TEMIC U4062B-B

U4062B
HF Front End for Car Radios and HiFi Receivers
Description
Technology: Bipolar
Features
D Completely integrated FM front end increases quality
D Oscillator with low phase noise and excellent
level and reliability
frequency stability
D High performance due to three AGC loops allow
extreme large signal handling
D Fulfils FTZ rules
D Double-balanced high linear mixer with low-noise
D IF preamplifier with dB-linear gain control
D Low noise and high stability of the reference voltage
figure
circuit for internal and auxiliary functions
Block Diagram
16 14
4
2
13
12
15
3
10
1
18
9
17
8
7
11
5
6
Figure 1. Block diagram
Ordering Information
Extended Type Number
U4062B-B
Rev. A1, 07-Dec-98
Package
DIP18
Remarks
1 (21)
U4062B
Pin Description
Oscout
1
18 EOsc
VS
2
17
IFout
3
16 AGC
GND
4
15 IFin
BOsc
MIXin 5
14
AGCin
VRef
6
13
MIXout
C
7
12
MIXout
BRF 8
11
GND
9
10
AGCout
E
14928
Figure 2. Pinning DIP18
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Symbol
Oscout
VS
IFout
GND
MIXin
VRef
C
BRF
E
AGCout
GND
MIXout
MIXout
AGCin
IFin
AGC
BOsc
EOsc
Function
Oscillator output
Supply voltage
IF output
Ground
Mixer input
Reference voltage output
Collector
Base, RF preamplifier
Emitter
AGC output
Ground
Mixer output
Mixer output
AGC input (IF strip)
IF input / IF gain control
AGC time constant
Base oscillator
Emitter oscillator
Absolute Maximum Ratings
Reference point ground, Pins 4 and 11
Parameters
Supply voltage
Pins 2, 12 and 13
Power dissipation Tamb = 85°C
Junction temperature
Storage temperature range
Ambient temperature range
Symbol
VS
Ptot
Tj
Tstg
Tamb
Value
18
450
125
–50 to +125
–25 to +85
Unit
V
mW
°C
°C
°C
Symbol
RthJA
Value
90
Unit
K/W
Thermal Resistance
Parameters
Junction ambient
2 (21)
Rev. A1, 07-Dec-98
U4062B
Electrical Characteristics
[
[
VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11,
Tamb = +25°C, unless otherwise specified, see test circuit figure 4.
Parameters
Test Conditions / Pins
Supply voltage range
Supply currents
Supply current
Pin 2
Mixer
Pins 12 and 13
RF stage
R4 = 470 W
Pin 7
RF preamplifier (Rg9 = 50 W, RL7 = 200 W)
DC voltage
Pin 7
Pin 8
Symbol
VS
Min.
7
Oscillator voltage
Frequency drift
FM noise
equivalent deviation,
(Ripple voltage < 0.5 mV)
Pin 17
By supply voltage change
dfo/dVS
By temperature change
dfo/dK
Frequency band 300 Hz to
20 kHz, unweighted
Peak CCIR
Peak CCIR, weighted with
75 ms, deemphasis
FM by AM signal at mixer
fiRF = 90 MHz, m = 0.8,
input
fM = 1 kHz,
ViRF = 106 dBmV
Oscillator output buffer (RL1 = 520 W)
DC current load limitation
Pin 1
DC voltage
Pin 1
Voltage gain
VOsc17 200 mV
Pin 1
VOsc1/VOsc17
Harmonics
Output impedance
Pin 1
x
Rev. A1, 07-Dec-98
Max.
16
Unit
V
IS
I12 + I13
I7
11.5
9
9
mA
mA
mA
V7
5.7
V
V8
0.77
V
10.5
12
dB
dBm
Power gain
GRF
Third order intercept
IP3
Dynamic characteristics, f = 100 MHz
Input impedance
Z9
Forward current gain
| i7/i9 |
hfb
Parallel output resistance
R7
Parallel output capacitance
C1
Noise figure
NFRF
Oscillator (fOsc = 100 MHz, unloaded Q = 80, resonance resistance Rg17 = 250 W)
DC voltage
Pin 17
V17
Pin 18
Typ.
5
W
1
3
3.8
2
A/A
kW
pF
dB
3.2
V
2.5
V
130
mV
DfOsc(VS)
1.3
kHz/V
DfOsc(Tj)
2
kHz/K
V18
VOsc17
100
Dfnoise
Dfnoise
Dfnoise
5
Hz
10.5
Hz
4.2
Hz
DfOsc
(ViRF)
160
Hz
I1
V1
0.2
1.7
Gbuffer
0.86
Z1
<–30
80
mA
V
dBC
W
3 (21)
U4062B
Electrical Characteristics (continued)
[
[
VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11,
Tamb = 25°C, unless otherwise specified, see test circuit figure 4.
Parameters
Test Conditions / Pins
Mixer (Rg5 = 200 W, RL12–13 = 200 W)
Symbol
Min.
Typ.
Max.
Unit
Conversion power gain
GC
7.5
dB
Third order intercept
IP3
3.5
dBm
Parallel input resistance
f = 100 MHz
Pin 5
R5
5
kW
Parallel input capacitance
f = 100 MHz
Pin 5
C5
3
pF
Parallel output resistance
f = 10.7 MHz, Pins 12, 13
parallel connected
R12 + 13
55
kW
Effective output capacitance
between Pin 12 and 13
f = 10.7 MHz
V12, 13 = 10 V
V12, 13 = 7 V
V12, 13 = 16 V
C12–13
C12–13
C12–13
Conversion transconductance
| i12/u5 |, | i13/u5 |
gc
5.8
m–mho
Maximum available
conversion power gain
fiRF = 100 MHz,
fIF = 10.7 MHz
MACG
43
dB
NFCSSB
5.6
dB
V3
7.6
V
GmaxIF
GminIF
24
–4
dB
dB
28
dB
Noise figure (fIF = 10.7 MHz)
Single side band
Rg5(fiRF) = 450 W,
fiRF = fOsc – fIF
2.9
3.25
2.5
3.1
3.5
2.7
3.3
3.75
2.9
pF
pF
pF
IF preamplifier (f = 10.7 MHz, RL3 = Rg15 = 200 W)
DC voltage
Pin 3
Power gain
Maximum control voltage
of V15 = 1.6 V is recommended V15 = 1.6 V
V15 < 0.8 V
Gain control deviation by V15
External control current
Gain control slope
Temperature coefficient of
voltage gain
DGIF
at GmaxIF
at GminIF
Pin 15
I15max
I15min
20
0
dGIF/dI15
dGIF/dV15
Pin 15
SI15
SV15
1.3
35
dGIF/dTj at
V15 1.6 V
V15 < 0.8 V
I15 = constant
mA
mA
dB/mA
dB/V
Parallel input resistance
Pin 15
R15
0
0.04
–0.02
2.4
Parallel input capacitance
Pin 15
C15
5.9
pF
Parallel output resistance
Pin 3
R3
350
W
Parallel output capacitance
Pin 3
C3
4.1
pF
NFIF
11
dB
Noise figure
4 (21)
V15 = 1.6 V
TCG
dB/K
dB/K
dB/K
kW
Rev. A1, 07-Dec-98
U4062B
Electrical Characteristics (continued)
[
[
VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11,
Tamb = 25°C, unless otherwise specified, see test circuit figure 4.
Parameters
Test Conditions / Pins
Symbol
Min.
Typ.
Max.
Unit
AGC circuit (no signal at Pins 5 and 9)
DC voltage
Pin 16
V16
1.0
Saturation voltage
Pin 10
V10min
0.08
0.2
Pin 14
–I14
0.01
0.1
Pin 14
± I14max
50
Idiode
I7
Input current
V14
xV
6
Maximum allowable current
Maximum control current for
external PIN-diode
I10 = 0
V
V
mA
mA
AGC threshold voltages (respecting V10 = 0.25 V)
RF stage output
Pin 7
VRF7
450
mV
Mixer-stage output
V14 = V6
Pin 13
VIF13
300
mV
External AGC voltage
VIF13 = 1 V
Pin 14
V14min
0.9
V
Pin 16
V16min
1.4
V
Pin 6
V6
Internal AGC voltage
Reference voltage source
Output voltage, without load
I6 = 0
Temperature dependence of V6
|V6| Tamb = –25 to +85°C
DV6 (T)
20
mV
Internal differential resistance
dV6/dI6 when I6 = 0 mA
rd6
50
W
Ripple rejection
20 log (dVs/dV6)
when I6 = 0 mA
a6
65
dB
0.6
0.37
0.1
0.1
mV
mV
mV
mV
Ǹ
Noise voltage / Hz
Rev. A1, 07-Dec-98
when I6 = 0 and
f = 25 Hz
f = 125 Hz
f = 1 kHz
f = 10 kHz
1.6
1.7
1.8
V
5 (21)
U4062B
Test Circuit
Figure 3. Test circuit
RF Preamplifier
Figure 4. Test circuit
6 (21)
Rev. A1, 07-Dec-98
7
12
6.5
11.5
6
11
G RF ( dB )
V7 ( Pin 7 ) ( V )
U4062B
5.5
10.5
5
10
4.5
9.5
4
6
8
10
12
14
VS ( V )
95 10410
9
–40 –20
16
0
20
40
60
80
100
Tj ( °C )
95 10413
Figure 8. GRF vs. Tj
Figure 5. V7 vs. VS
4
20
17.5
3.5
FRF ( dB )
I 7 ( Pin 7 ) ( mA )
15
12.5
10
3
100W
2.5
7.5
Rg9=50W
2
5
1.5
2.5
1
0
6
8
10
12
14
16
VS ( V )
95 10411
0
95 10414
2.5
5
7.5
10
12.5
15 17.5
20
I9 ( mA )
Figure 9. FRF vs. Ig
Figure 6. I7 vs. VS
11
GRF ( dB )
10.5
10
9.5
9
6
8
10
12
14
16
VS ( V )
95 10412
Figure 7. GRF vs. VS
Rev. A1, 07-Dec-98
7 (21)
U4062B
Oscillator/ Oscillator Output Buffer
Figure 10. Test circuit – free running oscillator frequency fOsc ≈ 100 MHz
104
20
fosc=100MHz
V OSC Pin 1 ( dBm )
Df OSC ( kHz )
15
10
5
0
103
102
101
–5
–10
100
6
8
10
12
14
16
VS ( V )
95 10415
Figure 11.
6
8
10
DfOsc vs. VS
12
14
16
VS ( V )
95 10418
Figure 13. VOsc vs. VS
103
30
fosc=100MHz
V OSC Pin 1 ( dBm )
Df OSC ( kHz )
20
10
0
102
–10
–20
–40 –20
0
20
60
Tj ( °C )
95 10416
Figure 12.
8 (21)
40
DfOsc vs. Tj
80
100
101
–40
95 10417
–20
0
20
40
60
80
100
Tj ( °C )
Figure 14. VOsc vs. Tj
Rev. A1, 07-Dec-98
U4062B
100
120
90
80
a FM ( dB )
VO OSC ( dBmV )
110
100
90
70
60
50
40
80
30
70
20
80
90
100
110
120
Vi OSC Pin 17 ( dBmV )
95 10419
80
95 10420
Figure 15. VOsc vs. Vi Osc
85
90
95
100 105
110
115
ViRF ( dBmV )
Figure 16. aFM vs. ViRF
Mixer
Figure 17. Test circuit
IL1, IL2 = Insertion loss of the RF transformers
Conversion power gain GC = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB)
VRF5–6 (dBmV) = ViRF (dBmV) – IL1 (dB) + 6
VIF12–13 (dBmV) = VoIF (dBmV) – IL2 (dB) + 6
DGC = GC (VOSC17) – GC (nominal)
Input to output IF isolation
aIF = 20 log (2 VoIF/ViIF) + IL1 (dB) + IL2 (dB) – GC (nominal)
Characteristics aFM versus viRF, see previous page
Oscillator frequency immunity against amplitude modulated signal at mixer input (Pin 5–6) related to FM standard
modulation:
aFM = 20 log [75 kHz/DfOSC(viRF)] whereas
viRF = mixer input signal (fiRF = 89.3 MHz, m = 0.8, fM = 1 kHz)
Rev. A1, 07-Dec-98
9 (21)
U4062B
10
10
D GC
0
( dB )
I
8
–10
DG C, a IF
12 + I13
( mA )
9
–20
aIF
–30
7
–40
6
–50
6
8
10
12
14
16
VS ( V )
95 10421
80
90
110
120
VOSC Pin 17 ( dBmV )
95 10424
Figure 18. I12 + I13 vs. VS
Figure 21.
8
100
DGc, aIF vs. VOsc Pin 17
15
NFC
13
G C, NFC ( dB )
GC ( dB )
7.5
7
11
9
6.5
7
GC
6
5
6
8
10
13
14
15
VS ( V )
95 10422
80
100
110
120
VOSC pin 17 ( dBmV )
95 10425
Figure 19. GC vs. VS
Figure 22. GC NFC vs. VOsc Pin 17
130
VIF pin 12–13 ( dBmV )
8
7.5
GC ( dB )
90
7
6.5
120
110
100
90
80
6
–40
95 10423
70
–20
0
20
40
Ti ( °C )
Figure 20. GC vs. Tj
10 (21)
60
80
100
60
95 10426
70
80
90
100
110
120
VRF pin 5–6 ( dBmV )
Figure 23. VIF Pin 5–6 vs. VRF Pin 5–6
Rev. A1, 07-Dec-98
3.75
10
3.5
9
3.25
F CSSB ( dB )
C 12–13 ( pF )
U4062B
3.0
2.75
8
7
6
2.5
5
2.25
2.0
4
6
8
10
12
VS ( V )
95 10427
Figure 24. C12–13 vs. VS
14
16
0.1
0.2
95 10428
Rg5 ( kW )
0.5
1.0
Figure 25.
FCSSB = Noise figure reading /dB-IL/dB
IL = Insertion loss of the tuned transformer network
Figure 26. Test circuit for single sideband noise (FCSSB)
Rev. A1, 07-Dec-98
11 (21)
U4062B
AGC Circuit
IL1, IL2
= Insertion loss of the RF transformers,
VRF7 (dBmV) = VIRF (dBmV) – IL1 (dB)+ 6
VIF13 (dBmV) = ViIF (dBmV) – IL2 (dB)
Figure 27. Test circuit
1.0
1.0
V14=1.7V
VS=15V
1.2V
0.8
7V
10V
0.6
VIF13
VRF7
0.4
V14=1.3V
V10 ( V )
V10 ( V )
0.8
0.6
1.1V
0.4
1.0V
0.2
0
100
95 10429
104
108
112
116
VRF7, VIF13 ( dBmV )
Figure 28. V10 vs. VRF7, VIF13
12 (21)
0.9V
0.2
0.8V
0
105 107.5 110 112.5 115 117.5 120 122.5 125
120
95 10430
VIF13 ( dBmV )
Figure 29. V10 vs. VIF13
Rev. A1, 07-Dec-98
U4062B
1.0
1.0
VS=15V
0.8
0.8
V10 ( V )
V10 ( V )
10V
0.6
7V
0.4
0.6
VS=7V
15V
10V
0.4
0.2
0.2
0
0.5
0.7
0.9
1.1
1.3
V16 ( V )
9510431
0
–0.2
1.5
95 10432
Figure 30. V10 vs. V16
0
0.2
0.4
0.6
0.8
1.0
1.2
-I16 ( mA )
Figure 31. V10 vs. –I16
IF Preamplifier
IL1, IL2 = Insertion loss of the RF transformers
Power gain GF = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB)
ViIF15 (dBmV) = ViIF (dBmV) – IL1 (dB) + 6
VoIF3 (dBmV) = VoIF (dBmV) – IL2 (dB) + 6
Figure 32. Test circuit
Rev. A1, 07-Dec-98
13 (21)
U4062B
35
120
110
30
VoIF 3 ( dBmV )
G IF ( dB )
V15=1.6V
25
20
V15=1.8V
100
90
0.6V
80
15
70
1.2V
10
60
6
8
10
12
14
16
VS ( V )
95 10433
60
80
90
100
110
120
VI IF Pin 15 ( dBmV )
95 10436
Figure 36. VoIF3 vs. VI IF Pin 15
Figure 33. GIF vs. VS
25
35
30
70
V15=1.7V
22.5
1.6V
F IF ( dB )
G IF ( dB )
25
1.5V
20
1.4V
20
17.5
15 1.3V
15
1.2V
12.5
10
1.1V
5
–40
10
–20
0
20
40
60
80
100
Tj ( °C )
95 10434
0
95 10437
5
10
15
20
25
30
GIF ( dB )
Figure 37. FIF vs. GIF
Figure 34. GIF vs. Tj
30
G IF ( dB )
20
10
0
–10
0
95 10435
0.5
1.0
1.5
2.0
V15 ( V )
Figure 35. GIF vs. V15
14 (21)
Rev. A1, 07-Dec-98
U4062B
Reference Voltage
Figure 38. Test circuit
13
10
7.5
12.5
10V
5
DV6 ( mV )
I2 ( mA )
12
11.5
11
VS=18V
2.5
0
–2.5
7V
–5
10.5
–7.5
10
6
8
10
12
14
VS ( V )
95 10438
–10
–20
16
0
20
60
80
100
4
5
Tj ( °C )
95 10440
Figure 39. I2 vs. VS
Figure 41.
20
40
DV6 vs. Tj
2.0
1.9
10
V6 ( V )
DV 6 ( mV )
1.8
0
–10
1.7
1.6
1.5
–20
1.4
–30
1.3
–40
1.2
6
8
10
12
VS ( V )
95 10439
Figure 40.
Rev. A1, 07-Dec-98
DV6 vs. VS
14
16
–1
95 10441
0
1
2
3
I6 ( mA )
Figure 42. V6 vs. I6
15 (21)
U4062B
Application Circuit
Figure 43. Typical Application circuit for high performance FM front end using non-repetitive alignment concept
16 (21)
Rev. A1, 07-Dec-98
U4062B
Coils Specifications
L8/L9
Toko 7 PL9/ (18 + 18) turns
Nr. 218 ANS – 788 N
L10
Toko 7 Kl 3 turns
Nr. 291 ENS – 2054 IB or
Toko MC 122
Nr. E528 SNAS – 100075
L11/L12
Toko 7 Kl without case
4/8 turns
Nr. 291 ENF – 2342 x
L13
Toko 7 Kl 4 turns
Nr. 291 ENS – 2341 IB or
Toko MC 122
Nr. E528 SNAS – 100076
L14/L17
Choke 1.5 mH
Toko 348 LS – 1R5 or similar
CF1; CF2
Toko CFSK – 107M3 or similar
Electrical Connections
LO output
VS
IF output
Ground
Mixer input
Reference output voltage
RF preamplifier
(collector)
RF preamplifier (base)
RF preamplifier (emitter)
AGC output
Ground
Mixer output
Mixer output
AGC input
IF input, IF gain control
AGC time constant
LO (base)
LO (emitter)
VS = 8.5 V, Tamb = 25°C
Pin
DIP18
1
2
3
4
5
6
7
Voltage (DC)
in V
1.73
8.5
6.1
0
1.7
1.7
8.5
8
9
10
11
12
13
14
15
16
17
18
1.3
0.53
0.07
0
8.5
8.5
1.7
1.54
1.06
3.2
2.51
FM Front End Data Using Application Circuit
Antenna impedance 75 W, Zload IF = 330 W, VS = 8.5 V, Tamb = 25°C
Characteristics
Symbol
Supply current
IS
Tuning range
f
Tuning voltage
– at 88 MHz (equal IC’s reference voltage)
– at 108 MHz
Center IF
Min.
Typ.
Max.
32
88
Unit
mA
108
MHz
Vtune
Vtune
f
1.7
6.5
10.7*
V
V
MHz
BIF
130*
kHz
G
46*
dB
Gain variation versus the band
DG
1
dB
Noise figure
NF
6
dB
70
dB
RF intermodulation
70
dB
1/2 IF rejection
90
dB
Spurious response, second osc. harmonic
90
dB
IF output bandwidth at –3 dB
Power gain
Image rejection
IF rejection
Osc. output voltage at 520 W load
VOSC
*
Depending on ceramic IF filters to be used
Rev. A1, 07-Dec-98
57
85
dB
200
mV
17 (21)
U4062B
Test conditions
D De-emphasis - 75ms
D AF bandwidth 30 to 20 kHz
D RMS, unweighted
Setup for one signal measurement
D fD = 98 MHz
Note: VoAF related to 75 kHz dev., 1 kHz, ViD = 66 dB mV
Setup for three signals intermodulation measurement
D
D
D
D
Figure 44. Block diagram of the test set up
SD
:
fD = 98 MHz, FM: 1 kHz, 22.5 kHz dev.
SUD1 :
FM: 0.15 kHz, 22.5 kHz dev.
SUD2 :
Unmodulated
ViD
:
for 35 dB SINAD
80
fUD1=98.8MHz,
fUD2=99.6MHz
70
ViD ( dBmV )
60
fUD1=94.8MHz,
fUD2=91.6MHz
50
fUD1=97.2MHz,
fUD2=96.4MHz
40
30
20
fUD1=101.2MHz,
fUD2=104.4MHz
10
0
60
70
80
90
100
110
120
ViUD1, 2 ( dBmV )
95 10443
Figure 45. VID vs. ViUD1,2
VID = input desired, ViUD = input undesired
20
FM: 1 kHz, 75 kHz dev.
VoAF ( dB )
0
FM: 1 kHz, 22.5 kHz dev.
–20
–40
THD: 1 kHz, 75 kHz dev.
–60
Noise
–80
0
95 10442
10
20
AM: 1 kHz, 30%
30
40
50
60
70
80
90
100
110
ViD ( dBmV )
Figure 46. VoAF vs. ViD
18 (21)
Rev. A1, 07-Dec-98
U4062B
VHF/UHF-Application
Figure 47. Test circuit for conversion gain and noise measurement
Mixer, VHF Characteristics
Rg5 = 50 W, RL12–13 = 200 W, VS = 10 V
fIF = 10.7 MHz, fiRF = 200 MHz, fOSC = fiRF + fIF, VOSC17 = 140 mV
Test conditions:
Parameter
Conversion power gain,
fIF = 10.7 MHz
fIF = 70 MHz
Double side band noise figure fOSC = 200 MHz
3rd order intercept input signal level
Typ.
Unit
GC
GC
NFDSB
2.5
2.3
8.2
dB
dB
dB
IP3
5.5
dBm
Rp5
Cp5
Rp17
Cp17
GC
1500
3.3
4000
2.7
6.4
1
12
0.5
11
W
pF
W
pF
m-mho
70mV
0
280mV
–0.5
70mV
–1
NF DSB ( dB )
G C( f )/GC ( 100 MHz )
Parallel input resistance, Pin 5, f = 200 MHz
Parallel input capacitance, Pin 5, f= 200 MHz
Parallel input resistance, Pin 17, f = 200 MHz
Parallel input capacitance, Pin 17, f = 200 MHz
Conversion transconductance
Symbol
10
140mV
9
280mV
8
–1.5
7
140mV
–2
6
0
100
200
300
fOSC ( MHz )
95 10444
Figure 48. GC vs. fOSC
Rev. A1, 07-Dec-98
400
500
0
95 10445
100
200
300
400
500
fOSC ( MHz )
Figure 49. NFDSB vs. fOSC
19 (21)
U4062B
Package Information
Package DIP18
Dimensions in mm
7.77
7.47
23.3 max
4.8 max
6.4 max
0.5 min 3.3
1.64
1.44
0.58
0.48
0.36 max
9.8
8.2
2.54
20.32
18
10
technical drawings
according to DIN
specifications
1
20 (21)
9
13019
Rev. A1, 07-Dec-98
U4062B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or
unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages,
and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with
such unintended or unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2594, Fax number: 49 ( 0 ) 7131 67 2423
Rev. A1, 07-Dec-98
21 (21)