MOSEL VITELIC PRELIMINARY V53C832L HIGH PERFORMANCE 3.3 VOLT 256K X 32 EDO PAGE MODE CMOS DYNAMIC RAM HIGH PERFORMANCE 30 35 40 Max. RAS Access Time, (tRAC) 30 ns 35 ns 40 ns Max. Column Address Access Time, (tCAA) 16 ns 18 ns 20 ns Min. Extended Data Out Page Mode Cycle Time, (tPC) 12 ns 14 ns 15 ns Min. Read/Write Cycle Time, (tRC) 65 ns 70 ns 75 ns Features Description ■ 256K x 32-bit organization ■ EDO Page Mode for a sustained data rate of 83 MHz ■ RAS access time: 30, 35, 40 ns ■ Four CAS Inputs for Byte Read and Byte Write Control ■ Low power dissipation ■ Read-Modify-Write, RAS-Only Refresh, CAS-Before-RAS Refresh ■ Refresh Interval: 512 cycles/8 ms ■ Available in 100-pin PQFP and 100-pin LQFP packages ■ Single +3.3V ± 0.3V Power Supply ■ TTL Interface The V53C832L is a high speed 262,144 x 32 bit high performance CMOS dynamic random access memory. The V53C832L offers a combination of unique features including: EDO Page Mode operation for higher sustained bandwidth with Page Mode cycle times as short as 12ns. All inputs are TTL compatible. Input and output capacitance is significantly lowered to increase performance and minimize loading. These features make the V53C832L ideally suited for a wide variety of high performance computer systems and peripheral applications. Device Usage Chart Operating Temperature Range 0°C to 70°C V53C832L Rev. 1.6 August 1999 Package Outline Access Time (ns) Power Q TQ 30 35 40 Std. • • • • • • 1 Temperature Mark Blank V53C832L MOSEL VITELIC V 5 3 C 8 FAMILY Description Pkg. Pin Count PQFP Q 100 TQFP TQ 100 3 2 L DEVICE PKG SPEED ( t RAC) Q (PQFP) TQ (TQFP) TEMP. PWR. BLANK (0°C to 70°C) BLANK (NORMAL) 30 (30 ns) 35 (35 ns) 40 (40 ns) 832L-01 Pin Table 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 I/O3 VSS I/O2 I/O1 VCC NC NC NC NC NC NC NC NC NC NC VSS I/O32 I/O31 VSS I/O30 100-Pin PQFP/TQFP PIN CONFIGURATION Top View 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 I/O29 VCC I/O28 I/O27 VSS I/O26 I/O25 VCC I/O16 I/O15 VSS I/O14 I/O13 VCC VSS VCC I/O12 I/O11 VSS I/O10 I/O9 VCC NC CAS3 CAS1 NC NC OE NC A8 A0 A1 A2 A3 VCC NC NC NC NC NC NC NC NC NC NC VSS A4 A5 A6 A7 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 I/O4 VCC I/O5 I/O6 VSS I/O7 I/O8 VCC I/O17 I/O18 VSS I/O19 I/O20 VCC VCC VSS I/O21 I/O22 VSS I/O23 I/O24 VCC CAS0 CAS2 WE NC NC RAS NC NC V53C832L Rev. 1.6 August 1999 832H-02 2 A0–A8 Address Inputs RAS Row Address Strobe CAS0 Column Address Strobe for First Byte (I/O1–I/O8) CAS1 Column Address Strobe for Second Byte (I/O9–I/O16) CAS2 Column Address Strobe for Third Byte (I/O17–I/O24) CAS3 Column Address Strobe for Fourth Byte (I/O25–I/O32) WE Write Enable OE Output Enable I/O1–I/O32 Data Input, Output VCC +3.3V Supply VSS 0V Supply NC No Connect V53C832L MOSEL VITELIC Absolute Maximum Ratings* Capacitance* TA = 25°C, VCC = 3.3V ± 0.3V, VSS = 0 V Ambient Temperature Under Bias ................................. –10°C to +80°C Storage Temperature (plastic) ..... –55°C to +125°C Voltage Relative to VSS ..................–1.0 V to +4.6V Data Output Current ..................................... 50 mA Power Dissipation .......................................... 1.0 W Symbol *Note: Operation above Absolute Maximum Ratings can adversely affect device reliability. Parameter Typ. Max. Unit CIN1 Address Input 3 4 pF CIN2 RAS, CAS, WE, OE 4 5 pF COUT Data Input/Output 5 7 pF *Note: Capacitance is sampled and not 100% tested. Block Diagram 256K x 32 OE WE CAS0 CAS1 CAS2 CAS3 RAS RAS CLOCK GENERATOR CAS CLOCK GENERATOR WE CLOCK GENERATOR OE CLOCK GENERATOR VCC VSS DATA I/O BUS COLUMN DECODERS Y0 -Y8 SENSE AMPLIFIERS REFRESH COUNTER 512 x 32 A1 • • • A7 A8 X0 -X 8 ROW DECODERS A0 ADDRESS BUFFERS AND PREDECODERS 9 512 MEMORY ARRAY 512 x 512 x 32 I/O BUFFER I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 I/O16 I/O17 I/O18 I/O19 I/O20 I/O21 I/O22 I/O23 I/O24 I/O25 I/O26 I/O27 I/O28 I/O29 I/O30 I/O31 I/O32 832L-03 V53C832L Rev. 1.6 August 1999 3 V53C832L MOSEL VITELIC DC and Operating Characteristics (1-2) TA = 0°C to 70°C, VCC = 3.3V ± 0.3V, VSS = 0 V, unless otherwise specified. V53C832L Symbol Parameter Time Min. Typ. Max. Unit Test Conditions Notes ILI Input Leakage Current (any input pin) –10 10 µA VSS ≤ VIN ≤ VCC ILO Output Leakage Current (for High-Z State) –10 10 µA VSS ≤ VOUT ≤ VCC RAS, CAS at VIH ICC1 VCC Supply Current, Operating 30 130 mA tRC = tRC (min.) 35 120 40 110 4 mA RAS, CAS at VIH other inputs ≥ VSS 30 130 mA tRC = tRC (min.) 2 35 120 40 110 30 120 mA Minimum Cycle 1, 2 35 110 40 100 ICC2 VCC Supply Current, TTL Standby ICC3 VCC Supply Current, RAS-Only Refresh ICC4 VCC Supply Current, EDO Page Mode Operation 1, 2 ICC5 VCC Supply Current, Standby, Output Enabled 2.0 mA RAS=VIH, CAS=VIL ICC6 VCC Supply Current, CMOS Standby 2.0 mA RAS ≥ VCC – 0.2 V, CAS ≥ VCC– 0.2 V, All other inputs ≥ VSS VCC Supply Voltage 3.0 3.6 V VIL Input Low Voltage –1 0.8 V 3 VIH Input High Voltage 2.4 VCC+1 V 3 VOL Output Low Voltage 0.4 V IOL = 2 mA VOH Output High Voltage V IOH = –2 mA V53C832L Rev. 1.6 August 1999 3.3 2.4 4 1 V53C832L MOSEL VITELIC AC Characteristics TA = 0°C to 70°C, VCC = 3.3V ± 0.3V, VSS = 0V unless otherwise noted AC Test conditions, input pulse levels 0 to 3V 30 # Symbol Parameter 35 40 Min. Max. Min. Max. Min. Max. Unit 1 tRAS RAS Pulse Width 30 2 tRC Read or Write Cycle Time 65 70 75 ns 3 tRP RAS Precharge Time 25 25 25 ns 4 tCSH CAS Hold Time 30 35 40 ns 5 tCAS CAS Pulse Width 5 6 7 ns 6 tRCD RAS to CAS Delay 15 7 tRCS Read Command Setup Time 0 0 0 ns 8 tASR Row Address Setup Time 0 0 0 ns 9 tRAH Row Address Hold Time 5 6 7 ns 10 tASC Column Address Setup Time 0 0 0 ns 11 tCAH Column Address Hold Time 5 5 5 ns 12 tRSH (R) RAS Hold Time (Read Cycle) 10 10 10 ns 13 tCRP CAS to RAS Precharge Time 5 5 5 ns 14 tRCH Read Command Hold Time Referenced to CAS 0 0 0 ns 5 15 tRRH Read Command Hold Time Referenced to RAS 0 0 0 ns 5 16 tROH RAS Hold Time Referenced to OE 6 7 8 ns 17 tOAC Access Time from OE 10 11 12 ns 12 18 tCAC Access Time from CAS 10 11 12 ns 6,7,14 19 tRAC Access Time from RAS 30 35 40 ns 6, 8, 9 20 tCAA Access Time from Column Address 16 18 20 ns 6,7,10 21 tLZ OE or CAS to Low-Z Output 0 ns 16 22 tHZ OE or CAS to High-Z Output 0 ns 16 23 tAR Column Address Hold Time fromRAS 26 24 tRAD RAS to Column Address Delay Time 10 25 tRSH (W) RAS or CAS Hold Time in Write Cycle 10 10 10 ns 26 tCWL Write Command to CAS Lead Time 10 11 12 ns 27 tWCS Write Command Setup Time 0 0 0 ns 28 tWCH Write Command Hold Time 5 5 5 ns 29 tWP Write Pulse Width 5 5 5 ns 30 tWCR Write Command Hold Time from RAS 26 28 30 ns 31 tRWL Write Command to RAS Lead Time 10 11 12 ns 32 tDS Data in Setup Time 0 0 0 ns 14 33 tDH Data in Hold Time 5 5 5 ns 14 V53C832L Rev. 1.6 August 1999 5 75K 20 35 16 75K 24 0 5 0 11 17 75K 28 0 6 28 14 40 Notes 0 6 30 17 12 ns ns 4 ns 20 ns 11 12, 13 V53C832L MOSEL VITELIC AC Characteristics (Cont’d) 30 # Symbol Parameter 35 40 Min. Max. Min. Max. Min. Max. Unit Notes 34 tWOH Write to OE Hold Time 5 5 6 ns 14 35 tOED OE to Data Delay Time 5 5 6 ns 14 36 tRWC Read-Modify-Write Cycle Time 100 105 110 ns 37 tRRW Read-Modify-Write Cycle RAS Pulse Width 65 70 75 ns 38 tCWD CAS to WE Delay 26 28 30 ns 12 39 tRWD RAS to WE Delay in ReadModify-Write Cycle 50 54 58 ns 12 40 tCRW CAS Pulse Width (RMW) 44 46 48 ns 41 tAWD Col. Address to WE Delay 32 35 38 ns 42 tPC EDO Fast Page Mode Read or Write Cycle Time 12 14 15 ns 43 tCP CAS Precharge Time 3 4 5 ns 44 tCAR Column Address to RAS Setup Time 16 18 20 ns 45 tCAP Access Time from Column Precharge 46 tDHR Data in Hold Time Referenced to RAS 26 28 30 ns 47 tCSR CAS Setup Time CAS- before-RASRefresh 10 10 10 ns 48 tRPC RAS to CAS Precharge Time 0 0 0 ns 49 tCHR CAS Hold Time CAS-before-RAS Refresh 7 8 8 ns 50 tPCM EDO Page Mode Read-Modify-Write Cycle Time 56 58 60 ns 51 tCOH Output Hold After CAS Low 5 5 5 ns 52 tOES OE Low to CAS HIGH setup time 5 5 5 ns 53 tOEH OE Hold Time from WE during Read-Modify Write Cycle 10 10 10 ns 54 tOEP OE High Pulse Width 10 10 10 ns 55 tT Transition Time (Rise and Fall) 1.5 56 tREF Refresh Interval (512 Cycles) V53C832L Rev. 1.6 August 1999 19 50 8 6 21 1.5 50 8 23 1.5 ns 12 7 50 ns 15 8 ms 17 V53C832L MOSEL VITELIC Notes: 1. ICC is dependent on output loading when the device output is selected. Specified ICC (max.) is measured with the output open. 2. ICC is dependent upon the number of address transitions. Specified ICC (max.) is measured with a maximum of two transitions per address cycle in EDO Page Mode. 3. Specified VIL (min.) is steady state operating. During transitions, VIL (min.) may undershoot to –1.0 V for a period not to exceed 20 ns. All AC parameters are measured with VIL (min.) ≥ VSS and VIH (max.) ≤ VCC. 4. tRCD (max.) is specified for reference only. Operation within tRCD (max.) limits insures that tRAC (max.) and tCAA (max.) can be met. If tRCD is greater than the specified tRCD (max.), the access time is controlled by tCAA and tCAC. 5. Either tRRH or tRCH must be satisified for a Read Cycle to occur. 6. Measured with a load equivalent to one TTL inputs and 50 pF. 7. Access time is determined by the longest of tCAA, tCAC and tCAP. 8. Assumes that tRAD ≤ tRAD (max.). If tRAD is greater than tRAD (max.), tRAC will increase by the amount that tRAD exceeds tRAD (max.). 9. Assumes that tRCD ≤ tRCD (max.). If tRCD is greater than tRCD (max.), tRAC will increase by the amount that tRCD exceeds tRCD (max.). 10. Assumes that tRAD ≥ tRAD (max.). 11. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only. If tRAD is greater than the specified tRAD (max.) limit, the access time is controlled by tCAA and tCAC. 12. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. 13. tWCS (min.) must be satisfied in an Early Write Cycle. 14. tDS and tDH are referenced to the latter occurrence of CAS or WE. 15. tT is measured between VIH (min.) and VIL (max.). AC-measurements assume tT = 3 ns. 16. Assumes a three-state test load (5 pF and a 380 Ohm Thevenin equivalent). 17. An initial 200 µs pause and 8 RAS-containing cycles are required when exiting an extended period of bias without clocks. An extended period of time without clocks is defined as one that exceeds the specified Refresh Interval. V53C832L Rev. 1.6 August 1999 7 V53C832L MOSEL VITELIC Truth Table Function RAS CAS0 CAS1 CAS2 CAS3 WE OE ADDRESS I/O Notes Standby H H H H H X X X High-Z Read: Double Word L L L L L H L ROW/COL Data Out Read: First Byte L L H H H H L ROW/COL I/O1–I/O8 = Data Out I/O9–I/O32 = High-Z Read: Second Byte L H L H H H L ROW/COL I/O1–I/O8 = High-Z I/O9–I/O16 = Data Out I/O17–I/O32 = High-Z Read: Third Byte L H H L H H L ROW/COL I/O1–I/O16 = High-Z I/O17–I/O23 = Data Out I/O24–I/O32 = High-Z Read: Fourth Byte L H H H L H L ROW/COL I/O1–I/O23 = High-Z I/O24–I/O32 = Data Out Write: Double Word (Early-Write) L L L L L L X ROW/COL Data In Write: First Byte (Early) L L H H H L X ROW/COL I/O1–I/O8 = Data In I/O9–I/O32 = X Write: Second Byte (Early) L H L H H L X ROW/COL I/O1–I/O8 = X I/O9–I/O16 = Data In I/O17–I/O32 = X Write: Third Byte (Early) L H H L H L X ROW/COL I/O1–I/O16 = X I/O17–I/O23 = Data In I/O24–I/O32 = X Write: Fourth Byte (Early) L H H H L L X ROW/COL I/O1–I/O23 = X I/O24–I/O32 = Data In Read-Write L L L L L H→L EDO Page-Mode Read First Cycle L H→L H→L H→L H→L H L ROW/COL Data Out 2 EDO Page-Mode Read Subsequent Cycles L H→L H→L H→L H→L H L COL Data Out 2 EDO Page-Mode Write First Cycle L H→L H→L H→L H→L L X ROW/COL Data In 2 EDO Page-Mode Write Subsequent Cycles L H→L H→L H→L H→L L X COL Data In 2 EDO Page-Mode Read-Write First Cycles L H→L H→L H→L H→L H→L L→H ROW/COL Data Out, Data In 2 EDO Page-Mode Read-Write Subsequent Cycles L H→L H→L H→L H→L H→L L→H COL Data Out, Data In 2 L→H→L L L L L H L ROW/COL Data-Out 2 L H H H H X X ROW High-Z H→L L L L L X X X High-Z Hidden Refresh Read RAS-Only Refresh CBR Refresh L→H ROW/COL Notes: 1. Byte Write cycles CAS0, CAS1, CAS2, or CAS3 active. 2. Byte Read cycles CAS0, CAS1, CAS2, or CAS3 active. 3. Only one of the four CAS (CAS0, CAS1, CAS2, or CAS3) must be active. V53C832L Rev. 1.6 August 1999 8 Data Out, Data In 1,2 3 V53C832L MOSEL VITELIC Waveforms of Read Cycle RAS t AR (23) VIH t CSH (4) t RCD (6) VIL t CRP (13) t RAD (24) t RAH (9) VIH ROW ADDRESS VIL t CAH (11) t ASC (10) COLUMN ADDRESS t RCH (14) t CAR (44) t RCS (7) WE t RP (3) t RSH (R)(12) t CAS (5) VIH t ASR (8) ADDRESS t RC (2) VIL t CRP (13) CAS CAS0-CAS3 t RAS (1) t RRH (15) VIH VIL t ROH (16) t CAA (20) OE t OAC (17) VIH VIL t OES (52) I/O1-I/O32 t CAC (18) t RAC (19) VOH t HZ (22) t HZ (22) VALID DATA-OUT VOL t LZ (21) 832L-04 Waveforms of Early Write Cycle t RC (2) t RAS (1) RAS t RP (3) t AR (23) V IH V IL t CSH (4) t CRP (13) CAS0-CAS3 t RCD (6) t RSH (W)(25) t CAS (5) V IH V IL t CAR (44) t CAH (11) t RAH (9) t ASR (8) ADDRESS V IH V IL t ASC (10) ROW ADDRESS COLUMN ADDRESS t RAD (24) WE t CRP (13) t CWL (26) t WCH (28) t WP (29) t WCS (27) V IH V IL t WCR (30) t RWL (31) OE V IH V IL t DHR (46) t DS (32) I/O1-I/O32 V IH V IL t DH (33) VALID DATA-IN HIGH-Z 832L-05 Don’t Care V53C832L Rev. 1.6 August 1999 9 Undefined V53C832L MOSEL VITELIC Waveforms of OE-Controlled Write Cycle RAS t AR (23) V IH t CSH (4) t RCD (6) t RSH (W)(12) t CAS (5) V IH t CRP (13) V IL t RAD (24) t RAH (9) t ASR (8) ADDRESS t RP (3) V IL t CRP (13) CAS0-CAS3 t RC (2) t RAS (1) V IH ROW ADDRESS V IL t CAR (44) t CAH (11) t ASC (10) COLUMN ADDRESS t CWL (26) t RWL (31) t WP (29) WE V IH V IL t WOH (34) OE V IH V IL t OED (35) I/O1-I/O32 t DH (33) t DS (32) V IH VALID DATA-IN V IL 832L-06 Waveforms of Read-Modify-Write Cycle t RWC (36) tRRW (37) RAS t RP (3) t AR (23) VIH VIL t CSH (4) t CRP (13) CAS CAS0-CAS3 t RCD (6) t RSH (W)(25) t CRW (40) VIH VIL t t RAH (9) VIH ROW ADDRESS VIL COLUMN ADDRESS t RAD (24) t ACS WE OE CAH (11) t ASC (10) t ASR (8) ADDRESS t CRP (13) t RWD (39) t AWD (41) t CWD (38) t RWL (31) t WP (29) VIH VIL t CAA (20) t OAC (17) VIH t OEH (53) VIL t OED (35) t CAC (18) t RAC (19) I/O1-I/O32 t CWL (26) VIH VOH VIL VOL t DH (33) t HZ (22) t DS (32) VALID DATA-OUT VALID DATA-IN t LZ (21) 832L-07 Don’t Care V53C832L Rev. 1.6 August 1999 10 Undefined V53C832L MOSEL VITELIC Waveforms of EDO Page Mode Read Cycle RAS V IL t PC (42) t CP (43) t RAH (9) V IH t CSH (4) t ASC (10) ROW ADDRESS COLUMN ADDRESS t RCH (14) t CAH (11) t CAH (11) COLUMN ADDRESS COLUMN ADDRESS t RCS (7) t RCS (7) t RCH (14) V IH V IL t CAA (20) t CAA (20) t CAP (45) t OAC (17) t RRH (15) t OAC (17) t OES (52) V IH V IL t RAC (19) t CAC (18) t LZ (21) t OEP (54) t CAC (18) t CAC (18) t COH (5) I/O1-I/O32 t CAR (44) t ASC (10) t CAH (11) t RCS (7) OE t CRP (13) t CAS (5) t CAS (5) V IL V IL WE t RSH (R)(12) t CAS (5) V IH t ASR (8) ADDRESS RP (3) t RCD (6) t CRP (13) CAS0-CAS3 t t RAS (1) t AR (23) V IH V OH t HZ (22) VALID DATA OUT V OL t HZ (22) t HZ (22) t HZ (22) VALID DATA OUT VALID DATA OUT t LZ 832L-08 Waveforms of EDO Page Mode Write Cycle t RP (3) t AR (23) RAS V IL t CRP (13) t RCD (6) CAS0-CAS3 t RAS (1) V IH t PC (42) t CP (43) t CAS (5) V IH t CSH (4) t ASC (10) t ASR (8) V IH ROW ADD V IL COLUMN ADDRESS t CAH (11) COLUMN ADDRESS t CWL (26) t WCS (27) t WCH (28) t WCS (27) t CWL (26) t WCH (28) t RWL (31) t WCH (28) t WP (29) t WP (29) V IH V IL VIH V IL t DH (33) t DS (32) I/O1-I/O32 t CAH (11) COLUMN ADDRESS t CWL (26) t WCS (27) t WP (29) OE t CRP (13) t CAR (44) t ASC (10) t CAH (11) t RAD (24) WE t CAS (5) t CAS (5) V IL t RAH (9) ADDRESS t RSH (W)(25) V IH V IL VALID DATA IN t DS (32) t DH (33) VALID DATA IN OPEN t DS (32) t DH (33) VALID DATA IN OPEN 832L-09 Don’t Care V53C832L Rev. 1.6 August 1999 11 Undefined V53C832L MOSEL VITELIC Waveforms of EDO Page Mode Read-Write Cycle t RAS (1) VIH RAS V IL t CSH (4) t RCD (6) t PCM (50) IH V t RSH (W)(25) t CRP (13) t CAS (5) t CP (43) t CAS (5) V CAS0-CAS3 t RP (3) t CAS (5) t RAD (24) IL t RAH (9) t ASC (10) t ASR (8) V IH ADDRESS V IL ROW ADD t ASC (10) t CAH (11) t CAH (11) COLUMN ADDRESS COLUMN ADDRESS t RWD (39) t CWL (26) t CWD (38) t CAR (44) t ASC (10) t CAH (11) COLUMN ADDRESS t CWD (38) t CWD (38) t RWL (31) t CWL (26) t CWL (26) V IH WE V IL t CAA (20) t OAC (17) t AWD (41) t AWD (41) t AWD (41) t WP (29) t WP (29) t WP (29) t OAC (17) t OAC (17) V IH OE V t OEH (53) IL t CAA (20) t OED (35) t CAC (18) t RAC (19) t CAP (43) t CAP (43) t CAA (20) t OED (35) t CAC (18) t HZ (22) t HZ (22) t DH (33) t DH (33) t DS (32) t DS (32) I/O1-I/O32 V I/OH OUT V I/OL OUT IN t OED (35) t CAC (18) t HZ (22) t DH (33) t DS (32) OUT IN IN 832L-10 t LZ (21) t LZ t LZ Waveforms of RAS-Only Refresh Cycle tRC (2) RAS t RAS (1) VIH tRP (3) V IL t CRP (13) CAS0-CAS3 VIH V IL tASR (8) ADDRESS VIH V IL t RAH (9) ROW ADD 832L-11 NOTE: WE, OE = Don’t care Don’t Care V53C832L Rev. 1.6 August 1999 12 Undefined V53C832L MOSEL VITELIC Waveforms of CAS-before-RAS Refresh Counter Test Cycle t RAS (1) RAS t RP (3) V IH V IL t CSR (47) CAS0-CAS3 ADDRESS t CHR (49) t RSH (W)(25) t CAS (5) t CP (43) V IH V IL V IH V IL READ CYCLE WE t RRH (15) t RCH (14) t RCS (7) V IH V IL t ROH (16) t OAC (17) OE V IH V IL t HZ (22) t HZ (22) t LZ (21) I/O1-I/O32 V IH DOUT V IL t RWL (31) t CWL (26) WRITE CYCLE WE OE V IL V IH V IL t I/O1-I/O32 t WCH (28) t WCS (27) V IH t DH (33) DS (32) V IH D IN V IL 832L-12 Waveforms of CAS-before-RAS Refresh Cycle t RC (2) t RP (3) RAS V IL t CP (43) CAS0-CAS3 t RAS (1) t RP (3) V IH t RPC (48) t CHR (49) t CSR (47) V IH V IL t HZ (22) I/O1-I/O32 V OH V OL 832L-13 NOTE: WE, OE, A0–A8 = Don’t care Don’t Care V53C832L Rev. 1.6 August 1999 13 Undefined V53C832L MOSEL VITELIC Waveforms of Hidden Refresh Cycle (Read) t RC (2) RAS V IH t RSH (R)(12) t CRP (13) V IL V IH t RAD (24) t ASC (10) t CAH (11) COLUMN ADDRESS ROW ADD V IL t RCS (7) WE t CHR (49) V IH t ASR (8) t RAH (9) ADDRESS t RP (3) t RAS (1) V IL t RCD (6) t CRP (13) CAS0-CAS3 t RC (2) tRP (3) t RAS (1) t AR (23) t RRH (15) V IH V IL t CAA (20) t OAC (17) OE V IH V IL t CAC (18) t LZ (21) t RAC (19) I/O1-I/O32 t HZ (22) t HZ (22) V OH VALID DATA V OL 832L-14 Waveforms of Hidden Refresh Cycle (Write) t RC (2) RAS V IH t RSH (12) V IH t CAH (11) ROW ADD COLUMN ADDRESS t WCH (28) V IH V IL V IH V IL t DS (32) I/O1-I/O32 t CRP (13) t RAD (24) t ASC (10) t WCS (27) OE t CHR (49) V IL V IL WE t RP (3) V IH t ASR (8) t RAH (9) ADDRESS t RAS (1) V IL t RCD (6) t CRP (13) CAS0-CAS3 t RC (2) t RP (3) t RAS (1) t AR (23) V IH V IL t DH (33) VALID DATA-IN t DHR (46) 832L-15 Don’t Care V53C832L Rev. 1.6 August 1999 14 Undefined V53C832L MOSEL VITELIC Waveforms of EDO-Page-Mode Read-Early-Write Cycle (Pseudo Read-Modify-Write) tRAS tRP V IH RAS V IL tCSH tCRP CAS0-CAS3 tPC tRCD tPC tCAS tCP tCAS tRSH tCP tCAS tCP V IH V IL tAR tCAR tRAD tASR ADDRESS V IH V IL tRAH ROW ADDRESS tASC tCAH tASC COLUMN ADDRESS COLUMN ADDRESS tWCS tWCH tCAA tCAA tCAP tCAC tCAC V IH V IL tCAH tRCH tRAC OE tASC COLUMN ADDRESS tRCS V IH WE V IL tCAH tDS tDH tOE tCOH I/O1-I/O32 VOH VOL VALID DATA OUT VALID DATA OUT VALID DATA IN 832L-16 Don’t Care Undefined Functional Description Read Cycle The V53C832L is a CMOS dynamic RAM optimized for high data bandwidth, low power applications. It is functionally similar to a traditional dynamic RAM. The V53C832L reads and writes data by multiplexing an 18-bit address into a 9-bit row and a 9-bit column address. The V53C832L has four CAS inputs. CAS0 controls I/O1–I/O8; CAS1 controls I/O9–I/O16; CAS2 controls I/O 17 –I/O 24 ; and CAS3 controls I/O 23 – I/O 32 . These four CAS inputs control Byte Read and Byte Write. The row address is latched by the Row Address Strobe (RAS). The column address “flows through” an internal address buffer and is latched by the Column Address Strobe (CAS). Because access time is primarily dependent on a valid column address rather than the precise time that the CAS edge occurs, the delay time from RAS to CAS has little effect on the access time. A Read cycle is performed by holding the Write Enable (WE) signal High during a RAS/CAS operation. The column address must be held for a minimum specified by tAR. Data Out becomes valid only when tOAC, tRAC, tCAA and tCAC are all satisifed. As a result, the access time is dependent on the timing relationships between these parameters. For example, the access time is limited by tCAA when tRAC, tCAC and tOAC are all satisfied. Write Cycle A Write Cycle is performed by taking WE and CAS low during a RAS operation. The column address is latched by CAS. The Write Cycle can be WE controlled or CAS controlled depending on whether WE or CAS falls later. Consequently, the input data must be valid at or before the falling edge of WE or CAS, whichever occurs last. In the CAS-controlled Write Cycle, when the leading edge of WE occurs prior to the CAS low transition, the I/O data pins will be in the High-Z state at the beginning of the Write function. Ending the Write with RAS or CAS will maintain the output in the High-Z state. In the WE controlled Write Cycle, OE must be in the high state and tOED must be satisfied. Memory Cycle A memory cycle is initiated by bringing RAS low. Any memory cycle, once initiated, must not be ended or aborted before the minimum tRAS time has expired. This ensures proper device operation and data integrity. A new cycle must not be initiated until the minimum precharge time tRP/tCP has elapsed. V53C832L Rev. 1.6 August 1999 15 V53C832L MOSEL VITELIC Extended Data Output Page Mode EDO Page operation permits all 512 columns within a selected row of the device to be randomly accessed at a high data rate. Maintaining RAS low while performing successive CAS cycles retains the row address internally and eliminates the need to reapply it for each cycle. The column address buffer acts as a transparent or flow-through latch while CAS is high. Thus, access begins from the occurrence of a valid column address rather than from the falling edge of CAS, eliminating tASC and tT from the critical timing path. CAS latches the address into the column address buffer. During EDO operation, Read, Write, Read-Modify-Write or Read-WriteRead cycles are possible at random addresses within a row. Following the initial entry cycle into Hyper Page Mode, access is tCAA or tCAP controlled. If the column address is valid prior to the rising edge of CAS, the access time is referenced to the CAS rising edge and is specified by tCAP. If the column address is valid after the rising CAS edge, access is timed from the occurrence of a valid address and is specified by tCAA. In both cases, the falling edge of CAS latches the address and enables the output. EDO provides a sustained data rate of 83 MHz for applications that require high bandwidth such as bitmapped graphics or high-speed signal processing. The following equation can be used to calculate the maximum data rate: OE signal has no effect on any data stored in the output latches. A WE low level can also disable the output drivers when CAS is low. During a Write cycle, if WE goes low at a time in relationship to CAS that would normally cause the outputs to be active, it is necessary to use OE to disable the output drivers prior to the WE low transition to allow Data In Setup Time (tDS) to be satisfied. Power-On After application of the VCC supply, an initial pause of 200 µs is required followed by a minimum of 8 initialization cycles (any combination of cycles containing a RAS clock). Eight initialization cycles are required after extended periods of bias without clocks (greater than the Refresh Interval). During Power-On, the VCC current requirement of the V53C832L is dependent on the input levels of RAS and CAS. If RAS is low during Power-On, the device will go into an active cycle and ICC will exhibit current transients. It is recommended that RAS and CAS track with VCC or be held at a valid VIH during Power-On to avoid current surges. Table 1. V53C832L Data Output Operation for Various Cycle Types 512 Data Rate = ---------------------------------------t RC + 511 × t PC Data Output Operation The V53C832L Input/Output is controlled by OE, CAS, WE and RAS. A RAS low transition enables the transfer of data to and from the selected row address in the Memory Array. A RAS high transition disables data transfer and latches the output data if the output is enabled. After a memory cycle is initiated with a RAS low transition, a CAS low transition or CAS low level enables the internal I/O path. A CAS high transition or a CAS high level disables the I/O path and the output driver if it is enabled. A CAS low transition while RAS is high has no effect on the I/O data path or on the output drivers. The output drivers, when otherwise enabled, can be disabled by holding OE high. The V53C832L Rev. 1.6 August 1999 16 Cycle Type I/O State Read Cycles Data from Addressed Memory Cell CAS-Controlled Write Cycle (Early Write) High-Z WE-Controlled Write Cycle (Late Write) OE Controlled. High OE = High-Z I/Os Read-Modify-Write Cycles Data from Addressed Memory Cell EDO Read Cycle Data from Addressed Memory Cell EDO Write Cycle (Early Write) High-Z EDO Read-Modify-Write Cycle Data from Addressed Memory Cell RAS-only Refresh High-Z CAS-before-RAS Refresh Cycle Data remains as in previous cycle CAS-only Cycles High-Z V53C832L MOSEL VITELIC Package Outlines 100-pin PQFP FOOTPRINT 3.2mm (14x20mm) 0.134 MAX. [3.404 MAX.] TOP VIEW 0.026 TYP. [0.65 TYP.] Unit in inches [mm] 0.010 MIN. [0.254 MIN.] 81 100 1 80 0.012 0.787±0.004 [19.990±0.102] +0.003 –0.002 [0.305 +0.076 ] –0.051 +0.008 –0.007 +0.203 [23.190 ] –0.178 0.913 30 51 31 50 0.551±0.004 [13.995±0.102] 0.113 MAX [2.87 MAX] 0.677±0.008 [17.195±0.203] DETAIL “F” 0.004 MIN. [0.102 MIN.] GAGE PLANE SEATING PLANE 0.035 ±0.006 [0.889 ±0.152] SEE DETAIL “F” 0.063 TYP. [1.600 TYP.] 100-pin TQFP Dimensions in Millimeters 17.2 ± 0.25 14.00 ± Pin #1 Index 0.20 #100 #1 23.2 ± 0.25 20.00 ± A 0.30 ± 0.15 ± 0.65 0.08 1.00 ± 1.20 MAX 0.05 GAGE PLANE 0.80 ± 0.10 ± 0.05 1.60 REF SECTION: A-A V53C832L Rev. 1.6 August 1999 17 0.20 A 0.15 0.05 MOSEL VITELIC WORLDWIDE OFFICES V53C832L U.S.A. TAIWAN SINGAPORE IRELAND & UK 3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952 7F, NO. 102 MIN-CHUAN E. ROAD, SEC. 3 TAIPEI PHONE: 886-2-2545-1213 FAX: 886-2-2545-1209 10 ANSON ROAD #23-13 INTERNATIONAL PLAZA SINGAPORE 079903 PHONE: 65-3231801 FAX: 65-3237013 BLOCK A UNIT 2 BROOMFIELD BUSINESS PARK MALAHIDE CO. DUBLIN, IRELAND PHONE: +353 1 8038020 FAX: +353 1 8038049 NO 19 LI HSIN RD. SCIENCE BASED IND. PARK HSIN CHU, TAIWAN, R.O.C. PHONE: 886-3-579-5888 FAX: 886-3-566-5888 JAPAN HONG KONG 19 DAI FU STREET TAIPO INDUSTRIAL ESTATE TAIPO, NT, HONG KONG PHONE: 852-2666-3307 FAX: 852-2770-8011 WBG MARIVE WEST 25F 6, NAKASE 2-CHOME MIHAMA-KU, CHIBA-SHI CHIBA 261-7125 PHONE: 81-43-299-6000 FAX: 81-43-299-6555 GERMANY (CONTINENTAL EUROPE & ISRAEL) 71083 HERRENBERG BENZSTR. 32 GERMANY PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22 U.S. SALES OFFICES NORTHWESTERN NORTHEASTERN SOUTHWESTERN 3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952 SUITE 436 20 TRAFALGAR SQUARE NASHUA, NH 03063 PHONE: 603-889-4393 FAX: 603-889-9347 302 N. EL CAMINO REAL #200 SAN CLEMENTE, CA 92672 PHONE: 949-361-7873 FAX: 949-361-7807 © Copyright 1998, MOSEL VITELIC Inc. The information in this document is subject to change without notice. MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC. MOSEL VITELIC CENTRAL & SOUTHEASTERN 604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 972-690-1402 FAX: 972-690-0341 8/99 Printed in U.S.A. MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications. 3910 N. First Street, San Jose, CA 95134-1501 Ph: (408) 433-6000 Fax: (408) 433-0952 Tlx: 371-9461