
15 14 13
–20 2–1 2–2
2 1 0
2–13 2–14 2–15
(RTP = 1)
Fractional Unsigned Magnitude
Fract. Unsigned Mag./Two's Comp.
15 14 13
20 2–1 2–2
2 1 0
2–13 2–14 2–15
15 14 13
*±20 2–1 2–2
2 1 0
2–13 2–14 2–15
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π
32
and phase accumulator is modulo 2 , this bit may be regarded as ±π.
NS denotes negative sign. (i.e. '1' negates the number)
Special Arithmetic Functions
4
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Conversion Ranges
The L2330 supports 16-bit unsigned
radii and 16-bit signed Cartesian
coordinates. Since the 16-bit rectangular
coordinate space does not completely
cover the polar space defined by 16-bit
radii, certain values of “r” will not map
correctly. This condition is indicated by
the overflow (OVF) flag.
In Polar-to-Rectangular conversions, no
overflow occurs for r ≤ 32767 (7FFFH).
Overflow will always occur when r >
46341 (B505H). Note that in signed
magnitude mode r = 46340 (B504H)
will also cause an overflow. For 32767 ≤
r ≤ 46340, overflow may occur depending on the exact values of r and θ.
Figure 2 shows, for the first quadrant,
these three regions: A = no overflow
(correct conversion), B = possible
overflow, C = overflow. The other
quadrants are mapped in a similar
manner.
When in signed magnitude mode, the
overflows on the other three quadrants
are the same as in the first. This occurs
because the signed magnitude number
system is symmetric about zero. For
example, if a given r and angle θ cause
an overflow, the same r will cause an
overflow for the angles -θ, π+θ , π-θ.
Coordinate Transformer
complement number system is not
symmetric about zero. For example, if
the X or Y component of the input is
–32768 (8000H), no overflow occurs.
But if the X or Y component of the
input is +32768, overflow does occur.
FIGURE 2.
65535
When converting from Rectangular-toPolar, if both inputs are zero the radius
is zero but the angle is not defined.
The L2330 will output 4707H in this
case. Since the angle is not defined for a
zero length vector, this is not an error.
CONVERSION RANGES
π/2
C
32767
B
A
y
r
θ
However, when in two’s complement
mode, the overflows aren’t quite the
same. This occurs because the two’s
x
32767
65535
Special Arithmetic Functions
5
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Internal Precision
When performing a coordinate
transformation, inaccuracies are
introduced by a combination of
quantization and approximation
errors. The accuracy of a coordinate
transformer is dependent on the
word length used for the input
variables, the word length used for
internal calculations, as well as the
number of iterations or steps performed. Truncation errors are due
to the finite word length, and
approximation errors are due to the
finite number of iterations. For
example, in the case of performing a
polar-to-rectangular transformation,
the accuracy of the rotation will be
determined by how closely the input
rotation angle was approximated by
the summation of sub-rotation
angles.
In this study, we examine the
effectiveness of 16-bit internal
precision versus 24-bit internal
precision. 10,000 random Rectangular coordinates were converted to
Polar and back to Rectangular. The
resulting Rectangular coordinates
from this double conversion were
then compared to the original
Coordinate Transformer
Rectangular coordinates input to the
device. These vectors, with maximum word width of 16-bits, were
sent through a 16-bit internal
processor versus a 24-bit internal
processor. The Rectangular coordinates were limited to the following
conditions:
–32769<x<32768
–32769<y<32768
Using the 16-bit internal processor, the
resulting Rectangular coordinates were
compared to the original Rectangular
coordinates (see Table 3). Using the 24bit internal processor, the resulting
TABLE 3.
Rectangular coordinates were compared to the original Rectangular
coordinates (see Table 3). By way of
comparison between the 16-bit internal
processor and the 24-bit internal
processor, we find that the 24-bit
internal processor is significantly more
accurate. This accuracy is due to
internal word length. During coordinate transformation, the number of bits
truncated within a 24-bit internal
processor are much smaller than in a
16-bit internal processor resulting in
smaller error.
DOUBLE CONVERSION ERROR
Error
Mean Error (X)
Mean Error (Y)
Mean Absolute Error (X)
Mean Absolute Error (Y)
Root Mean Square Error (X)
Root Mean Square Error (Y)
Max Error (X)
Max Error (Y)
Standard Deviation of Error (X)
Standard Deviation of Error (Y)
Internal 16-bit
Internal 24-bit
0.0216
–0.0036
1.5736
1.0756
2.0168
1.4356
6.0/–7.0
5.0/–5.0
2.0168
1.4357
–0.0118
–0.0028
0.5116
0.5160
0.7664
0.7738
3.0/–3.0
3.0/–3.0
0.7664
0.7739
Special Arithmetic Functions
6
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Circle Test
When performing a polar-to-rectangular transformation, a 24-bit internal
processor proves to be significantly
more accurate than a 16-bit internal
processor.
In this study, we compare how accurately a coordinate transformer with a
16-bit internal processor versus a 24-bit
internal processor can calculate all the
coordinates of a circle. By setting the
radius to 7FFFH (maximum before
overflow), θ is incremented using the
accumulator of the L2330 in steps of
0000 4000H until all the points of a full
circle are calculated into rectangular
coordinates.
The resulting rectangular coordinates
were plotted and graphed. A graphical
representation of the resulting vectors
for both 16-bit and 24-bit internal
processors are compared near 45°.
Theoretically, a perfect circle is the
desired output but when the resulting
vectors from a coordinate transformer
with 16-bit internal processor are
graphed and displayed as shown in
Figure 3, we see significant errors due
to the inherent properties of a digital
coordinate transformation system. In
comparison, the 24-bit internal processor proves to be significantly more
accurate than a 16-bit internal processor
due to minimization of truncation
errors. In many applications, this
margin of error is of great significance
especially when being used in applications such as medical ultrasound or
modulation techniques.
Data values for Figure 3 and Figure 4
are shown in Table 4. By looking at
these values, we observe the step
resolution on a 16-bit internal processor
is not 1 unit in the x and y. In most
cases, the minimum step resolution is 2
units in the x and y. On the other hand,
Coordinate Transformer
step resolution on a 24-bit internal
processor is 1 unit in the x and y thus
resulting in greater accuracy.
0.00549° and will not be able to properly calculate the theoretical minimum
angle resolution. On the other hand, a
24-bit internal processor can produce a
minimum angle resolution of 0.00002°
and could therefore properly calculate
the theoretical minimum angle resolution.
The minimum theoretical angle resolution that could be produced is 0.00175°
when x = 7FFFH and y = 1H. A 16-bit
internal processor can produce a
minimum angle resolution of only
FIGURE 3. CIRCLE TEST RESULT NEAR 45° (16-BIT INTERNAL PROCESSOR)
23200
23190
23180
Y 23170
23160
23150
23140
23140
23150
23160
23170 23180
23190
23200
X
FIGURE 4. CIRCLE TEST RESULT NEAR 45° (24-BIT INTERNAL PROCESSOR)
23200
23190
23180
Y 23170
23160
23150
23140
23140
23150
23160
23170 23180
23190
23200
X
Special Arithmetic Functions
7
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
TABLE 4.
Coordinate Transformer
RESULTANT DATA VALUES OF CIRCLE TEST NEAR 45°
16-bit Internal Processor
x
23201
23199
23199
23199
23199
23197
23197
23197
23197
23195
23195
23195
23195
23192
23192
23192
23192
23190
23190
23190
23190
23187
23187
23187
23187
23185
23185
23185
23185
23183
x (HEX)
5AA1
5A9F
5A9F
5A9F
5A9F
5A9D
5A9D
5A9D
5A9D
5A9B
5A9B
5A9B
5A9B
5A98
5A98
5A98
5A98
5A96
5A96
5A96
5A96
5A93
5A93
5A93
5A93
5A91
5A91
5A91
5A91
5A8F
y
23139
23141
23141
23141
23141
23143
23143
23143
23143
23145
23145
23145
23145
23148
03148
23148
23148
23150
23150
23150
23150
23152
23152
23152
23152
23154
23154
23154
23154
23156
y (HEX)
5A63
5A65
5A65
5A65
5A65
5A67
5A67
5A67
5A67
5A69
5A69
5A69
5A69
5A6C
5A6C
5A6C
5A6C
5A6E
5A6E
5A6E
5A6E
5A70
5A70
5A70
5A70
5A72
5A72
5A72
5A72
5A74
24-bit Internal Processor
x
23199
23198
23198
23197
23197
23196
23196
23195
23194
23194
23194
23193
23192
23191
23191
23191
23190
23189
23189
23189
23188
23187
23186
23186
23186
23185
23184
23184
23184
23183
x (HEX)
5A9F
5A9E
5A9E
5A9D
5A9D
5A9C
5A9C
5A9B
5A9A
5A9A
5A9A
5A99
5A98
5A97
5A97
5A97
5A96
5A95
5A95
5A95
5A94
5A93
5A92
5A92
5A92
5A91
5A90
5A90
5A90
5A8F
y
23140
23141
23141
23142
23142
23143
23143
23144
23145
23145
23145
23146
23147
23148
23148
23148
23149
23150
23150
23150
23151
23152
23153
23153
23153
23154
23155
23155
23155
23156
y (HEX)
5A64
5A65
5A65
5A66
5A66
5A67
5A67
5A68
5A69
5A69
5A69
5A6A
5A6B
5A6C
5A6C
5A6C
5A6D
5A6E
5A6E
5A6E
5A6F
5A70
5A71
5A71
5A71
5A72
5A73
5A73
5A73
5A74
Special Arithmetic Functions
8
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
MAXIMUM RATINGS Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature ........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground ............................................................................ –0.5 V to +7.0 V
Input signal with respect to ground ............................................................................... –0.5 V to V CC + 0.5 V
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V
Output current into low outputs ............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS To meet specified electrical and switching characteristics
Mode
Temperature Range (Ambient)
Active Operation, Commercial
Active Operation, Military
Supply Voltage
0°C to +70°C
4.75 V ≤ VCC ≤ 5.25 V
–55°C to +125°C
4.50 V ≤ VCC ≤ 5.50 V
ELECTRICAL CHARACTERISTICS Over Operating Conditions (Note 4)
Symbol
Parameter
Test Condition
Min
VOH
Output High Voltage
VCC = Min., IOH = –2.0 mA
2.4
VOL
Output Low Voltage
VCC = Min., IOL = 4.0 mA
VIH
Input High Voltage
VIL
Input Low Voltage
(Note 3)
IIX
Input Current
IOZ
Typ
Max
Unit
V
0.4
V
2.0
VCC
V
0.0
0.8
V
Ground ≤ VIN ≤ VCC (Note 12)
±10
µA
Output Leakage Current
Ground ≤ VOUT ≤ VCC (Note 12)
±10
µA
ICC1
VCC Current, Dynamic
(Notes 5, 6)
95
mA
ICC2
VCC Current, Quiescent
(Note 7)
5
mA
CIN
Input Capacitance
TA = 25°C, f = 1 MHz
10
pF
COUT
Output Capacitance
TA = 25°C, f = 1 MHz
10
pF
Special Arithmetic Functions
9
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
SWITCHING CHARACTERISTICS
COMMERCIAL OPERATING RANGE (0°C to +70°C) Notes 9, 10 (ns)
Symbol
L2330–
1234567890123456
1234567890123456
1234567890123456
*
50
25
1234567890123456
1234567890123456
1234567890123456
Min
Max
Min
Max
1234567890123456
1234567890123456
50
25
1234567890123456
1234567890123456
1234567890123456
1234567890123456
10
8
1234567890123456
1234567890123456
1234567890123456
8
7
1234567890123456
1234567890123456
1234567890123456
12
7
1234567890123456
1234567890123456
1234567890123456
1
0
1234567890123456
1234567890123456
1234567890123456
22
18
1234567890123456
1234567890123456
1234567890123456
1234567890123456
13
13
1234567890123456
1234567890123456
1234567890123456
13
13
1234567890123456
Parameter
tCYC
Cycle Time
tPWL
Clock Pulse Width Low
tPWH
Clock Pulse Width High
tS
Input Setup Time
tH
Input Hold Time
tD
Output Delay
tENA
Three-State Output Enable Delay (Note 11)
tDIS
Three-State Output Disable Delay (Note 11)
20
Min
Max
20
7
6
6
0
16
13
13
MILITARY OPERATING RANGE (–55°C to +125°C) Notes 9, 10 (ns)
Symbol
1234567890123456789012345678901212345678901234
L2330–
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
50*
25*
20*
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
Min
Max
Min
Max
Min
Max
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
50
25
20
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
11
9
7
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
8
7
6
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
13
7
6
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
2
2
1
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
25
20
18
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
15
14
13
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
1234567890123456789012345678901212345678901234
15
14
13
1234567890123456789012345678901212345678901234
Parameter
tCYC
Cycle Time
tPWL
Clock Pulse Width Low
tPWH
Clock Pulse Width High
tS
Input Setup Time
tH
Input Hold Time
tD
Output Delay
tENA
Three-State Output Enable Delay (Note 11)
tDIS
Three-State Output Disable Delay (Note 11)
123456789012345678901234
123456789012345678901234
123456789012345678901234
*DISCONTINUED SPEED GRADE
123456789012345678901234
Special Arithmetic Functions
10
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
SWITCHING WAVEFORMS:
NO ACCUMULATION
0
1
2
3
22
23
24
CLK
tH
tS
RTP
TCXY
tPWL
tPWH
tCYC
ACC1-0
00
00
00
ENXR
ENYP1-0
EN
EN
EN
XRIN15-0
YPIN31-0
A
B
C
tD
RXOUT15-0
PYOUT15-0
f(A)
SWITCHING WAVEFORMS:
f(B)
PHASE MODULATION
0
1
2
3
4
22
24
23
25
CLK
RTP, TCXY
ACC1-0
00
01
01
01
01
ENXR
XRIN15-0
R
ENYP1-0
10
01
01
01
01
YPIN31-0
C
I
J
K
L
RXOUT15-0
PYOUT15-0
C+I
2C + J
3C + K
4C + L
Special Arithmetic Functions
11
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
NOTES
1. Maximum Ratings indicate stress
specifications only. Functional operation of these products at values beyond those indicated in the Operating
Conditions table is not implied. Exposure to maximum rating conditions for
extended periods may affect reliability.
9. AC specifications are tested with
input transition times less than 3 ns,
output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a
resistive divider which provides for
specified IOH and IOL at an output
voltage of VOH min and VOL max
2. The products described by this spec- respectively. Alternatively, a diode
ification include internal circuitry de- bridge with upper and lower current
signed to protect the chip from damagsources of IOH and I OL respectively,
ing substrate injection currents and ac- and a balancing voltage of 1.5 V may be
cumulations of static charge. Never- used. Parasitic capacitance is 30 pF
theless, conventional precautions minimum, and may be distributed.
should be observed during storage,
handling, and use of these circuits in This device has high-speed outputs caorder to avoid exposure to excessive pable of large instantaneous current
electrical stress values.
pulses and fast turn-on/turn-off times.
As a result, care must be exercised in the
3. This device provides hard clamping testing of this device. The following
of transient undershoot and overshoot. measures are recommended:
Input levels below ground or above
VCC will be clamped beginning at – a. A 0.1 µF ceramic capacitor should be
0.6 V and VCC + 0.6 V. The device can installed between VCC and Ground
withstand indefinite operation with in- leads as close to the Device Under Test
puts in the range of –0.5 V to +7.0 V. (DUT) as possible. Similar capacitors
Device operation will not be adversely should be installed between device VCC
affected, however, input current levels and the tester common, and device
ground and tester common.
will be well in excess of 100 mA.
4. Actual test conditions may vary b. Ground and VCC supply planes
from those designated but operation is must be brought directly to the DUT
guaranteed as specified.
socket or contactor fingers.
5. Supply current for a given application c. Input voltages should be adjusted to
can be accurately approximated by:
compensate for inductive ground and VCC
noise to maintain required DUT input
NCV2 F
levels relative to the DUT ground pin.
4
where
10. Each parameter is shown as a minN = total number of device outputs
C = capacitive load per output
V = supply voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 20 MHz clock
rate.
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed
but not 100% tested.
11. For the tENA test, the transition is
measured to the 1.5 V crossing point
with datasheet loads. For the tDIS test,
the transition is measured to the
±200mV level from the measured
steady-state output voltage with
±10mA loads. The balancing voltage, V TH , is set at 3.5 V for Z-to-0
and 0-to-Z tests, and set at 0 V for Zto-1 and 1-to-Z tests.
12. These parameters are only tested at
the high temperature extreme, which is
the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
S1
DUT
IOL
VTH
CL
IOH
FIGURE B. THRESHOLD LEVELS
tENA
OE
Z
tDIS
1.5 V
1.5 V
3.5V Vth
0
1.5 V
1.5 V
Z
1
VOL*
0.2 V
VOH*
0.2 V
0
Z
1
Z
0V Vth
VOL* Measured VOL with IOH = –10mA and IOL = 10mA
VOH* Measured VOH with IOH = –10mA and IOL = 10mA
imum or maximum value. Input requirements are specified from the point
of view of the external system driving
the chip. Setup time, for example, is
specified as a minimum since the external system must supply at least that
much time to meet the worst-case requirements of all parts. Responses from
the internal circuitry are specified from
the point of view of the device. Output
delay, for example, is specified as a
maximum since worst-case operation of
any device always provides data within
that time.
Special Arithmetic Functions
12
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
ORDERING INFORMATION
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
PYOUT5
PYOUT6
GND
PYOUT7
PYOUT8
PYOUT9
GND
PYOUT10
PYOUT11
PYOUT12
VCC
PYOUT13
PYOUT14
PYOUT15
GND
OVF
RXOUT0
RXOUT1
VCC
RXOUT2
RXOUT3
RXOUT4
GND
RXOUT5
RXOUT6
RXOUT7
GND
RXOUT8
RXOUT9
VCC
120-pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
Top
View
RXOUT10
RXOUT11
GND
RXOUT12
RXOUT13
RXOUT14
VCC
RXOUT15
GND
OERX
VCC
XRIN15
XRIN14
XRIN13
GND
XRIN12
XRIN11
XRIN10
XRIN9
XRIN8
XRIN7
XRIN6
GND
XRIN5
XRIN4
XRIN3
GND
XRIN2
XRIN1
VCC
GND
YPIN9
YPIN10
VCC
YPIN11
YPIN12
YPIN13
YPIN14
YPIN15
YPIN16
YPIN17
VCC
YPIN18
YPIN19
YPIN20
GND
YPIN21
YPIN22
YPIN23
VCC
YPIN24
YPIN25
YPIN26
YPIN27
YPIN28
YPIN29
YPIN30
YPIN31
ENXR
XRIN0
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
VCC
PYOUT4
PYOUT3
GND
PYOUT2
PYOUT1
PYOUT0
VCC
OEPY
GND
RTP
CLK
GND
TCXY
ENYP0
GND
ENYP1
ACC0
ACC1
VCC
YPIN0
YPIN1
YPIN2
YPIN3
YPIN4
YPIN5
YPIN6
GND
YPIN7
YPIN8
Plastic Quad Flatpack
(Q1)
Speed
0°C to +70°C — COMMERCIAL SCREENING
25 ns
20 ns
L2330QC25
L2330QC20
Special Arithmetic Functions
13
09/27/2001–LDS.2330-E
L2330
DEVICES INCORPORATED
Coordinate Transformer
ORDERING INFORMATION
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1
2
3
4
5
6
7
8
9
10
11
12
13
120-pin
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
A
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
PYO5 PYO7 PYO8 PYO10 PYO12 PYO14 PYO15 RXO0 RXO2 RXO4 RXO6 RXO8 RXO10
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
B
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
PYO3 PYO4 PYO6 PYO9 PYO11 PYO13 OVF RXO1 RXO3 RXO5 RXO7 RXO9 RXO12
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
C
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
PYO1 PYO2 VCC GND GND VCC GND VCC GND GND VCC RXO11 RXO13
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
D
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
GND RXO14 RXO15
OEPY PYO0 GND
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
KEY
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
E
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
VCC GND OERX
RTP GND VCC
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
F
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
Top View
VCC XRI15 XRI14
TCXY GND CLK
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
Through
Package
G
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
GND XRI12 XRI13
ENYP1 ENYP0 GND
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
(i.e., Component Side Pinout)
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
H
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
XRI9 XRI10 XRI11
ACC0 ACC1 VCC
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
J
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
GND XRI7 XRI8
YPI0 YPI1 YPI3
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
K
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
GND XRI5 XRI6
YPI2 YPI4 GND
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
L
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
YPI5 YPI7 GND VCC YPI14 VCC GND VCC YPI27 YPI31 VCC XRI3 XRI4
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
M
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
YPI6 YPI9 YPI11 YPI13 YPI16 YPI18 YPI20 YPI23 YPI25 YPI28 ENXR XRI1 XRI2
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
N
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
YPI8 YPI10 YPI12 YPI15 YPI17 YPI19 YPI21 YPI22 YPI24 YPI26 YPI29 YPI30 XRI0
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
Discontinued Package
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121
Ceramic Pin Grid Array
(G4)
Speed
0°C to +70°C — COMMERCIAL SCREENING
–55°C to +125°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
Special Arithmetic Functions
14
09/27/2001–LDS.2330-E