MICRO-LINEAR ML6697CH

July 1997
PRELIMINARY
ML6697
100BASE-TX Physical Layer with MII
GENERAL DESCRIPTION
FEATURES
The ML6697 implements the complete physical layer of
the Fast Ethernet 100BASE-TX standard. The ML6697
offers a single-chip per-port solution for MII-based
repeater applications. The ML6697 interfaces to the
controller through the Media Independent Interface (MII).
n Single-chip 100BASE-TX physical layer
The ML6697 functionality includes 4B/5B encoding/
decoding, Stream Cipher scrambling/descrambling,
125MHz clock recovery/generation, receive adaptive
equalization, baseline wander correction, and MLT-3
transmitter.
n Compliant MII (Media Indendent Interface)
n Compliant to IEEE 802.3u 100BASE-TX standard
n Supports MII-based repeater applications
n 4B/5B encoder/decoder
n Stream Cipher scrambler/descrambler
n 125MHz clock recovery/generation
n Baseline wander correction
n Adaptive equalization and MLT-3 encoding/decoding
BLOCK DIAGRAM (PLCC Package)
8
18
19
17
10
12
14
16
21
23
TXEN
NRZ TO NRZI ENCODER
SCRAMBLER
SERIALIZER
FLP/100BASE-TX
TWISTED PAIR DRIVER
TPOUTN
RTSET
MLT-3 ENCODER
40
39
37
TXER
CRS
CLOCK AND DATA
RECOVERY
EQUALIZER
TPINP
NRZI TO NRZ DECODER
BLW CORRECTION
TPINN
DESERIALIZER
MLT-3 DECODER
RXEN
RXCLK
RXD3
PCS RECEIVE
STATE MACHINE
LOOPBACK MUX
RXD2
RXD1
RXD0
CMREF
RGMSET
LINK100
5B/4B DECODER
45
44
46
36
43
DESCRAMBLER
MII MANAGEMENT REGISTERS
AND CONTROL LOGIC
RXDV
RXER
24
25
29
30
31
32
PHYAD4
7
TXD0
TPOUTP
4B/5B ENCODER
PHYAD3
6
TXD1
PCS TRANSMIT
STATE MACHINE
PHYAD2
5
TXD2
PHYAD1
4
TXD3
PHYAD0
3
CLOCK SYNTHESIZER
TXCLK
MDIO
9
TXCLKIN
MDC
1
33
1
ML6697
PIN CONFIGURATION
TXEN
TXD0
TXD1
TXD2
TXD3
AGND1
TXCLKIN
AVCC1
NC
NC
NC
NC
NC
ML6697
52-Pin PLCC (Q52)
7
6
5
4
3
2
1
52
51
50
49
48
47
TXER
8
46
CMREF
TXCLK
9
45
TPINP
RXD3
10
44
TPINN
DGND1
11
43
LINK100
RXD2
12
42
AVCC2
DVCC1
13
41
AGND2
CRS
18
36
RGMSET
RXEN
19
35
AVCC3B
20
21
34
AVCC3A
2
22 23
24
25
26
RXER
RXDV
DGND3
27
28
29
30
31
32
33
PHYAD4
RTSET
PHYAD3
37
PHYAD2
17
PHYAD1
AGND3
RXCLK
PHYAD0
TPOUTN
38
DVCC5
39
16
DGND5
15
RXD0
DGND4
TPOUTP
MDIO
40
MDC
14
DVCC2
RXD1
DGND2
ML6697
PIN CONFIGURATION (Continued)
TXER
TXEN
TXD0
TXD1
TXD2
TXD3
AGND1A
AGND1B
TXCLKIN
AVCC1
NC
NC
NC
NC
NC
NC
ML6697
64-Pin TQFP (H64-10)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
TXCLK
1
48
NC
RXD3
2
47
CMREF
DGND1A
3
46
TPINP
DGND1B
4
45
TPINN
RXD2
5
44
LINK100
DVCC1A
6
43
AVCC2
DVCC1B
7
42
AGND2A
RXD1
8
41
AGND2B
DGND2A
9
40
TPOUTP
DGND2B
10
39
TPOUTN
RXD0
11
38
AGND3A
AGND3B
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PHYAD4
AVCC3A
18
PHYAD3
33
17
PHYAD2
16
PHYAD1
DGND3B
PHYAD0
AVCC3B
DGND5B
34
DVCC5B
15
DGND5A
DGND3A
DVCC5A
RGMSET
DGND4B
35
DGND4A
14
MDIO
RXEN
RXER
RTSET
MDC
13
36
DVCC2
CRS
RXCLK
RXDV
12
37
3
ML6697
PIN DESCRIPTION (Pin numbers for TQFP package in parentheses)
PIN
NAME
DESCRIPTION
1
(56)
TXCLKIN
Transmit clock TTL input. This 25MHz clock is the frequency reference for the
internal transmit PLL clock multiplier. This pin should be driven by an external
25MHz clock at TTL or CMOS levels.
2
(58, 57)
AGND1
Analog ground.
3, 4
5, 6
(59,60,
61,62)
TXD<3:0>
Transmit data TTL inputs. TXD<3:0> inputs accept TX data from the MII. Data
appearing at TXD<3:0> are clocked into the ML6697 on the rising edge of TXCLK.
7
(63)
TXEN
Transmit enable TTL input. Driving this input high indicates to the ML6697 that
transmit data are present at TXD<3:0>. TXEN edges should be synchronous with
TXCLK.
8
(64)
TXER
Transmit error TTL input. Driving this pin high with TXEN also high causes the part
to continuously transmit scrambled H symbols. When TXEN is low, TXER has no
effect.
9
(1)
TXCLK
Transmit clock TTL output. This 25MHz clock is phase-aligned with the internal
125MHz TX bit clock. Data appearing at TXD<3:0> are clocked into the ML6697 on
the rising edge of this clock.
10, 12, (2, 5,
14, 16 8, 11)
RXD<3:0>
Receive data TTL outputs. RXD<3:0> outputs are valid on RXCLK’s rising edge.
11
(3, 4)
DGND1
Digital ground.
13
(6, 7)
DVCC1
Digital +5V power supply.
15
(9, 10)
DGND2
Digital ground.
17
(12)
RXCLK
Recovered receive clock TTL output. This 25MHz clock is phase-aligned with the
internal 125MHz bit clock recovered from the signal received at TPINP/N. Receive
data at RXD<3:0> changes on the falling edges and should be sampled on the rising
edges of this clock. RXCLK is phase aligned to TXCLKIN when the 100BASE-TX
signal is not present at TPINP/N.
18
(13)
CRS
Carrier Sense TTL output. CRS goes high in the presence of non-idle signals at TPINP/
N. CRS goes low when receive is idle.
19
(14)
RXEN
Receive enable TTL input. When this input is high, all the MII TTL outputs are
enabled. When this input is low, all the MII TTL outputs are in high impedance
mode. This input does not affect MDIO, TXCLK and CRS.
20
(15, 16)
DGND3
Digital ground.
21
(17)
RXDV
Receive data valid TTL output. This output goes high when the ML6697 is receiving
a data packet. RXDV should be sampled synchronously with RXCLK’s rising edge.
22
(18)
DVCC2
Digital +5V power supply.
23
(19)
RXER
Receive error TTL output. This output goes high to indicate error or invalid symbols
within a packet, or corrupted idle between packets. RXER should be sampled
synchronously with RXCLK’s rising edge.
24
(20)
MDC
MII Management Interface clock TTL input. A clock at this pin clocks serial data into
or out of the ML6697’s MII management registers through the MDIO pin. The
maximum clock frequency at MDC is 2.5MHz.
4
ML6697
PIN DESCRIPTION (Continued)
PIN
NAME
DESCRIPTION
(21)
MDIO
MII Management Interface data TTL input/output. Serial data are written to and read
from the ML6697’s management registers through this I/O pin. Input data is sampled
on the rising edge of MDC. Data output should be sampled synchronously with
MDC's rising edge.
26
(22, 23)
DGND4
Digital ground.
27
(24, 25)
DVCC5
Digital +5V power supply.
28
(26, 27)
DGND5
Digital ground.
29
(28)
PHYAD0
MII Serial Management Interface address bit 0.
30
(29)
PHYAD1
MII Serial Management Interface address bit 1.
31
(30)
PHYAD2
MII Serial Management Interface address bit 2.
32
(31)
PHYAD3
MII Serial Management Interface address bit 3.
33
(32)
PHYAD4
MII Serial Management Interface address bit 4.
34
(33)
AVCC3A
Analog +5V power supply.
35
(34)
AVCC3B
Analog +5V power supply.
36
(35)
RGMSET
Equalizer bias resistor input. An external 9.53kW, 1% resistor connected between
RGMSET and AGND3 sets internal time constants controlling the receive equalizer
transfer function.
37
(36)
RTSET
Transmit level bias resistor input. An external 2.49kW, 1% resistor connected between
RTSET and AGND3 sets a precision constant bias current for the twisted pair transmit
level.
38
(37, 38)
AGND3
Analog ground.
39, 40 (39, 40)
TPOUTN/P
Transmit twisted pair outputs. This differential current output pair drives MLT-3
waveforms into the network coupling transformer.
41
AGND2
Analog ground.
25
(41, 42)
42
(43)
AVCC2
Analog +5V power supply.
43
(44)
LINK100
100BASE-TX link activity open-drain output. LINK100 pulls low when there is
100BASE-TX activity at TPINP/N in 100BASE-TX or auto-negotiation modes. This
output is capable of driving an LED directly.
44, 45 (45, 46)
TPINN/P
Receive twisted pair inputs. This differential input pair receives 100BASE-TX signals
from the network.
46
(47)
CMREF
Receiver common-mode reference output. This pin provides a common-mode bias
point for the twisted-pair media line receiver, typically (VCC – 1.26)V.
52
(55)
AVCC1
Analog +5V power supply.
5
ML6697
ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond
which the device could be permanently damaged.
Absolute maximum ratings are stress ratings only and
functional device operation is not implied.
VCC Supply Voltage Range .................. GND –0.3V to 6V
Input Voltage Range
Digital Inputs ...................... GND –0.3V to VCC +0.3V
TPINP, TPINN, .................... GND –0.3V to VCC +0.3V
Output Current
TPOUTP, TPOUTN ............................................. 60mA
All other outputs ................................................. 10mA
Junction Temperature ............................................. 150°C
Storage Temperature ..............................–65°C to +150°C
Lead Temperature (Soldering, 10 sec) .................... 260°C
Thermal Resistance (qJA)
PLCC ............................................................... 40°C/W
TQFP ............................................................... 52°C/W
OPERATING CONDITIONS
VCC Supply Voltage ........................................... 5V ± 5%
All VCC supply pins must be within 0.1V of each other.
All GND pins must be within 0.1V of each other.
TA, Ambient temperature .............................. 0°C to 70°C
RGMSET .................................................... 9.53kW ± 1%
RTSET ........................................................ 2.49kW ± 1%
Receive transformer insertion loss ...................... <–0.5dB
DC ELECTRICAL CHARACTERISTICS
Over full range of operating conditions unless otherwise specified (Note 1).
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
RECEIVER
VICM
TPINP/N Input Common-Mode
Voltage (CMREF)
VID
TPINP-TPINN Differential Input
Voltage Range
–3.0
RIDR
TPINP-TPINN Differential
Input Resistance
10.0k
IICM
TPINP/N Common-Mode Input
Current
IRGM
RGMSET Input Current
RGMSET = 9.53kW
130
µA
IRT
RTSET Input Current
RTSET = 2.49kW
500
µA
VCC – 1.26
V
3.0
V
W
+10
µA
LED OUTPUT (LINK100)
IOLS
Output Low Current
5
mA
IOHS
Output Off Current
10
µA
±19
±21
mA
0
1.5
mA
500
µA
TRANSMITTER
ITD
TPOUTP/N
Differential Output Current
Note 2, 3
ITOFF
TPOUTP/N Off-State Output
RL = 200, 1%
ITXI
TPOUTP/N Differential Output
Current Imbalance
RL = 200, 1%
XERR
TPOUTP/N Differential Output
Current Error
VOUT = VCC; Note 3
–5.0
+5.0
%
XCMP
TPOUTP/N
Current Compliance Error
VOUT = VCC ± 2.2V; referred to
IOUT at VCC
–2.0
+2.0
%
6
ML6697
DC ELECTRICAL CHARACTERISTICS (Continued)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
200
300
mA
0.8
V
POWER SUPPLY CURRENT
ICC
Supply Current, Transmitting
Current into all VCC pins
TTL INPUTS (TXD<3:0>, TXCLKIN, MDC, MDIO, TXEN, TXER, RXEN)
VIL
Input Low Voltage
IIL = –400µA
VIH
Input High Voltage
IIH = 100µA
2.0
V
IIL
Input Low Current
VIN = 0.4V
–200
µA
IIH
Input High Current
VIN = 2.7V
100
µA
0.4
V
MII TTL OUTPUTS (RXD<3:0>, RXCLK, RXDV, RXER, CRS, MDIO, TXCLK)
VOLT
Output Low Voltage
IOL = 4mA
VOHT
Output High Voltage
IOH = –4mA
2.4
V
CMOS INPUTS (PHYAD<4:0>)
VILC
Input Low Voltage
VIHC
Input High Voltage
0.2 x VCC
0.8 x VCC
V
V
Note 1. Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.
7
ML6697
AC ELECTRICAL CHARACTERISTICS
Over full range of operating conditions unless otherwise specified (Note 1).
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
TRANSMITTER (Note 3)
tTR/F
TPOUTP-TPOUTN Differential
Rise/Fall Time
Notes 5, 6; for any legal
code sequence
3.0
5.0
ns
tTM
TPOUTP-TPOUTN Differential
Rise/Fall Time Mismatch
Notes 5, 6; for any legal
code sequence
–0.5
0.5
ns
tTDC
TPOUTP-TPOUTN Differential
Output Duty Cycle Distortion
Notes 4, 6
–0.5
0.5
ns
tTJT
TPOUTP-TPOUTN Differential
Output Peak-to-Peak Jitter
Note 6
1400
ps
XOST
TPOUTP-TPOUTN Differential
Output Voltage Overshoot
Notes 6, 7
5
%
tCLK
TXCLKIN – TXCLK Delay
11
ns
tTXP
Transmit Bit Delay
Note 8
10.5
bit times
tRXDC
Receive Bit Delay (CRS)
Note 9
15.5
bit times
tRXDR
Receive Bit Delay (RXDV)
Note 10
25.5
bit times
+100
ppm
300
6
8
RECEIVER
MII (Media-Independent Interface)
XBTOL
TX Output Clock Frequency
Tolerance
tTPWH
TXCLKIN pulse width HIGH
14
ns
tTPWL
TXCLKIN pulse width LOW
14
ns
tRPWH
RXCLK pulse width HIGH
14
18
ns
tRPWL
RXCLK pulse width LOW
14
22
ns
tTPS
Setup time, TXD<3:0> Data
Valid to TXCLK Rising Edge
(1.4V point)
15
ns
tTPH
Hold Time, TXD<3:0> Data
Valid After TXCLK Rising Edge
(1.4V point)
0
ns
tRCS
Time that RXD<3:0> Data are
Valid Before RXCLK Rising Edge
(1.4V point)
10
20
ns
tRCH
Time that RXD<3:0> Data are
Valid After RXCLK Rising Edge
(1.4V point)
10
19
ns
tRPCR
RXCLK 10% – 90% Rise Time
6
ns
tRPCF
RXCLK 90%-10% Fall Time
6
ns
tREND
RXEN high to RXD<3:0>,
RXDV, RXER, RXCLK Driving
2
10
ns
tRENZ
RXEN low to RXD<3:0>,
RXDV, RXER, RXCLK
High Impedence
2
10
ns
8
25MHz frequency
–100
ML6697
AC ELECTRICAL CHARACTERISTICS (Continued)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
MDC-MDIO (MII Management Interface)
tSPWS
Write Setup Time, MDIO Data
Valid to MDC Rising Edge
1.4V Point
10
ns
tSPWH
Write Hold Time, MDIO Data
Valid After MDC Rising Edge
1.4V Point
10
ns
tSPRS
Read Setup Time, MDIO Data
Valid to MDC Rising Edge
1.4V Point
100
ns
tSPRH
Read Hold Time, MDIO Data
Valid After MDC Rising Edge
1.4V Point
0
ns
tCPER
Period of MDC
400
ns
tCPW
Pulsewidth of MDC
160
ns
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
Note 8.
Note 9.
Note 10.
Positive or negative pulses
Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.
Measured using the test circuit shown in fig. 1, under the following conditions:
RLP = 200W, RLS = 49.9W, RTSET = 2.49kW.
All resistors are 1% tolerance.
Output current amplitude is IOUT = 40 ´ 1.25V/RTSET.
Measured relative to ideal negative and positive signal 50% points, using the four successive MLT-3 transitions for the 01010101 bit sequence.
Time difference between 10% and 90% levels of the transition from the baseline voltage (nominally zero) to either the positive or negative peak signal voltage. The
times specified here correlate to the transition times defined in the ANSI X3T9.5 TP-PMD Rev 2.0 working draft, section 9.1.6, which include the effects of the
external network coupling transformer and EMI/RFI emissions filter.
Differential test load is shown in fig. 1 (see note 2).
Defined as the percentage excursion of the differential signal transition beyond its final adjusted value during the symbol interval following the transition. The
adjusted value is obtained by doing a straight line best-fit to an output waveform containing 14 bit-times of no transition preceded by a transition from zero to
either a positive or negative signal peak; the adjusted value is the point at which the straight line fit meets the rising or falling signal edge.
From first rising edge of TXCLK after TXEN goes high, to first bit of J at the MDI.
From first bit of J at the MDI, to CRS.
From first bit of J at the MDI, to first rising edge of RXCLK after RXDV goes high.
VCC
TPOUTP
2:1
RLP
200Ω
1
RLP
200Ω
2
RLS
49.9Ω
TPOUTN
RLS
49.9Ω
Figure 1.
9
ML6697
TXCLKIN
tTPWH
tTPWL
TXCLK
TXD<3:0>
TXER
TXEN
tTPS
tTPH
Figure 2. MII Transmit Timing
tRPCR
tRPCF
RXCLK
RXD<3:0>
RXER
RXDV
tRCS
tRCH
Figure 3. MII Receive Timing
MDC
MDIO
tSPWS
tSPWH
Figure 4. MII Management Interface Write Timing
tCPER
MDC
tSPRS
tSPRH
tCPW
tCPW
MDIO
Figure 5. MII Management Interface Read Timing
10
ML6697
FUNCTIONAL DESCRIPTION
TRANSMIT SECTION
RECEIVE SECTION
The transmitter includes everything necessary to accept
4-bit data nibbles clocked in at 25MHz at the MII and
output scrambled, 5-bit encoded MLT-3 signals into twisted
pair at 100Mbps. The on-chip transmit PLL converts a
25MHz TTL-level clock at TXCLKIN to an internal 125MHz
bit clock. TXCLK from the ML6697 clocks transmit data
from the MAC into the ML6697’s TXD<3:0> input pins
upon assertion of TXEN. Data from the TXD<3:0> inputs are
5-bit encoded, scrambled, and converted from parallel to
serial form at the 125MHz clock rate. The serial transmit
data is converted to MLT-3 3-level code and driven
differentially out of the TPOUTP and TPOUTN pins at
nominal ±2V levels with the proper loads. The transmitter is
designed to drive a center-tapped transformer with a 2:1
winding ratio, so a differential 400W load is used on the
transformer primary to properly terminate the 100W cable
and termination on the secondary. The transformer’s center
tap must be tied to VCC. A 2:1 transformer allows using a
±20mA output current. Using a 1:1 transformer would have
required twice the output current and increased the on-chip
power dissipation. An external 2.49kW, 1% resistor at the
RTSET pin creates the correct output levels at TPOUTP/N.
The receiver includes all necessary functions for
converting 3-level MLT-3 signals from the twisted-pair
media to 4-bit data nibbles at RXD<3:0> with extracted
clock at RXCLK. The adaptive equalizer compensates for
cable distortion and attenuation, corrects for DC baseline
wander, and converts the MLT-3 signal to 2-level NRZ.
The receive PLL extracts clock from the equalized signal,
providing additional jitter attenuation, and clocks the
signal through the serial to parallel converter. The
resulting 5-bit nibbles are descrambled, aligned and
decoded, and appear at RXD<3:0>. The ML6692 asserts
RXDV when it’s ready to present properly decoded
receive data at RXD<3:0>. The extracted clock appears at
RXCLK. Resistor RGMSET sets internal time constants
controlling the adaptive equalizer’s transfer function.
RGMSET must be set to 9.53kW (1%).
Driving TXER high when TXEN is high causes the H symbol
(00100) to appear in scrambled MLT-3 form at TPOUTP/N.
The media access controller asserts TXER synchronously
with TXCLK rising edge, and the H symbol appears at least
once in place of a valid symbol in the current packet.
With no data at TXD<3:0> scrambled idle appears at
TPOUTP/N.
The receiver will assert RXER high if it detects code errors
in the receive data packet, or if the idle symbols between
packets are corrupted.
CRS goes high whenever there is non-idle receive activity
in the network.
ML6697 PHY MANAGEMENT FUNCTIONS
The ML6697 has management functions controlled by the
register locations given in Tables 1 and 2. There are two
16-bit MII Management registers, with several unused
locations. Register 0 (Table 1) is the basic control register
(read/write). Register 1 (Table 2) is the basic status register
(read-only). The ML6697 powers on with all management
register bits set to their default values.
See IEEE 802.3u section 22.2.4 for a discussion of MII
management functions and status/control register
definitions.
11
ML6697
MII MANAGEMENT INTERFACE REGISTERS
TABLE 1: CONTROL REGISTER
BIT(s)
NAME
DESCRIPTION
R/W
DEFAULT
R/W, SC
0
0.15
Reset
1 = reset all register bits to defaults
0 = normal operation
0.14
Loopback
1 = PMD loopback mode
0 = normal operation
R/W
0
0.13
Manual Speed Select
1 = 100Mb/s
0 = 10Mb/s
RO
1
0.11
Power down
1 = power down
0 = normal operation
R/W
0
RO
0
R/W
DEFAULT
0.12,
0.10-0.0
Not Used
TABLE 2: STATUS REGISTER
BIT(s)
NAME
DESCRIPTION
1.14
100BASE-TX full duplex
1 = full duplex 100BASE-TX capability
0 = No full duplex 100BASE-TX capability
RO
0
1.13
100BASE-TX half duplex
1 = half duplex 100BASE-TX capability
0 = no half duplex 100BASE-TX capability
RO
1
1.2
Link status
1 = 100BASE-TX line is up
0 = 100BASE-TX link is down
RO/LL
latch low after
link fail until read
1.0
Extended capability
1 = extended register capabilities
0 = basic register set only
RO
0
RO
0
1.15,
1.12-1.3,
1.1
NOTE:
KEY:
12
Not used
All unnamed or unused register locations will return a 0 value when accessed.
LL = latch low until read, R/W = read/write, RO = read only, SC = self-clearing.
MII INTERFACE














RXEN
MDIO
MDC
RXD3
RXD2
RXD1
RXD0
RXDV
RXCLK
RXER
TXER
20 DGND3
19 RXEN
TXD1
17 RXCLK
16 RXD0
15 DGND2
14 RXD1
13 DVCC1
12 RXD2
18 CRS
TXCLK
R3
21 22
23
24
25
26
27 28
29 30
AVCC3A 34
AVCC3B 35
RGMSET 36
RTSET 37
AGND3 38
TPOUTN 39
TPOUTP 40
AGND2 41
AVCC2 42
LINK100 43
TPINN 44
11 DGND1
TXD2
TXEN
48 47
10 RXD3
RXDV
ML6697
U1
49
D1
TPINP 45
DGND4
9 TXCLK
DVCC2
TXD0
52 51 50
31 32
PHYAD3
TXD3
1
DVCC5
CMREF 46
2
3
4
TXD2
NC NC NC NC NC
33
PHYAD4
CRS
5
DGND5
8 TXER
TXEN
6
TXD0
7
TXD1
RXER
TXD3
MDC
AGND1
MDIO
3
TXCLKIN
2
AVCC1
4
NC
PHYAD0
U2
NC
PHYAD1
NC
1
NC
PHYAD2
NC
NC
R2
R1
C1
1
14
L2
5
10
C9
L1
13 12 11
U6
2
3
4
C8
R9
R8
R11
C7
R10
C3
DVCC
6
9
7
8
D6
U5
2:1
1:1
C10
R21
C6
+
D5
R14 C14
R13 C13
D2
C11
R18
R15
C4
R19
R22
R16
FB2
FB1
RXTP–
RXTP+
TXTP–
TXTP+
C5
R24
C2
R20
R17
R25
D3
RJ45
SHIELD
GROUNDED
8
7
6
5
4
3
2
1
C12
+
AVCC
ML6697
Figure 6. Applications Circuit
13
ML6697
ML6697 SCHEMATIC
Figure 6 shows a general ML6697 design.
The inductors L1 and L2 are for the purpose of improving
return loss. Capacitor C7 is recommended. It decouples
some noise at the inputs of the ML6697, and improves
the Bit Error Rate (BER) performance of the board. We
recommend having a 0.1µF Cap on every VCC pin as
indicated by C3, 4, 9-12. Also, we recommend splitting
the VCC, AVCC, AGND and DGND. It is recommended
that AGND and DGND planes are large enough for low
inductance. If splitting the two grounds and keeping the
ground planes large enough is not possible due to board
space, you could join them into one larger ground plane.
ML6697 PARTS LIST
COMPONENT
DESCRIPTION
COMPONENT
DESCRIPTION
U1
ML6697 52-Pin PLCC surface mount
R10, R11
50W 1% 1/8W surface mount
U2
Can Crystal Oscillator, 25MHz 4-pin
surface mount
R13, R14
100kW 10% 1/8W surface mount
R15–R20
49.9W 5% 1/8W surface mount
U5
Transformer Module
R21, R22
75W 5% 1/8W surface mount
U6
HEX Inverter 74HC04
Fair-Rite SM Bead P/N 2775019447
C1,C3,
C4, C8-12
0.1µF Ceramic Chip Cap
FB1, FB2
L1, L2
130nH inductors rated at 50MHz
C5, C6
10mF Tantalum Cap.
R1
2.49kW 1% 1/8W surface mount
C7
10pF Cap
R2
9.53kW 1% 1/8W surface mount
C2
Board layer Cap (2V rated)
R3, R24, R25
750W 5% 1/8W surface mount
C13, C14
22nF Cap
R8, R9
200W 1% 1/8W surface mount
D1-D3
LED Diodes
D5-D6
Diodes Phillips PMLL 4148
14
ML6697
PHYSICAL DIMENSIONS inches (millimeters)
Package: Q52
52-Pin PLCC
0.785 - 0.795
(19.94 - 20.19)
0.042 - 0.056
(1.07 - 1.42)
0.750 - 0.754
(19.05 - 19.15)
0.025 - 0.045
(0.63 - 1.14)
(RADIUS)
1
PIN 1 ID
0.042 - 0.048
(1.07 - 1.22)
14
40
0.750 - 0.754 0.785 - 0.795
(19.05 - 19.15) (19.94 - 20.19)
0.600 BSC
(15.24 BSC)
0.690 - 0.730
(17.53 - 18.54)
27
0.009 - 0.011
(0.23 - 0.28)
0.050 BSC
(1.27 BSC)
0.026 - 0.032
(0.66 - 0.81)
0.013 - 0.021
(0.33 - 0.53)
0.165 - 0.180
(4.06 - 4.57)
0.148 - 0.156
(3.76 - 3.96)
0.100 - 0.110
(2.54 - 2.79)
SEATING PLANE
15
ML6697
PHYSICAL DIMENSIONS inches (millimeters)
Package: H64-10
64-Pin (10 x 10 x 1mm) TQFP
0.472 BSC
(12.00 BSC)
0º - 8º
0.394 BSC
(10.00 BSC)
0.003 - 0.008
(0.09 - 0.20)
49
1
PIN 1 ID
0.394 BSC
(10.00 BSC)
0.472 BSC
(12.00 BSC)
33
0.018 - 0.030
(0.45 - 0.75)
17
0.020 BSC
(0.50 BSC)
0.007 - 0.011
(0.17 - 0.27)
0.048 MAX
(1.20 MAX)
SEATING PLANE
0.037 - 0.041
(0.95 - 1.05)
ORDERING INFORMATION
PART NUMBER
ML6697CQ
ML6697CH
TEMPERATURE RANGE
0°C to 70°C
0°C to 70°C
PACKAGE
52-Pin PLCC (Q52)
64-Pin TQFP (H64-10)
Micro Linear makes no representations or warranties with respect to the accuracy, utility, or completeness of the contents
of this publication and reserves the right to make changes to specifications and product descriptions at any time without
notice. No license, express or implied, by estoppel or otherwise, to any patents or other intellectual property rights is granted
by this document. The circuits contained in this document are offered as possible applications only. Particular uses or
applications may invalidate some of the specifications and/or product descriptions contained herein. The customer is urged
to perform its own engineering review before deciding on a particular application. Micro Linear assumes no liability
whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Micro Linear products including
liability or warranties relating to merchantability, fitness for a particular purpose, or infringement of any intellectual property
right. Micro Linear products are not designed for use in medical, life saving, or life sustaining applications.
is a registered trademark of Micro Linear Corporation. All other trademarks are the
© Micro Linear 2000.
property of their respective owners.
Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116;
5,281,862; 5,283,483; 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376;
5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798; 5,742,151; 5,747,977; 5,754,012; 5,757,174;
5,767,653; 5,777,514; 5,793,168; 5,798,635; 5,804,950; 5,808,455; 5,811,999; 5,818,207; 5,818,669; 5,825,165; 5,825,223;
5,838,723; 5.844,378; 5,844,941. Japan: 2,598,946; 2,619,299; 2,704,176; 2,821,714. Other patents are pending.
2092 Concourse Drive
San Jose, CA 95131
Tel: 408/433-5200
Fax: 408/432-0295
16
DS6697-01