NEC UPD784054GC

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD784054(A)
16-BIT SINGLE-CHIP MICROCONTROLLER
DESCRIPTION
The µPD784054(A) is a product of the 78K/IV series, and based on the µPD784044(A) with the real-time output
function and two units of timers/counters deleted and a standby function invalid mode provided. A stricter quality
assurance program applies to the µPD784054(A) compared to the µPD784054 (standard model).
The µPD784054(A) is provided with many peripheral hardware functions such as ROM, RAM, I/O port, 10-bit
resolution A/D converter, timer, serial interface, and interrupt functions, in addition to a high-speed, high-performance
CPU.
Moreover, a flash memory model, µPD78F4046Note, that can operate on the same supply voltage as the mask ROM
model, and many development tools are under development.
Note Use for functional evaluation only.
The functions are described in detail in the following User’s Manuals. Be sure to read these manuals when
designing your system.
µPD784054 User’s Manual - Hardware
: U11719E
78K/IV Series User’s Manual - Instruction : U10905E
FEATURES
• Higher reliability compared to the µPD784054
• Minimum instruction execution time
: 160 ns (with 12.5-MHz internal clock) ··· µPD784054(A)
• I/O port
: 64 lines
• Timer
: 16-bit timer × 3 units
• A/D converter
: 10-bit resolution × 16 channels
200 ns (with 10-MHz internal clock) ··· µPD784054(A1), (A2)
• Serial interface UART/IOE (3-wire serial I/O) : 2 channels
• Watchdog timer
: 1 channel
• Standby function HALT/STOP/IDLE/standby function invalid mode
: VDD = 4.5 to 5.5 V
• Supply voltage
APPLICATION FIELDS
Automotive appliances, etc.
In this document, in addition to the µPD784054(A), the µPD784054(A1) and 784054(A2) are also explained.
However, unless otherwise specified, the µPD784054(A) is treated as the representative model throughout
this document.
The information in this document is subject to change without notice.
Document No. U13122EJ1V0DS00 (1st edition)
Date Published January 1998 N CP(K)
Printed in Japan
©
1998
µPD784054(A)
ORDERING INFORMATION
Part Number
Package
Internal ROM (bytes) Internal RAM (bytes)
µ PD784054GC(A)-×××-3B9
80-pin plastic QFP (14 × 14 mm)
32 K
1024
µ PD784054GC(A1)-×××-3B9
80-pin plastic QFP (14 × 14 mm)
32 K
1024
µ PD784054GC(A2)-×××-3B9
80-pin plastic QFP (14 × 14 mm)
32 K
1024
Remark ××× indicates ROM code suffix.
QUALITY GRADE
Special
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
Differences between µPD784054 and µPD784054(A)
Part Number
µPD784054
Item
µ PD784054(A)
Quality grade
Standard
Special
Operating ambient temperature (T A )
–10 to + 70˚C
–40 to +85 ˚C
Operating frequency
8 to 32 MHz
8 to 25 MHz
Minimum instruction execution time
125 ns (with 16-MHz internal clock)
160 ns (with 12.5-MHz internal clock)
DC characteristics
V DD supply current differs.
AC characteristics
Bus timing and serial operation differ.
A/D converter characteristics
Conversion time and sampling time differ.
Differences between µPD784054(A), 784054(A1) and 784054(A2)
Part Number
Item
2
µ PD784054(A)
µ PD784054(A1)
µ PD784054(A2)
Operating ambient temperature (TA )
–40 to +85 ˚C
–40 to +110 ˚C
–40 to +125 ˚C
Operating frequency
8 to 25 MHz
8 to 20 MHz
Minimum instruction execution time
160 ns (with 12.5-MHz
internal clock)
200 ns
(with 10-MHz internal clock)
DC characteristics
Analog pin input leakage current, V DD supply current and data
retention current differ.
AC characteristics
Bus timing and serial operation differ.
A/D converter characteristics
AV REF current and A/D converter data retention current differ.
µPD784054(A)
Product Development of 78K/IV Series
: Under mass production
: Under development
Standard models
For I2C bus
µ PD784038Y
µPD784038
µPD784026
A/D, 16-bit timer, improved
power management
Improved internal memory capacity,
pin compatible with µPD784026
For multimaster I2C bus
µPD784216Y
µPD784216
100 pins, I/O, improved
internal memory capacity
For multimaster I2C bus
µ PD784225Y
µPD784225
80 pins, ROM correction added
For multimaster I2C bus
µPD784218Y
µPD784218
Improved internal memory
capacity, ROM correction added
µPD784054
µPD784046
Internal 10-bit A/D
ASSP models
µPD784955
For DC converter control
µPD784908
Internal IEBusTM controller
For multimaster I2C bus
µPD78F4943
For CD-ROM
Flash memory 56 KB
µPD784915
µPD784928Y
µPD784928
Improved functions of µPD784915
Software servo control,
internal analog circuit
for VCR, improved timer
3
µPD784054(A)
FUNCTION LIST
Item
Function
Number of basic
instructions (mnemonics)
113
General-purpose register
8 bits × 16 registers × 8 banks, or 16 bits × 8 registers × 8 banks (memory mapping)
Minimum instruction
execution time
• 160 ns (with internal 12.5-MHz clock): µ PD784054(A)
• 200 ns (with internal 10-MHz clock) : µ PD784054(A1), (A2)
Internal
ROM
32K bytes
memory
RAM
Memory space
I/O port
1024 bytes
1M bytes with program/data combined
Total
64 pins
Input
17 pins
I/O
47 pins
Pins with
Pins with 29 pins
ancillary
pull-up
functions Note resistors
Timer
Timer 0
(16 bits)
: Timer register × 1,
capture/compare register × 4
Pulse output possible
• Toggle output
• Set/reset output
Timer 1
(16 bits)
: Timer register × 1,
compare register × 2
Pulse output possible
• Toggle output
• Set/reset output
Timer 4
(16 bits)
: Timer register × 1,
compare register × 2
A/D converter
10-bit resolution × 16 channels
Serial interface
UART/IOE (3-wire serial I/O): 2 channels (with baud rate generator)
Watchdog timer
1 channel
Interrupt
Hardware source 23 (internal: 19, external: 8 (internal/external: 4))
Software source
BRK instruction, BRKCS instruction, operand error
Non-maskable
Internal: 1, external: 1
Maskable
Internal: 18, external: 7 (internal/external: 4)
• 4 levels of programmable priorities
• 3 processing formats: vectored interrupt/macro service/context switching
Bus sizing
8-bit/16-bit external data bus width selectable
Standby
HALT/STOP/IDLE/standby function invalid mode
Supply voltage
V DD = 4.5 to 5.5 V
Package
80-pin plastic QFP (14 × 14 mm)
Note
4
The pins with ancillary functions are included in the I/O pins.
µPD784054(A)
CONTENTS
1. DIFFERENCES BETWEEN µPD784054(A) AND µPD784044(A), 784046(A) ................................. 7
2. PIN CONFIGURATION (Top View) ..................................................................................................... 8
3. SYSTEM CONFIGURATION EXAMPLE ...........................................................................................10
4. BLOCK DIAGRAM ............................................................................................................................. 11
5. PIN FUNCTIONS ................................................................................................................................12
5.1
Port Pins .................................................................................................................................................... 12
5.2
Pins Other Than Port Pins ...................................................................................................................... 14
5.3
I/O Circuits of Pins and Processing of Unused Pins .......................................................................... 16
6. CPU ARCHITECTURE .......................................................................................................................18
6.1
6.2
Memory Space .......................................................................................................................................... 18
CPU Registers ........................................................................................................................................... 20
6.2.1
General-purpose registers ............................................................................................................. 20
6.2.2
Control registers ............................................................................................................................. 21
6.2.3
Special function registers (SFRs) .................................................................................................. 22
7. PERIPHERAL HARDWARE FUNCTIONS ........................................................................................27
7.1
Ports ........................................................................................................................................................... 27
7.2
Clock Generation Circuit ......................................................................................................................... 28
7.3
Timer .......................................................................................................................................................... 30
7.4
A/D Converter ........................................................................................................................................... 32
7.5
Serial Interface .......................................................................................................................................... 33
7.5.1
Asynchronous serial interface/3-wire serial I/O (UART/IOE) ....................................................... 34
7.6
Edge Detection Circuit ............................................................................................................................ 36
7.7
Watchdog Timer ........................................................................................................................................ 36
8. INTERRUPT FUNCTION....................................................................................................................37
8.1
Interrupt Source ....................................................................................................................................... 37
8.2
Vectored Interrupt .................................................................................................................................... 39
8.3
Context Switching .................................................................................................................................... 40
8.4
Macro Service ........................................................................................................................................... 41
9. LOCAL BUS INTERFACE .................................................................................................................44
9.1
Memory Expansion .................................................................................................................................. 45
9.2
Memory Space .......................................................................................................................................... 46
9.3
Programmable Wait .................................................................................................................................. 46
9.4
Bus Sizing Function ................................................................................................................................. 46
5
µPD784054(A)
10. STANDBY FUNCTION .......................................................................................................................47
11. RESET FUNCTION ............................................................................................................................48
12. INSTRUCTION SET ...........................................................................................................................49
13. ELECTRICAL SPECIFICATIONS ......................................................................................................54
14. PACKAGE DRAWING .......................................................................................................................77
15. RECOMMENDED SOLDERING CONDITIONS ................................................................................78
APPENDIX A. DEVELOPMENT TOOLS ................................................................................................79
APPENDIX B. RELATED DOCUMENTS ...............................................................................................82
6
µPD784054(A)
1. DIFFERENCES BETWEEN µPD784054(A) AND µPD784044(A), 784046(A)
Table 1-1 shows the differences between the µ PD784054(A) and µ PD784044(A), 784046(A).
Table 1-1. Differences between µPD784054(A) and µPD784044(A), 784046(A)
Part Number
µ PD784054(A)
Item
µ PD784044(A)
µ PD784046(A)
Internal ROM
32K bytes
(mask ROM)
64K bytes
(mask ROM)
Internal RAM
1024 bytes
2048 bytes
Port 1
P10-P12
Real-time output port
None
4 bits × 1
Timer/counter
16-bit timer × 3 units
16-bit timer/counter × 2 units
16-bit timer × 3 units
Standby function
HALT/STOP/IDLE/
standby function
invalid mode
HALT/STOP/IDLE mode
MODE1 pin
Provided
Not provided
Interrupt hardware source
23
27
P10-P13
7
µPD784054(A)
2. PIN CONFIGURATION (Top View)
• 80-pin plastic QFP (14 × 14 mm)
P23/INTP2/TO02
RESET
P24/INTP3/TO03
P25/INTP4
P26/INTP5
P27/INTP6
CLKOUT
VSS
X1
X2
VDD
AVSS
P80/ANI8
P81/ANI9
P82/ANI10
P83/ANI11
P84/ANI12
P85/ANI13
P86/ANI14
P87/ANI15
µPD784054GC(A)-×××-3B9, 784054GC(A1)-×××-3B9, 784054GC(A2)-×××-3B9
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
P70/ANI0
1
60
P22/INTP1/TO01
P71/ANI1
2
59
BWD
P72/ANI2
3
58
P21/INTP0/TO00
P73/ANI3
4
57
MODE
P74/ANI4
5
56
P20/NMI
P75/ANI5
6
55
VSS
P76/ANI6
7
54
VDD
P77/ANI7
8
53
MODE1
AVREF
9
52
P12
AVDD
10
51
P11
VSS
11
50
P10
VDD
12
49
P03
P47/AD7
13
48
P02
P46/AD6
14
47
P01
P45/AD5
15
46
P00
P44/AD4
16
45
P37/ASCK2/SCK2
P43/AD3
17
44
P36/TxD2/SO2
P42/AD2
18
43
P35/RxD2/SI2
P41/AD1
19
42
P34/ASCK/SCK1
P40/AD0
20
41
P33/TxD/SO1
Cautions 1. Directly connect the MODE pin to VSS.
2. Usually, directly connect the MODE1 pin to VSS.
8
P32/RxD/SI1
P31/TO11
P30/TO10
P94/WAIT
P93/ASTB
P92/HWR
P91/LWR
P90/RD
P63/A19
P62/A18
P61/A17
P60/A16
P57/AD15
P56/AD14
P55/AD13
P54/AD12
P53/AD11
P52/AD10
P51/AD9
P50/AD8
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
µPD784054(A)
A16-A19
: Address Bus
P40-P47
: Port4
AD0-AD15
: Address/Data Bus
P50-P57
: Port5
ANI0-ANI15
: Analog Input
P60-P63
: Port6
ASCK, ASCK2
: Asynchronous Serial Clock
P70-P77
: Port7
ASTB
: Address Strobe
P80-P87
: Port8
AV DD
: Analog Power Supply
P90-P94
: Port9
AV REF
: Analog Reference Voltage
RD
: Read Strobe
AV SS
: Analog Ground
RESET
: Reset
BWD
: Bus Width Definition
RxD, RxD2
: Receive Data
CLKOUT
: Clock Out
SCK1,SCK2
: Serial Clock
HWR
: High Address Write Strobe
SI1, SI2
: Serial Input
INTP0-INTP6
: Interrupt from Peripherals
SO1, SO2
: Serial Output
LWR
: Low Address Write Strobe
TO00-TO03, TO10, TO11 : Timer Output
MODE, MODE1
: Mode
TxD, TxD2
: Transmit Data
NMI
: Non-maskable Interrupt
V DD
: Power Supply
P00-P03
: Port0
V SS
: Ground
P10-P12
: Port1
WAIT
: Wait
P20-P27
: Port2
X1, X2
: Crystal
P30-P37
: Port3
9
µPD784054(A)
3. SYSTEM CONFIGURATION EXAMPLE
Display lamp
ABS control unit
Output
interface
µ PD784054(A)
Pulse
• Right front wheel
speed
• Left front wheel
speed
• Right rear wheel
speed
• Left rear wheel
speed
Digital quantity
• Brake sw
• Parking sw
• Neutral sw
• TCS cut sw, etc.
CPU
Input
interface
Generalpurpose I/O
• Timer unit
• Interrupt
controller
Serial I/O
Generalpurpose I/O
ROM: 32 KB
RAM : 1 KB
10
Power
unit
Solenoid
• Right front wheel
• Left front wheel
• Right rear wheel
• Left rear wheel
Monitor
circuit
10-bit A/D
converter
Input
interface
UART
External
I/O
interface
Microcomputer for monitor
Battery voltage
(12 V)
Solenoid
drive
circuit
Subthrottle
control
Analog quantity
• G sensor (front, rear)
• G sensor (left, right)
• Throttle divergence
• Rupture detection, etc.
External tester
display system
µPD784054(A)
4. BLOCK DIAGRAM
NMI
INTP0-INTP6
INTP0-INTP3
TO00-TO03
TO10, TO11
Programmable
interrupt
controller
BUS I/F
Timer 0
(16 bits)
Timer 1
(16 bits)
Timer 4
(16 bits)
78K/IV
CPU core
ANI0-ANI15
AVDD
AVSS
A/D
converter
BWD
AD0-AD15
A16-A19
RD
LWR, HWR
ASTB
WAIT
Port 0
P00-P03
Port 1
P10-P12
Port 2
P20
P21-P27
Port 3
P30-P37
Port 4
P40-P47
Port 5
P50-P57
Port 6
P60-P63
Port 7
P70-P77
Port 8
P80-P87
Port 9
P90-P94
System
control
CLKOUT
RESET
MODE
MODE1
X1
X2
ROM
AVREF
INTP4
RAM
Watchdog
timer
RxD/SI1
TxD/SO1
ASCK/SCK1
RxD2/SI2
TxD2/SO2
ASCK2/SCK2
UART/IOE1
Baud-rate
generator
UART/IOE2
Baud-rate
generator
VDD
VSS
11
µPD784054(A)
5. PIN FUNCTIONS
5.1 Port Pins (1/2)
I/O
Shared by:
P00-P03
Pin Name
I/O
–
Port 0 (P0):
• 4-bit I/O port
• Can be set in input/output mode bit-wise.
• Pins in input mode can all be connected to pull-up resistors at once
via software.
P10-P12
I/O
–
Port 1 (P1):
• 3-bit I/O port
• Can be set in input/output mode bit-wise.
P20
Input
P21
I/O
NMI
Port 2 (P2):
INTP0/TO00
• 8-bit I/O port
P22
INTP1/TO01
P23
INTP2/TO02
P24
INTP3/TO03
P25
INTP4
P26
INTP5
P27
INTP6
P30
I/O
Function
TO10
Input only
Can be set in input/output mode
bit-wise.
Port 3 (P3):
P31
TO11
• 8-bit I/O port
P32
RxD/SI1
• Can be set in input/output mode bit-wise.
P33
TxD/SO1
P34
ASCK/SCK1
P35
RxD2/SI2
P36
TxD2/SO2
P37
ASCK2/SCK2
P40-P47
I/O
AD0-AD7
Port 4 (P4):
• 8-bit I/O port
• Can be set in input/output mode bit-wise.
• Pins in input mode can all be connected to pull-up resistors at once
via software.
P50-P57
I/O
AD8-AD15
Port 5 (P5):
• 8-bit I/O port
• Can be set in input/output mode bit-wise.
• Pins in input mode can all be connected to pull-up resistors at once
via software.
P60-P63
I/O
A16-A19
Port 6 (P6):
• 4-bit I/O port
• Can be set in input/output mode bit-wise.
• Pins in input mode can all be connected to pull-up resistors at once
via software.
12
µPD784054(A)
5.1 Port Pins (2/2)
Pin Name
I/O
Shared by:
Function
P70-P77
Input
ANI0-ANI7
Port 7 (P7):
• 8-bit input port
P80-P87
Input
ANI8-ANI15
Port 8 (P8):
• 8-bit input port
RD
Port 9 (P9):
P91
LWR
• 5-bit I/O port
P92
HWR
• Can be set in input/output mode bit-wise.
P93
ASTB
• Pins in input mode can all be connected to pull-up resistors at once
P94
WAIT
P90
I/O
via software.
13
µPD784054(A)
5.2 Pins Other Than Port Pins (1/2)
Pin Name
NMI
I/O
Input
Shared by:
Function
P20
Non-maskable interrupt request input
INTP0
P21/TO00
External interrupt
Capture trigger signal of CC00
INTP1
P22/TO01
request input
Capture trigger signal of CC01
INTP2
P23/TO02
Capture trigger signal of CC02
INTP3
P24/TO03
Capture trigger signal of CC03
INTP4
P25
Conversion start trigger input of A/D converter
INTP5
P26
INTP6
P27
TO00
Output
P21/INTP0
TO01
P22/INTP1
TO02
P23/INTP2
TO03
P24/INTP3
TO10
P30
TO11
P31
RxD
Input
RxD2
TxD
Output
TxD2
ASCK
Input
ASCK2
SI1
Input
SI2
SO1
Output
SO2
SCK1
I/O
SCK2
–
Timer output
P32/SI1
Serial data input (UART0)
P35/SI2
Serial data input (UART2)
P33/SO1
Serial data output (UART0)
P36/SO2
Serial data output (UART2)
P34/SCK1
Baud rate clock input (UART0)
P37/SCK2
Baud rate clock input (UART2)
P32/RxD
Serial data input (3-wire serial I/O1)
P35/RxD2
Serial data input (3-wire serial I/O2)
P33/TxD
Serial data output (3-wire serial I/O1)
P36/TxD2
Serial data output (3-wire serial I/O2)
P34/ASCK
Serial clock input/output (3-wire serial I/O1)
P37/ASCK2
Serial clock input/output (3-wire serial I/O2)
AD0-AD7
I/O
P40-P47
Lower multiplexed address/data bus when external memory is connected
AD8-AD15 Note
I/O
P50-P57
• When 8-bit bus is specified
Higher address bus when external memory is connected
• When external 16-bit bus is specified
Higher multiplexed address/data bus when external memory is connected
A16-A19 Note
Output
P60-P63
Higher address bus when external memory is connected
RD
Output
P90
Read strobe to external memory
LWR
Output
P91
• When external 8-bit bus is specified
Write strobe to external memory
• When external 16-bit bus is specified
Write strobe to external memory located at lower position
P92
Write strobe to external memory located at higher position when external
16-bit bus is specified
P93
Timing signal output to externally latch address information output from
AD0 through AD15 pins to access external memory
HWR
ASTB
Note
Output
The number of pins used as address bus pins differs depending on the external address space (refer to 9.
LOCAL BUS INTERFACE).
14
µPD784054(A)
5.2 Pins Other Than Port Pins (2/2)
Pin Name
I/O
Shared by:
WAIT
Input
BWD
Input
–
Sets bus width.
MODE
Input
–
Directly connect this pin to V SS (this pin specifies test mode of IC).
MODE1
Input
–
Specifies standby function invalid mode. Usually, connect this pin to VSS.
CLKOUT
Output
–
Clock output. Outputs low level during IDLE mode and STOP mode.
Otherwise, always outputs f XX (oscillation frequency).
X1
Input
–
Connect crystal for system clock oscillation (clock can be also input to X1).
X2
–
–
RESET
Input
–
ANI0-ANI7
Input
P70-P77
ANI8-ANI15
AV REF
P94
Function
Inserts wait.
Chip reset
Analog voltage input for A/D converter
P80-P87
–
–
Reference voltage for A/D converter
AV DD
–
Positive power supply for A/D converter
AV SS
–
GND for A/D converter
V DD
–
Positive power supply
V SS
–
GND
15
µPD784054(A)
5.3 I/O Circuits of Pins and Processing of Unused Pins
Table 5-1 shows the I/O circuit type of each pin and recommended processing of the unused pins.
For the I/O circuit type, refer to Figure 5-1.
Table 5-1. I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins
Pin Name
P00-P03
I/O Circuit Type
I/O
5-A
I/O
P10-P12
5
P20/NMI
2
Input
P21/INTP0/TO00
8
I/O
Recommended Connection of Unused Pins
Input: Individually connect to V DD or V SS via resistor.
Output: Leave unconnected.
P22/INTP1/TO01
Connect to V SS.
Input: Individually connect to VDD or V SS via resistor.
Output: Leave unconnected.
P23/INTP2/TO02
P24/INTP3/TO03
P25/INTP4
P26/INTP5
P27/INTP6
P30/TO10
5
P31/TO11
P32/RxD/SI1
P33/TxD/SO1
P34/ASCK/SCK1
8
P35/RxD2/SI2
5
P36/TxD2/SO2
P37/ASCK2/SCK2
8
P40/AD0-P47/AD7
5-A
P50/AD8-P57/AD15
P60/A16-P63/A19
P70/ANI0-P77/ANI7
9
Input
Connect to V SS.
P80/ANI8-P87/ANI15
P90/RD
5-A
I/O
P91/LWR
Input: Individually connect to VDD or V SS via resistor.
Output: Leave unconnected.
P92/HWR
P93/ASTB
P94/WAIT
MODE,MODE1
1
RESET
2
CLKOUT
3
AV REF
Input
Directly connect to VSS .
–
Output
–
–
Leave unconnected.
Connect to V SS.
AV SS
AV DD
Connect to V DD .
Remark The circuit type numbers are serial in the 78K series but are not always so with some models (because
some models are not provided with particular circuits).
16
µPD784054(A)
Figure 5-1. I/O Circuits of Pins
Type 1
Type 5-A
VDD
Pullup
Enable
VDD
P-ch
P-ch
VDD
Data
P-ch
IN
IN/OUT
N-ch
Output
disable
N-ch
Input
enable
Type 2
Type 8
VDD
Data
P-ch
IN/OUT
IN
Output
disable
N-ch
Schmitt trigger input with hysteresis characteristics
Type 9
Type 3
VDD
IN
P-ch
N-ch
Comparator
+
–
P-ch
VREF
(Threshold voltage)
OUT
N-ch
Input
enable
Type 5
VDD
Data
P-ch
IN/OUT
Output
disable
N-ch
Input
enable
17
µPD784054(A)
6. CPU ARCHITECTURE
6.1 Memory Space
A 1M-byte memory space can be accessed. The mapping of the internal data area (special function registers
and internal RAM) can be selected by using the LOCATION instruction. The LOCATION instruction must be
always executed after the reset signal has been deasserted, and must not be used more than once.
(1) When LOCATION 0 instruction is executed
• Internal memory
The internal data area and internal ROM area are mapped as follows:
Internal data area : 0FB00H through 0FFFFH
Internal ROM area : 00000H through 07FFFH
• External memory
The external memory is accessed in the external memory expansion mode.
(2) When LOCATION 0FH instruction is executed
• Internal memory
The internal data area and internal ROM area are mapped as follows:
Internal data area : 0FB00H through FFFFFH
Internal ROM area : 00000H through 07FFFH
• External memory
The external memory is accessed in the external memory expansion mode.
18
µPD784054(A)
Figure 6-1. Memory Map
When LOCATION 0FH
instruction is executed
When LOCATION 0
instruction is executed
F F F F F H Special function registers (SFRS)
F F F D F H Note 1
F F FD 0H
(256 bytes)
FFF 0 0H
F F F F FH
0 F E F FH
F F E F FH
External memory Note 1
(960K bytes)
0 FE 8 0H
0 F E 7 FH
1 0 0 0 0H
0 F F F F H Special function registers (SFRs)
0 F F D F H Note 1
0 F FD 0 H
(256 bytes)
0 F F 0 0H
0 F E F FH
Internal memory
(1K bytes)
0 FB 0 0H
0 FA F FH
Cannot be used
(1280 bytes)
0 F 6 0 0H
0 F 5 F FH
0 FE 3 7H
0 FE 0 6H
Main RAM
Peripheral
RAM
F FE 8 0H
F F E 7 FH
Macro service control
word area (50 bytes)
Internal RAM
(1K bytes)
Cannot be used
(1280 bytes)
F F 6 0 0H
F F 5 F FH
F FE 3 7H
F FE 0 6H
Data area (512 bytes)
0 FD 0 0 H
0 F C F FH
F FD 0 0 H
F F C F FH
Program/data area
(512 bytes)
0 FB 0 0H
External memoryNote 1
(1013248 bytes)
F FB 0 0H
0 7 F F FH
Note 2
External memory Note 1
(30208 bytes)
Program/data area
(32K bytes)
0 1 0 0 0H
0 0 F F FH
CALLF entry area
(2K bytes)
0 0 8 0 0H
0 0 7 F FH
0 8 0 0 0H
0 7 F F FH
Internal ROM
(32K bytes)
0 0 0 0 0H
F F E F FH
F FB 0 0H
F FA F FH
General-purpose registers
(128 bytes)
0 0 0 8 0H
0 0 0 7 FH
0 0 0 4 0H
0 0 0 3 FH
0 0 0 0 0H
1 0 0 0 0H
0 F F F FH
Note 2
0 8 0 0 0H
0 7 F F FH
CALLT table area
(64 bytes)
Vector table area
(64 bytes)
Internal ROM
(32K bytes)
0 0 0 0 0H
Notes 1. Accessed in the external memory expansion mode.
2. Base area or entry area by reset or interrupt. The internal RAM is not reset.
19
µPD784054(A)
6.2 CPU Registers
6.2.1 General-purpose registers
Sixteen 8-bit general-purpose registers are provided. Two 8-bit general-purpose registers can be used in
pairs as a 16-bit general-purpose register. Of the 16-bit registers, four can be used with an 8-bit register for
address expansion as 24-bit address specification registers.
Eight banks of register sets are available which can be selected by software or context switching function.
The general-purpose registers except the V, U, T, and W registers for address expansion are mapped to the
internal RAM.
Figure 6-2. General-Purpose Register Format
A(R1)
X(R0)
AX(RP0)
B(R3)
C(R2)
BC(RP1)
R5
R4
RP2
R7
R6
RP3
R8
R9
V
VP(RP4)
VVP(RG4)
UP(RP5)
UUP(RG5)
T
E(R12)
D(R13)
DE(RP6)
TDE(RG6)
W
R10
R11
U
L(R14)
H(R15)
WHL(RG7)
HL(RP7)
8 banks
( ): absolute name
Caution
R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by
setting the RSS bit of the PSW to 1. However, use this function only when using a 78K/III series
program.
20
µPD784054(A)
6.2.2 Control registers
(1) Program counter (PC)
This is a 20-bit program counter. Its contents are automatically updated as the program is executed.
Figure 6-3. Program Counter (PC) Format
19
0
PC
(2) Program status word (PSW)
This register retains the status of the CPU and its contents are automatically updated as the program is
executed.
Figure 6-4. Program Status Word (PSW) Format
PSWH
15
14
13
12
11
10
9
8
UF
RBS2
RBS1
RBS0
—
—
—
—
7
6
5
4
3
2
1
0
AC
IE
P/V
0
CY
PSW
PSWL
Note
S
Z
Note
RSS
This flag is provided so that the µPD784054(A) maintains compatibility with the 78K/III series. Be sure
to clear this flag to 0 when using 78K/III series software.
(3) Stack pointer (SP)
This is a 24-bit pointer that holds the first address of the stack.
Be sure to write 0 to the high-order 4 bits of this pointer.
Figure 6-5. Stack Pointer (SP) Format
23
SP
0
20
0
0
0
0
21
µPD784054(A)
6.2.3 Special function registers (SFRs)
The special function registers are registers to which special functions are assigned, and include the mode
registers and control registers of the internal peripheral hardware. These registers are mapped to a 256-byte
space of addresses 0FF00H through 0FFFFHNote.
Note
When the LOCATION 0 instruction is executed. FFF00H through FFFFFH when the LOCATION 0FH
instruction is executed.
Caution
Do not access an address in this area to which no SFR is allocated. If an address to which no
SFR is allocated is accessed by mistake, the µPD784054(A) may be deadlocked. The deadlock
status can be cleared only by inputting the reset signal.
Table 6-1 lists the special function registers. The meanings of the symbols in this table are as follows:
• Symbol ................................. Symbol indicating an SFR. These symbols are reserved for an NEC’s assembler
(RA78K4). With a C compiler (CC78K4), they can be used as sfr variables by
using the #pragma sfr directive.
• R/W ...................................... Indicates whether the corresponding SFR can be read/written.
R/W : Read/write
R
: Read only
W
: Write only
• Bit units for manipulation .... Indicates bit units in which the corresponding SFR can be manipulated.
SFRs that can be manipulated in 16-bit units can be written as operand sfrp.
Specify the even addresses of these SFRs when specifying an address.
SFRs that can be manipulated bit-wise can be written in bit manipulation
instructions.
• On reset ............................... Indicates the status of each register when the RESET signal is input.
22
µPD784054(A)
Table 6-1. Special Function Register List (1/4)
Address Note 1
Special Function Register (SFR) Name
Symbol
R/W
Bit units for manipulation
1 bit
0FF00H
Port 0
P0
0FF01H
Port 1
P1
8 bits
R/W
On reset
16 bits
–
Undefined
–
0FF02H
Port 2
P2
Note 2
0FF03H
Port 3
P3
R/W
0FF04H
Port 4
P4
–
0FF05H
Port 5
P5
–
0FF06H
Port 6
P6
–
0FF07H
Port 7
P7
0FF08H
Port 8
P8
0FF09H
Port 9
P9
0FF10H
Timer register 0
TM0
Capture/compare register 00
CC00
Capture/compare register 01
R
–
–
–
–
R/W
–
R
–
–
0000H
R/W
–
–
Undefined
CC01
–
–
Capture/compare register 02
CC02
–
–
Capture/compare register 03
CC03
–
–
Timer register 1
TM1
R
–
–
0000H
Compare register 10
CM10
R/W
–
–
Undefined
Compare register 11
CM11
–
–
0FF20H
Port 0 mode register
PM0
–
0FF21H
Port 1 mode register
PM1
–
0FF22H
Port 2 mode register
PM2 Note 3
–
0FF23H
Port 3 mode register
PM3
–
0FF24H
Port 4 mode register
PM4
–
0FF25H
Port 5 mode register
PM5
–
0FF26H
Port 6 mode register
PM6
–
0FF29H
Port 9 mode register
PM9
–
0FF2FH
Port read control register
PRDC
–
0FF11H
0FF12H
0FF13H
0FF14H
0FF15H
0FF16H
0FF17H
0FF18H
0FF19H
0FF1AH
0FF1BH
0FF1CH
0FF1DH
0FF1EH
0FF1FH
0FF30H
Timer unit mode register 0
TUM0
–
0FF31H
Timer mode control register
TMC
–
FFH
00H
Notes 1. When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH
instruction is executed.
2. Bit 0 of P2 can only be read. Bits 1 through 7 can be read/written.
3. Bit 0 of PM2 is fixed to “1” by hardware.
23
µPD784054(A)
Table 6-1. Special Function Register List (2/4)
Address Note 1
Special Function Register (SFR) Name
Symbol
R/W
Bit units for manipulation
1 bit
8 bits
R/W
On reset
16 bits
0FF32H
Timer output control register 0
TOC0
–
0FF33H
Timer output control register 1
TOC1
–
0FF37H
Timer mode control register 4
TMC4
–
0FF38H
Prescaler mode register
PRM
–
–
0FF3AH
Prescaler mode register 4
PRM4
–
–
0FF3BH
Noise protection control register
NPC
–
0FF3CH
External interrupt mode register 0
INTM0
–
0FF3DH
External interrupt mode register 1
INTM1
–
0FF3EH
Interrupt valid edge flag register 1
IEF1
–
0FF3FH
Interrupt valid edge flag register 2
IEF2
–
0FF42H
Port 2 mode control register
PMC2 Note 2
–
0FF43H
Port 3 mode control register
PMC3
–
0FF49H
Port 9 mode control register
PMC9
–
0FF4EH
Pull-up resistor option register L
PUOL
–
0FF4FH
Pull-up resistor option register H
PUOH
–
0FF60H
Timer register 4
TM4
Compare register 40
CM40
Compare register 41
CM41
0FF6EH
A/D converter mode register
ADM
0FF70H
A/D conversion result register 0
ADCR0
0FF71H
A/D conversion result register 0H
ADCR0H
–
0FF72H
A/D conversion result register 1
ADCR1
–
0FF73H
A/D conversion result register 1H
ADCR1H
–
0FF74H
A/D conversion result register 2
ADCR2
–
0FF75H
A/D conversion result register 2H
ADCR2H
–
0FF76H
A/D conversion result register 3
ADCR3
–
0FF77H
A/D conversion result register 3H
ADCR3H
–
0FF78H
A/D conversion result register 4
ADCR4
–
A/D conversion result register 4H
ADCR4H
–
00H
Undefined
00H
R
–
–
0000H
R/W
–
–
Undefined
–
–
0FF61H
0FF62H
0FF63H
0FF64H
0FF65H
–
R
–
–
00H
Undefined
0FF71H
–
–
0FF73H
–
–
0FF75H
–
–
0FF77H
–
–
0FF79H
0FF79H
–
Notes 1. When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH
instruction is executed.
2. Bits 0, and 5 through 7 of PMC2 are fixed to “0” by hardware.
24
µPD784054(A)
Table 6-1. Special Function Register List (3/4)
Address Note 1
0FF7AH
Special Function Register (SFR) Name
Symbol
R/W
R
Bit units for manipulation
1 bit
8 bits
–
–
On reset
16 bits
A/D conversion result register 5
ADCR5
Undefined
0FF7BH
A/D conversion result register 5H
ADCR5H
–
0FF7CH
A/D conversion result register 6
ADCR6
–
0FF7DH
A/D conversion result register 6H
ADCR6H
–
0FF7EH
A/D conversion result register 7
ADCR7
–
0FF7FH
A/D conversion result register 7H
ADCR7H
–
0FF84H
Clocked serial interface mode register 1
CSIM1
0FF85H
Clocked serial interface mode register 2
CSIM2
–
0FF88H
Asynchronous serial interface mode register
ASIM
–
0FF89H
Asynchronous serial interface mode register 2
ASIM2
–
0FF8AH
Asynchronous serial interface status register ASIS
0FF8BH
Asynchronous serial interface status register 2
0FF7BH
–
–
0FF7DH
–
–
0FF7FH
0FF8CH
0FF8DH
–
R/W
–
R
00H
–
ASIS2
–
Serial receive buffer: UART0
RXB
–
–
Serial transmit shift register: UART0
TXS
W
–
–
Serial shift register: IOE1
SIO1
R/W
–
–
Serial receive buffer: UART2
RXB2
R
–
–
Serial transmit shift register: UART2
TXS2
W
–
–
Serial shift register: IOE2
SIO2
R/W
–
–
0FF90H
Baud rate generator control register
BRGC
–
–
0FF91H
Baud rate generator control register 2
BRGC2
–
–
Undefined
00H
0FFA8H
In-service priority register
ISPR
R
–
0FFAAH
Interrupt mode control register
IMC
R/W
–
80H
0FFACH
Interrupt mask register 0L
MK0L
–
FFH
0FFACH
Interrupt mask register 0
MK0
0FFADH
Interrupt mask register 0H
MK0H
–
0FFAEH
Interrupt mask register 1L
MK1L
–
0FFAEH
Interrupt mask register 1
MK1
Interrupt mask register 1H
MK1H
–
–
FFFFH
0FFADH
–
–
FFH
FFFFH
0FFAFH
0FFAFH
0FFC0H
0FFC2H
Standby control
registerNote 2
Watchdog timer mode
register Note 2
–
FFH
STBC
–
–
30H
WDM
–
–
00H
–
20H
–
AAH
0FFC4H
Memory expansion mode register
MM
0FFC7H
Programmable wait control register 1
PWC1
–
Notes 1. When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH
instruction is executed.
2. These registers can be written only by using dedicated instructions MOV STBC, #byte and MOV WDM,
#byte, and cannot be written by any other instructions.
25
µPD784054(A)
Table 6-1. Special Function Register List (4/4)
Address Note 1
0FFC8H
Special Function Register (SFR) Name
Symbol
Programmable wait control register 2
PWC2
Bus width specification register
BW
R/W
R/W
Bit units for manipulation
On reset
1 bit
8 bits
–
–
16 bits
AAAAH
–
–
Note 2
0FFC9H
0FFCAH
0FFCBH
0FFCFH
Oscillation stabilization time specification register OSTS
0FFD0H0FFDFH
External SFR area
0FFE0H
–
–
00H
–
–
Undefined
Interrupt control register (INTOV0)
OVIC0
–
43H
0FFE1H
Interrupt control register (INTOV1)
OVIC1
–
0FFE2H
Interrupt control register (INTOV4)
OVIC4
–
0FFE3H
Interrupt control register (INTP0)
PIC0
–
0FFE4H
Interrupt control register (INTP1)
PIC1
–
0FFE5H
Interrupt control register (INTP2)
PIC2
–
0FFE6H
Interrupt control register (INTP3)
PIC3
–
0FFE7H
Interrupt control register (INTP4)
PIC4
–
0FFE8H
Interrupt control register (INTP5)
PIC5
–
0FFE9H
Interrupt control register (INTP6)
PIC6
–
0FFEAH
Interrupt control register (INTCM10)
CMIC10
–
0FFEBH
Interrupt control register (INTCM11)
CMIC11
–
0FFF0H
Interrupt control register (INTCM40)
CMIC40
–
0FFF1H
Interrupt control register (INTCM41)
CMIC41
–
0FFF2H
Interrupt control register (INTSER)
SERIC
–
0FFF3H
Interrupt control register (INTSR)
SRIC
–
Interrupt control register (INTCSI1)
CSIIC1
–
0FFF4H
Interrupt control register (INTST)
STIC
–
0FFF5H
Interrupt control register (INTSER2)
SERIC2
–
0FFF6H
Interrupt control register (INTSR2)
SRIC2
–
Interrupt control register (INTCSI2)
CSIIC2
–
0FFF7H
Interrupt control register (INTST2)
STIC2
–
0FFF8H
Interrupt control register (INTAD)
ADIC
–
Notes 1. When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH
instruction is executed.
2. The value of this register differs on reset depending on the setting of the BWD pin.
BWD = 0: 0000H
BWD = 1: 00FFH
26
µPD784054(A)
7. PERIPHERAL HARDWARE FUNCTIONS
7.1 Ports
The µ PD784054(A) has the ports shown in Figure 7-1. These ports can be used for various control operations.
The function of each port is shown in Table 7-1. Ports 0, 4 through 6, and 9 can be connected to an internal
pull-up resistor via software when they are set in the input mode.
Figure 7-1. Port Configuration
P00
P50
Port 0
P03
Port 5
P10
Port 1
P12
P57
P20
P60
Port 6
P63
Port 2
P27
P30
P70-P77
8
Port 7
P80-P87
8
Port 8
Port 3
P37
P40
Port 4
P90
P47
Port 9
P94
27
µPD784054(A)
Table 7-1. Port Function
Port Name
Pin Name
Port 0
P00-P03
Port 1
P10-P12
Port 2
P20-P27
Function
Specification of Pull-Up Resistor by Software
Can be set in input or output mode bit-wise.
All pins in input mode
–
Can be set in input or output mode bit-wise
(however, P20 is input-only).
Port 3
P30-P37
Port 4
P40-P47
Port 5
P50-P57
Port 6
P60-P63
Port 7
P70-P77
Port 8
P80-P87
Port 9
P90-P94
Can be set in input or output mode bit-wise.
All pins in input mode
Input port
–
Can be set in input or output mode bit-wise.
All pins in input mode
7.2 Clock Generation Circuit
The clock generation circuit generates and controls the internal system clock (CLK) to be supplied to the CPU.
Figure 7-2 shows the configuration of this circuit.
Figure 7-2. Block Diagram of Clock Generation Circuit
Divider
X1
Clock
generation
circuit
fXX or fX
X2
Remark fXX : crystal/ceramic oscillation frequency
fX
: external clock frequency
fCLK : internal system clock frequency
28
1/2
fCLK
Internal system clock (CLK)
µPD784054(A)
Figure 7-3. Example of Using Oscillation Circuit
(1) Crystal/ceramic oscillation
µ PD784054(A)
VSS
X1
X2
(2) External clock input
(a) EXTC bit of OSTS = 1
(b) EXTC bit of OSTS = 0
µ PD784054(A)
µ PD784054(A)
X1
X1
µPD74HC04, etc.
X2
Caution
Leave unconnected
X2
When using the clock oscillation circuit, wire the portion enclosed by the dotted line in the above
figure as follows to avoid adverse effects of wiring capacitance.
• Keep the wiring length as short as possible.
• Do not cross the wiring with other signal lines.
• Do not route the wiring in the vicinity of lines through which a high alternating current flows.
• Always keep the ground point of the capacitor of the oscillation circuit at the same potential
as VSS. Do not ground the capacitor to a ground pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
29
µPD784054(A)
7.3 Timer
The µPD784054(A) has three 16-bit timer units.
Because a total of 11 interrupt requests are supported, the timer units can be used as 11-channel timers.
Table 7-2. Timer Function
Name
Timer 0
Timer 1
Timer 4
Item
Operation mode
Interval timer
4ch
2ch
2ch
Function
Timer output
4ch
2ch
–
Toggle output
–
Set/reset output
–
Overflow interrupt
Number of interrupt requests
30
5
3
3
µPD784054(A)
Figure 7-4. Block Diagram of Timer
Timer 0
fCLK
Prescaler
INTP0
Edge
detection
INTP1
Edge
detection
INTP2
Edge
detection
Timer register 0
(TM0)
INTOV0
INTP0
Coinci-
Capter/compare register 00 dence
(CC00)
INTP1
Coinci-
Capter/compare register 01 dence
(CC01)
INTP2
Coinci-
Capter/compare register 02 dence
(CC02)
INTP3
INTP3
Edge
detection
Coinci-
Capter/compare register 03 dence
(CC03)
INTCC00
TO00
Pulse
INTCC01 output
control
TO01
INTCC02
TO02
Pulse
INTCC03 output
control
TO03
Prescaler: f CLK /4, f CLK /8, f CLK/16, f CLK /32, fCLK /64
Timer 1
Clear
control
fCLK
Prescaler
Timer register 1
(TM1)
INTOV1
Coinci-
INTCM10
Compare register 10 dence
(CM10)
TO10
Pulse
output
control
Coinci-
Compare register 11 dence
(CM11)
TO11
INTCM11
Prescaler: f CLK /8, f CLK /16, fCLK /32, f CLK/64, f CLK /128
Timer 4
Clear
control
fCLK
Prescaler
Timer register 4
(TM4)
INTOV4
Coinci-
Compare register 40 dence
(CM40)
INTCM40
Coinci-
Compare register 41 dence
(CM41)
INTCM41
Prescaler: f CLK /4, f CLK /8, f CLK/16, f CLK /32, fCLK /64
31
µPD784054(A)
7.4 A/D Converter
The µPD784054(A) has an analog-to-digital (A/D) converter with 16 multiplexed analog input pins (ANI0
through ANI15). This converter is of successive approximation type.
The result of conversion is stored to and retained in 10-bit A/D conversion result registers (ADCR0 through
ADCR7). Therefore, high-speed, high-accuracy conversion can be performed (conversion time: about 13.5 µ s:
f CLK = 12.5 MHz).
The A/D conversion operation can be started in the following modes:
• Hardware start : Conversion is started by trigger input (INTP4).
• Software start : Conversion is started by setting a bit of the A/D converter mode register (ADM).
The A/D converter operates in the following modes:
•
Scan mode
: Sequentially selects two or more analog input pins to obtain data to be converted from all
•
Select mode
: Selects only one analog input pin to obtain successive conversion values.
the pins.
The above modes and stopping the conversion are specified by ADM.
When the result of conversion is transferred to ADCRn (n = 0 to 7), interrupt request INTAD is generated.
By using this interrupt request and by using macro service, the converted value can be successively transferred
to memory.
Figure 7-5. Block Diagram of A/D Converter
ANI0
ANI1
ANI2
ANI3
ANI4
ANI5
ANI6
ANI7
Input
selector
Series resistor string
Sample & hold circuit
AVREF
R/2
Input
selector
INTP4
Edge
detection
circuit
Voltage
comparator
Successive approximation
register (SAR)
Conversion
trigger
INTAD
Control
circuit
R/2
AVSS
10
Trigger enable
ADCR0
ADCR1
ADCR2
ADCR3
ADCR4
ADCR5
ADCR6
ADCR7
A/D converter mode register
(ADM)
8
10
Internal bus
32
R
Tap selector
ANI8
ANI9
ANI10
ANI11
ANI12
ANI13
ANI14
ANI15
A/D conversion result register
µPD784054(A)
7.5 Serial Interface
The µPD784054(A) is provided with two independent serial interface channels.
• Asynchronous serial interface (UART)/3-wire serial I/O (IOE) × 2
By using these serial interface channels, communication with an external device and local communication
within a system can be performed at the same time (refer to Figure 7-6).
Figure 7-6. Example of Serial Interface
µ PD784054(A) master
(UART)
RS-232C
driver/
receiver
SO2
RxD
SI2
TxD
SCK2
Port
INTPn
Port
Note
slave
(3-wire serial I/O)
SI
SO
Note
SCK
Port
INT
Handshake line
33
µPD784054(A)
7.5.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)
Two serial interface channels from which asynchronous serial interface mode and three-wire serial I/O mode
can be selected are provided.
(1) Asynchronous serial interface mode
In this mode, 1-byte data following a start bit is transferred or received.
The internal baud rate generator allows communication in a wide range of baud rates.
The clock input to the ASCK pin can also be divided to define a baud rate.
The baud rate generator can also set a baud rate conforming to the MIDI standard (31.25 kbps).
Figure 7-7. Block Diagram in Asynchronous Serial Interface Mode
Internal bus
Receive buffer
RXB, RXB2
Receive shift
register
RxD, RxD2
Transmit shift
register
TXS, TXS2
TxD, TxD2
Receive control
Parity check
Baud rate generator
ASCK, ASCK2
Selector
1/2m
fCLK
1/2n+1
1/2m
Remark fCLK: internal system clock
n = 0 to 11
m = 16 to 30
34
INTSR,
INTSR2
INTSER,
INTSER2
Transmit control
Parity append
INTST, INTST2
µPD784054(A)
(2) 3-wire serial I/O mode
This mode is to start transmission when the master device makes a serial clock active and to communicate
1-byte data in synchronization with this clock.
The interface in this mode communicates with devices that have conventional clocked serial interface.
Basically, communication is performed by using three lines: serial clock (SCK) and two serial data (SI and
SO) lines. To connect two or more devices, a handshake line is necessary.
Figure 7-8. Block Diagram in 3-Wire Serial I/O Mode
Internal bus
Direction control circuit
SIO1, SIO2
Shift register
SI1, SI2
Output latch
SO1, SO2
Serial clock
control circuit
Interrupt
generation circuit
Selector
Serial clock counter
SCK1, SCK2
1/2m
INTCSI1,
INTCSI2
1/2n+1
fCLK
Remark fCLK: internal system clock
n = 0 to 11
m = 1, 16 to 30
35
µPD784054(A)
7.6 Edge Detection Circuit
The interrupt input pins (NMI and INTP0 through INTP6) input not only interrupt requests but also trigger
signals of the internal hardware. Because all the interrupts and internal hardware operate by detecting specific
edges of the input signals, a function to detect edges is provided. In addition, a noise rejection function is also
provided to prevent detection of a wrong edge due to noise.
Pin
Detectable Edge
Noise Rejected by:
NMI
Either rising or falling edge
Analog delay
INTP0-INTP6
Either rising or falling edge, or both edges
Clock sampling Note
Note
A sampling clock can be selected.
7.7 Watchdog Timer
A watchdog timer is provided to detect a hang-up of the CPU. This watchdog timer generates a non-maskable
interrupt unless it is cleared by software within a specified interval time. Once the watchdog timer has been
enable to operate, its operation cannot be stopped by software. Moreover, it can be specified whether the
interrupt by the watchdog timer or the interrupt from the NMI pin takes precedence.
Figure 7-9. Block Diagram of Watchdog Timer
fCLK/211
fCLK
Divider
fCLK/212
fCLK/213
WDT CLR
36
Selector
fCLK/29
Watchdog timer (8 bits)
Overflow
INTWDT
µPD784054(A)
8. INTERRUPT FUNCTION
The three types of interrupt processing shown in Table 8-1 can be selected.
Table 8-1. Interrupt Request Processing
Processing Mode
Processed by:
Vectored interrupt
Software
Context switching
Macro service
Firmware
Processing
Contents of PC and PSW
Branches to and executes processing routine
(any processing contents).
Saves and restores to/from
stack.
Automatically selects register bank, and branches
to and executes processing routine (any
processing contents).
Saves or restores to/from
fixed area in register bank.
Executes data transfer between memory and I/O
(any processing contents).
Retained
8.1 Interrupt Source
As interrupt sources, twenty-three sources listed in Table 8-2, BRK instruction execution, and operand error
are available.
Four priority levels of interrupt processing can be selected, so that nesting during interrupt processing and
the levels of interrupt requests that are generated at the same time can be controlled. However, nesting always
advances with macro service (i.e., nesting is not kept pending).
The default priority is the priority (fixed) of the processing for the interrupt requests that have occurred at
the same time and have the same priority level (refer to Table 8-2).
37
µPD784054(A)
Table 8-2. Interrupt Sources
Type
Default
Source
Priority
Software
–
Name
BRK instruction
Trigger
Execution of instruction
Internal/
Macro
External
Service
–
–
BRKCS instruction
Operand error
If result of exclusive OR of operands byte and byte
is not FFH when MOV STBC, #byte, MOV WDM,
#byte, or LOCATION instruction is executed
NMI
Detection of pin input edge
External
INTWDT
Overflow of watchdog timer
Internal
0 (highest)
INTOV0
Overflow of timer 0
1
INTOV1
Overflow of timer 1
2
INTOV4
Overflow of timer 4
3
INTP0
Detection of pin input edge (CC00 capture trigger)
External
INTCC00
Generation of TM0-CC00 coincidence signal
Internal
INTP1
Detection of pin input edge (CC01 capture trigger)
External
INTCC01
Generation of TM0-CC01 coincidence signal
Internal
INTP2
Detection of pin input edge (CC02 capture trigger)
External
INTCC02
Generation of TM0-CC02 coincidence signal
Internal
INTP3
Detection of pin input edge (CC03 capture trigger)
External
Non-
–
maskable
Maskable
4
5
6
38
INTCC03
Generation of TM0-CC03 coincidence signal
Internal
7
INTP4
Detection of pin input edge
(A/D converter conversion start trigger)
External
8
INTP5
Detection of pin input edge
9
INTP6
Detection of pin input edge
10
INTCM10
Generation of TM1-CM10 coincidence signal
11
INTCM11
Generation of TM1-CM11 coincidence signal
12
INTCM40
Generation of TM4-CM40 coincidence signal
13
INTCM41
Generation of TM4-CM41 coincidence signal
14
INTSER
Occurrence of UART0 reception error
15
INTSR
End of UART0 reception
INTCSI1
End of 3-wire serial I/O1 transfer
16
INTST
End of UART0 transfer
17
INTSER2
Occurrence of UART2 reception error
18
INTSR2
End of UART2 reception
INTCSI2
End of 3-wire serial I/O2 transfer
19
INTST2
End of UART2 transfer
20 (lowest)
INTAD
End of A/D converter conversion (transfer to ADCR)
Internal
µPD784054(A)
8.2 Vectored Interrupt
Execution branches to a processing routine by using the memory contents of the vector table address
corresponding to an interrupt source as the branch destination address.
The following operations are performed so that the CPU processes the interrupt:
• On branch
: Saves status of CPU (contents of PC and PSW) to stack
• On returning : Restores status of CPU from stack
Execution is returned from the processing routine to the main routine by the RETI instruction.
The branch destination address must be in a range of 0 to FFFFH.
Table 8-3. Vector Table Address
Interrupt Source
Vector Table Address
Interrupt Source
Vector Table Address
BRK instruction
003EH
INTP5
0016H
Operand error
003CH
INTP6
0018H
NMI
0002H
INTCM10
001AH
INTWDT
0004H
INTCM11
001CH
INTOV0
0006H
INTCM40
0026H
INTOV1
0008H
INTCM41
0028H
INTOV4
000AH
INTSER
002AH
INTP0
000CH
INTSR
002CH
INTCC00
INTP1
INTCSI1
000EH
INTST
002EH
INTSER2
0030H
0010H
INTSR2
0032H
0012H
INTST2
0034H
INTAD
0036H
INTCC01
INTP2
INTCC02
INTP3
INTCSI2
INTCC03
INTP4
0014H
39
µPD784054(A)
8.3 Context Switching
A specific register bank is selected by hardware when an interrupt request is generated or when the BRKCS
instruction is executed.
Execution branches to the vector address stored in advance to the selected register bank, and the current
contents of the program counter (PC) and program status word (PSW) are stacked to the register bank.
The branch destination address must be in a range of 0 to FFFFH.
Figure 8-1. Context Switching Operation When Interrupt Request Is Generated
Register bank
0000B
< 7 > Transfer
(0 to 7)
Register bank n (n = 0 to 7)
PC15_0
PC19-16
< 6 > Exchange
< 2 > Save
(bits 8 through
11 of temporary
register)
< 5 > Save
A
X
B
C
R5
R4
R7
R6
V
VP
U
UP
< 3 > Select register bank (RBS0 to RBS2←n)
Temporary register
< 1 > Save
PSW
40
T
D
E
W
H
L
< 4 > RSS←0
IE ←0
µPD784054(A)
8.4 Macro Service
The µPD784054(A) has a total of seven types of macro service. Each macro service is outlined below.
(1) Counter mode: EVTCNT
• Operation (a) Increments or decrements an 8-bit macro service counter (MSC).
(b) A vectored interrupt request is generated when the value of MSC reaches 0.
+1 / _1
MSC
• Application example: Event counter, measurement of number of times of capture
(2) Block transfer mode: BLKTRS
• Operation (a) Transfers block data between the buffer and an SFR specified by the SFR pointer
(SFR.PTR).
(b) The transfer source and destination can be an SFR or buffer. The length of the data to be
transferred can be byte or word.
(c) The number of times data is to be transferred (block size) is specified by MSC.
(d) MSC is auto-decremented (–1) each time the macro service has been executed.
(e) When the value of MSC has reached 0, a vectored interrupt request is generated.
SFR.PTR
_1
Buffer N
MSC
Buffer 1
SFR
Internal bus
• Application example: Data transfer/reception of serial interface
41
µPD784054(A)
(3) Block transfer mode (with memory pointer): BLKTRS-P
• Operation This is the block transfer mode in (2) with a memory pointer (MEM.PTR) appended. The
appended buffer area of MEM.PTR can be freely set on the memory space.
Remark MEMP is auto-incremented (+1: byte data transfer/+2: word data transfer) each time the macro
service has been executed.
SFR.PTR
_1
MSC
+1 / +2
MEM.PTR
Buffer N
Buffer 1
SFR
Internal bus
• Application example: Same as (2)
(4) Data differential mode: DTADIF
• Operation (a) Calculates the difference between the contents of the SFR specified by SFR pointer
(SFR.PTR) (current value) and the contents of the SFR loaded to the last data buffer (LDB).
(b) Stores the result of the calculation to a predetermined buffer area.
(c) Stores the contents of the current value of SFR to LDB.
(d) The number of times the data is to be transferred (block size) is specified by MSC. The
value of MSC is auto-decremented (–1) each time the macro service has been executed.
(e) When the value of MSC has reached 0, a vectored interrupt request is generated.
Remark The differential calculation can be performed only an SFR of 16-bit configuration.
SFR.PTR
_1
MSC
SFR
LDB
Buffer N
Buffer 1
Differential calculation
Internal bus
• Application example: Measurement of period and pulse width by capture register of timer 0
42
µPD784054(A)
(5) Data differential mode (with memory pointer): DTADIF-P
• Operation This is the data differential mode in (4) with a memory pointer (MEM.PTR) appended. The
appended MEM.PTR can set a buffer area to which the differential data is to be stored on the
memory space freely.
Remarks 1. The differential calculation can be performed only an SFR of 16-bit configuration.
2. The buffer is specified by the result of an operation between MEM.PTR and MSCNote. The
value of MEM.PTR is not updated after the data has been transferred.
Note
MEM.PTR – (MSC × 2) + 2
SFR.PTR
Buffer N
_1
MSC
SFR
LDB
MEM.PTR
Differential calculation
Buffer 1
Internal bus
• Application example: Same as (4)
(6) CPU monitoring mode0: SFLF0
• Operation (a) Checks the internal operation of the CPU.
(b) When the blocks are operating normally, the value given by subtracting 10 from the initial
value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
• Application example: Used for self checking of the CPU during normal operation.
(7) CPU monitoring mode1: SELF1
• Operation (a) Checks the internal operation of the CPU.
(b) When the blocks are operating normally, the value given by subtracting 8 from the initial
value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
• Application example: Used for self checking of the CPU during normal operation.
43
µPD784054(A)
9. LOCAL BUS INTERFACE
The µ PD784054(A) can be connected to an external memory or I/O (memory mapped I/O), supporting a 1Mbyte memory space (refer to Figure 9-1).
Figure 9-1. Example of Local Bus Interface (with external 8-bit bus specified)
Address bus
A16-A19
Decoder
µ PD784054(A)
RD
LWR
SRAM
AD0-AD7
ASTB
PROM
Data bus
Latch
Address bus
AD8-AD15
Gate array
I/O expansion
Centronics I/F, etc.
44
Character
generator
µPD784054(A)
9.1 Memory Expansion
The external program memory or data memory can be expanded from 256 bytes up to 1M bytes in seven
steps.
When an external device is connected, the address/data bus and read/write strobe signals are controlled by
using ports 4 through 6 and P90 through P93 pins. The functions of these ports and pins are set by the memory
expansion mode register (MM).
Table 9-1. Setting of Pin Function
Memory Expansion
Pin Function
Mode Register
Port 4
Port 5
Port 6
MM0-MM3
P40-P47
P50-P57
P60-P63
Port mode
General-purpose port
External memory
expansion mode
AD0-AD7
AD8 to AD15 are set stepwise.
Rest of pins can be used as
general-purpose port pins.
P90-P93
A16 through A19 are set
stepwise.
Rest of pins can be used as
general-purpose port pins.
P90
P91
P92
P93
:
:
:
:
RD
LWR
HWR
ASTB
Remark AD8 through AD15 are used as address bus.
The number of pins of ports 5 and 6 that are used as address bus pins can be changed according to the size
of the external memory connected (external address space), so that the external memory can be expanded
stepwise. The pins not used as address bus pins can be used as general-purpose I/O port pins (refer to Table
9-2). The external address space can be set in seven steps by MM.
Table 9-2. Operations of Ports 5 and 6 (in external memory expansion mode)
Port 5
P50
P51
P52
P53
P54
Port 6
P55
P56
P57
P60
P61
P62
External address space
P63
General-purpose port
256 bytes or less Note
AD8
1K bytes or less Note
AD9
AD10
4K bytes or less Note
AD11
AD12
16K bytes or less Note
AD13
AD14
AD15
64K bytes or less
A16
A17
256K bytes or less
A18
Note
A19
1M bytes or less
When the external 16-bit bus is specified, do not set MM such that the external address space is of this size.
Caution
When the external 16-bit bus is specified, set MM such that all the pins of port 5 (P50 through P57)
are used as AD pins (AD8 through AD15).
45
µPD784054(A)
9.2 Memory Space
The 1M-byte memory space is divided into the following eight spaces of logical addresses. Each space can
be controlled by using the programmable wait function and bus sizing function.
Figure 9-2. Memory Space
F F F F FH
512K bytes
8 0 0 0 0H
7 F F F FH
256K bytes
4 0 0 0 0H
3 F F F FH
128K bytes
2 0 0 0 0H
1 F F F FH
64K bytes
1 0 0 0 0H
0 F F F FH
16K bytes
0C0 0 0H
0 B F F FH
16K bytes
0 8 0 0 0H
0 7 F F FH
16K bytes
0 4 0 0 0H
0 3 F F FH
16K bytes
0 0 0 0 0H
9.3 Programmable Wait
A wait state can be inserted to each of the eight memory spaces while the RD, LWR, and HWR signals are
active. Even if memories with different access times are connected, therefore, the overall efficiency of the system
is not degraded.
In addition, an address wait function that extends the active period of the ASTB signal is also available to
extend the address decode time (this function can be set to all the spaces).
9.4 Bus Sizing Function
The µ PD784054(A) can change the external data bus width between 8 and 16 bits when an external device
is connected. Even if the memory space is divided by eight, the bus width of each memory space can be specified
independently.
46
µPD784054(A)
10. STANDBY FUNCTION
The µ PD784054(A) has the following standby function modes that reduce the power consumption of the chip.
• HALT mode
: This mode stops the operating clock of the CPU. It can reduce the average
power consumption through intermittent operation by combination of a normal
operation and this mode.
• IDLE mode
: This mode stops the entire system with the operation of the oscillation circuit
continuing. Normal program operation can be restored from this mode with
the power consumption close to that in the STOP mode and time equivalent
to that in the HALT mode.
• STOP mode
: This mode stops the oscillator and stops all the internal operations of the chip
to minimize the power consumption to the level of only leakage current.
• Standby function invalid mode : This mode makes the standby function (HALT/IDLE/STOP modes) invalid by
asserting the MODE1 pin high. This mode is useful when the standby mode
must not be used because of the application.
These modes are programmable.
Macro service can be started from the HALT mode.
Figure 10-1. Standby Status Transition
MODE1=H
H
E1=
MOD
L
E1=
MOD
Macro service request
Program
operation
End of first processing
End of macro service
n
Interrupt request of
masked interrupt
NM
ID
RE LE
SE set
T tin
NM inp g
ut
I
e
Note
IDLE
(standby)
t
No
STOP
(standby)
g
ttin
se
t
P
pu
O
ST ET in
S
RE
t
es
qu
ut
re
pt
inp g
rru ET ttin
te
S se
In
RE LT
HA
I
Waits for
stabilization of
oscillation
ilizatio
on stab
Oscillati expires
time
Macro
service
Ma
En cro
d o se
f fi rvic
e
rst
pr req
u
oc
es est
sin
g
MODE1=L
Standby
function
invalid
HALT
(standby)
Only unmasked interrupt request
Remark Only external input of NMI is valid. The watchdog timer cannot be used to release the standby mode
(STOP/HALT/IDLE).
47
µPD784054(A)
11. RESET FUNCTION
When a low level is input to the RESET pin, the internal hardware is initialized (reset status).
When the RESET signal goes high, the following data is set to the program counter (PC).
• Low-order 8 bits of PC :
contents of address 0000H
• Middle 8 bits of PC
contents of address 0001H
:
• High-order 4 bits of PC:
0
Program execution is started from the set contents of the PC. Therefore, the contents of the PC are assumed
as a branch destination address, and the program can be reset and started from any address.
Set the contents of each register by program as necessary.
To prevent malfunctioning due to noise, a noise rejection circuit is provided to the RESET input circuit. This
noise rejection circuit is a sampling circuit with analog delay.
Figure 11-1. Accepting Reset
Delay
Delay
Delay
PC initialization
Instruction execution
at reset start address
RESET
(input)
Internal reset signal
Reset starts
Reset ends
Keep the RESET signal active until the oscillation stabilization time (about 40 ms) elapses when executing
a reset operation on power application or when releasing the STOP mode by reset.
Figure 11-2. Reset Operation on Power Application
Oscillation stabilization time
Delay
Initializes PC
VDD
RESET
(input)
Internal reset signal
Reset ends
48
Instruction execution at reset start address
µPD784054(A)
12. INSTRUCTION SET
(1) 8-bit instructions (( ): combination realized by writing A as r)
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,
ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC,
CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA
Table 12-1. Instructions for 8-Bit Addressing
2nd Operand
#byte
A
r
saddr
r’
saddr’
sfr
!addr16
mem
r3
[WHL+]
!!addr24
[saddrp]
PSWL
[WHL–]
1st Operand
A
[%saddrg]
PSWH
(MOV)
MOV
(MOV)Note 6
MOV
(MOV)
MOV
MOV
ADDNote 1 (XCH)
XCH
(XCH)Note 6
(XCH)
(XCH)
XCH
(XCH)
ADDNote 1
(ADD)Note 1
(MOV)
(ADD)Note 1 (ADD)Note 1 (ADD)Note 1, 6 (ADD)Note 1 ADDNote 1
r
MOV
(MOV)
MOV
MOV
MOV
MOV
ADDNote 1 (XCH)
XCH
XCH
XCH
XCH
(ADD)Note 1 ADDNote 1
ADDNote 1
ADDNote 1
(MOV)Note 6 MOV
MOV
n
None Note 2
(MOV)
RORNote 3
MULU
DIVUW
INC
DEC
saddr
MOV
ADDNote 1 (ADD)Note 1 ADDNote 1
sfr
MOV
MOV
INC
XCH
DEC
ADDNote 1
DBNZ
MOV
PUSH
ADDNote 1 (ADD)Note 1 ADDNote 1
POP
CHKL
CHKLA
!addr16
MOV
(MOV)
!!addr24
ADDNote 1
mem
MOV
[saddrp]
ADDNote 1
MOV
[%saddrg]
mem3
ROR4
ROL4
r3
MOV
MOV
PSWL
PSWH
B, C
DBNZ
STBC, WDM
MOV
[TDE+]
(MOV)
[TDE–]
(ADD)Note 1
MOVBKNote 5
MOVMNote 4
Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.
2. Either the second operand is not used, or the second operand is not an operand address.
3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
6. If saddr is saddr2 in this combination, some instructions have a short code length.
49
µPD784054(A)
(2) 16-bit instructions (( ): combination realized by writing AX as rp)
MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH,
POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW
Table 12-2. Instructions for 16-Bit Addressing
2nd Operand
#word
AX
rp
saddrp
rp’
saddrp’
sfrp
!addr16
!!addr24
1st Operand
AX
mem
[WHL+]
byte
n
NoneNote 2
SHRW
MULWNote 4
[saddrp]
[%saddrg]
(MOVW)
ADDW
Note 1
(MOVW)
(MOVW)
(MOVW)Note 3
MOVW
(MOVW)
MOVW
(MOVW)
(XCHW)
(XCHW)
(XCHW)Note 3
(XCHW)
XCHW
XCHW
(XCHW)
(ADDW)Note 1 (ADDW)Note 1 (ADDW)Note 1, 3 (ADDW)Note 1
rp
MOVW
ADDW
Note 1
(MOVW)
MOVW
(XCHW)
XCHW
(ADDW)Note 1 ADDWNote 1
saddrp
MOVW
ADDW
Note 1
MOVW
MOVW
XCHW
XCHW
ADDWNote 1
ADDWNote 1
MOVW
SHLW
INCW
DECW
(MOVW)Note 3 MOVW
MOVW
INCW
(ADDW)Note 1 ADDWNote 1
XCHW
DECW
ADDWNote 1
sfrp
MOVW
MOVW
MOVW
PUSH
ADDWNote 1 (ADDW)Note 1 ADDWNote 1
!addr16
MOVW
(MOVW)
POP
MOVW
MOVTBLW
!!addr24
mem
MOVW
[saddrp]
[%saddrg]
PSW
PUSH
POP
SP
ADDWG
SUBWG
post
PUSH
POP
PUSHU
POPU
[TDE+]
(MOVW)
SACW
byte
MACW
MACSW
Notes 1. SUBW and CMPW are the same as ADDW.
2. Either the second operand is not used, or the second operand is not an operand address.
3. If saddrp is saddrp2 in this combination, some instructions have a short code length.
4. MULUW and DIVUX are the same as MULW.
50
µPD784054(A)
(3) 24-bit instructions (( ): combination realized by writing WHL as rg)
MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP
Table 12-3. Instructions for 24-Bit Addressing
2nd Operand
#imm24
WHL
rg
!!addr24
(MOVG)
(MOVG)
(MOVG)
(ADDG)
(MOVG)
(MOVG)
(ADDG)
(ADDG)
ADDG
(SUBG)
(SUBG)
(SUBG)
SUBG
MOVG
(MOVG)
MOVG
MOVG
ADDG
(ADDG)
ADDG
DECG
SUBG
(SUBG)
SUBG
PUSH
saddrg
(MOVG)
MOVG
!!addr24
(MOVG)
MOVG
mem1
MOVG
1st Operand
WHL
rg
mem1
[%saddrg]
NoneNote
saddrg
SP
rg’
MOVG
MOVG
MOVG
MOVG
INCG
POP
[%saddrg]
SP
MOVG
MOVG
MOVG
INCG
DECG
Note
Either the second operand is not used, or the second operand is not an operand address.
51
µPD784054(A)
(4) Bit manipulation instructions
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BCLR, BFSET
Table 12-4. Addressing of Bit Manipulation Instructions
2nd Operand
CY
saddr.bit
/saddr.bit
sfr.bit
/sfr.bit
A.bit
/A.bit
X.bit
/X.bit
PSWL.bit
/PSWL.bit
PSWH.bit
/PSWH.bit
mem2.bit
/mem2.bit
!addr16.bit
/!addr16.bit
1st Operand
!!addr24.bit
/!!addr24.bit
CY
MOV1
AND1
AND1
OR1
OR1
NoneNote
NOT1
SET1
CLR1
XOR1
saddr.bit
MOV1
NOT1
sfr.bit
SET1
A.bit
CLR1
X.bit
BF
PSWL.bit
BT
PSWH.bit
BTCLR
mem2.bit
BFSET
!addr16.bit
!!addr24.bit
Note
Either the second operand is not used, or the second
operand is not an operand address.
52
µPD784054(A)
(5) Call/return/branch instructions
CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC,
BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ
Table 12-5. Addressing for Call/Return/Branch Instructions
Operand of
$addr20
$!addr20
!addr16
!!addr20
rp
rg
[rp]
[rg]
!addr11
[addr5]
RBn
None
instruction
address
Basic
BCNote
CALL
CALL
CALL
CALL
CALL
CALL
CALL
instruction
BR
BR
BR
BR
BR
BR
BR
BR
Compound
BF
instruction
BT
CALLF
CALLT
BRKCS
BRK
RET
RETCS
RETI
RETCSB
RETB
BTCLR
BFSET
DBNZ
Note
BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the
same as BC.
(6) Other instructions
ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS
53
µPD784054(A)
13. ELECTRICAL SPECIFICATIONS
(1) Electrical specifications of µPD784054(A) (1/6)
Absolute Maximum Ratings (TA = 25 ˚C)
Parameter
Supply voltage
Symbol
Conditions
Ratings
V DD
–0.5 to +7.0
V
AV DD
–0.5 to V DD + 0.5
V
AV SS
–0.5 to +0.5
V
–0.5 to V DD + 0.5 ≤ 7.0
V
Input voltage
VI
Output voltage
VO
Low-level output current
I OL
High-level output current
I OH
Analog input voltage
V IAN
Note 1
–0.5 to V DD + 0.5
V
15
mA
Total of all output pins
150
mA
All output pins
–10
mA
All output pins
Total of all output pins
A/D converter reference
Unit
Note 2
AV REF
input voltage
–100
mA
AV DD > V DD
–0.5 to V DD + 0.5
V
V DD ≥ AV DD
–0.5 to AV DD + 0.5
AV DD > V DD
–0.5 to V DD + 0.5
V DD ≥ AV DD
–0.5 to AV DD + 0.5
V
Operating temperature
TA
–40 to +85
˚C
Storage temperature
T stg
–65 to +150
˚C
Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15
Caution
If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality
of the product may be impaired. The absolute maximum ratings are values that may physically
damage the product(s). Be sure to use the product(s) within the ratings.
Recommended Operating Conditions
Oscillation Frequency
TA
V DD
8 MHz ≤ f XX ≤ 25 MHz
–40 to +85 ˚C
4.5 to 5.5 V
Capacitance (TA = 25 ˚C, VSS = VDD = 0 V)
MAX.
Unit
Input capacitance
Parameter
CI
f = 1 MHz
10
pF
Output capacitance
CO
0 V except measured pins
10
pF
I/O capacitance
C IO
10
pF
54
Symbol
Conditions
MIN.
TYP.
µPD784054(A)
(1) Electrical specifications of µPD784054(A) (2/6)
Oscillation Circuit Characteristics (TA = –40 to +85 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Resonator
Recommended Circuit
Ceramic resonator or
crystal resonator
X1
VSS
C1
MIN.
MAX.
Unit
8
25
MHz
X1 input frequency (f X)
8
25
MHz
X1 input rise, fall time
0
5
ns
X1 input high-, low-level
width
20
105
ns
X2
C2
External clock
X1
Item
Oscillation frequency (fXX )
X2
OpenNote
HCMOS inverter
Note
When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse
phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
Caution
When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in
the diagram above as follows to prevent adverse influence from wiring capacitance:
• Keep the wiring length as short as possible.
• Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity
of a line through which a high alternating current flows.
• Always keep the ground potential for the capacitor in the oscillation circuit at the same
potential as VSS. Do not ground the capacitor to a ground pattern through which a high current
flows.
• Do not extract any signal from the oscillation circuit.
55
µPD784054(A)
(1) Electrical specifications of µPD784054(A) (3/6)
DC Characteristics (TA = –40 to +85˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
MAX.
Unit
0
0.8
V
Note 1
2.2
V DD
V
V IH2
Note 2
0.8 V DD
V DD
Low-level output voltage
V OL
I OL = 2.0 mA
High-level output voltage
V OH
I OH = –400 µ A
Low-level input voltage
V IL
High-level input voltage
V IH1
Input leakage current
Analog pin input leakage current
Conditions
MIN.
TYP.
0.45
V DD – 1.0
V
V
I LI
Note 3
0 V ≤ V I ≤ V DD
±10
µA
I LIAN
Note 4
0 V ≤ V I ≤ AV DD
±1
µA
Output leakage current
I LO
0 V ≤ V O ≤ V DD
±10
µA
V DD supply current
I DD1
Operating mode (f XX = 25 MHz)
40
70
mA
I DD2
HALT mode (fXX = 25 MHz)
25
50
mA
I DD3
IDLE mode (f XX = 25 MHz)
10
20
mA
2
15
µA
15
50
µA
40
80
kΩ
Data retention voltage
V DDDR
STOP mode
Data retention current
I DDDR
STOP mode V DDDR = 2.5 V
2.5
V DDDR = 5 V ± 10 %
Pull-up resistor
RL
15
V
Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/
INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog
inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)
56
µPD784054(A)
(1) Electrical specifications of µPD784054(A) (4/6)
AC Characteristics (TA = –40 to +85 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Read/write operation
Parameter
System clock cycle time
Symbol
Expression
t CYK
MIN.
MAX.
Unit
80
250
ns
Address setup time (vs. ASTB↓)
t SAST
(0.5 + a) T – 20
20
ns
Address hold time (vs. ASTB↓)
t HSTA
0.5T – 20
20
ns
ASTB high-level width
t WSTH
(0.5 + a) T – 17
23
ns
(1 + a) T – 15
65
ns
Address→RD↓ delay time
t DAR
RD↓→address float time
t FRA
0
ns
Address→data input time
t DAID
(2.5 + a + n) T – 56
144
ns
RD↓→data input time
t DRID
(1.5 + n) T – 48
72
ns
ASTB↓→RD↓ delay time
t DSTR
0.5T – 16
24
Data hold time (vs. RD↑)
t HRID
0
ns
RD↑→address active time
t DRA
0.5T – 14
26
ns
RD low-level width
t WRL
(1.5 + n) T – 30
90
ns
Address→LWR, HWR↓ delay time
t DAW
(1 + a) T – 15
65
ns
LWR, HWR↓→data output time
t DWOD
ASTB↓→LWR, HWR↓ delay time
t DSTW
0.5T – 16
24
ns
Data setup time (vs. LWR, HWR↑)
t SODW
(1.5 + n) T – 25
95
ns
Data hold time (vs. LWR, HWR↑)
t HWOD
0.5T – 14
26
ns
LWR, HWR↑→ ASTB↑ delay time
t DWST
1.5T – 15
105
ns
LWR, HWR low-level width
t WWL
(1.5 + n) T – 36
84
ns
Address→WAIT↓ input time
t DAWT
(2 + a) T – 50
110
ns
ASTB↓→WAIT↓ input time
t DSTWT
1.5T – 40
80
ns
ASTB↓→WAIT hold time
t HSTWT
(1.5 + n) T + 5
ASTB↓→WAIT↑ delay time
t DSTWTH
(1.5 + n) T – 40
15
RD↓→WAIT↓ input time
t DRWT
T – 40
RD↓→WAIT hold time
t HRWT
(1 + n) T + 5
RD↓→WAIT↑ delay time
t DRWTH
(1 + n) T – 40
LWR, HWR↓→WAIT↓ input time
t DWWT
T – 40
LWR, HWR↓→WAIT hold time
t HWWT
(1 + n) T + 5
LWR, HWR↓→WAIT↑ delay time
Note
t DWWTH
ns
(1 + n) T – 40
125
ns
ns
160 Note
ns
40
ns
85
ns
120 Note
ns
40
ns
85
ns
120 Note
ns
Specification when an external wait is inserted
Remarks 1. T = tCYK = 1/fCLK (fCLK is internal system clock frequency)
2. a = 1 when an address wait is inserted, otherwise, 0.
3. n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tDSTWTH, tDRWTH, tDWWTH).
4. Calculate values in the expression column with the system clock cycle time to be used because
these values depend on the system clock cycle time (tCYK = T). The values in the above expression
column are calculated based on T = 80 ns.
57
µPD784054(A)
(1) Electrical specifications of µPD784054(A) (5/6)
Serial Operation (TA = –40 to +85 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Serial clock cycle time
t CYSK
Serial clock low-level width
t WSKL
Serial clock high-level width
t WSKH
Conditions
MIN.
MAX.
Unit
SCK1, SCK2 output BRG
TSFT
ns
SCK1, SCK2 input
640
ns
0.5T SFT–40
ns
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
280
ns
0.5T SFT–40
ns
280
ns
SI1, SI2 setup time
(vs. SCK1, SCK2↑)
t SSSK
80
ns
SI1, SI2 hold time
(vs. SCK1, SCK2↑)
t HSSK
80
ns
SCK1, SCK2↓→SO1, SO2
output delay time
t DSBSK
R = 1 kΩ, C = 100 pF
0
150
ns
MIN.
MAX.
Unit
Remarks 1. TSFT is a value set in software. The minimum value is tCYK × 8.
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
Other Operations (TA = –40 to +85 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Conditions
NMI high, low-level width
t WNIH , t WNIL
10
µs
INTP0-INTP6 high, low-level width
t WITH, t WITL
4
t CYSMP
RESET high, low-level width
t WRSH , t WRSL
10
µs
Remarks 1. tCYSMP is a sampling clock set in the noise protection control register (NPC) in software.
When NIn = 0, tCYSMP = tCYK
When NIn = 1, tCYSMP = tCYK × 4
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
3. NIn: Bit n of NPC (n = 0-6)
AC Timing Test Point
VDD
0.8 VDD or 2.2 V
0.8 V
0V
58
Test point
0.8 VDD or 2.2 V
0.8 V
µPD784054(A)
(1) Electrical specifications of µPD784054(A) (6/6)
AD Converter Characteristics (TA = –40 to +85 ˚C, VDD = 4.5 to 5.5 V, VSS = AVSS = 0 V,
VDD – 0.5 V ≤ AVDD ≤ VDD)
Parameter
Symbol
Conditions
Resolution
Total
MIN.
TYP.
MAX.
10
error Note
Unit
bit
4.5 V ≤ AV REF ≤ AV DD
±0.5
%FSR
3.4 V ≤ AV REF < 4.5 V
±0.7
%FSR
±1/2
LSB
Quantization error
Conversion time
t CONV
80 ns ≤ t CYK ≤ 250 ns
169
t CYK
Sampling time
t SAMP
80 ns ≤ t CYK ≤ 250 ns
20
t CYK
Zero-scale
Full-scale
error Note
error Note
Nonlinearity
errorNote
Analog input voltage
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±2.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
V IAN
–0.3
AV REF +0.3
V
A/D converter reference input
voltage
AV REF
3.4
AV DD
V
AV REF current
AI REF
1.0
3.0
mA
AV DD supply current
AI DD
2.0
6.0
mA
AV DDDR = 2.5 V
2
10
µA
AV DDDR = 5 V ± 10%
10
50
µA
A/D converter data retention
current
Note
AI DDDR
STOP
mode
The quantization error is excluded.
Remark tCYK = 1/fCLK (fCLK is internal system clock frequency).
59
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (1/6)
Absolute Maximum Ratings (TA = 25 ˚C)
Parameter
Supply voltage
Symbol
Ratings
Unit
V DD
–0.5 to +7.0
V
AV DD
–0.5 to V DD + 0.5
V
AV SS
–0.5 to +0.5
V
–0.5 to V DD + 0.5 ≤ 7.0
V
–0.5 to V DD + 0.5
V
15
mA
150
mA
All output pins
–10
mA
Total of all output pins
–100
mA
AV DD > V DD
–0.5 to V DD + 0.5
V
V DD ≥ AV DD
–0.5 to AV DD + 0.5
Input voltage
VI
Output voltage
VO
Low-level output current
I OL
Conditions
Note 1
All output pins
Total of all output pins
High-level output current
Analog input voltage
A/D converter reference
I OH
V IAN
Note 2
AV REF
input voltage
AV DD > V DD
–0.5 to V DD + 0.5
V DD ≥ AV DD
–0.5 to AV DD + 0.5
V
Operating temperature
TA
–40 to +110
˚C
Storage temperature
T stg
–65 to +150
˚C
Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15
Caution
If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality
of the product may be impaired. The absolute maximum ratings are values that may physically
damage the product(s). Be sure to use the product(s) within the ratings.
Recommended Operating Conditions
Oscillation Frequency
TA
V DD
8 MHz ≤ f XX ≤ 20 MHz
–40 to +110 ˚C
4.5 to 5.5 V
Capacitance (TA = 25 ˚C, VSS = VDD = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Input capacitance
CI
f = 1 MHz
10
pF
Output capacitance
CO
0 V except measured pins
10
pF
I/O capacitance
C IO
10
pF
60
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (2/6)
Oscillation Circuit Characteristics (TA = –40 to +110 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Resonator
Recommended Circuit
Ceramic resonator or
crystal resonator
VSS
X1
C1
MIN.
MAX.
Unit
8
20
MHz
X1 input frequency (f X)
8
20
MHz
X1 input rise, fall time
0
5
ns
X1 input high-, low-level
width
20
105
ns
X2
C2
External clock
X1
Item
Oscillation frequency (fXX )
X2
OpenNote
HCMOS inverter
Note
When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse
phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
Caution
When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in
the diagram above as follows to prevent adverse influence from wiring capacitance:
• Keep the wiring length as short as possible.
• Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity
of a line through which a high alternating current flows.
• Always keep the ground potential for the capacitor in the oscillation circuit at the same
potential as VSS. Do not ground the capacitor to a ground pattern through which a high current
flows.
• Do not extract any signal from the oscillation circuit.
61
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (3/6)
DC Characteristics (TA = –40 to +110˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
MAX.
Unit
0
0.8
V
Note 1
2.2
V DD
V
V IH2
Note 2
0.8 V DD
V DD
Low-level output voltage
V OL
I OL = 2.0 mA
High-level output voltage
V OH
I OH = –400 µA
Low-level input voltage
V IL
High-level input voltage
V IH1
Input leakage current
Analog pin input leakage current
Conditions
MIN.
TYP.
0.45
V DD – 1.0
V
V
I LI
Note 3
0 V ≤ V I ≤ V DD
±10
µA
I LIAN
Note 4
0 V ≤ V I ≤ AV DD
±2
µA
Output leakage current
I LO
0 V ≤ V O ≤ V DD
±10
µA
V DD supply current
I DD1
Operating mode (f XX = 20 MHz)
30
60
mA
I DD2
HALT mode (fXX = 20 MHz)
15
30
mA
I DD3
IDLE mode (f XX = 20 MHz)
10
20
mA
2
100
µA
15
1000
µA
40
80
kΩ
Data retention voltage
V DDDR
STOP mode
Data retention current
I DDDR
STOP mode V DDDR = 2.5 V
2.5
V DDDR = 5 V ± 10 %
Pull-up resistor
RL
15
V
Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/
INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog
inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)
62
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (4/6)
AC Characteristics (TA = –40 to +110 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Read/write operation
Parameter
System clock cycle time
Symbol
Expression
t CYK
MIN.
MAX.
Unit
100
250
ns
Address setup time (vs. ASTB↓)
t SAST
(0.5 + a) T – 20
30
ns
Address hold time (vs. ASTB↓)
t HSTA
0.5T – 20
30
ns
ASTB high-level width
t WSTH
(0.5 + a) T – 17
33
ns
(1 + a) T – 15
85
ns
Address→RD↓ delay time
t DAR
RD↓→address float time
t FRA
0
ns
Address→data input time
t DAID
(2.5 + a + n) T – 56
194
ns
RD↓→data input time
t DRID
(1.5 + n) T – 53
97
ns
ASTB↓→RD↓ delay time
t DSTR
0.5T – 16
34
Data hold time (vs. RD↑)
t HRID
0
ns
RD↑→address active time
t DRA
0.5T – 14
36
ns
RD low-level width
t WRL
(1.5 + n) T – 30
120
ns
Address→LWR, HWR↓ delay time
t DAW
(1 + a) T – 15
85
ns
LWR, HWR↓→data output time
t DWOD
ASTB↓→LWR, HWR↓ delay time
t DSTW
0.5T – 16
34
ns
Data setup time (vs. LWR, HWR↑)
t SODW
(1.5 + n) T – 25
125
ns
Data hold time (vs. LWR, HWR↑)
t HWOD
0.5T – 14
36
ns
LWR, HWR↑→ ASTB↑ delay time
t DWST
1.5T – 15
135
ns
LWR, HWR low-level width
t WWL
(1.5 + n) T – 36
114
ns
Address→WAIT↓ input time
t DAWT
(2 + a) T – 50
150
ns
ASTB↓→WAIT↓ input time
t DSTWT
1.5T – 40
110
ns
ASTB↓→WAIT hold time
t HSTWT
(1.5 + n) T + 5
ASTB↓→WAIT↑ delay time
t DSTWTH
(1.5 + n) T – 40
15
RD↓→WAIT↓ input time
t DRWT
T – 40
RD↓→WAIT hold time
t HRWT
(1 + n) T + 5
RD↓→WAIT↑ delay time
t DRWTH
(1 + n) T – 40
LWR, HWR↓→WAIT↓ input time
t DWWT
T – 40
LWR, HWR↓→WAIT hold time
t HWWT
(1 + n) T + 5
LWR, HWR↓→WAIT↑ delay time
Note
t DWWTH
ns
(1 + n) T – 40
155
ns
ns
210 Note
ns
60
ns
105
ns
160 Note
ns
60
ns
105
ns
160 Note
ns
Specification when an external wait is inserted
Remarks 1. T = tCYK = 1/fCLK (fCLK is internal system clock frequency)
2. a = 1 when an address wait is inserted, otherwise, 0.
3. n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tDSTWTH, tDRWTH, tDWWTH).
4. Calculate values in the expression column with the system clock cycle time to be used because
these values depend on the system clock cycle time (tCYK = T). The values in the above expression
column are calculated based on T = 100 ns.
63
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (5/6)
Serial Operation (TA = –40 to +110 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Serial clock cycle time
t CYSK
Serial clock low-level width
t WSKL
Serial clock high-level width
t WSKH
Conditions
MIN.
MAX.
Unit
SCK1, SCK2 output BRG
TSFT
ns
SCK1, SCK2 input
800
ns
0.5T SFT–40
ns
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
360
ns
0.5T SFT–40
ns
360
ns
SI1, SI2 setup time
(vs. SCK1, SCK2↑)
t SSSK
80
ns
SI1, SI2 hold time
(vs. SCK1, SCK2↑)
t HSSK
80
ns
SCK1, SCK2↓→SO1, SO2
output delay time
t DSBSK
R = 1 kΩ, C = 100 pF
0
150
ns
MIN.
MAX.
Unit
Remarks 1. TSFT is a value set in software. The minimum value is tCYK × 8.
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
Other Operations (TA = –40 to +110 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Conditions
NMI high, low-level width
t WNIH , t WNIL
10
µs
INTP0-INTP6 high, low-level width
t WITH, t WITL
4
t CYSMP
RESET high, low-level width
t WRSH , t WRSL
10
µs
Remarks 1. tCYSMP is a sampling clock set in the noise protection control register (NPC) in software.
When NIn = 0, tCYSMP = tCYK
When NIn = 1, tCYSMP = tCYK × 4
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
3. NIn: Bit n of NPC (n = 0-6)
AC Timing Test Point
VDD
0.8 VDD or 2.2 V
0.8 V
0V
64
Test point
0.8 VDD or 2.2 V
0.8 V
µPD784054(A)
(2) Electrical specifications of µPD784054(A1) (6/6)
AD Converter Characteristics (TA = –40 to +110 ˚C, VDD = 4.5 to 5.5 V, VSS = AVSS = 0 V,
VDD – 0.5 V ≤ AVDD ≤ VDD)
Parameter
Symbol
Conditions
Resolution
Total
MIN.
TYP.
MAX.
10
error Note
Unit
bit
4.5 V ≤ AV REF ≤ AV DD
±0.5
%FSR
3.4 V ≤ AV REF < 4.5 V
±0.7
%FSR
±1/2
LSB
Quantization error
Conversion time
t CONV
169
t CYK
Sampling time
t SAMP
20
t CYK
Zero-scale
Full-scale
error Note
errorNote
Nonlinearity
errorNote
Analog input voltage
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±2.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
V IAN
–0.3
AV REF +0.3
V
A/D converter reference input
voltage
AV REF
3.4
AV DD
V
AV REF current
AI REF
3.0
4.0
mA
AV DD supply current
AI DD
2.0
6.0
mA
AV DDDR = 2.5 V
2
100
µA
AV DDDR = 5 V ± 10%
10
1000
µA
A/D converter data retention
current
Note
AI DDDR
STOP
mode
The quantization error is excluded.
Remark tCYK = 1/fCLK (fCLK is internal system clock frequency).
65
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (1/6)
Absolute Maximum Ratings (TA = 25 ˚C)
Parameter
Supply voltage
Symbol
Ratings
Unit
V DD
–0.5 to +7.0
V
AV DD
–0.5 to V DD + 0.5
V
AV SS
–0.5 to +0.5
V
–0.5 to V DD + 0.5 ≤ 7.0
V
–0.5 to V DD + 0.5
V
15
mA
150
mA
All output pins
–10
mA
Total of all output pins
–100
mA
AV DD > V DD
–0.5 to V DD + 0.5
V
V DD ≥ AV DD
–0.5 to AV DD + 0.5
Input voltage
VI
Output voltage
VO
Low-level output current
I OL
Conditions
Note 1
All output pins
Total of all output pins
High-level output current
Analog input voltage
A/D converter reference
I OH
V IAN
Note 2
AV REF
input voltage
AV DD > V DD
–0.5 to V DD + 0.5
V DD ≥ AV DD
–0.5 to AV DD + 0.5
V
Operating temperature
TA
–40 to +125
˚C
Storage temperature
T stg
–65 to +150
˚C
Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15
Caution
If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality
of the product may be impaired. The absolute maximum ratings are values that may physically
damage the product(s). Be sure to use the product(s) within the ratings.
Recommended Operating Conditions
Oscillation Frequency
TA
V DD
8 MHz ≤ f XX ≤ 20 MHz
–40 to +125 ˚C
4.5 to 5.5 V
Capacitance (TA = 25 ˚C, VSS = VDD = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Input capacitance
CI
f = 1 MHz
10
pF
Output capacitance
CO
0 V except measured pins
10
pF
I/O capacitance
C IO
10
pF
66
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (2/6)
Oscillation Circuit Characteristics (TA = –40 to +125 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Resonator
Recommended Circuit
Ceramic resonator or
crystal resonator
VSS
X1
C1
MIN.
MAX.
Unit
8
20
MHz
X1 input frequency (f X)
8
20
MHz
X1 input rise, fall time
0
5
ns
X1 input high-, low-level
width
20
105
ns
X2
C2
External clock
X1
Item
Oscillation frequency (fXX )
X2
OpenNote
HCMOS inverter
Note
When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse
phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
Caution
When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in
the diagram above as follows to prevent adverse influence from wiring capacitance:
• Keep the wiring length as short as possible.
• Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity
of a line through which a high alternating current flows.
• Always keep the ground potential for the capacitor in the oscillation circuit at the same
potential as VSS. Do not ground the capacitor to a ground pattern through which a high current
flows.
• Do not extract any signal from the oscillation circuit.
67
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (3/6)
DC Characteristics (TA = –40 to +125˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
MAX.
Unit
0
0.8
V
Note 1
2.2
V DD
V
V IH2
Note 2
0.8 V DD
V DD
Low-level output voltage
V OL
I OL = 2.0 mA
High-level output voltage
V OH
I OH = –400 µA
Low-level input voltage
V IL
High-level input voltage
V IH1
Input leakage current
Analog pin input leakage current
Conditions
MIN.
TYP.
0.45
V DD – 1.0
V
V
I LI
Note 3
0 V ≤ V I ≤ V DD
±10
µA
I LIAN
Note 4
0 V ≤ V I ≤ AV DD
±2
µA
Output leakage current
I LO
0 V ≤ V O ≤ V DD
±10
µA
V DD supply current
I DD1
Operating mode (f XX = 20 MHz)
30
60
mA
I DD2
HALT mode (fXX = 20 MHz)
15
30
mA
I DD3
IDLE mode (f XX = 20 MHz)
10
20
mA
2
100
µA
15
1000
µA
40
80
kΩ
Data retention voltage
V DDDR
STOP mode
Data retention current
I DDDR
STOP mode V DDDR = 2.5 V
2.5
V DDDR = 5 V ± 10 %
Pull-up resistor
RL
15
V
Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/
INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog
inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)
68
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (4/6)
AC Characteristics (TA = –40 to +125 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Read/write operation
Parameter
System clock cycle time
Symbol
Expression
t CYK
MIN.
MAX.
Unit
100
250
ns
Address setup time (vs. ASTB↓)
t SAST
(0.5 + a) T – 20
30
ns
Address hold time (vs. ASTB↓)
t HSTA
0.5T – 20
30
ns
ASTB high-level width
t WSTH
(0.5 + a) T – 17
33
ns
(1 + a) T – 15
85
ns
Address→RD↓ delay time
t DAR
RD↓→address float time
t FRA
0
ns
Address→data input time
t DAID
(2.5 + a + n) T – 56
194
ns
RD↓→data input time
t DRID
(1.5 + n) T – 53
97
ns
ASTB↓→RD↓ delay time
t DSTR
0.5T – 16
34
Data hold time (vs. RD↑)
t HRID
0
ns
RD↑→address active time
t DRA
0.5T – 14
36
ns
RD low-level width
t WRL
(1.5 + n) T – 30
120
ns
Address→LWR, HWR↓ delay time
t DAW
(1 + a) T – 15
85
ns
LWR, HWR↓→data output time
t DWOD
ASTB↓→LWR, HWR↓ delay time
t DSTW
0.5T – 16
34
ns
Data setup time (vs. LWR, HWR↑)
t SODW
(1.5 + n) T – 25
125
ns
Data hold time (vs. LWR, HWR↑)
t HWOD
0.5T – 14
36
ns
LWR, HWR↑→ ASTB↑ delay time
t DWST
1.5T – 15
135
ns
LWR, HWR low-level width
t WWL
(1.5 + n) T – 36
114
ns
Address→WAIT↓ input time
t DAWT
(2 + a) T – 50
150
ns
ASTB↓→WAIT↓ input time
t DSTWT
1.5T – 40
110
ns
ASTB↓→WAIT hold time
t HSTWT
(1.5 + n) T + 5
ASTB↓→WAIT↑ delay time
t DSTWTH
(1.5 + n) T – 40
15
RD↓→WAIT↓ input time
t DRWT
T – 40
RD↓→WAIT hold time
t HRWT
(1 + n) T + 5
RD↓→WAIT↑ delay time
t DRWTH
(1 + n) T – 40
LWR, HWR↓→WAIT↓ input time
t DWWT
T – 40
LWR, HWR↓→WAIT hold time
t HWWT
(1 + n) T + 5
LWR, HWR↓→WAIT↑ delay time
Note
t DWWTH
ns
(1 + n) T – 40
155
ns
ns
210 Note
ns
60
ns
105
ns
160 Note
ns
60
ns
105
ns
160 Note
ns
Specification when an external wait is inserted
Remarks 1. T = tCYK = 1/fCLK (fCLK is internal system clock frequency)
2. a = 1 when an address wait is inserted, otherwise, 0.
3. n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tDSTWTH, tDRWTH, tDWWTH).
4. Calculate values in the expression column with the system clock cycle time to be used because
these values depend on the system clock cycle time (tCYK = T). The values in the above expression
column are calculated based on T = 100 ns.
69
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (5/6)
Serial Operation (TA = –40 to +125 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Serial clock cycle time
t CYSK
Serial clock low-level width
t WSKL
Serial clock high-level width
t WSKH
Conditions
MIN.
MAX.
Unit
SCK1, SCK2 output BRG
TSFT
ns
SCK1, SCK2 input
800
ns
0.5T SFT–40
ns
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
SCK1, SCK2 output BRG
SCK1, SCK2 input
External clock
360
ns
0.5T SFT–40
ns
360
ns
SI1, SI2 setup time
(vs. SCK1, SCK2↑)
t SSSK
80
ns
SI1, SI2 hold time
(vs. SCK1, SCK2↑)
t HSSK
80
ns
SCK1, SCK2↓→SO1, SO2
output delay time
t DSBSK
R = 1 kΩ, C = 100 pF
0
150
ns
MIN.
MAX.
Unit
Remarks 1. TSFT is a value set in software. The minimum value is tCYK × 8.
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
Other Operations (TA = –40 to +125 ˚C, VDD = 4.5 to 5.5 V, VSS = 0 V)
Parameter
Symbol
Conditions
NMI high, low-level width
t WNIH , t WNIL
10
µs
INTP0-INTP6 high, low-level width
t WITH, t WITL
4
t CYSMP
RESET high, low-level width
t WRSH , t WRSL
10
µs
Remarks 1. tCYSMP is a sampling clock set in the noise protection control register (NPC) in software.
When NIn = 0, tCYSMP = tCYK
When NIn = 1, tCYSMP = tCYK × 4
2. tCYK = 1/fCLK (fCLK is internal system clock frequency)
3. NIn: Bit n of NPC (n = 0-6)
AC Timing Test Point
VDD
0.8 VDD or 2.2 V
0.8 V
0V
70
Test point
0.8 VDD or 2.2 V
0.8 V
µPD784054(A)
(3) Electrical specifications of µPD784054(A2) (6/6)
AD Converter Characteristics (TA = –40 to +125 ˚C, VDD = 4.5 to 5.5 V, VSS = AVSS = 0 V,
VDD – 0.5 V ≤ AVDD ≤ VDD)
Parameter
Symbol
Conditions
Resolution
Total
MIN.
TYP.
MAX.
10
error Note
Unit
bit
4.5 V ≤ AV REF ≤ AV DD
±0.5
%FSR
3.4 V ≤ AV REF < 4.5 V
±0.7
%FSR
±1/2
LSB
Quantization error
Conversion time
t CONV
169
t CYK
Sampling time
t SAMP
20
t CYK
Zero-scale
Full-scale
error Note
errorNote
Nonlinearity
errorNote
Analog input voltage
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±3.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
4.5 V ≤ AV REF ≤ AV DD
±1.5
±2.5
LSB
3.4 V ≤ AV REF < 4.5 V
±1.5
±4.5
LSB
V IAN
–0.3
AV REF +0.3
V
A/D converter reference input
voltage
AV REF
3.4
AV DD
V
AV REF current
AI REF
3.0
4.0
mA
AV DD supply current
AI DD
2.0
6.0
mA
AV DDDR = 2.5 V
2
100
µA
AV DDDR = 5 V ± 10%
10
1000
µA
A/D converter data retention
current
Note
AI DDDR
STOP
mode
The quantization error is excluded.
Remark tCYK = 1/fCLK (fCLK is internal system clock frequency).
71
µPD784054(A)
Read Operation (8 bits)
tCYK
(CLK)
AD8-AD15
(Output)
High-order address
tDAID
tSAST
AD0-AD7
(Input/output)
Hi-Z
High-order address
Hi-Z
Low-order address
(output)
Data (input)
tWSTH
Hi-Z
tHRID
ASTB
(Output)
tHSTA
tFRA
RD
(Output)
tDSTR
tDRID
tDRA
tDAR
tWRL
tDSTWTH
tHSTWT
tDSTWT
tDRWT
tDAWT
WAIT
(Input)
72
tHRWT
tDRWTH
Low-order address
(output)
Hi-Z
µPD784054(A)
Write Operation (8 bits)
tCYK
(CLK)
AD8-AD15
(Output)
AD0-AD7
(Output)
High-order address
tSAST
Low-order address
(Output)
Undefined
High-order address
Data (Output)
Low-order address
(Output)
tHWOD
tWSTH
ASTB
(Output)
tDWST
tHSTA
LWR
(Output)
tDSTW
tDWOD
tDAW
tSODW
tWWL
tDSTWTH
tHSTWT
tDSTWT
tDAWT
tHWWT
tDWWTH
tDWWT
WAIT
(Input)
73
µPD784054(A)
Read Operation (16 bits)
tCYK
(CLK)
tDAID
tSAST
AD8-AD15
AD0-AD7
(Input/output)
Hi-Z
Hi-Z
Address (Output)
Data (Input)
tWSTH
Hi-Z
tHRID
ASTB
(Output)
tHSTA
tFRA
RD
(Output)
tDSTR
tDRA
tDRID
tDAR
tWRL
tDSTWTH
tHSTWT
tDSTWT
tDRWT
tDAWT
WAIT
(Input)
74
tHRWT
tDRWTH
Address (Output)
Hi-Z
µPD784054(A)
Write Operation (16 bits)
tCYK
(CLK)
AD8-AD15
AD0-AD7
(Output)
tSAST
Address (Output)
Undefined
Data (Output)
Address (Output)
tHWOD
tWSTH
ASTB
(Output)
tDWST
tHSTA
HWR, LWR
(Output)
tDSTW
tDWOD
tDAW
tSODW
tWWL
tDSTWTH
tHSTWT
tDSTWT
tDAWT
tHWWT
tDWWTH
tDWWT
WAIT
(Input)
75
µPD784054(A)
Serial Operation
tCYSK
tWSKH
tWSKL
SCK1, SCK2
tDSBSK
SO1, SO2
SI1, SI2
tSSSK
tHSSK
Interrupt Input Timing
tWNIH
tWNIL
0.8 VDD
NMI
0.8 V
tWITH
tWITL
0.8 VDD
INTP0-INTP6
0.8 V
Reset Input Timing
tWRSH
tWRSL
0.8 VDD
RESET
0.8 V
76
µPD784054(A)
14. PACKAGE DRAWING
80 PIN PLASTIC QFP (14x14)
A
B
60
61
41
40
detail of lead end
C D
S
R
Q
21
20
80
1
F
J
G
I
H
M
K
P
M
N
L
NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
17.2±0.4
0.677±0.016
B
14.0±0.2
0.551 +0.009
–0.008
C
14.0±0.2
0.551 +0.009
–0.008
D
17.2±0.4
0.677±0.016
F
0.825
0.032
G
0.825
0.032
H
0.30±0.10
0.012 +0.004
–0.005
I
0.13
0.005
J
0.65 (T.P.)
0.026 (T.P.)
K
1.6±0.2
L
0.8±0.2
M
0.15 +0.10
–0.05
0.063±0.008
0.031 +0.009
–0.008
0.006 +0.004
–0.003
N
0.10
0.004
P
2.7±0.1
0.106 +0.005
–0.004
Q
0.1±0.1
0.004±0.004
R
5°±5°
5°±5°
S
3.0 MAX.
0.119 MAX.
S80GC-65-3B9-5
Remark The package dimensions and materials of ES versions are the same as those of mass-production
versions.
77
µPD784054(A)
15. RECOMMENDED SOLDERING CONDITIONS
These products should be soldered and mounted under the conditions recommended below.
For details of soldering conditions, refer to the information document Semiconductor Device Mounting
Technology Manual (C10535E).
For soldering methods and conditions other than those recommended, please contact your NEC representative.
Table 15-1. Surface-Mount Type Soldering Conditions
µ PD784054GC(A)-×××-3B9 : 80-pin plastic QFP (14 × 14 mm)
µ PD784054GC(A1)-×××-3B9 : 80-pin plastic QFP (14 × 14 mm)
µ PD784054GC(A2)-×××-3B9 : 80-pin plastic QFP (14 × 14 mm)
Soldering Method
Soldering Conditions
Infrared reflow
Package peak temperature: 235 ˚C, Time: 30 sec. max. (210 ˚C min.),
Number of times: 3 max.
Partial heating
Pin temperature: 300 ˚C max., 3 sec. max. (per side of device)
78
Recommended
Condition Symbol
IR35-00-3
–
µPD784054(A)
APPENDIX A. DEVELOPMENT TOOLS
The following development tools are available for developing systems using the µ PD784054(A).
Refer to (5) Cautions when the development tools are used
(1) Language processing software
RA78K4
78K/IV series common assembler package
CC78K4
78K/IV series common C compiler package
DF784046
Device file commonly used with the µ PD784046 subseries
CC78K4-L
78K/IV series common C compiler library source file
(2) Flash memory writing tools
Flashpro II
(Part number: FL-PR2)
Dedicated flash programmer for microcomputers incorporating flash memory
FA-80GC
Adapter for flash memory writing
(3) Debugging tools
• When using the IE-78K4-NS in-circuit emulator
IE78K4-NS Note
78K/IV series common in-circuit emulator
IE-70000-MC-PS-B
Power supply unit for IE-78K4-NS
IE-70000-98-IF-C Note
Interface adapter necessary when a PC-9800 series computer (except notebook-type
personal computer) is used as host machine
IE-70000-CD-IF Note
PC card and interface cable necessary when a PC-9800 series notebook-type personal
computer is used as host machine
IE-70000-PC-IF-C Note
Interface adapter necessary when an IBM PC/ATTM or a compatible machine is used as
host machine
IE-784046-NS-EM1 Note
Emulation board for emulating the µ PD784054(A) subseries
NP-80GC
Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80
Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-3B9
type)
ID78K4-NS Note
Integrated debugger for IE-78K4-NS
SM78K4
78K/IV series common system simulator
DF784046
Device file commonly used with the µ PD784046 subseries
Note
Under development
79
µPD784054(A)
• When using the IE-784000-R in-circuit emulator
IE-784000-R
78K/IV series common in-circuit emulator
IE-70000-98-IF-B
IE-70000-98-IF-C Note
Interface adapter necessary when a PC-9800 series computer (except notebook-type
personal computer) is used as host machine
IE-70000-98N-IF
Interface adapter and cable necessary when a PC-9800 series notebook-type personal
computer is used as host machine
IE-70000-PC-IF-B
IE-70000-PC-IF-C Note
Interface adapter necessary when an IBM PC/AT or a compatible machine is used
as host machine
IE-78000-R-SV3
Interface adapter and cable necessary when an EWS is used as host machine
IE-784000-R-EM
78K/IV series common emulation board
IE-784046-NS-EM1 Note
IE-784046-R-EM1
Emulation board for emulating the µ PD784054(A)
IE78K4-R-EX2 Note
Emulation probe conversion board necessary when the IE-784046-NS-EM1 is used in
the IE-784000-R. Not necessary when the IE-784046-R-EM1 is used.
EP-78230GC-R
Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80
Socket to be mounted on the board of the target system made for the 80-pin plastic
QFP (GC-3B9 type)
ID78K4
Integrated debugger for IE-784000-R
SM78K4
78K/IV series common system simulator
DF784046
Device file commonly used with the µ PD784046 subseries
Note Under development
(4) Real-time OS
RX78K/IV
Real-time OS for 78K/IV series
MX78K4
OS for 78K/IV series
80
µPD784054(A)
(5) Cautions when the development tools are used
• The ID-78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784046.
• The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784046.
• Flashpro II, FA-80GC, and NP-80GC are product of Naito Densei Machida Mfg. Co., Ltd. (TEL: (044)8223813). Contact an NEC distributor when purchasing these products.
• Host machines and OSs compatible with the software are as follows:
Host Machine [OS]
PC
[Windows TM ]
PC-9800 Series
IBM PC/AT and compatible machines
[Japanese/English Windows]
Software
RA78K4
Note
CC78K4
Note
ID78K4-NS
EWS
HP9000 series 700 TM [HP-UX TM]
SPARCstation TM [SunOS TM]
NEWSTM (RISC) [NEWS-OS TM ]
–
ID78K4
SM78K4
–
RX78K/IV
Note
MX78K4
Note
Note
DOS based software
81
µPD784054(A)
APPENDIX B. RELATED DOCUMENTS
Device-related documents
Document
Document No.
Japanese
English
µPD784054(A) Data Sheet
U13122J
This document
µPD78F4046 Preliminary Product Information
U11447J
U11447E
µPD784054 User’s Manual - Hardware
U11719J
U11719E
µPD784054 Special Function Register Table
U11113J
78K/IV Series User’s Manual - Instruction
U10905J
78K/IV Series Instruction Table
U10594J
78K/IV Series Instruction Set
U10595J
78K/IV Series Application Note - Software Basics
U10095J
–
U10905E
–
–
U10095E
Development tool-related documents (User’s Manuals)
Document
Document No.
Japanese
RA78K4 Assembler Package
Operation
U11334J
U11334E
Language
U11162J
U11162E
U11743J
U11743E
Operation
U11572J
U11572E
Language
EEU-961
U11571E
RA78K4 Structured Assembler Preprocessor
CC78K4 C Compiler
English
CC78K Series Library Source File
U12322J
IE-78K4-NS
On preparation
Planned
–
IE-784000-R
U12903J
EEU-1534
IE-784046-NS-EM1
Planned
Planned
IE-784046-R-EM1
U11677J
U11677E
EP-78230
EEU-985
EEU-1515
SM78K4 System Simulator Windows Based
Reference
U10093J
U10093E
SM78K Series System Simulator
External Part User Open U10092J
Interface Specifications
U10092E
ID78K4-NS Integrated Debugger
Reference
U12796J
U12796E
ID78K4 Integrated Debugger Windows Based
Reference
U10440J
U10440E
ID78K4 Integrated Debugger HP-UX,
SunOS, NEWS-OS Based
Reference
U11960J
U11960E
Caution
The contents of the above related documents are subject to change without notice. Be sure to use
the latest edition of the document when designing your system.
82
µPD784054(A)
Embedded software-related documents (User’s Manuals)
Document
Document No.
Japanese
78K/IV Series Real-Time OS
78K/IV Series OS MX78K4
English
Fundamental
U10603J
U10603E
Installation
U10604J
U10604E
Debugger
U10364J
–
Fundamental
U11779J
–
Other documents
Document
Document No.
Japanese
English
IC Package Manual
C10943X
Semiconductor Device Mounting Technology Manual
C10535J
C10535E
Quality Grades on NEC Semiconductor Devices
C11531J
C11531E
NEC Semiconductor Device Reliability and Quality Control
C10983J
C10983E
Guide to Prevent Damages for Semiconductor Devices by
Electrostatic Discharge (ESD)
C11892J
C11892E
Semiconductor Quality/Reliability Handbook
C12769J
–
Microcontroller-Related Product Guide - Third Parties
U11416J
–
Caution
The contents of the above related documents are subject to change without notice. Be sure to use
the latest edition of the document when designing your system.
83
µPD784054(A)
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop generation of static electricity as much as possible, and
quickly dissipate it once, when it has occurred. Environmental control must
be adequate. When it is dry, humidifier should be used. It is recommended
to avoid using insulators that easily build static electricity. Semiconductor
devices must be stored and transported in an anti-static container, static
shielding bag or conductive material.
All test and measurement tools
including work bench and floor should be grounded. The operator should
be grounded using wrist strap. Semiconductor devices must not be touched
with bare hands. Similar precautions need to be taken for PW boards with
semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input
level may be generated due to noise, etc., hence causing malfunction. CMOS
device behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using a pull-up or pull-down
circuitry.
Each unused pin should be connected to VDD or GND with a
resistor, if it is considered to have a possibility of being an output pin. All
handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device.
Immediately after the power source is turned ON, the devices with reset
function have not yet been initialized. Hence, power-on does not guarantee
out-pin levels, I/O settings or contents of registers. Device is not initialized
until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
84
µPD784054(A)
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Italiana s.r.1.
NEC Electronics (Germany) GmbH
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388
NEC Electronics (France) S.A.
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics (UK) Ltd.
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829
J97. 8
85
µPD784054(A)
IEBus is a trademark of NEC Corporation.
Windows is either a registered trademark or a trademark of Microsoft Corporation in
the United States and/or other countries.
PC/AT is a trademark of IBM Corporation.
HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.
Some of related document may be preliminary, but is not marked as such. Please keep this in mind as you refer to
this information
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5
72