U4062B HF Front End for Car Radios and HiFi Receivers Description Technology: Bipolar Features D Completely integrated FM front end increases quality D Oscillator with low phase noise and excellent level and reliability frequency stability D High performance due to three AGC loops allow extreme large signal handling D Fulfils FTZ rules D Double-balanced high linear mixer with low-noise D IF preamplifier with dB-linear gain control D Low noise and high stability of the reference voltage figure circuit for internal and auxiliary functions Block Diagram 16 14 4 2 13 12 15 3 10 1 18 9 17 8 7 11 5 6 Figure 1. Block diagram Ordering Information Extended Type Number U4062B-B Rev. A1, 07-Dec-98 Package DIP18 Remarks 1 (21) U4062B Pin Description Oscout 1 18 EOsc VS 2 17 IFout 3 16 AGC GND 4 15 IFin BOsc MIXin 5 14 AGCin VRef 6 13 MIXout C 7 12 MIXout BRF 8 11 GND 9 10 AGCout E 14928 Figure 2. Pinning DIP18 Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Symbol Oscout VS IFout GND MIXin VRef C BRF E AGCout GND MIXout MIXout AGCin IFin AGC BOsc EOsc Function Oscillator output Supply voltage IF output Ground Mixer input Reference voltage output Collector Base, RF preamplifier Emitter AGC output Ground Mixer output Mixer output AGC input (IF strip) IF input / IF gain control AGC time constant Base oscillator Emitter oscillator Absolute Maximum Ratings Reference point ground, Pins 4 and 11 Parameters Supply voltage Pins 2, 12 and 13 Power dissipation Tamb = 85°C Junction temperature Storage temperature range Ambient temperature range Symbol VS Ptot Tj Tstg Tamb Value 18 450 125 –50 to +125 –25 to +85 Unit V mW °C °C °C Symbol RthJA Value 90 Unit K/W Thermal Resistance Parameters Junction ambient 2 (21) Rev. A1, 07-Dec-98 U4062B Electrical Characteristics [ [ VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = +25°C, unless otherwise specified, see test circuit figure 4. Parameters Test Conditions / Pins Supply voltage range Supply currents Supply current Pin 2 Mixer Pins 12 and 13 RF stage R4 = 470 W Pin 7 RF preamplifier (Rg9 = 50 W, RL7 = 200 W) DC voltage Pin 7 Pin 8 Symbol VS Min. 7 Oscillator voltage Frequency drift FM noise equivalent deviation, (Ripple voltage < 0.5 mV) Pin 17 By supply voltage change dfo/dVS By temperature change dfo/dK Frequency band 300 Hz to 20 kHz, unweighted Peak CCIR Peak CCIR, weighted with 75 ms, deemphasis FM by AM signal at mixer fiRF = 90 MHz, m = 0.8, input fM = 1 kHz, ViRF = 106 dBmV Oscillator output buffer (RL1 = 520 W) DC current load limitation Pin 1 DC voltage Pin 1 Voltage gain VOsc17 200 mV Pin 1 VOsc1/VOsc17 Harmonics Output impedance Pin 1 x Rev. A1, 07-Dec-98 Max. 16 Unit V IS I12 + I13 I7 11.5 9 9 mA mA mA V7 5.7 V V8 0.77 V 10.5 12 dB dBm Power gain GRF Third order intercept IP3 Dynamic characteristics, f = 100 MHz Input impedance Z9 Forward current gain | i7/i9 | hfb Parallel output resistance R7 Parallel output capacitance C1 Noise figure NFRF Oscillator (fOsc = 100 MHz, unloaded Q = 80, resonance resistance Rg17 = 250 W) DC voltage Pin 17 V17 Pin 18 Typ. 5 W 1 3 3.8 2 A/A kW pF dB 3.2 V 2.5 V 130 mV DfOsc(VS) 1.3 kHz/V DfOsc(Tj) 2 kHz/K V18 VOsc17 100 Dfnoise Dfnoise Dfnoise 5 Hz 10.5 Hz 4.2 Hz DfOsc (ViRF) 160 Hz I1 V1 0.2 1.7 Gbuffer 0.86 Z1 <–30 80 mA V dBC W 3 (21) U4062B Electrical Characteristics (continued) [ [ VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = 25°C, unless otherwise specified, see test circuit figure 4. Parameters Test Conditions / Pins Mixer (Rg5 = 200 W, RL12–13 = 200 W) Symbol Min. Typ. Max. Unit Conversion power gain GC 7.5 dB Third order intercept IP3 3.5 dBm Parallel input resistance f = 100 MHz Pin 5 R5 5 kW Parallel input capacitance f = 100 MHz Pin 5 C5 3 pF Parallel output resistance f = 10.7 MHz, Pins 12, 13 parallel connected R12 + 13 55 kW Effective output capacitance between Pin 12 and 13 f = 10.7 MHz V12, 13 = 10 V V12, 13 = 7 V V12, 13 = 16 V C12–13 C12–13 C12–13 Conversion transconductance | i12/u5 |, | i13/u5 | gc 5.8 m–mho Maximum available conversion power gain fiRF = 100 MHz, fIF = 10.7 MHz MACG 43 dB NFCSSB 5.6 dB V3 7.6 V GmaxIF GminIF 24 –4 dB dB 28 dB Noise figure (fIF = 10.7 MHz) Single side band Rg5(fiRF) = 450 W, fiRF = fOsc – fIF 2.9 3.25 2.5 3.1 3.5 2.7 3.3 3.75 2.9 pF pF pF IF preamplifier (f = 10.7 MHz, RL3 = Rg15 = 200 W) DC voltage Pin 3 Power gain Maximum control voltage of V15 = 1.6 V is recommended V15 = 1.6 V V15 < 0.8 V Gain control deviation by V15 External control current Gain control slope Temperature coefficient of voltage gain DGIF at GmaxIF at GminIF Pin 15 I15max I15min 20 0 dGIF/dI15 dGIF/dV15 Pin 15 SI15 SV15 1.3 35 dGIF/dTj at V15 1.6 V V15 < 0.8 V I15 = constant mA mA dB/mA dB/V Parallel input resistance Pin 15 R15 0 0.04 –0.02 2.4 Parallel input capacitance Pin 15 C15 5.9 pF Parallel output resistance Pin 3 R3 350 W Parallel output capacitance Pin 3 C3 4.1 pF NFIF 11 dB Noise figure 4 (21) V15 = 1.6 V TCG dB/K dB/K dB/K kW Rev. A1, 07-Dec-98 U4062B Electrical Characteristics (continued) [ [ VS = 10 V, fiRF = 50.3 MHz, fOsc 100 MHz, fIF = fOsc – fiRF 49.7 MHz, reference point Pins 4 and 11, Tamb = 25°C, unless otherwise specified, see test circuit figure 4. Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit AGC circuit (no signal at Pins 5 and 9) DC voltage Pin 16 V16 1.0 Saturation voltage Pin 10 V10min 0.08 0.2 Pin 14 –I14 0.01 0.1 Pin 14 ± I14max 50 Idiode I7 Input current V14 xV 6 Maximum allowable current Maximum control current for external PIN-diode I10 = 0 V V mA mA AGC threshold voltages (respecting V10 = 0.25 V) RF stage output Pin 7 VRF7 450 mV Mixer-stage output V14 = V6 Pin 13 VIF13 300 mV External AGC voltage VIF13 = 1 V Pin 14 V14min 0.9 V Pin 16 V16min 1.4 V Pin 6 V6 Internal AGC voltage Reference voltage source Output voltage, without load I6 = 0 Temperature dependence of V6 |V6| Tamb = –25 to +85°C DV6 (T) 20 mV Internal differential resistance dV6/dI6 when I6 = 0 mA rd6 50 W Ripple rejection 20 log (dVs/dV6) when I6 = 0 mA a6 65 dB 0.6 0.37 0.1 0.1 mV mV mV mV Ǹ Noise voltage / Hz Rev. A1, 07-Dec-98 when I6 = 0 and f = 25 Hz f = 125 Hz f = 1 kHz f = 10 kHz 1.6 1.7 1.8 V 5 (21) U4062B Test Circuit Figure 3. Test circuit RF Preamplifier Figure 4. Test circuit 6 (21) Rev. A1, 07-Dec-98 7 12 6.5 11.5 6 11 G RF ( dB ) V7 ( Pin 7 ) ( V ) U4062B 5.5 10.5 5 10 4.5 9.5 4 6 8 10 12 14 VS ( V ) 95 10410 9 –40 –20 16 0 20 40 60 80 100 Tj ( °C ) 95 10413 Figure 8. GRF vs. Tj Figure 5. V7 vs. VS 4 20 17.5 3.5 FRF ( dB ) I 7 ( Pin 7 ) ( mA ) 15 12.5 10 3 100W 2.5 7.5 Rg9=50W 2 5 1.5 2.5 1 0 6 8 10 12 14 16 VS ( V ) 95 10411 0 95 10414 2.5 5 7.5 10 12.5 15 17.5 20 I9 ( mA ) Figure 9. FRF vs. Ig Figure 6. I7 vs. VS 11 GRF ( dB ) 10.5 10 9.5 9 6 8 10 12 14 16 VS ( V ) 95 10412 Figure 7. GRF vs. VS Rev. A1, 07-Dec-98 7 (21) U4062B Oscillator/ Oscillator Output Buffer Figure 10. Test circuit – free running oscillator frequency fOsc ≈ 100 MHz 104 20 fosc=100MHz V OSC Pin 1 ( dBm ) Df OSC ( kHz ) 15 10 5 0 103 102 101 –5 –10 100 6 8 10 12 14 16 VS ( V ) 95 10415 Figure 11. 6 8 10 DfOsc vs. VS 12 14 16 VS ( V ) 95 10418 Figure 13. VOsc vs. VS 103 30 fosc=100MHz V OSC Pin 1 ( dBm ) Df OSC ( kHz ) 20 10 0 102 –10 –20 –40 –20 0 20 60 Tj ( °C ) 95 10416 Figure 12. 8 (21) 40 DfOsc vs. Tj 80 100 101 –40 95 10417 –20 0 20 40 60 80 100 Tj ( °C ) Figure 14. VOsc vs. Tj Rev. A1, 07-Dec-98 U4062B 100 120 90 80 a FM ( dB ) VO OSC ( dBmV ) 110 100 90 70 60 50 40 80 30 70 20 80 90 100 110 120 Vi OSC Pin 17 ( dBmV ) 95 10419 80 95 10420 Figure 15. VOsc vs. Vi Osc 85 90 95 100 105 110 115 ViRF ( dBmV ) Figure 16. aFM vs. ViRF Mixer Figure 17. Test circuit IL1, IL2 = Insertion loss of the RF transformers Conversion power gain GC = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB) VRF5–6 (dBmV) = ViRF (dBmV) – IL1 (dB) + 6 VIF12–13 (dBmV) = VoIF (dBmV) – IL2 (dB) + 6 DGC = GC (VOSC17) – GC (nominal) Input to output IF isolation aIF = 20 log (2 VoIF/ViIF) + IL1 (dB) + IL2 (dB) – GC (nominal) Characteristics aFM versus viRF, see previous page Oscillator frequency immunity against amplitude modulated signal at mixer input (Pin 5–6) related to FM standard modulation: aFM = 20 log [75 kHz/DfOSC(viRF)] whereas viRF = mixer input signal (fiRF = 89.3 MHz, m = 0.8, fM = 1 kHz) Rev. A1, 07-Dec-98 9 (21) U4062B 10 10 D GC 0 ( dB ) I 8 –10 DG C, a IF 12 + I13 ( mA ) 9 –20 aIF –30 7 –40 6 –50 6 8 10 12 14 16 VS ( V ) 95 10421 80 90 110 120 VOSC Pin 17 ( dBmV ) 95 10424 Figure 18. I12 + I13 vs. VS Figure 21. 8 100 DGc, aIF vs. VOsc Pin 17 15 NFC 13 G C, NFC ( dB ) GC ( dB ) 7.5 7 11 9 6.5 7 GC 6 5 6 8 10 13 14 15 VS ( V ) 95 10422 80 100 110 120 VOSC pin 17 ( dBmV ) 95 10425 Figure 19. GC vs. VS Figure 22. GC NFC vs. VOsc Pin 17 130 VIF pin 12–13 ( dBmV ) 8 7.5 GC ( dB ) 90 7 6.5 120 110 100 90 80 6 –40 95 10423 70 –20 0 20 40 Ti ( °C ) Figure 20. GC vs. Tj 10 (21) 60 80 100 60 95 10426 70 80 90 100 110 120 VRF pin 5–6 ( dBmV ) Figure 23. VIF Pin 5–6 vs. VRF Pin 5–6 Rev. A1, 07-Dec-98 3.75 10 3.5 9 3.25 F CSSB ( dB ) C 12–13 ( pF ) U4062B 3.0 2.75 8 7 6 2.5 5 2.25 2.0 4 6 8 10 12 VS ( V ) 95 10427 Figure 24. C12–13 vs. VS 14 16 0.1 0.2 95 10428 Rg5 ( kW ) 0.5 1.0 Figure 25. FCSSB = Noise figure reading /dB-IL/dB IL = Insertion loss of the tuned transformer network Figure 26. Test circuit for single sideband noise (FCSSB) Rev. A1, 07-Dec-98 11 (21) U4062B AGC Circuit IL1, IL2 = Insertion loss of the RF transformers, VRF7 (dBmV) = VIRF (dBmV) – IL1 (dB)+ 6 VIF13 (dBmV) = ViIF (dBmV) – IL2 (dB) Figure 27. Test circuit 1.0 1.0 V14=1.7V VS=15V 1.2V 0.8 7V 10V 0.6 VIF13 VRF7 0.4 V14=1.3V V10 ( V ) V10 ( V ) 0.8 0.6 1.1V 0.4 1.0V 0.2 0 100 95 10429 104 108 112 116 VRF7, VIF13 ( dBmV ) Figure 28. V10 vs. VRF7, VIF13 12 (21) 0.9V 0.2 0.8V 0 105 107.5 110 112.5 115 117.5 120 122.5 125 120 95 10430 VIF13 ( dBmV ) Figure 29. V10 vs. VIF13 Rev. A1, 07-Dec-98 U4062B 1.0 1.0 VS=15V 0.8 0.8 V10 ( V ) V10 ( V ) 10V 0.6 7V 0.4 0.6 VS=7V 15V 10V 0.4 0.2 0.2 0 0.5 0.7 0.9 1.1 1.3 V16 ( V ) 9510431 0 –0.2 1.5 95 10432 Figure 30. V10 vs. V16 0 0.2 0.4 0.6 0.8 1.0 1.2 -I16 ( mA ) Figure 31. V10 vs. –I16 IF Preamplifier IL1, IL2 = Insertion loss of the RF transformers Power gain GF = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB) ViIF15 (dBmV) = ViIF (dBmV) – IL1 (dB) + 6 VoIF3 (dBmV) = VoIF (dBmV) – IL2 (dB) + 6 Figure 32. Test circuit Rev. A1, 07-Dec-98 13 (21) U4062B 35 120 110 30 VoIF 3 ( dBmV ) G IF ( dB ) V15=1.6V 25 20 V15=1.8V 100 90 0.6V 80 15 70 1.2V 10 60 6 8 10 12 14 16 VS ( V ) 95 10433 60 80 90 100 110 120 VI IF Pin 15 ( dBmV ) 95 10436 Figure 36. VoIF3 vs. VI IF Pin 15 Figure 33. GIF vs. VS 25 35 30 70 V15=1.7V 22.5 1.6V F IF ( dB ) G IF ( dB ) 25 1.5V 20 1.4V 20 17.5 15 1.3V 15 1.2V 12.5 10 1.1V 5 –40 10 –20 0 20 40 60 80 100 Tj ( °C ) 95 10434 0 95 10437 5 10 15 20 25 30 GIF ( dB ) Figure 37. FIF vs. GIF Figure 34. GIF vs. Tj 30 G IF ( dB ) 20 10 0 –10 0 95 10435 0.5 1.0 1.5 2.0 V15 ( V ) Figure 35. GIF vs. V15 14 (21) Rev. A1, 07-Dec-98 U4062B Reference Voltage Figure 38. Test circuit 13 10 7.5 12.5 10V 5 DV6 ( mV ) I2 ( mA ) 12 11.5 11 VS=18V 2.5 0 –2.5 7V –5 10.5 –7.5 10 6 8 10 12 14 VS ( V ) 95 10438 –10 –20 16 0 20 60 80 100 4 5 Tj ( °C ) 95 10440 Figure 39. I2 vs. VS Figure 41. 20 40 DV6 vs. Tj 2.0 1.9 10 V6 ( V ) DV 6 ( mV ) 1.8 0 –10 1.7 1.6 1.5 –20 1.4 –30 1.3 –40 1.2 6 8 10 12 VS ( V ) 95 10439 Figure 40. Rev. A1, 07-Dec-98 DV6 vs. VS 14 16 –1 95 10441 0 1 2 3 I6 ( mA ) Figure 42. V6 vs. I6 15 (21) U4062B Application Circuit Figure 43. Typical Application circuit for high performance FM front end using non-repetitive alignment concept 16 (21) Rev. A1, 07-Dec-98 U4062B Coils Specifications L8/L9 Toko 7 PL9/ (18 + 18) turns Nr. 218 ANS – 788 N L10 Toko 7 Kl 3 turns Nr. 291 ENS – 2054 IB or Toko MC 122 Nr. E528 SNAS – 100075 L11/L12 Toko 7 Kl without case 4/8 turns Nr. 291 ENF – 2342 x L13 Toko 7 Kl 4 turns Nr. 291 ENS – 2341 IB or Toko MC 122 Nr. E528 SNAS – 100076 L14/L17 Choke 1.5 mH Toko 348 LS – 1R5 or similar CF1; CF2 Toko CFSK – 107M3 or similar Electrical Connections LO output VS IF output Ground Mixer input Reference output voltage RF preamplifier (collector) RF preamplifier (base) RF preamplifier (emitter) AGC output Ground Mixer output Mixer output AGC input IF input, IF gain control AGC time constant LO (base) LO (emitter) VS = 8.5 V, Tamb = 25°C Pin DIP18 1 2 3 4 5 6 7 Voltage (DC) in V 1.73 8.5 6.1 0 1.7 1.7 8.5 8 9 10 11 12 13 14 15 16 17 18 1.3 0.53 0.07 0 8.5 8.5 1.7 1.54 1.06 3.2 2.51 FM Front End Data Using Application Circuit Antenna impedance 75 W, Zload IF = 330 W, VS = 8.5 V, Tamb = 25°C Characteristics Symbol Supply current IS Tuning range f Tuning voltage – at 88 MHz (equal IC’s reference voltage) – at 108 MHz Center IF Min. Typ. Max. 32 88 Unit mA 108 MHz Vtune Vtune f 1.7 6.5 10.7* V V MHz BIF 130* kHz G 46* dB Gain variation versus the band DG 1 dB Noise figure NF 6 dB 70 dB RF intermodulation 70 dB 1/2 IF rejection 90 dB Spurious response, second osc. harmonic 90 dB IF output bandwidth at –3 dB Power gain Image rejection IF rejection Osc. output voltage at 520 W load VOSC * Depending on ceramic IF filters to be used Rev. A1, 07-Dec-98 57 85 dB 200 mV 17 (21) U4062B Test conditions D De-emphasis - 75ms D AF bandwidth 30 to 20 kHz D RMS, unweighted Setup for one signal measurement D fD = 98 MHz Note: VoAF related to 75 kHz dev., 1 kHz, ViD = 66 dB mV Setup for three signals intermodulation measurement D D D D Figure 44. Block diagram of the test set up SD : fD = 98 MHz, FM: 1 kHz, 22.5 kHz dev. SUD1 : FM: 0.15 kHz, 22.5 kHz dev. SUD2 : Unmodulated ViD : for 35 dB SINAD 80 fUD1=98.8MHz, fUD2=99.6MHz 70 ViD ( dBmV ) 60 fUD1=94.8MHz, fUD2=91.6MHz 50 fUD1=97.2MHz, fUD2=96.4MHz 40 30 20 fUD1=101.2MHz, fUD2=104.4MHz 10 0 60 70 80 90 100 110 120 ViUD1, 2 ( dBmV ) 95 10443 Figure 45. VID vs. ViUD1,2 VID = input desired, ViUD = input undesired 20 FM: 1 kHz, 75 kHz dev. VoAF ( dB ) 0 FM: 1 kHz, 22.5 kHz dev. –20 –40 THD: 1 kHz, 75 kHz dev. –60 Noise –80 0 95 10442 10 20 AM: 1 kHz, 30% 30 40 50 60 70 80 90 100 110 ViD ( dBmV ) Figure 46. VoAF vs. ViD 18 (21) Rev. A1, 07-Dec-98 U4062B VHF/UHF-Application Figure 47. Test circuit for conversion gain and noise measurement Mixer, VHF Characteristics Rg5 = 50 W, RL12–13 = 200 W, VS = 10 V fIF = 10.7 MHz, fiRF = 200 MHz, fOSC = fiRF + fIF, VOSC17 = 140 mV Test conditions: Parameter Conversion power gain, fIF = 10.7 MHz fIF = 70 MHz Double side band noise figure fOSC = 200 MHz 3rd order intercept input signal level Typ. Unit GC GC NFDSB 2.5 2.3 8.2 dB dB dB IP3 5.5 dBm Rp5 Cp5 Rp17 Cp17 GC 1500 3.3 4000 2.7 6.4 1 12 0.5 11 W pF W pF m-mho 70mV 0 280mV –0.5 70mV –1 NF DSB ( dB ) G C( f )/GC ( 100 MHz ) Parallel input resistance, Pin 5, f = 200 MHz Parallel input capacitance, Pin 5, f= 200 MHz Parallel input resistance, Pin 17, f = 200 MHz Parallel input capacitance, Pin 17, f = 200 MHz Conversion transconductance Symbol 10 140mV 9 280mV 8 –1.5 7 140mV –2 6 0 100 200 300 fOSC ( MHz ) 95 10444 Figure 48. GC vs. fOSC Rev. A1, 07-Dec-98 400 500 0 95 10445 100 200 300 400 500 fOSC ( MHz ) Figure 49. NFDSB vs. fOSC 19 (21) U4062B Package Information Package DIP18 Dimensions in mm 7.77 7.47 23.3 max 4.8 max 6.4 max 0.5 min 3.3 1.64 1.44 0.58 0.48 0.36 max 9.8 8.2 2.54 20.32 18 10 technical drawings according to DIN specifications 1 20 (21) 9 13019 Rev. A1, 07-Dec-98 U4062B Ozone Depleting Substances Policy Statement It is the policy of TEMIC Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2594, Fax number: 49 ( 0 ) 7131 67 2423 Rev. A1, 07-Dec-98 21 (21)