NEC UPB1009K

NEC’s LOW POWER
GPS RF RECEIVER
BIPOLAR ANALOG + INTEGRATED CIRCUIT
UPB1009K
DESCRIPTION
The µPB1009K is a silicon monolithic IC developed for GPS receivers. This IC integrates a full VCO, second IF
filter, 4-bit ADC, and digital control interface to reduce cost and mounting space. In addition, its power consumption
is low.
Moreover, use of a TCXO with frequency of 16.368 MHz/16.384 MHz, 14.4 MHz, 19.2 MHz, or 26 MHz switchable
with an on-chip divider is possible.
NEC’s stringent quality assurance and test procedures ensure the highest reliability and performance.
FEATURES
• Double conversion
: fREFin = 16.368 MHz, f1stIFin = 61.380 MHz, f2ndIFin = 4.092 MHz
• Multiple system clocks
: On-chip switchable frequency divider (1/N = 100, 3/256, 9/1024, 65/4096)
: fREFin = 14.4, 16.384, 19.2, 26 MHz, f1stIFin = 62.980 MHz, f2ndIFin = 2.556 MHz
• A/D converter
: On-chip 4-bit A/D converter
• High-density RF block
: On-chip VCO tank circuit and 2ndIF filter
• Supply voltage
: VCC = 2.7 to 3.3 V
• Low current consumption
: ICC = 26.0 mA TYP. @ VCC = 3.0 V, N = 100
• High-density surface mountable
: 44-pin plastic QFN
APPLICATIONS
• Consumer use GPS receiver of reference frequency 16.368 MHz, 2nd IF frequency 4.092 MHz
• Consumer use GPS receiver of reference frequency 14.4, 16.384, 19.2, 26 MHz, 2ndIF frequency 2.556 MHz
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.
UPB1009K
ORDERING INFORMATION
Part Number
µPB1009K-E1
Package
44-pin plastic QFN
Supplying Form
• 12 mm wide embossed taping
• Pin 1 indicates pull-out direction of tape
• Qty 1.5 kpcs/reel, Dry pack specification
Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: µPB1009K
2
UPB1009K
PRODUCT LINE-UP (TA = +25°C, VCC = 3.0 V)
Type
Part Number
VCC
(V)
ICC
(mA)
2.7 to 3.3
26.0
µPB1008K
2.7 to 3.3
LNA + Pre-amplifier + RF/IF
down-converter + PLL
synthesizer
REF = 27.456
1stIF = 175.164/2ndIF = 0.132
On-chip 2-bit ADC
18.0
100 to
120
36-pin plastic QFN
µPB1007K
Pre-amplifier + RF/IF downconverter + PLL synthesizer
REF = 16.368
1stIF = 61.380/2ndIF = 4.092
2.7 to 3.3
25.0
100 to
120
36-pin plastic QFN
µPB1005K
REF = 16.368
1stIF = 61.380/2ndIF = 4.092
Clock
µPB1009K
Frequency
Specific
1 chip IC
Functions
(Frequency unit: MHz)
Pre-amplifier + RF/IF downconverter + PLL synthesizer
REF = 16.368
1stIF = 61.380/2ndIF = 4.092
REF = 14.4, 16.384, 19.2, 26
1stIF = 62.980/2ndIF = 2.556
On-chip 4-bit ADC
CG
(dB)
Package
Status
44-pin plastic QFN
New Device
Available
36-pin plastic QFN
Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
SYSTEM APPLICATION EXAMPLE
GPS receiver RF block diagram
PD1 and PD2 in the figure are Power Save Mode control pins.
MS1 and MS2 in the figure are TXCO (GPS, W-CDMA, PDC, GSM) control pins.
RF
LNA SAW
1stLo =
1636.8 MHz
1638.4 MHz
2ndIF =
4.092 MHz
2.556 MHz
IF SAW
Pre- 1st.
amp mix
2nd
MIX
AGC
LPF
IF
Amp
–
+
DC trim
+
–
RF
4bit
ADC
IF
Para Data
PD2
Regulator
÷25
PD1
÷N
Tank
Cont.
–
+
Samp Clk
AGC cont
GPS baseband
RF =
1575.42 MHz
1stIF =
61.38 MHz
62.98 MHz
PLL
MS1 MS2
TCXO
Caution This diagram schematically shows only the µPB1009K’s internal functions on the system.
This diagram does not present the actual application circuits.
3
UPB1009K
AGCout
AGCin
SCKin
D3
D2
D1
D0
GNDsub
VDDbuf
VDDana
GNDbuf
PIN CONNECTION AND INTERNAL BLOCK DIAGRAM
33
32
31
30
29
28
27
26
25
24
23
VDDlogi 34
22 GNDana
+
+
–
GNDlogi 35
21 DCOFFin
+
–
PD1 36
PD2 37
–
4bit ADC
20 DCOFFout
Pwdctrl
Logic
19 2ndIFin
VGC
IFamp
LPF
1stIFin 38
18 2ndIFout
1/4
16 CLKout
3/64
1st IFout 41
9/256
1stMIXVCC 40
65/1024
17 IFGND
1/25
IFVCC 39
15 PLLGND
PLL PD
Fref 14 PLLVCC
LNAVCC 42
LNAGND 43
13 Refin
OSC
1stMIX
PreAmp
LNAin 44
4
12 MS2
1
2
3
4
5
6
7
8
9
10
11
LNAout
Rext
RegGND
1stMIXin
GND
(1st-MIX)
MS1
LOVCC
VCO1
VCO2
LOGND
CPout
CP
UPB1009K
PIN EXPLANATION
Pin Name
Function and Application
1
PreAMPout
Output pin of preamplifier.
2
Rext
Connect a resistor for the reference
constant-current power supply to this pin.
Ground this pin at 22 kΩ.
3
RegGND
Ground pin for regulator.
42
PreAmpVCC
Power supply voltage pin for preamplifier.
Connect a bypass capacitor to this pin to
reduce the high-frequency impedance.
43
PreAmpGND
Ground pin of preamplifier.
44
PreAmpin
Input pin of preamplifier.
Internal Equivalent Circuit
1
44
43
4
1stMIXin
1stMIX input pin.
5
1stMIXGND
Ground pin for first MIX.
40
1stMIXVCC
Power supply voltage pin for RF mixer.
Connect a bypass capacitor to this pin to
reduce the high-frequency impedance.
41
1stIFout
Output pin of RF mixer. Insert an IFSAW
filter between this pin and pin 37. The
VCO oscillation signal can be monitored on
this pin.
42
Regulator
Pin
No.
2
3
40
Gibert
Cell
41
4
Bias
5
5
UPB1009K
6
12
Pin Name
MS1
MS2
Function and Application
Low :
0 to 0.3 (V)
MS1 : L
MS2 : L
High :
VCC − 0.3 to
MS1 : L TCXO : 19.2 MHz
MS2 : H
VCC (V)
MS1 : H TCXO : 14.4 MHz
MS2 : L
Internal Equivalent Circuit
14
TCXO : 16.368,
16.384 MHz
Bias
Pin
No.
12 6
11
CPout
Bias
MS1 : H TCXO : 26 MHz
MS2 : H
Output pin of charge pump. Connect
external R and C to this pin to set a
dumping factor and natural angular
frequency (Isink = Isource = 0.45 mA).
15
Refin
Reference frequency input pin. Connect
an external reference transmitter (such as
TCXO) to this pin.
Bias
13
Source
14
11
PLLVCC
Power supply voltage pin of PLL.
Connect a bypass capacitor to this pin to
reduce the high-frequency impedance.
Sink
14
15
PLLGND
Ground pin of PLL.
16
CLKout
Clock (fTCXO) output pin (IC test pin).
14
from divider
15
15
6
16
UPB1009K
7
8
9
10
Pin Name
LoVCC
VCO1
VCO2
LoGND
Function and Application
Internal Equivalent Circuit
Power supply voltage pin of VCO.
Connect a bypass capacitor to this pin to
reduce the high-frequency impedance.
7
IC test pin.
Leave this pin open when the µPB1009K is
mounted on board.
8
VCO
out
VCO cont
To divider
Pin
No.
9
Ground pin of VCO.
10
17
IFGND
Ground pin of IF block.
18
2ndIFout
Output pin of IF amplifier.
38
1stIFin
Input pin of second IF mixer.
39
IFVCC
Power supply voltage pin of IF block.
39
38
18
Bias
17
7
UPB1009K
Pin
No.
Pin Name
Function and Application
2ndIFin
Input pin of ADC buffer amplifier.
20
DCOFFout
Output pin of DC trimming OP amplifier.
21
DCOFFin
DC trimming pulse input pin.
Connect this pin to pin 20 via a capacitor to
convert an input pulse signal into DC.
24
4.7 kΩ
6.8 kΩ
19
Internal Equivalent Circuit
1.8 kΩ
6.8 kΩ
19
22
22
23
GNDana
GNDbuf
Ground pin for OP amplifier and ADC
power supply.
24
VDDana
Power supply pin for OP amplifier and ADC
comparator.
24
31
25
VDDbuf
Power supply pin for output driver amplifier
of ADC. Connect this pin to the ground pin
of the A/D converter via a bypass capacitor
to reduce the high-frequency impedance.
PB
22
25
26
GNDsub
Ground pin of CMOS substrate.
A
27
28
29
30
D0
D1
D2
D3
Digital signal output pins.
LSB = D0, MSB = D3
31
SCKin
Sampling clock signal input pin.
32
AGCin
AGC control pulse signal input pin.
33
AGCout
AGC control signal output pin.
27 29
Y
28 30
inv
23
21
32
22
8
Bias
24
20
33
UPB1009K
Pin
No.
Pin Name
Function and Application
34
VDDlogi
Power supply voltage pin for power control
logic.
35
GNDlogi
Ground pin for power control logic.
36
37
PD1
PD2
Low :
0 to 0.3 (V)
PD1 : L
PD2 : L
High :
VCC − 0.3 to
PD1 : L Warm-up mode
PD2 : H (PLL on).
VCC (V)
PD1 : H Calibration mode
PD2 : L (PLL + IF + ADC on).
Sleep mode
(all circuits off).
PD1 : H Active mode
PD2 : H (all circuits on).
Internal Equivalent Circuit
34
36
37
35
9
UPB1009K
ABSOLUTE MAXIMUM RATINGS
Parameter
Supply Voltage
Symbol
Test Conditions
Ratings
Unit
VCC
TA = +25°C
3.6
V
ICCTotal
TA = +25°C
100
mA
Power Dissipation
PD
TA = +25°C
266
mW
Operating Ambient Temperature
TA
−40 to +85
°C
Storage Temperature
Tstg
−55 to +125
°C
Total Circuit Current
Note
Note Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB
RECOMMENDED OPERATING RANGE
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Supply Voltage
VCC
2.7
3.0
3.3
V
Operating Ambient Temperature
TA
−30
+25
+85
°C
RF Input Frequency
fRFin
−
1 575.42
−
MHz
1st LO Oscillating Frequency
f1stLOin
−
1 636.8/1 638.4
−
MHz
1st IF Input Frequency
f1stIFin
−
61.38/62.98
−
MHz
2nd LO Input Frequency
f2ndLOin
−
65.472/65.536
−
MHz
2nd IF Input Frequency
f2ndIFin
−
4.092/2.556
−
MHz
Reference Input/Output Frequency
fREFin
fREFout
−
TCXO
−
MHz
Clock mode control voltage
(Low Level)
VIL1
0
−
0.3
V
Clock mode control voltage
(High Level)
VIH1
VCC − 0.3
−
VCC
V
Power-down control voltage
(Low Level)
VIL2
0
−
0.3
V
Power-down control voltage
(High Level)
VIH2
VCC − 0.3
−
VCC
V
10
UPB1009K
POWER-DOWN CONTROL MODE
The µPB1009K consists of an RF block, an IF block, and a PLL block. By controlling reduction of power to each block (by
applying a voltage to the PD1 and PD2 pins), the following four modes can be used.
Mode
No.
Mode Name
1
Test Conditions
RF Block
IF Block
(IF + ADC)
PLL Block
PD1
PD2
Active mode
L
H
ON
ON
ON
2
Calibration mode
H
H
OFF
ON
ON
3
Warm-up mode
H
L
OFF
OFF
ON
4
Sleep mode
L
L
OFF
OFF
OFF
Caution To use only the active mode and sleep mode, fix PD1 to L and select the desired mode with PD2.
REFERENCE CLOCK CONTROL MODE
The divided frequency can be selected as follows so that it can be shared with the TCXO of each system.
TCXO Frequency
Test Conditions
1/N
Phase Comparison Frequency
PD1
PD2
16.368 MHz (GPS)
16.384 MHz (GPS)
L
L
1/100
16.368 MHz
16.384 MHz
19.2 MHz (W-CDMA)
L
H
3/256
19.2 MHz
14.4 MHz (PDC)
H
L
9/1024
14.4 MHz
26 MHz (GSM)
H
H
65/4096
26 MHz
Caution When the reference clock frequency is 16.368 MHz, the 1stIF frequency and 2ndIF frequency are 61.38
MHz and 4.092 MHz, respectively. They are respectively 62.98 MHz and 2.556 MHz in all other cases.
11
UPB1009K
ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = 3.0 V)
Parameter
Rest current of overall IC in each
mode
Sleep mode
Note
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
Rest status without input signal, including sampling clock.
MS1 = L, MS2 = L
Is
PD1 = L, PD2 = L
1.3
2.2
3.5
mA
Warm-up mode
Iw
PD1 = H, PD2 = L
10.5
13.0
15.5
mA
Calibration mode
Ic
PD1 = H, PD2 = H
18.0
22.0
25.3
mA
Active mode
Ia
PD1 = L, PD2 = H
22.1
26.0
30.0
mA
Rest current of PLL block in each
clock mode
Current of PLL block. Overall current in calibration mode and active mode increases from that
in basic mode (MS1 = L, MS2 = L). PD1 = H, PD2 = L.
Current when 1/100 divider is
used
Iw1
MS1 = L, MS2 = L
5.3
6.5
7.6
mA
Current when 256/3 divider is
used
Iw2
MS1 = L, MS2 = H
9.7
11.3
12.6
mA
Current when 1024/9 divider is
used
Iw3
MS1 = H, MS2 = L
10.2
12.1
13.5
mA
Current when 4096/65 divider is
used
Iw4
MS1 = H, MS2 = H
10.4
12.3
13.9
mA
H application
−
−
20
µA
L application
−20
−
−
µA
H application
−
−
20
µA
L application
−20
−
−
µA
H application
−
−
1
µA
L application
−1
−
−
µA
H application
−
−
1
µA
L application
−1
−
−
µA
Maximum mode control pin current
6 pin
MS1
12 pin
MS2
36 pin
PD1
37 pin
PD2
<Pre-amplifier>
fRFin = 1 575.42 MHz
Circuit Current 1
ICC1
No Signals, 1-pin current
1.9
2.3
2.7
mA
Power Gain
GLNA
PRFin = −40 dBm
12.5
15.0
17.5
dB
Noise Figure
NFLNA
fRFin = 1 575 MHz
−
3.0
3.5
dB
−4.0
−2.7
−
dBm
Saturated Output Power
PO(SAT)LNA PRFin = −10 dBm
Input 1dB Compression Level
PLNA−1
fRFin = 1 575.42 MHz
−25
−21.8
−
dBm
Input 3rd Order Intercept Point
IIP3LNA
fRFin = 1 575.42 MHz, 1 576.42 MHz
−12
−9.5
−
dBm
Input Inpedance
ZinLNA
−
11.2 −
j21.5
−
Ω
Output Inpedance
ZoutLNA
Calculated from S-parameter where input
DC cut capacitance = 1 nF, output load L
= 100 n, and DC cut capacitance = 1 nF
−
16.4 −
j136.6
−
Ω
Note Most of the current flows into the ADC ladder resistor (VDDana → GNDana) in the sleep mode, and the sleep mode
current between other VCC (VDD) and GND is 10 µA maximum.
12
UPB1009K
ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = 3.0 V)
Parameter
<RF mixer>
Circuit Current 2
RF Conversion Gain
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
fRF = 1 575.42 MHz, f1stLOin = 1 636.80 MHz, f1stIF = 61.38 MHz
ICC2
CGRF
No Signals, 40 pin current
2.0
2.5
3.0
mA
PRFMIXin = −40 dBm
14.0
16.1
19.0
dB
−
12.8
16.0
dB
−4.0
−0.8
−
dBm
Noise Figure
SSBNFRFMIX SSBNF = 10*log (2*DSBNF (Linear
value) −1) MHz
Maximum IF Output
PO (SAT) RFMIX PRFMIXin = −10 dBm
Input 1dB Compression Level
PRFMIX-1
fRFMIXin = 1 575.42 MHz
−29.0
−25.5
−
dBm
Input 3rd Order Intercept Point
IIP3RFMIX
fRFMIXin = 1 575.42 MHz, 1 576.42 MHz
f1stLO = 1 636.8 MHz
−19.0
−17.2
−
dBm
−
−34.5
−30
dBm
−
−54.7
−30
dBm
−
50.1 −
j22.3
−
Ω
−
57.3 +
j2.6
−
Ω
6.3
7.3
8.5
mA
CG (GV) IF VAGC = 0.5 V
66.0
70.3
75.0
dB
VAGC = 1.5 V
45.0
51.2
58.0
dB
VAGC = 2.5 V
19.5
26.4
33.5
dB
−
0.7
1.0
dB
LO Leakage to IF Pin
LOIF
LO Leakage to RF Pin
LORF
Input Inpedance
ZinMIX
Output Inpedance
ZoutMIX
<IF mixer, LPF, IFamp>
Circuit Current 3
IF Conversion Gain
Leakage of 1 636.8 MHz frequency when
VCO oscillates correctly.
Calculated from S-parameter where input
DC cut capacitance = 1 nF and output
DC cut capacitance = 1 nF
f1stFin = 61.38 MHz, f2ndLOin = 65.472 MHz, ZL = 2 kΩ
ICC3
No Signals, 39 pin current
In Band Gain Fluctuation
∆CG1
3.092 to 5.092 MHz
Out Of Band Attenuation
∆CG2
Gain difference at 4.092 MHz and 9.092
MHz, VAGC = 0.5 V
20.0
25.0
−
dB
Conversion Gain Range
CGRange
VAGC = 0 to 2.5 V
32.5
43.9
−
dB
−
13.7
17.5
dB
1.0
1.3
−
VPP
VAGC = 0.5 V
−70.5
−64.4
−
dBm
VAGC = 1.5 V
−53.5
−44.9
−
dBm
VAGC = 2.5 V
−37.0
−30.6
−
dBm
f1stIFin1 = 61.28 MHz VAGC = 0.5 V
−56.0
−51.3
−
dBm
f1stIFin2 = 61.38 MHz VAGC = 1.5 V
−38.0
−30.7
−
dBm
f2ndLO = 65.472 MHz VAGC = 2.5 V
−27.0
−21.4
−
dBm
−
69.3 −
j4.8
−
Ω
−
163 +
j3.8
−
Ω
IF ⋅ SSB Noise Figure
Maximum 2ndIF Output
Input 1dB Compression Level
Input 3rd Order Intercept Point
NFIF
VO (SAT) IF
PIF-1
IIP3IF
Input Inpedance
ZinIF
Output Inpedance
ZoutIF
VAGC = 0.5 V (at maximum gain)
Pin = −50 dBm, VAGC = 0.5 V
f1stIFin = 61.38 MHz
Calculated from S-parameter where input
DC cut capacitance = 1 nF and output
DC cut capacitance = 100 nF
13
UPB1009K
ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = 3.0 V)
Parameter
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
8.0
9.5
10.6
mA
−0.55
−0.45
−0.35
mA
Icpsource
0.35
0.45
0.55
mA
Loop Filer Output (High Level)
VOH
VCC−0.3
−
−
V
Loop Filer Output (Low Level)
VOL
−
−
0.2
V
VREFin
−
0.2
1.6
VPP
−
100
−
MHz
<PLL Synthesizer>
Circuit Current 4
ICC4
PLL, VCO current, MS1 = L, MS2 = L
Charge Pump Output Current
Icpsink
V13 pin = VCC/2
Reference Input Level
VCO Modulation Sensitivity
KV
Center frequency
VCO Control Voltage
VT
When PLL is Locked
0.5
1.3
2.0
V
C/N
C/N
∆10 kHz
70.0
81.0
−
dBc/Hz
ICC5
3.1
4.1
5.4
mA
ResAD
−
4
−
bits
fs
−
−
20
MHz
ADBW
5.1
−
−
MHz
−
0.2
1.0
LSB
<A/D Converter>
Circuit Current 5
Resolution
Sampling Clock
Input Band Width
Integral Non-linear Error
INL
DC characteristics
Signal-to-noise Ratio
SNR
IF = 5.17 MHz, fs = 20.48 MHz
22.0
25.3
−
dB
Signal-to-noise + Distortion Ratio
SINAD
IF = 5.17 MHz, fs = 20.48 MHz
20.0
25.1
−
dB
Number
ENOB
ENOB = (SINAD−1.763)/6.02
3.0
3.9
−
bits
−
−40
−30
dBc
Total Harmonic Distortion Ratio
THD
IF = 5.17 MHz, fs = 20.48 MHz
Second-degree to fifth-degree distortion
components
Remarks 1. Timing characteristics of ADC during normal operation
A buffer amplifier is internally inserted before the ADC core of the µPB1009K. The bias of this buffer amplifier
is controlled by the signal input from the DC trim pin, and is used to eliminate the DC offset of the ADC.
Because the ladder resistor of the ADC is directly connected between VDDana and GNDana, changes in
VDDana affect the resolution of the ADC.
14
UPB1009K
As illustrated in the operation timing chart below, the data of SampleN is pipeline delayed by 1.5 clocks during
normal operation, and is output at the rising edge of the sample clock with output delay time Tod. When the
operation is changed from normal operation to power-down operation, the status of the output data
immediately before the power-down operation is retained (drive status).
(a) Normal Operation
SampleN
SampleN+2
SampleN+1
2ndIFin
SampleN+3
SampleN+4
SampleN+5
Tclk
Tds
Tch
Tcl
SCKin
Tpld
Tds
Toh
D0-D3
N-2
N-1
N
N+1
N+2
N+3
: Analog signal sampling timing
The following table shows each timing parameter for reference purposes.
Symbol
Parameter
Test Conditions
MIN.
TYP.
MAX.
Unit
CL = 10 pF, fclk = 19.2 MHz
−
−
12
ns
Tod
Output Delay
Tpld
Pipeline Delay
−
1.5
−
clock
Tds
Sampling Delay
(Aperture Delay)
−
2
−
ns
Toh
Output Hold Time
2
−
−
ns
15
UPB1009K
Remarks 2. Power-down timing characteristics of ADC
The output code of the ADC of the µPB1009K is undefined for 7.5 clocks after the power-down signal is
cleared when the ADC returns from the power-down status to normal operation.
(b) Power-down Operation
PDB
N
N+1
2ndIFin
SCKin
D0-D3
N
undefined Note
N+1
: Analog signal sampling timing
Note
The output data is undefined from the start of the power-down operation to the 7.5th clock from the
falling edge of the clock at which the power-down operation is cleared.
16
UPB1009K
TYPICAL CHARACTERISTICS (TA = +25°C, VCC = 3.0 V, unless otherwise specified)
⎯ IC TOTAL CHARACTERISTICS ⎯
TOTAL CIRCUIT CURRENT
vs. SUPPLY VOLTAGE
Total Circuit Current ICCTotal (mA)
35
30
25
TA = +85˚C
+25˚C
–40˚C
20
15
10
5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Supply Voltage VCC (V)
Remark The graphs indicate nominal characteristics.
17
UPB1009K
⎯ PRE-AMPLIFIER BLOCK CHARACTERISTICS ⎯
PREAMP GAIN vs. FREQUENCY
OUTPUT POWER vs. INPUT POWER
–10
–15
–20
–25
–30
–50
Noise Figure NFLNA (dB)
10
Power Gain GLNA (dB)
–5
20
TA = +85˚C
+25˚C
–40˚C
–40
–30
–20
–10
–10
–20
TA = +85˚C
+25˚C
–40˚C
–40
100 300 500 700 900 1 100 1 300 1 500 1 700 1 900 2 000
0
Input Power Pin (dBm)
Frequency f (MHz)
PREAMP NOISE FIGURE vs. FREQUENCY
PREAMP IM CHARACTERISTICS
5.0
0
4.5
–10
4.0
TA = +85˚C
3.5
+25˚C
3.0
–40˚C
2.5
2.0
–20
–30
–40
–50
–60
1.5
–70
1.0
1 545 1 555 1 565 1 575 1 585 1 595 1 605 1 615
–80
–45 –40
Frequency f (MHz)
Remark The graphs indicate nominal characteristics.
18
0
–30
Output Power Pout (dBm)
Output Power Pout (dBm)
0
TA = +85˚C
+25˚C
–40˚C
–35 –30
–25 –20 –15 –10
Input Power Pin (dBm)
–5
UPB1009K
⎯ RF MIX BLOCK CHARACTERISTICS ⎯
OUTPUT POWER vs. INPUT POWER
RF MIX IM CHARACTERISTICS
0
–10
–5
Output Power Pout (dBm)
Output Power Pout (dBm)
0
–10
–15
–20
TA = +85˚C
+25˚C
–40˚C
–25
–30
–45
–35
–25
–15
–5
–40
–50
–60
–80
–50 –45
5
TA = +85˚C
+25˚C
–40˚C
–40 –35
–30 –25 –20 –15 –10
Input Power Pin (dBm)
Input Power Pin (dBm)
RF CONVERSION GAIN vs.
FREQUENCY CHARACTERISTICS
RF NOISE FIGURE vs.
FREQUENCY CHARACTERISTICS
25
20
RF Noise Fingure SSBNFRFMIX (dB)
RF Conversion Gain CGRF (dB)
–30
–70
25
TA = +85˚C
+25˚C
15
–40˚C
10
5
30
–20
40
50
60
70
80
90
Frequency f (MHz)
20
15
TA = +85˚C
+25˚C
–40˚C
10
5
30
40
50
60
70
80
90
Frequency f (MHz)
Remark The graphs indicate nominal characteristics.
19
UPB1009K
⎯ IF BLOCK CHARACTERISTICS ⎯
10
10
0
Output Power Pout (dBm)
15
5
0
–5
TA = +85˚C
+25˚C
–40˚C
–10
–15
–85
–80
–75
–70
–65
–60
–55
IF-SSB Noise Figure NFIF (dB)
–70
–65
–55
–60
–50
IF CONVERSION VOLTAGE GAIN vs.
2ndIF FREQUENCY
30
20
10
2
6
4
8
10
12
2ndIF Frequency f (MHz)
80
70
60
50
40
30
20
TA = +85˚C
+25˚C
–40˚C
10
0.5
1.0
1.5
2.0
2.5
80
70
60
50
40
30
20
TA = +85˚C
+25˚C
–40˚C
10
0
0.5
2.5
4.5
6.5
8.5
2ndIF Frequency f (MHz)
IF CONVERSION VOLTAGE GAIN vs.
AGC VOLTAGE
IF Conversion Voltage Gain CG (GV) IF (dB)
TA = +85˚C
+25˚C
–40˚C
IF-SSB NOISE FIGURE vs.
2ndIF FREQUENCY
40
0
–40
Input Power Pin (dBm)
50
0
–30
–60
–75
–50
TA = +85˚C
+25˚C
–40˚C
0
–20
Input Power Pin (dBm)
60
0
–10
–50
70
3.0
3.5
AGC Voltage VAGC (V)
Remark The graphs indicate nominal characteristics.
20
IF IM CHARACTERISTICS
IF Conversion Voltage Gain CG (GV) IF (dB)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
10.5 11.5
UPB1009K
⎯ VCO MODULATION SENSITIVITY CHARACTERISTICS ⎯
VCO CONTROL VOLTAGE vs.
VCO FREQUENCY
VCO Control Voltage VT (V)
3.0
2.5
TA = +85˚C
+25˚C
–40˚C
2.0
1.5
1.0
0.5
0
1 300
1 400
1 500
1 600
1 700
1 800
1 900
VCO Frequency fVCO (MHz)
⎯ C/N CHARACTERISTICS ⎯
Ref = –10 dBm
Atten 5 dB
Center = 1.637 GHz
Res BW 1 kHz
Ref = –10 dBm
VBW 1 kHz
Atten 5 dB
Center = 1.637 GHz
Res BW 1 kHz
VBW 1 kHz
Mkr1 = 10.0 kHz
Noise –81.78 dB/Hz
Span 100 kHz
Sweep 300 ms (401 pts)
Ref = –10 dBm
Atten 5 dB
Center = 1.637 GHz
Res BW 1 kHz
VBW 1 kHz
Mkr1 = 10.0 kHz
Noise –81.92 dB/Hz
Span 100 kHz
Sweep 300 ms (401 pts)
Mkr1 = 10.0 kHz
Noise –81.23 dB/Hz
Span 100 kHz
Sweep 300 ms (401 pts)
Remark The graphs indicate nominal characteristics.
21
UPB1009K
⎯ SINAD CHARACTERISTICS OF A/D CONVERTOR (IFin = 5.17 MHz, SCLKin = 20.48 MHz) ⎯
+10
+10
0
AMPLITUDE (dB)
–10
–20
–30
–40
–50
–30
–40
–50
–70
–70
2
4
6
8
10
12
TA = +85˚C
SNR = 25.4 dB
SINAD = 25.3 dBc
SFDR = 43.7 dB
ENOB = 3.92 bit
THD = –42.1 dBc
0
–10
–20
–30
–40
–50
–60
–70
–80
0
2
4
6
8
10
–80
0
2
4
6
8
10
ANALOG INPUT FREQUENCY (MHz)
+10
AMPLITUDE (dB)
–20
–60
ANALOG INPUT FREQUENCY (MHz)
12
ANALOG INPUT FREQUENCY (MHz)
Remark The graphs indicate nominal characteristics.
22
–10
–60
–80
0
TA = –40˚C
SNR = 25.4 dB
SINAD = 25.3 dBc
SFDR = 41.1 dB
ENOB = 3.91 bit
THD = –40.4 dBc
0
AMPLITUDE (dB)
TA = +25˚C
SNR = 25.4 dB
SINAD = 25.3 dBc
SFDR = 42.3 dB
ENOB = 3.91 bit
THD = –40.9 dBc
12
UPB1009K
21
20
19
18
17
16
15
AGCout
AGCin
SCKin
D3
D2
D1
D0
MEASUREMENT CIRCUIT
100 kΩ
100 nF
VCC
100 kΩ
82 pF
100 nF
32
33
31
30
29
28
27
26
25
24
23
VCC
34
22
82 pF
35
22 PD1
+
–
+
100 nF
50 Ω
19
IFamp
LPF
38
39
17
40
16
9/256
1 nF
65/1024
41
3/64
25 1stIFout
VCC
CLKout 10
1 nF
15
PLL PD
82 pF
100 nF
VCC
Fref 14
42
100 nF
2ndIFout 11
2 kΩ
100 nF
82 pF
1/25
100 nF
2ndIFin 12
100 nF
18
1/4
1 nF
VCC
DCOFFout 13
20
Pwdctrl
Logic
VGC
24 1stIFin
DCOFFin 14
100 nF 100 kΩ
+
–
37
100 kΩ
21
4bit ADC
36
23 PD2
–
82 pF
43
13
OSC
1stMIX
PreAmp
1 PreAmpin
44
12
CP
1 nF 7 pF
REFin 9
1 nF
MS2
8
3.9 nH
1
2
3
4
5
6
7
9
8
10
100 pF
VCC
22 kΩ
VCC
1 nF
1 nF
100 nF
100 nF
1 nF
100 pF
3.9 nH
750 F
82 pF
1 nF
1 kΩ
8.2 nF 1.5 kΩ
10 kΩ
1stMIXin
MS1
Presin
VCOc
CPout
10 kΩ 100 nF
PreAmpout
1 nF
11
2
3
4
5
6
7
23
UPB1009K
DESCRIPTION OF PINS OF TEST CIRCUIT
Pin No.
24
Pin Function
Pin Name
Pin No.
Pin Function
Pin Name
1
Preamplifier Input
PreAmpin
14
DC Offset Input
DCOFFin
2
Preamplifier Output
PreAmpout
15
Digital Signal Output Pin
D0
3
RF Mixer Input
1stMIXin
16
D1
4
MS1
MS1
17
D2
5
Prescaler Input
Presin
18
D3
6
VCO Power Control Pin
VCOc
19
Sampling Signal Input
SCKin
7
VT Measurement Pin (Charge Pump CPout
Output)
20
AGC Input
AGCin
8
MS2
MS2
21
AGC Control Voltage Output
AGCout
9
Reference Clock Input
REFin
22
PD1 Output (Default onboard : GND) PD1
10
Clock Output
CLKout
23
PD1 Output (Default on board : VCC) PD2
11
2ndIF Output
2ndIFout
24
1stIF Input
1stIFin
12
2ndIF Input
2ndIFin
25
1stIF Output
1stIFout
13
DC Offset Output
DCOFFout
UPB1009K
DCOFF
D0
D1
D2
D3
AGCout
SCLKout
APPLICATION CIRCUIT
100 kΩ
100 nF
VCC
100 nF
33
82 pF
32
31
30
29
28
27
26
25
24
23
100 kΩ
VCC
34
22
82 pF
35
RFPD1
36
RFPD2
37
+
–
+
100 nF
19
IFamp
LPF
100 nF
18
1/4
39
17
40
16
9/256
65/1024
41
3/64
1/25
82 pF
1 nF
VCC
20
Pwdctrl
Logic
1 nF
100 nF
100 nF
+
–
38
VCC
CLKout
1 nF
15
PLL PD
82 pF
100 nF
VCC
Fref 14
42
100 nF
21
4bit ADC
VGC
IFSAW
–
82 pF
43
13
OSC
1stMIX
PreAmp
44
REFin
1 nF
MS2
12
CP
7 pF
1
3.9 nH
2
3
4
5
6
7
11
10
100 pF
VCC
1 nF
9
8
82 pF
4.7 nH
22 kΩ
1 nF
100 nF
RFSAW
1 nF
8.2 nF
100 nF
500 F
1 pF
1.5 kΩ
VCC
510 Ω
VCC
in
AMP
MS1
out
5.6 nH
3.9 nH
100 nF
100 nF
10 nF
RFin
TopSAW
PD1
PD2
0
0
1
Power-down mode
MS1
MS2
TCXO
N
Sleep mode (full off)
0
0
16.368/16.384 MHz
100
0
Warm-up mode (PLL on)
0
1
19.2 MHz
256/3
1
1
Calibration mode (PLL on)
1
0
14.4 MHz
1024/9
0
1
Active mode (full on)
1
1
26.0 MHz
4096/65
25
UPB1009K
PACKAGE DIMENSIONS
44-PIN PLASTIC QFN (UNIT: mm)
6.2±0.2
6.0±0.2
6.2±0.2
6.0±0.2
6.2±0.2
6.0±0.2
44 Pin
1 Pin
(Bottom View)
6.2±0.2
6.0±0.2
0.55±0.2
1.0MAX.
0.14+0.10
–0.05
0.18±0.05
0.4
Caution The island pins located on the corners are needed to fabricate products in our plant, but do not serve any
other function. Consequently the island pins should not be soldered and should remain non-connection
pins.
26
UPB1009K
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent abnormal oscillation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor to the VCC pin.
(5) High-frequency signal I/O pins must be coupled with the external circuit using a coupling capacitor.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the following recommended conditions. For soldering methods and
conditions other than those recommended below, contact your nearby sales office.
Soldering Method
Soldering Conditions
Condition Symbol
Infrared Reflow
Peak temperature (package surface temperature)
Time at peak temperature
Time at temperature of 220°C or higher
Preheating time at 120 to 180°C
Maximum number of reflow processes
Maximum chlorine content of rosin flux (% mass)
: 260°C or below
: 10 seconds or less
: 60 seconds or less
: 120±30 seconds
: 3 times
: 0.2%(Wt.) or below
IR260
VPS
Peak temperature (package surface temperature)
Time at temperature of 200°C or higher
Preheating time at 120 to 150°C
Maximum number of reflow processes
Maximum chlorine content of rosin flux (% mass)
: 215°C or below
: 25 to 40 seconds
: 30 to 60 seconds
: 3 times
: 0.2%(Wt.) or below
VP215
Wave Soldering
Peak temperature (molten solder temperature)
Time at peak temperature
Preheating temperature (package surface temperature)
Maximum number of flow processes
Maximum chlorine content of rosin flux (% mass)
: 260°C or below
: 10 seconds or less
: 120°C or below
: 1 time
: 0.2%(Wt.) or below
WS260
Partial Heating
Peak temperature (pin temperature)
Soldering time (per side of device)
Maximum chlorine content of rosin flux (% mass)
: 350°C or below
: 3 seconds or less
: 0.2%(Wt.) or below
HS350
Caution Do not use different soldering methods together (except for partial heating).
Life Support Applications
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably
be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify CEL for all damages resulting from such improper use or sale.
12/04/2003
A Business Partner of NEC Compound Semiconductor Devices, Ltd.
27