NEC UPD75048GC

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75048
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75408 is a 4-bit single-chip microcomputer whose data processing capability is comparative to that
of an 8-bit microcomputer.
The µPD75048 employs a CPU whose minimum instruction execution time is 0.95 µs, and contains the
EEPROM, A/D converter, multi-function timer, and high performance hardware to provide high cost to
performance ratio.
Detailed functions are described in the following user's manual. Read this manual when designing your
system.
µPD75048 User's Manual: IEU-704
FEATURES
• Built-in EEPROM: 1024 x 4 bits (data memory area)
• Built-in 8-bit resolution A/D converter (successive
• I/O ports: 48 pins
• Middle voltage N-ch open drain input/output
approximation): 8 channels
ports: 12 pins
• Capable of operating at low voltage: VDD = 2.7 to
• 43 I/O lines can be provided with internal pull-
6.0 V
down resistors
• Reference voltage can be arbitrarily specified
• PROM version is available: µ PD75P048
between AVREF+ and AVREF-.
(One-time PROM)
• Built-in multi-function timer which can provide the
following functions:
• 8-bit timer
• PWM output
• 16-bit free running timer
• 16-bit integration type A/D converter counter
APPLICATIONS
• Consumer electronics products, telephones, cameras, automobile audio equipment, electronics measurement
equipment, etc.
ORDERING INFORMATION
Part Number
Package
µPD75048CW-xxx
64-pin plastic shrink DIP (750 mil)
µ PD75048GC-xxx-AB8
64-pin plastic QFP (
Quality grade
14mm)
Standard
Standard
Remarks: xxx is ROM code number.
Please refer to “Quality Grade on NEC Semiconductor Devices” (Document Number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
The information in this document is subject to change without notice.
Document No. IC - 2518C
(O. D. No. IC - 7931C)
Date Published February 1994 P
Printed in Japan
The mark ★ shows major revised points.
 NEC Corporation 1990
µPD75048
FUNCTIONAL OUTLINE
Item
Function
Instructions
41
Instruction Execution Time
• With main system clock: 0.95, 1.91, 15.3 µs (at 4.19 MHz)
• With subsystem clock: 122 µs (at 32.768 kHz)
Program memory (ROM) : 8064 x 8 bits
Internal Memory
Data memory (RAM)
: 512 x 4 bits
Data memory (EEPROM) : 1024 x 4 bits
EEPROM
•
•
•
•
General-Purpose
Register
• 4-bit manipulation: 8 (X, A, B, C, D, E, H, L)
• 8-bit manipulation: 4 (XA, BC, DE, HL)
Accumulator
• Bit accumulator (CY)
• 4-bit accumulator (A)
• 8-bit accumulator (XA)
Instruction Set
•
•
•
•
I/O Line
Retains data in case of power failure
Number of writes: 100,000 times
Write time: 10 ms
Write end, overwrite interrupt functions
Abundant bit manipulation instructions
Efficient 4-bit data manipulation instructions
8-bit data manipulation instructions
GETI instruction executing 2-/3-byte instruction with a single byte
48
12
Input pin
24
CMOS I/O pin (direct LED drive: 4)
Via software,
w/pull-up resistor: 27
w/pull-down resistor: 4
12
Medium-voltage N-ch
open-drain I/O (direct LED drive)
By mask option,
w/pull-up resistor: 12
• 8-bit timer/event counter
• Clock source: 4 steps
• Can count events
• 8-bit basic interval timer
• Reference time generation: 1.95, 7.82, 31.3, 250 ms (at 4.19 MHz)
• Can be used as watchdog timer
Timer
4 chs
• Clock timer
• Generates 0.5-second time intervals
• Count clock source: main system clock or subsystem clock (selectable)
• Clock fast forward mode (generates 3.9-ms time intervals)
• Buzzer output (2, 4, 32 kHz)
• Multi-function timer
Can be used as:
• 8-bit timer
• PWM output
• 16-bit free-running timer
• Counter for 16-bit integral A/D converter
8-bit Serial
Interface
• Three modes:
• 3-line serial I/O mode ... MSB/LSB first (selectable)
• 2-line serial I/O mode
• SBI mode
Bit Sequential
Buffer
Special bit manipulation memory: 16 bits
• Ideal for remote controller
Timer/event counter output (PTO0): output of square wave at specified frequency
Clock Output
Function
Clock output (PCL): Φ/, fx/23 , fx/24 , fx/26
Buzzer output (BUZ): 2, 4, 32 kHz (with main system clock or subsystem clock)
2
µPD75048
(cont'd)
Item
Function
A/D Converter
8-bit resolution A/D converter (successive approximation type): 8 channels
• Low-voltage operation: V DD = 2.7 – 6.0 V
• Reference voltage setting range: AVREF+ – AV REF–
2.5 V ≤ (AV REF+) – (AVREF–) ≤ 6.0 V
Vector Interrupt
External: 3, Internal: 6
Test Input
External: 1, Internal: 1
System Clock
Oscillator Circuit
• Ceramic/crystal oscillator circuit for main system clock oscillation
• Crystal oscillator circuit for subsystem clock oscillation
Standby Function
• STOP mode: main system clock oscillation stops
• HALT mode: system clock oscillation continues (clock supply to CPU stops)
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (
14 mm)
3
µPD75048
CONTENTS
1.
PIN CONFIGURATION (TOP VIEW) ........................................................................................ 5
2.
BLOCK DIAGRAM ......................................................................................................................8
3.
PIN FUNCTIONS ........................................................................................................................9
3.1
PORT PINS ........................................................................................................................................9
3.2
NON PORT PINS ............................................................................................................................ 11
3.3
PIN INPUT/OUTPUT CIRCUIT ...................................................................................................... 13
3.4
SELECTION OF MASK OPTIONS ................................................................................................. 16
3.5
PROCESSING OF UNUSED PINS ................................................................................................ 17
4.
MEMORY CONFIGURATION ................................................................................................. 18
5.
EEPROM ....................................................................................................................................21
6.
PERIPHERAL HARDWARE FUNCTIONS ............................................................................... 22
6.1
PORT ............................................................................................................................................... 22
6.2
CLOCK GENERATOR CIRCUIT ..................................................................................................... 23
6.3
CLOCK OUTPUT CIRCUIT ............................................................................................................. 24
6.4
BASIC INTERVAL TIMER .............................................................................................................. 25
6.5
WATCH TIMER ............................................................................................................................... 26
6.6
TIMER/EVENT COUNTER ............................................................................................................. 27
6.7
SERIAL INTERFACE ....................................................................................................................... 29
6.8
A/D CONVERTER .......................................................................................................................... 31
6.9
MULTI-FUNCTION TIMER (MFT) ................................................................................................. 32
6.10 BIT SEQUENTIAL BUFFER ........................................................................................................... 34
7.
INTERRUPT FUNCTIONS ....................................................................................................... 34
8.
STANDBY FUNCTIONS .......................................................................................................... 36
9.
RESET FUNCTION .................................................................................................................. 37
10. INSTRUCTION SET ................................................................................................................. 39
11. ELECTRICAL SPECIFICATIONS ............................................................................................. 45
12. PERFORMANCE CURVE ......................................................................................................... 59
13. PACKAGE DRAWINGS ........................................................................................................... 61
14. RECOMMENDED SOLDERING CONDITIONS ...................................................................... 63
APPENDIX A. COMPARISON BETWEEN µPD75048 AND 75028/75008 FUNCTIONS .......... 64
APPENDIX B. DEVELOPMENT TOOLS ....................................................................................... 65
4
µPD75048
1. PIN CONFIGURATION (TOP VIEW)
• 64-PIN PLASTIC SHRINK DIP (750 mil)
SB1/SI/P03
1
64
VSS
SB0/SO/P02
2
63
P30
SCK/P01
3
62
P31
INT4/P00
4
61
P32
BUZ/P23
5
60
P33
PCL/P22
6
59
P40
PCO/P21
7
58
P41
PTO0/P20
8
57
P42
MAT/P103
9
56
P43
MAZ/P102
10
55
P50
11
54
P51
12
53
P52
RESET
13
52
P53
X1
14
51
P60/KR0
µPD75048CW–·
MAI/P101
MAR/P100
50
P61/KR1
49
P62/KR2
48
P63/KR3
15
IC
16
XT1
17
XT2
18
47
P70/KR4
VDD
19
46
P71/KR5
AVDD
20
45
P72/KR6
AVREF+
21
44
P73/KR7
AVREF–
22
43
P80
AN7
23
42
P81
AN6
24
41
P82
AN5
25
40
P83
··
XXX
X2
AN4
26
39
P90
AN3/P113
27
38
P91
AN2/P112
28
37
P92
AN1/P111
29
36
P93
AN0/P110
30
35
P10/INT0
AVSS
31
34
P11/INT1
TI0/P13
32
33
P12/INT2
IC : Internally Connected (Connect directly to VDD)
5
µPD75048
P83
P82
P81
P80
P73/KR7
P72/KR6
P71/KR5
P70/KR4
P63/KR3
P62/KR2
P61/KR1
P60/KR0
P53
P52
P51
14 mm)
P50
• 64-PIN PLASTIC QFP (
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1
48
P90
P42
2
47
P91
P41
3
46
P92
P40
4
45
P93
P33
5
44
P10/INT0
P32
6
43
P11/INT1
P31
7
42
P12/INT2
P30
8
41
TI0/P13
VSS
9
40
AVSS
39
AN0/P110
38
AN1/P111
AB8
µPD75048GC–·XXX
· ·–AB8
P43
SB1/SI/P03
10
SB0/SO/P02
11
SCK/P01
12
37
AN2/P112
INT4/P00
13
36
AN3/P113
BUZ/P23
14
35
AN4
PCL/P22
15
34
AN5
PPO/P21
16
33
AN6
IC : Internally Connected (Connect directly to VDD )
6
AN7
AVREF–
AVREF+
VDD
AVDD
XT2
IC
XT1
X2
X1
RESET
MAR/P100
MAI/P101
MAZ/P102
MAT/P103
PTO0/P20
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
µPD75048
PIN IDENTIFICATION
P00-03
: Port0
: Port 0
P10-13
: Port1
: Port 1
P20-23
: Port2
: Port 2
P30-33
: Port3
: Port 3
P40-43
: Port4
: Port 4
P50-53
: Port5
: Port 5
P60-63
: Port6
: Port 6
P70-73
: Port7
: Port 7
P80-83
: Port8
: Port 8
P90-93
: Port9
: Port 9
P100-103
: Port10
: Port 10
P110-113
: Port11
: Port 11
KR0-7
: Key Return
: Key interrupt input
SCK
: Serial Clock
: Serial clock input/output
SI
: Serial Input
: Serial data input
SO
: Serial Output
: Serial data output
SB0, 1
: Serial Bus 0, 1
: Serial bus input/output
RESET
: Reset Input
: Reset input
TI0
: Timer Input 0
: External event pulse input
PTO0
: Programmable Timer Output 0
: Timer/event counter output
BUZ
: Buzzer Clock
: Arbitrary frequency output
PCL
: Programmable Clock
: Clock output
INT0,1,4
: External Vectored Interrupt 0, 1, 4
: External vector interrupt input
INT2
: External Test Input 2
: External test input
X1, 2
: Main System Clock Oscillation 1, 2
: Main system clock oscillation pin
XT1, 2
: Subsystem Clock Oscillation 1, 2
: Subsystem clock oscillation pin
MAR
: Reference Integration Control
: Reference integration signal output
MAI
: Integration Control
MAZ
: Autozero Control
MAT
: External Comparate Timing Input
: External comparator signal input
PPO
: Programmable Pulse Output ...
: Pulse output ... MFT timer mode
AN0-7
: Analog Input 0-7
: Analog input
AVREF+
: Analog Reference (+)
: Analog reference voltage (+) input (AVDD )
AVREF-
: Analog Reference (-)
: Analog reference voltage (-) input (AVSS )
MFT
A/D
mode
MFT
A/D
mode
: Integration signal output
: Autozero signal output
: MFT timer mode
AVDD
: Analog VDD
: A/D converter positive power supply
AVSS
: Analog VSS
: A/D converter GND
VDD
: Positive Power Supply
: Positive power supply
VSS
: Ground
: GND
Remarks : MFT: Multi-function timer
7
8
INTBT
TIMER
/COUNTER
#0
TI0/P13
PTO0/P20
PROGRAM
COUNTER
PORT 0
4
P00–P03
PORT 1
4
P10–P13
PORT 2
4
P20–P23
DATA MEMORY
PORT 3
4
P30–P33
GENERAL REG.
PORT 4
4
P40–P43
PORT 5
4
P50–P53
PORT 6
4
P60–P63
PORT 7
4
P70–P73
PORT 8
4
P80–P83
PORT 9
4
P90–P93
PORT 10
4
P100–P103
PORT 11
4
P110–P113
SP
CY
ALU
INTT0
BANK
SI/SB1/P03
SERIAL
INTERFACE
SO/SB0/P02
2. BLOCK DIAGRAM
BIT SEQ.
BUFFER
BASIC
INTERVAL
TIMER
SCK/P01
INTCSI
INT0/P10
INT1/P11
INT2/P12
INT4/P00
KR0–KR3/P60–P63
KR4–KR7/P70–P73
INTERRUPT
CONTROL
ROM
PROGRAM
MEMORY
8064×8 BITS
8
DECODE
AND
CONTROL
RAM
512 × 4 BITS
WATCH
TIMER
BUZ/P23
INTW
EEPROM
1024 × 4 BITS
AVDD
AVREF+
AVREF–
AVSS
AN0–AN3/P110–P113
AN4–AN7
A/D
CONVERTER
8
fx/2N
MAR/P100
MAI/P101
MAZ/P102
PPO/P21
PCL/P22
CLOCK
DIVIDER
CLOCK GENERATOR
SUB
XT1 XT2
MAIN
X1
STAND BY
CONTROL
X2
INTMFT
VDD
VSS RESET
µPD75048
MAT/P103
MULTI–
FUNCTION
TIMER
CLOCK
OUTPUT
CONTROL
CPU CLOCK
Φ
µPD75048
3. PIN FUNCTIONS
3.1 PORT PINS
Also Served
Pin Name Input/Output
As
P00
Input/
Output
INT4
P01
Input/
Output
SCK
P02
Input/
Output
SO/SB0
P03
Input/
Output
SO/SB1
P10
INT0
P11
INT1
4-bit input/output port(PORT0)
Pull up resistros can be specified in 3-bit
units for the P01 to P03 pins by software.
F -A
X
Input
F -B
M -C
With noise elimination function
4-bit input port(PORT1)
Internal pull-up resistors can be
specified in 4-bit units by software.
X
Input
E -B
X
Input
E -B
—
N-ch open-drain 4-bit input/output port
(PORT4)
Internal pull-up resistors can be
specified in 4-bit units (by mask option).
Resistive voltage is 10V in the opendrain mode.
High level
(with internal
pull-up
register) or
high impedance
M
—
N-ch open-drain 4-bit input/output port
(PORT5)
Internal pull-up resistors can be
specified in bit units (by mask option).
Resistive voltage is 10V in the opendrain mode.
High level
(with internal
pull-up
register) or
high impedance
M
P13
TI0
P20
PTO0
P23
B
B -C
INT2
P22
When Reset
Input
P12
Input/
Output
8-Bit I/O
X
Input
P21
Function
Input/
Output
Circuit
TYPE*1
PPO
PCL
4-bit input/output port(PORT2)
Internal pull-up resistors can be
specified in 4-bit units by software.
BUZ
P30*
2
P31*
2
P32*2
—
Input/
Output
P33*2
P40-43*2
P50-53*2
—
—
—
Input/
Output
Input/
Output
Programmable 4-bit input/output port
(PORT3)
This port can be specified for input/
output in bit units.
Internal pull-up resistors can be
specified in 4-bit units by software.
*1: Circles indicate Schmitt trigger inputs.
2: Can directly drive LED.
9
µPD75048
(cont'd)
When Reset
Input/
Output
Circuit
TYPE*1
Input
F -A
4-bit input/output port(PORT7)
Internal pull-up resistors can be
specified in 4-bit units by software.
Input
F -A
—
4-bit input/output port(PORT8)
Internal pull-up resistors can be
specified in 4-bit units by software.
Input
E-B
—
4-bit input/output port(PORT9)
Internal pull-down resistors can be
specified in 4-bit units by software.
Input
E-D
High level
(with internal
pull-up
resistor) or
high impedance
M
Input
Y-A
Pin Name Input/Output Also Served
As
P60
P61
P62
KR0
Input/
Output
KR1
KR2
P63
KR3
P70
KR4
P71
P72
Input/
Output
KR6
8-Bit I/O
Programmable 4-bit input/output port
(PORT6)
This port can be specified for input/
output in bit units.
Internal pull-up resistors can be
specified in 4-bit units by software.
KR7
P73
P80-83
KR5
Function
Input/
Output
X
P90-93
Input/
Output
MAR
P100
P101
P102
Input/
Output
MAI
MAZ
P103
MAT
P110
AN0
P111
N-ch open-drain 4-bit input/output port
(PORT10)
Internal pull-up resistors can be
specified in bit units (by mask option).
Resistive voltage is 10V in the opendrain mode.
X
Input
AN1
4-bit input port(PORT11)
P112
AN2
P113
AN3
*1: Circles indicate Schmitt trigger inputs.
10
µPD75048
3.2
NON PORT PINS
Also Served
Pin Name Input/Output As
Functon
When Reset
Input/
Output
Circuit
TYPE*1
Input
P13
Timer/event counter external event pulse input
Input
B-C
PTO0
Input/
Output
P20
Timer/event counter output
Input
E-B
PCL
Input/
Output
P22
Clock output
Input
E-B
BUZ
Input/
Output
P23
Arbitrary frequency output(for buzzer or for
trimming the system clock)
Input
E-B
SCK
Input/
Output
P01
Serial clock input/output
Input
F-A
SO/SB0
Input/
Output
P02
Serial data output
Serial bus input/output
Input
F-B
SI/SB1
Input/
Output
P03
Serial data input
Serial bus input/output
Input
M-C
Input
P00
Edge detection vector interrupt input (both
rising and falling edge detection are effective)
Input
B
Edge detection vector
interrupt input (detection
edge is selectable)
Input
B-C
Asynchronous
Input
B-C
TI0
INT4
INT0
P10
Input
INT1
P11
INT2
Input
P12
Clock synchronous
Asynchronous
Edge detection vector
interrupt input (rising
edge is detected.)
KR0-KR3
Input/
Output
P60-63
Parallel falling edge detection testable input
Input
F-A
KR4-KR7
Input/
Output
P70-73
Parallel falling edge detection testable input
Input
F-A
MAR
Input/
Output
P100
MAI
Input/
Output
P101
*2
M
MAZ
Input/
Output
P102
MAT
Input/
Output
P103
PPO
Input/
Output
P21
Input
E-B
Reference integration
signal output
In the MFT
integration type A/
D converter mode
Integration signal output
Auto zero signal output
Comparator input
In the MFT timer
mode
Timer pulse output
*1: Circles indicate Schmitt trigger inputs.
2:
High level (with internal pull-up resistor) or high impedence
Remarks:
MFT: Multi-function timer
11
µPD75048
(cont'd)
Pin Name Input/Output Also Served
As
AN0-AN3
Function
Y-A
—
Input
AN4-AN7
8-bit analog input
Input
Y
—
—
Z-A
—
Z-A
—
Reference voltage input
(AVDD side)
Reference voltage input
(AVSS side)
Positive power supply
—
—
—
GND
—
—
—
A crystal/ceramic resonator for the main
system clock is connected across these pins.
When using the external clock, the X1 pin
inputs the external clock, and the X2 pin
inputs the reverse phase of the external clock
signal.
—
—
—
—
AVREF+
Input
—
AVREF-
Input
—
AVDD
—
AVSS
—
X1, X2
When Reset
Input
Input/
Output
Circuit
TYPE*1
Pins only for A/D
converter
XT1, XT2
Input
—
A crystal resonator for the subsystem clock is
connected across these pins. When using the
external clock, the XT1 pin inputs the external
clock, and the XT2 pin inputs the reverse
phase of the external clock signal. The XT1 pin
can be used as a 1-bit input(test) pin.
RESET
Input
—
System reset input
—
B
—
—
—
—
—
—
IC
—
—
VDD
—
—
Internally Connected. Should be connected directly
to VDD.
Positive power supply
VSS
—
—
GND
*1: Circles indicate Schmitt trigger inputs.
12
µPD75048
3.3
PIN INPUT/OUTPUT CIRCUITS
The following shows a simplified input/output circuit diagram for each pin of the µPD75048.
TYPE D (for TYPE E–B, F-A)
TYPE A (for TYPE E–B)
VDD
VDD
data
P–ch
P–ch
OUT
IN
N–ch
Input buffer of CMOS standard
output
disable
N–ch
Push–pull output that can be set in the output
high–impedance state (both P–ch and N–ch are off)
TYPE E–B
TYPE B
VDD
P.U.R.
P.U.R.
enable
P–ch
IN
data
IN/OUT
Type D
output
disable
Type A
Schmitt trigger input with hysteresis
characteristics
P.U.R. : Pull–Up Resistor
13
µPD75048
TYPE E–D
TYPE B–C
data
VDD
P.U.R.
P–ch
IN/OUT
Type D
output
disable
P.U.R.
enable
Type A
P.U.R.
enable
IN
N–ch
P.D.R.
P.U.R. : Pull–Up Resistor
P.D.R. : Pull–Down Resistor
TYPE M–C
TYPE F–A
VDD
VDD
P.U.R.
P.U.R.
P.U.R.
enable
P.U.R.
enable
P–ch
IN/OUT
data
IN/OUT
Type D
output
disable
data
output
disable
Type B
P.U.R. : Pull–Up Resistor
14
P–ch
P.U.R. : Pull–Up Resistor
N-ch
µPD75048
TYPE Y
TYPE F–B
VDD
P.U.R.
P.U.R.
enable
output
disable
(P)
P–ch
VDD
AVDD
IN
P-ch
+
AVDD
IN/OUT
data
output
disable
P–ch
N–ch
Sampling
C
N-ch
AVSS
Reference voltage
(from a voltage tap of series
resistor string)
AVSS
output
disable
(N)
–
input
enable
P.U.R. : Pull–Up Resistor
TYPE Y–A
TYPE M
VDD
IN instruction
P.U.R.
enable
(Mask Option)
IN/OUT
Input buffer
data
N-ch
(resistive
voltage:
+10 V)
output
disable
AVDD
IN
P–ch
N–ch
+
AVDD
Sampling
C
Middle voltage input buffer
(resistive voltage: +10 V)
AVSS
–
AVSS
Reference voltage
(from a voltage tap of series
resistor string)
P.U.R. : Pull–Up Resistor
15
µPD75048
TYPE Z–A
AVREF+
Reference voltage
AVREF–
3.4
SELECTION OF MASK OPTIONS
The following mask options are available:
Pin
P40 - P43,
P50 - P53,
P100 - P103
XT1, XT2
16
Mask Option
1
w/pull-up resistor
(can be specified bitwise)
2
w/o pull-up resistor
(can be specified bitwise)
1
w/feedback resistor
(with subsystem clock used)
2
w/o feedback resistor
(without subsystem clock used)
µPD75048
3.5
★
PROCESSING OF UNUSED PINS
Pin
P00/INT4
Recommended Condition
Connect to V ss
P01/SCK
P02/SO/SB0
Connect to VSS or VDD
P03/SI/SB1
P10/INT0-P12/INT2
P13/TI0
Connect to VSS
P20/PTO0
P21/PPO
P22/PCL
P23/BUZ
P30-P33
P40-P43
P50-P53
P60/KR0-P63/KR3
Input:
Connect to VSS or VDD
P70/KR4-P73/KR7
Output: Open
P80-P83
P90-P93
P100/MAR
P101/MAI
P102/MAZ
P103/MAT
P110/AN0-P113/AN3
AN4-AN7
Connect to VSS or VDD
AVREF+
AVREF-
Connect to VSS
AVSS
AVDD
Connect to VDD
XT1
Connect to VSS or VDD
XT2
Open
IC
Connect directly to VDD
17
µPD75048
4. MEMORY CONFIGURATION
• Program memory (ROM)...8064 x 8 bits (0000H-1F7FH)
• 0000H, 0001H:
Vector table to which address from which program is started is written after
reset
• 0002H-000FH: Vector table to which address from which program is started is written after
interrupt
• 0020H-007FH: Table area referenced by GETI instruction
• Data memory
• Data area
Static RAM....512 x 4 bits (000H-1FFH)
EEPROM....1024 x 4 bits (400H-7FFH)
• Peripheral hardware area....128 x 4 bits (F80H-FFFH)
18
µPD75048
Address
0000H
7
6
5
MBE
0
0
0
Internal reset start address (upper 5 bits)
Internal reset start address (lower 8 bits)
0002H
MBE
0
0
INTBT/INT4 start address (upper 5 bits)
INTBT/INT4 start address (lower 8 bits)
0004H
MBE
0
0
INT0 start address (upper 5 bits)
INT0 start address (lower 8 bits)
0006H
MBE
0
0
INT1 start address (upper 5 bits)
INT1 start address (lower 8 bits)
0008H
MBE
0
0
INTCSI start address (upper 5 bits)
INTCSI start address (lower 8 bits)
000AH
MBE
0
0
CALLF
! faddr
instruction
entry
address
INTT0 start address (upper 5 bits)
INTT0 start address (lower 8 bits)
000CH
MBE
0
0
INTMFT start address (upper 5 bits)
INTMFT start address (lower 8 bits)
000EH
MBE
0
0
INTEE/INTOW start address (upper 5 bits)
BRCB
! caddr
instruction
branch
address
CALL ! addr
instruction
subroutine
entry address
BR ! addr
instruction
branch address
INTEE/INTOW start address (lower 8 bits)
BR $addr
instruction
relational
branch address
(–15 to –1,
+2 to +16)
0020H
GETI instruction reference table
007FH
0080H
07FFH
0800H
Branch destination
address and
subroutine entry
address for
GETI instruction
0FFFH
1000H
BRCB
! caddr
instruction
branch
address
1F7FH
Fig. 4-1 Program Memory Map
19
µPD75048
Data memory
Memory bank
000H
General-purpose
register area
Stack area
(8 × 4)
007H
Data area
Static RAM
(512 × 4)
0
256 × 4
(248 × 4)
0FFH
100H
256 × 4
1
1FFH
Unmapped
400H
256 × 4
4
256 × 4
5
256 × 4
6
256 × 4
7
4FFH
500H
Data area
EEPROM
(1024 × 4)
5FFH
600H
6FFH
700H
7FFH
Unmapped
F80H
128 × 4
Peripheral hardware area
FFFH
Fig. 4-2 Data Memory Map
20
15
µPD75048
5. EEPROM
The µPD75048 contains the 1024-word x 4-bit EEPROM (Electrically Erasable PROM).
The EEPROM of the µPD75048 has the following characteristics.
•
The EEPROM can retain its contents even if the power is turned off.
•
In the same manner as the static RAM, data can be manipulated (auto-erase/write/read) in 4-bit
or 8-bit units by using a memory manipulation instruction
•
The contens of EEPROM are automatically erased or written by hardware, so that the overhead
of the software is alleviated.
•
•
•
Write time .... 10 ms.
•
Number of write operation100,000 times (guaranteed).
Write operation can be controlled by interrupt.
•
When write operation is completed an interrupt occurs.
•
When overwrite is executed. (Write operation is executed during write operation)
Whether or not the EEPROM is possible to be written can be checked by individually checking the
write status flag.
21
µPD75048
6. PERIPHERAL HARDWARE FUNCTIONS
6.1
PORT
I/O ports are classified into the following three inds:
• CMOS input (PORT0, 1, 11)
:
12
• CMOS I/O (PORT2, 3, 6, 7, 8, 9)
:
24
• N-ch open-drain I/O (PORT4, 5, 10) :
Total
12
48
Table 6-1 Port Function
Port (Symbol)
PORT0
PORT1
Function
4-bit input
PORT3*
PORT6
4-bit input/output
PORT2
PORT7
PORT4*
PORT5*
PORT10*
PORT8
PORT9
PORT11
4-bit input/output
4-bit input
Remarks
Also serves as the SO/SB0, SI/SB1,
SCK, INT0 to 2, INT4, and TI0 pins
Can be specified for input/output
in 1-bit units.
Port 6 can also serve as the KR0 to
KR3 pins.
Can be specified for input/output
in 4-bit units. Ports 6 and 7 can
be paired to input/ output data
in 8-bit units.
Port 2 can also serve as the PTO0,
PPO, PCL, and BUZ pins.
Can be specified for input/output
4-bit input/output
in 4-bit units. Ports 4 and 5 can
(N-ch open-drain,
be paired to input/output data in
can sustain with 10V) 8-bit units.
*: Can directly drive LED.
22
Operation/Feature
Can be read or tested regardless
of the operation mode of the
shared pin.
Also serves as the KR4 to KR7 pins.
Whether or not the internal pull-up
resistor is provided can be specified
for each bit by mask option.
Port 10 can also serve as the MAR,
MAI, MAZ, and MAT pins.
Can be specified for input/output
in 4-bit units.
4-bit input-only port.
Port 11 can also serve as the
AN0 to AN3 pins.
µPD75048
6.2
CLOCK GENERATOR CIRCUIT
The operation of the clock generator circuit is determined by the processor clock control regiser (PPC)
and system clock control register (SCC).
This circuit can generate two types of clocks: main system clock and subsystem clock.
In addition, it can also change the instruction execution time.
• 0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz)
• 122µ s (subsystem clock: 32.768 kHz)
.
.
.
.
.
.
Multi-function timer
Basic interval timer (BT)
Timer/event counter
Serial interface
Watch timer
A/D converter
(successive approximation)
. INT0 noise rejecter circuit
. Clock output circuit
XT1
VDD
XT2
Subsystem
clock
oscillator
fXT
Main system
clock
oscillator
fX
Watch timer
X1
VDD
X2
1/2 to 1/4096
Frequency divider
Oscillator
disable
signal
Frequency
divider
Selector
WM.3
SCC
Selector
1/2 1/16
SCC3
1/4
Internal bus
SCC0
PCC
Φ
. CPU
. INT0 noise
rejecter circuit
. Clock output
circuit
PCC0
PCC1
4
HALT F/F
PCC2
S
HALT*
PCC3
STOP*
R
PCC2, PCC3
clear signal
STOP F/F
Q
Q
Wait release
signal from BT
S
RESET signal
R
Remarks1:
2:
3:
4:
5:
6:
7:
Standby release
signal from interrupt
control circuit
fX = Main system clock frequency
fXT = Subsystem clock frequency
Φ = CPU clock
PCC: Processor clock control register
SCC: System clock control register
* indicates instruction execution.
One clock cysle (tCY) of Φ is one machine cycle of an instruction. For tCY, refer to AC
characteristics in 11. ELECTRICAL SPECIFICATIONS.
Fig. 6-1 Clock Generator Block Diagram
23
µPD75048
6.3
CLOCK OUTPUT CIRCUIT
The clock output circuit outputs clock pulse from the P22/PCL pin. This clock pulse is used for
supplying clock pulses to the remote control output, peripheral LSIs, etc.
• Clock output (PCL): Φ, 524 kHz, 65.5 kHz (at 4.19 MHz)
From the
clock
generator
F
Output
buffer
fX/23
Selector
fX/24
PCL/P22
fX/26
PORT2.2
P22 output
latch
CLOM3 CLOM2 CLOM1 CLOM0 CLOM
Bit 2 of PMGB
Port 2 input/
output mode
specification
bit
4
Internal bus
Fig. 6-2 Clock Output Circuit Configuration
Remarks:
A measures to prevent outputting narrow width pulse when selecting clock output
enable/disable is taken.
24
µPD75048
6.4
BASIC INTERVAL TIMER
The basic interval timer has these functions:
• Interval timer operation which generates a reference time interrupt
• Watchdog timer application which detects a program runaway
• Selects the wait time for releasing the standby mode and counts the wait time
• Reads out the count value
From the
clock generator
Clear
Clear
fX/25
fX/27
Set
signal
Basic interval timer
(8-bit frequency divider circuit)
MPX
fX/29
BT
fX/212
3
BTM3
*SET1
BTM2
BT
interrupt
request flag
Vector
interrupt
request
IRQBT signal
Wait release signal
for standby release
BTM1
BTM0
BTM
4
8
Internal bus
Remarks : *: Instruction execution
Fig. 6-3 Basic Interval Timer Configuration
25
µPD75048
6.5
WATCH TIMER
The µ PD75048 has a built-in 1-ch watch timer. The clock timer has the following functions.
• Sets the test flag (IRQW) with 0.5sec interval.
The standby mode can be released by IRQW.
• 0.5 second interval can be generated either from the main system clock or subsystem clock.
• Time interval can be advanced to 128 times faster (3.91 ms) by setting the fast mode. This is
convenient for program debugging, test, etc.
• Arbitrary frequency (2.048kHz/4.096kHz/32.768kHz) can be output to the P23/BUZ pin. This can be
used for beep and system clock frequency trimming.
• The frequency divider circuit can be cleared so that zero second clock start is possible.
fW
(256 Hz:3.91 ms)
27
From the
clock
generator
fX
128
(32.768 kHz)
Selector
fW
(32.768 kHz)
fXT
(32.768 kHz)
Frequency divider
(
INTW
IRQW
set signal
Selector
fw
214
(
)
2 Hz
0.5 sec
4 kHz 2 kHz
Clear
Selector
Output buffer
P23/BUZ
WM
WM7
PORT2.3
0
WM5
WM4
WM3
8
WM2
WM1
WM0
P23
output
latch
Bit test
instruction
Internal bus
( ) is for fX = 4.194304 MHz, fXT = 32.768 KHz.
Fig. 6-4 Clock Timer Block Diagram
26
Bit 2 of PMGB
Port 2
input/output
mode
)
µPD75048
6.6
TIMER/EVENT COUNTER
The µ PD75048 has a built-in 1-ch timer/event counter. The timer/event counter has the following
functions.
• Programmable interval timer operation
• Outputs square-wave signal of an arbitrary frequency to the PTO0 pin.
• Event counter operation
• Divides the TI0 pin input in N and outputs to the PTO0 pin (frequency divider operation).
• Supplies serial shift clock to the serial interface circuit.
• Count condition read out function
27
28
Internal bus
8
SET1*
TM0
8
8
TMOD0
TOE0
TO
enable
flag
Modulo register (8)
TM07 TM06 TM05 TM04 TM03 TM02 TM01 TM00
Coincidence
Comparator (8)
Input
buffer
P20
output
latch
Bit 2 of PGMB
Port 2
input/
output
mode
To serial interface
8
PORT1.3
PORT2.0
8
TOUT
F/F
Reset
P20/PTO0
Output
buffer
T0
P13/TI0
From the
clock
generator
Count register (8)
MPX
CP
Clear
(
INTT0
IRQT0
set signal
)
Timer operation start signal
RESET
IRQT0
clear signal
*:Instruction execution
Fig. 6-5 Timer/Event Counter Block Diagram
µPD75048
µPD75048
6.7
SERIAL INTERFACE
The µPD75048 is equipped with an 8-bit clocked serial interface that operates in the following four
modes:
• Operation stop mode
• Three-line serial I/O mode
• Two-line serial I/O mode
• SBI mode (serial bus interface mode)
29
30
Internal bus
8/4
CSIM
8
Bit
test
8
8
Slave address register
(SVA)
(8)
SBIC
Coincidence
signal
Address comparator
RELT
CMDT
(8)
P03/SI/SB1
SET CLR
Shift register (SIO)
(8)
D
SO latch
Q
ACKT
ACKE
BSYE
Selector
Bit test
Bit manipulation
Selector
P02/SO/SB0
Busy/
acknowledge
output
circuit
Bus release/
command/
acknowledge
detector
circuit
P01/SCK
RELD
CMDD
ACKD
Serial clock
counter
P01
output
latch
Serial clock
control
circuit
(
Serial clock
selector
INTCSI
IRQCSI
set signal
)
fX/23
fX/24
fX/26
TOUT F/F
(from timer/
event counter)
External SCK
µPD75048
Fig. 6-6 Serial Interface Block Diagram
INTCSI
control
circuit
µPD75048
6.8
A/D CONVERTER
The µ PD75048 has an 8-bit precision successive approximation A/D converter with 8 analog input
channels (AN0 to AN7).
Internal bus
0
ADM6 ADM5 ADM4
SOC
EOC
0
0
ADM
8
AN0/P110
Control circuit
AN1/P111
Sample hold circuit
AN3/P113
AN4
Multiplexer
AN2/P112
+
SA register (8)
–
Comparator
AN5
AN6
8
AN7
Tap decoder
AVREF+
R/2
R
R
R
R/2
Serial resister string
AVREF-
Fig. 6-7 A/D Converter Block Diagram
31
µPD75048
6.9
MULTI-FUNCTION TIMER (MFT)
The µPD75048 contains 1 channel of multi-function timer (MFT).
The MFT has the following four modes and functions:
• 8-bit timer mode
•
Functions as programmable interval timer
•
Outputs square waves of arbitrary frequency to the PPO pin
• PWM mode
•
Outputs 6/7/8-bit precision PWM signal to the PPO pin
• 16-bit free running timer mode
•
Functions as interval timer which generates an interrupt with specified interval
•
Can be used as one-shot timer
• Integration type A/D converter mode
32
•
Outputs 16-bit integration type A/D converter control signal
•
13/14/15/16-bit precision selectable
Internal bus
8
Clear
MAT/P103
Edge
selector
8
Input/
output
mode
register
Output latch
P21 P100P101 P102
Selector
Count register (MFTL)
MAZ/P102
Integration
type A/D
converter
controller
Modulo latch
MAI/P101
MAR/P100
fX/2
fX/23
fX/25
fX/27
fX/29
Comparator
MPX
PPO/P21
Coinci
-dence
MFT
F/F
8
fX/211
Overflow
Selector
Count register (MFTH)
Tap
selector
(
Interrupt
selector
INTMFT
IRQMFT
set signal
)
RESET
IRQMFT
clear signal
Selector
MFTM7 MFTM6 MFTM5 MFTM4 MFTM3 MFTM2 MFTM1 MFTM0
MFTM
8
MFTC3 MFTC2 MFTC1 MFTC0
MFTC
1/4
Fig. 6-8 Multi-Function Timer Block Diagram
33
µPD75048
Internal bus
µPD75048
6.10
BIT SEQUENTIAL BUFFER .... 16 BITS
The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer,
addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore,
this buffer is very useful for processing long data in bit units.
Address
FC3H
Bit
3
1
0
3
BSB3
Symbol
L register
2
FC2H
L=F
2
FC1H
1
0
3
BSB2
L=C L=B
2
FC0H
1
0
3
BSB1
L=8 L=7
2
1
0
BSB0
L=4 L=3
L=0
DECS L
INCS L
Remarks:
For the pmem.@L addressing, the specification bit is shifted according to the L register.
Fig. 6-9 Bit Sequential Buffer Format
7. INTERRUPT FUNCTIONS
The µPD75048 has 9 different interrupt sources. In addition to that, multiple interrupt by software
control is also possible.
The µPD75048 is also provided with two types of test sources, of which INT2 was two types of edge
detection testable inputs.
The interrupt control circuit of the µPD75048 has these functions:
• Hardware controlled vector interrupt function which can control whether or not to accept an
interrupt by using the interrupt flag (IExxx) and interrupt master enable flag (IME).
• The interrupt start address can be arbitrarily set.
• Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of
software).
• Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).
34
Internal bus
2
1
3
IM2
IM1
IM0
IME
IST0
Interrupt enable flag (IExxx)
INT4
/P00
INT0
/P10
INT1
/P11
*
INT
BT
Both edge
detection
circuit
Edge
detection
circuit
Edge
detection
circuit
IRQ0
IRQ1
IRQCSI
INTT0
IRQT0
IRQEE
INTOW
IRQOW
INTW
Falling edge
detection
circuit
IRQW
Selector
KR0/P60
Priority control
circuit
Standby
release signal
IRQ2
IM2
* : Noise elimination circuit
35
Fig. 7-1 Interrupt Control Circuit Block Diagram
µPD75048
Rising edge
detection
circuit
Vector table
address
generator
IRQMFT
INTEE
INT2
/ P12
VRQn
IRQ4
INTCSI
INTMFT
KR7/P73
Decoder
IRQBT
µPD75048
8. STANDBY FUNCTIONS
The µ PD75048 has two different standby modes (STOP mode and HALT mode) to reduce the power
consumption while waiting for program execution.
Table 8-1 Each Status in Standby Mode
STOP Mode
HALT Mode
Setting Instruction
STOP instrtuction
HALT Instruction
System Clock for Setting
Can be set only when operating on
the main system clock
Can be set either with the main
system clock or the subsystem clock
Operation
Status
Clock Generator
Only the main system clock stops its
operation
Only the CPU clock Φ stops its
operation (oscillation continues)
Basic Interval
Timer
No operation
Operates only when main system
clock oscillates (Sets IRQBT at
reference time interval)
Serial Interface
Can operate only when the external
SCK input is selected for the serial
clock
Operates only when external SCK
input is selected as serial clock, or
when main system clock oscillates
Timer/Event
Counter
Can operate only when the TI0 pin
input is selected for the count clock
Operates only when TI0 pin input is
selected as count clock, or when
main system clock oscillates
Watch Timer
Can operate when f XT is selected as
the count clock
Can operate
A/D Convertor
No operation
Can operate *
Multi Function
Timer
No operation
Can operate *
EEPROM
No operation
Can operate *
External Interrupt
INT1, INT2, and INT4 can operate.
Only INT0 can not operate.
CPU
No operation
Release Signal
An interrupt request signal from a
hardware whose operation is
enabled by the interrupt enable flag
or the RESET input.
An interrupt request signal from a
hardware whose operation is
enabled by the interrupt enable flag
or the RESET input.
*: Operation is possible only when the main system clock is operating.
36
µPD75048
9. RESET FUNCTION
When the RESET signal is input, the µPD75048 is reset and each hardware is initialized as indicated
in Table 9-1. Fig. 9-1 shows the reset operation timing.
Wait
(31.3ms/4.19MHz)
RESET input
Operation mode
or standby mode
HALT mode
Operation mode
Internal reset operation
Fig. 9-1 Reset Operation by RESET Input
Table 9-1 Status of Each Hardware after Reset (1/2)
Hardware
RESET Input in Standby Mode
RESET Input During Operation
The contents of the lower 5 bits
of address 0000H of the program
memory are set to PC12-8, and
the contents of address 0001H
are set to PC7-0.
The contents of the lower 5 bits
of address 0000H of the program
memory are set to PC12-8, and
the contents of address 0001H
are set to PC7-0.
Retained
Undefined
Skip Flag (SK0-2)
0
0
Interrupt Status Flag (IST0)
0
0
The contents of bit 7 of address
0000H of the program memory is
set to MBE.
The contents of bit 7 of address
0000H of the program memory is
set to MBE.
Stack Pointer (SP)
Undefined
Undefined
Data Memory (RAM)
Retained *
Undefined
Program Counter (PC)
PSW
Carry Flag (CY)
Bank Enable Flag (MBE)
Data Memory EEPROM
(EEPROM)
EEPROM Write Control
Register
General-Purpose Register
(X, A, H, L, D, E, B, C)
Bank Selection Register (MBS)
Basic Interval Counter (BT)
Timer
Mode Register (BTM)
Timer/Event
Counter
Counter (T0)
Modulo Register
(TMOD0)
Mode Register (TM0)
TOE0, TOUT F/F
Watch Timer
Mode Register (WM)
Contents of address being
written is undefined.
Contents of address being
written is undefined.
0
0
Retained
Undefined
0
0
Undefined
Undefined
0
0
0
0
FFH
FFH
0
0
0, 0
0, 0
0
0
*: The data at the addresses 0F8H-0FDH of data memory is undefined by RESET input.
37
µPD75048
Table 9-1 Status of Each Hardware after Reset (2/2)
Hardware
Serial
Interface
Clock
Generator,
Clock Output
Circuit
Shift Register (SIO)
Interrupt
Function
Digital Port
Retained
Undefined
0
0
SBI Control Register
(SBIC)
0
0
Slave Address Register
(SVA)
Retained
Undefined
Processor Clock Control
Register (PCC)
0
0
System Clock Control
Register (SCC)
0
0
Clock Output Mode
Register (CLOM)
0
0
IRQ1, IRQ2,
IRQ4
Undefined
Undefined
Other than
above
0
0
Interrupt Enable Flag
(IExxx)
0
0
Interrupt Master Enable
Flag (IME)
0
0
INT0, INT1, INT2 Mode
Registers (IM0, IM1, IM2)
0, 0, 0
0, 0, 0
Output Buffer
Off
Off
Output Latch
Clear (0)
Clear (0)
Input/Output Mode
Register (PMGA, PMGB,
PMGC)
0
0
Pull-up Resistor
Specification Register
(POGA, POGB)
0
0
Pull-down Resistor
Specification Register
(PDGB)
0
0
FFH
FFH
0
0
Multi-Function Counter (MFTL)
Timer
Counter (MFTH)
Mode Register (MFTM)
0
0
Control Register (MFTC)
0
0
04H
04H
Retained
Undefined
Retained
Undefined
A/D Converter Mode Register (ADM)
SA Register (SA)
Bit sequential buffer (BSB0-3)
38
RESET Input During Operation
Operation Mode
Register (CSIM)
Interrupt
request
flag
(IRQxxx)
★
RESET Input in Standby Mode
µPD75048
10. INSTRUCTION SET
(1) Operand representation and description
Describe one or more operands in the operand field of each instruction according to the operand
representation and description methods of the instruction (for details, refer to RA75X Assembler
Package User's Manual - Language (EEU-730). With some instructions, only one operand should
be selected from several operands. The uppercase characters, +, and - are keywords and must be
described as is.
Describe an appropriate numeric value or label as immediate data.
The symbols of the register flags can be described in the places of mem, fmem, pmem, and bit.
(For details, refer to µPD75048 User's Manual (IEU-704). However, fmem and pmem restricts
the label that can be described.
Representation
Description
reg
reg1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rp1
rp2
XA, BC, DE, HL
BC, DE, HL
BC, DE
rpa
rpa1
HL, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
mem*
bit
8-bit immediate data or label
2-bit immediate data or label
fmem
pmem
FB0H to FBFH, FF0H to FFFH immediate data or label
FC0H to FFFH immediate data or label
addr
caddr
faddr
0000H to 1F7FH immediate data or label
12-bit immediate data or label
11-bit immediate data or label
taddr
20H to 7FH immediate data (where bit0=0) or label
PORTn
IExxx
PORT0 to PORT11
IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW, IEMFT,
IEEE, IEOW
MB0, MB1, MB4, MB5, MB6, MB7, MB15
MBn
*: Only even addresses can be described as mem for 8-bit data processing.
39
µPD75048
(2) Legend of operation field
A
: A register; 4-bit accumulator
B
: B register; 4-bit accumulator
C
: C register; 4-bit accumulator
D
: D register; 4-bit accumulator
E
: E register; 4-bit accumulator
H
: H register; 4-bit accumulator
L
: L register; 4-bit accumulator
X
: X register; 4-bit accumulator
XA
: Register pair (XA); 8-bit accumulator
BC
: Register pair (BC); 8-bit accumulator
DE
: Register pair (DE); 8-bit accumulator
HL
: Register pair (HL); 8-bit accumulator
PC
: Program counter
SP
: Stack pointer
CY
: Carry flag; or bit accumulator
PSW
: Program status word
MBE
: Memory bank enable flag
PORTn : Port n (n = 0 to 11)
40
IME
: Interrupt master enable flag
IExxx
: Interrupt enable flag
MBS
: Memory bank selector register
PCC
.
: Processor clock control register
(xx)
: Contents addressed by xx
xxH
: Hexadecimal data
: Delimiter of address and bit
µPD75048
(3) Symbols in addressing area field
*1
MB = MBE . MBS
(MBS = 0, 1, 15)
*2
MB = 0
*3
MBE = 0 : MB = 0 (00H-7FH)
MB = 15 (80H-FFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4
MB = 15, fmem = FB0H-FBFH,
FF0H-FFFH
*5
MB = 15, pmem = FC0H-FFFH
*6
addr = 0000H-1F7FH
*7
addr = (Current PC) -15 to (Current PC) - 1
(Current PC) +2 to (Current PC) + 16
*8
caddr = 0000H-0FFFH (PC12 = 0) or
1000H-1F7FH (PC12 = 1)
*9
faddr = 0000H-07FFH
*10
taddr = 0020H-007FH
MB = MBE . MBS
*11
(MBS = 0, 1, 4, 5, 6, 7, 15)
*12
MBE = 0: MB = 0 (00H-7FH)
MB = 15 (80H-FFH)
MBE = 1: MB = MBS
(MBS = 0, 1, 4, 5, 6, 7, 15)
Remarks 1:
Data memory
addressing
Program
memory
addressing
Data memory
addressing
MB indicates memory bank that can be accessed.
2:
In *2, MB = 0 regardless of MBE and MBS.
3:
In *4 and *5, MB = 15 regardless of MBE and MBS.
4:
*6 to *10 indicate areas that can be addressed.
5:
When MBS is 4, 5, 6 or 7, addressing area is in the EEPROM area.
(4) Machine cycle field
In this field, S indicates the number of machine cycles required when an instruction having a skip
function skips. The value of S varies as follows:
• When no instruction is skipped .................................................................................. S = 0
• When 1-byte or 2-byte instruction is skipped ........................................................... S = 1
• When 3-byte instruction (BR !addr or CALL !addr) is skipped .............................. S = 2
Note : The GETI instruction is skipped in one machine cycle.
One machine cycle equals to one cycle of the CPU clock Φ, (=tCY), and can be changed in three
steps depending on the setting of the processor clock control register (PCC).
41
µPD75048
Instructions
Mnemonics
Transfer MOV
1
1
A ← n4
reg1, #n4
2
2
reg1 ← n4
XA, #n8
2
2
XA ← n8
String effect A
HL, #n8
2
2
HL ← n8
String effect B
rp2, #n8
2
2
rp2 ← n8
A, @HL
1
1
A ← (HL)
*11
A, @rpa1
1
1
A ← (rpa1)
*2
XA, @HL
2
2
XA ← (HL)
*11
@HL, A
1
1
(HL) ← A
*11
@HL, XA
2
2
(HL) ← XA
*11
A,mem
2
2
A ← (mem)
*12
XA, mem
2
2
XA ← (mem)
*12
mem, A
2
2
(mem) ← A
*12
*12
mem, XA
2
2
(mem) ← XA
A, reg
2
2
A ← reg
XA, rp
2
2
XA ← rp
reg1, A
2
2
reg1 ← A
rp1, XA
2
2
rp1 ← XA
1
1
A ↔ (HL)
1
A ↔ (rpa1)
*2
XA, @HL
2
2
XA ↔ (HL)
*11
A, mem
2
2
A ↔ (mem)
*12
XA, mem
2
2
XA ↔ (mem)
*12
A, reg1
1
1
A ↔ reg1
XA, rp
2
2
XA ↔ rp
MOVT
XA, @PCDE
1
3
XA ← (PC12-8+DE)ROM
XA, @PCXA
1
3
ADDS
A, #n4
1
1+S
A ← A+n4
A, @HL
1
1+S
A ← A+(HL)
carry
*11
*11
*11
1
A, CY ← A-(HL)-CY
*11
2
A ← A ∧ n4
1
1
A ← A ∧ (HL)
A, @HL
1
1
SUBS
A, @HL
1
1+S
SUBC
A, @HL
1
AND
A, #n4
2
A, @HL
XOR
XA ← (PC12-8+XA)ROM
A ← A-(HL)
ADDC
tion
OR
*11
A, CY ← A+(HL)+CY
Opera-
A, #n4
2
2
A ← A ∨ n4
A, @HL
1
1
A ← A ∨ (HL)
A, #n4
2
2
A ← A ∨ n4
A, @HL
1
1
A ← A ∨ (HL)
Accumu- RORC
lator
A
1
1
CY ← A0, A3 ← CY, An-1 ← An
Manipu- NOT
lation
A
2
2
A←A
42
String effect A
1
metic
Skip
Conditions
A, #n4
A, @HL
Reference
Arith-
Operation
Addressing
Area
A, @rpa1
XCH
Table
Operand
Machine
Bytes Cycles
*11
*11
*11
carry
borrow
µPD75048
Instructions
Mnemonics
Incre-
INCS
ment/
Decrement
DECS
Compare SKE
Operand
Machine
Bytes Cycles
Operation
Addressing
Area
Skip
Conditions
reg
1
1+S
reg ← reg+1
@HL
2
2+S
(HL) ← (HL)+1
*11
mem
2
2+S
(mem) ← (mem)+1
*12
reg
1
1+S
reg
reg, #n4
2
2+S
Skip if reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*11
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*11
A = (HL)
Skip if A = reg
reg = 0
← reg-1
(HL) = 0
(mem) = 0
reg = FH
reg = n4
A, reg
2
2+S
Carry
SET1
CY
1
1
CY ← 1
flag
CLR1
CY
1
1
CY ← 0
Manipu- SKT
CY
1
1+S
lation
CY
1
1
CY ← CY
mem.bit
2
2
(mem.bit) ← 1
Bit
fmem.bit
2
2
(fmem.bit) ← 1
*4
Manipu-
pmem.@L
2
2
(pmem7-2 + L3-2.bit(L 1-0)) ← 1
*5
@H+mem.bit
2
2
(H + mem 3-0.bit) ← 1
*1
mem.bit
2
2
(mem.bit) ← 0
*3
fmem.bit
2
2
(fmem.bit) ← 0
*4
pmem.@L
2
2
(pmem 7-2 + L3-2 .bit(L1-0) ← 0
*5
@H+mem.bit
2
2
(H+mem3-0.bit) ← 0
*1
mem.bit
2
2+S
Skip if(mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if(fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if(pmem7-2 +L3-2.bit (L1-0 )) = 1
*5
(pmem.@L) = 1
NOT1
Memory/ SET1
lation
CLR1
SKT
SKF
OR1
XOR1
Skip if CY = 1
CY = 1
*3
@H+mem.bit
2
2+S
Skip if(H + mem3-0 .bit) = 1
*1
(@H+mem.bit) = 1
mem.bit
2
2+S
Skip if(mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if(fmem.bit) = 0
*4
(fmem.bit) = 0
(pmem.@L) = 0
pmem.@L
2
2+S
Skip if(pmem7-2 +L3-2 .bit (L1-0)) = 0
*5
@H+mem.bit
2
2+S
Skip if (H + mem 3-0.bit) = 0
*1
(@H+mem.bit) = 0
2
2+S
Skip if(fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if(pmem 7-2+L3-2.bit
(L1-0)) = 1 and clear
*5
(pmem.@L) = 1
(@H+mem.bit) = 1
SKTCLR fmem.bit
AND1
A = reg
@H+mem.bit
2
2+S
Skip if (H+mem3-0.bit) = 1 and clear
*1
CY,fmem.bit
2
2
CY ← CY ∧ (fmem.bit)
*4
CY,pmem.@L
2
2
CY ← CY ∧ (pmem7-2+L 3-2.bit(L1-0))
*5
CY,@H+mem.bit
2
2
CY ← CY ∧ (H+mem 3-0.bit)
*1
CY,fmem.bit
2
2
CY ← CY ∨ (fmem.bit)
*4
CY,pmem.@L
2
2
CY ← CY ∨ (pmem7-2+L 3-2.bit (L1-0))
*5
CY,@H+mem.bit
2
2
CY ← CY ∨ (H+mem 3-0.bit)
*1
CY,fmem.bit
2
2
CY ← CY ∨ (fmem.bit)
*4
CY,pmem.@L
2
2
CY ← CY ∨ (pmem7-2+L 3-2.bit (L1-0))
*5
CY,@H+mem.bit
2
2
CY ← CY ∨ (H+mem 3-0.bit)
*1
43
µPD75048
Instructions
Mnemonics
Branch
BR
—
PC 12-0 ← addr
(The most suitable instruction
is selectable from among BR
!addr, BRCB !caddr, and BR
$addr depending on the
assembler.)
*6
!addr
3
3
PC 12-0 ← addr
*6
$addr
1
2
PC 12-0 ← addr
*7
!caddr
2
2
PC 12-0 ← PC12 + caddr11-0
*8
!addr
3
3
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE,0, 0, PC12
PC 12-0 ← addr,SP ← SP-4
*6
!faddr
2
2
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE,0, 0, PC12
PC 12-0 ← 00,faddr,SP ← SP-4
*9
RET
1
3
MBE,x,x,PC 12 ← (SP+1)
PC 11-0 ← (SP)(SP+3)(SP+2)
SP ← SP+4
RETS
1
3+S
MBE,x,x,PC 12 ← (SP+1)
PC 11-0 ← (SP)(SP+3)(SP+2)
SP ← SP+4, then skip unconditionally
RETI
1
3
MBE,x,x,PC 12 ← (SP+1)
PC 11-0 ← (SP)(SP+3)(SP+2)
PSW ← (SP+4)(SP+5), SP ← SP+6
rp
1
1
(SP-1)(SP-2) ← rp, SP ← SP-2
BS
2
2
(SP-1) ← MBS,(SP-2) ← 0,SP ← SP-2
rp
1
1
rp ← (SP+1)(SP),SP ← SP+2
BS
2
2
MBS ← (SP+1),SP ← SP+2
2
2
IME ← 1
IExxx
2
2
IExxx ← 1
IME ← 0
PUSH
POP
EI
rupt
I/O
Operation
—
Subrou- CALL
tine/
Stack
Control CALLF
Control
Addressing
Area
addr
BRCB
Inter-
Operand
Machine
Bytes Cycles
DI
IN
OUT
2
2
IExxx
2
2
IExxx ← 0
A,PORTn
2
2
A ← PORTn
(n = 0-11)
XA,PORTn
2
2
XA ← PORTn+1,PORTn
(n = 4, 6)
PORTn,A
2
2
PORT n ← A
(n = 2-10)
PORTn,XA
2
2
PORT n+1,PORTn ← XA
(n = 4, 6)
CPU
HALT
2
2
Set HALT Mode(PCC.2 ← 1)
Control
STOP
2
2
Set STOP Mode (PCC.3 ← 1)
NOP
Special
1
1
No Operation
SEL
MBn
2
2
GETI
taddr
1
3
MBS ← n(n=0, 1, 4, 5, 6, 7, 15)
. Where TBR instruction,
PC12-0 ← (taddr)4-0+(taddr+1)
. Where TCALL instruction,
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE, 0, 0, PC12
PC12-0 ← (taddr)4-0+(taddr+1)
SP ← SP-4
. Except for TBR and TCALL
instructions,
Instruction execution of
(taddr)(taddr+1)
Skip
Conditions
Unconditional
*10
Depends on
referenced
instruction
Note : When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.
★
Remarks : TBR and TCALL instructions are assembler seudo-instructions for the table definition of
GETI instruction.
44
µPD75048
11. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Parameter
Symbol
Conditions
Supply Voltage
VDD
Input Voltage
VI1
Other than ports 4, 5, 10
VI2
Ports 4, 5, 10
Ratings
w/pull-up
resistor
-0.3 to +7.0
V
-0.3 to VDD +0.3
V
-0.3 to VDD +0.3
Open drain
Output Voltage
VO
High-Level Output
Current
IOH
Low-Level Output
IOL*
Current
Unit
-0.3 to +11
V
V
-0.3 to VDD +0.3
V
1 pin
-10
mA
All pins
-30
mA
Ports 0, 3, 4, 5
1 pin
Peak
30
mA
rms
15
mA
Other than ports 0, 3, 4, 5
1 pin
Peak
20
mA
rms
5
mA
Total of ports 0, 3 - 9, 11
Peak
170
mA
rms
120
mA
Total of ports 0, 2, 10
Peak
30
mA
rms
20
mA
Operating Temperature
Topt
-10 to +70
°C
Storage Temperature
T stg
-65 to +150
°C
*: rms = Peak value x √Duty
Note: Even if one of the parameters exceeds its absolute maximum rating even momentarily, the
quality of the product may be degraded. The absolute maximum rating therefore specifies the
upper or lower limit of the value at which the product can be used without physical damages.
Be sure not to exceed or fall below this value when using the product.
EEPROM RATINGS (T a = -10 to +70°C, VDD = 2.7 to 6.0 V)
Parameter
Symbol
µ
Conditions
Write Times
—
100,000
times
Data Retention Time
—
10
years
CAPACITANCE (Ta = 25°C, VDD = 0 V)
Parameter
Symbol
Input Capacitance
CI
Output Capacitance
CO
Input/Output
CIO
Conditions
f = 1 MHz
Pins other than thosemeasured are at 0 V
MIN.
TYP.
MAX.
Unit
15
pF
15
pF
15
pF
45
★
µPD75048
MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
(Ta = -10 to +70°C, VDD = 2.7 to 6.0 V)
Oscillator
Recommended
Constants
Ceramic
Item
Oscillation
frequency(f X)* 1
X1
X2
C1
C2
Conditions
VDD = oscillation
voltage range
MIN.
TYP.
2.0
MAX.
5.0
Oscillation stabiliza- After VDD come to
MIN. value of
tion time* 2
oscillation voltage
range
*3
4
Unit
MHz
ms
VDD
Crystal
X1
Oscillation
frequency (f X)* 1
X2
2.0
4.19
Oscillation stabiliza- VDD = 4.5 to 6.0 V
tion time* 2
C1
5.0
*3
MHz
10
ms
30
ms
C2
VDD
External Clock
X1 input frequency
(f X)*1
X1
X2
X1 input high-,
low-level widths
(t XH , tXL)
2.0
100
5.0
*3
250
MHz
ns
mPD74HCU04
*1: Only to express the characteristics of the oscillator circuit. For instruction execution time, refer
to AC Characteristics.
2: Time required for oscillation to stabilize after VDD has reached the minimum volue of the oscillation
voltage range or the STOP mode has been released.
3: When the oscillation frequency is 4.19 MHz < fx ≤ 5.0 MHz, do not select PCC = 0011 as the
instruction execution time: otherwise, one machine cycle is set to less than 0.95 µ s, falling short
of the rated minimum value of 0.95 µ s.
★
Note: When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted
line in the figures as follows to avoid adverse influences on the wiring capacity:
• Keep the wiring length as short as possible.
• Do not cross the wiring over the other signal lines.
• Do not route the wiring in the vicinity of lines through which a high alternating current flows.
• Always keep the ground point of the capacitor of the oscillator circuit at the same potential
as VDD . Do not connect the ground pattern through which a high curent flows.
• Do not extract signals from the oscillation circuit.
46
µPD75048
SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
(Ta = -10 to +70°C, VDD = 2.7 to 6.0 V)
Oscillator
Recommended
Constants
Crystal
XT1
Conditions
Oscillation
frequency (fXT)* 1
XT2
R
C3
Item
MIN.
TYP.
MAX.
32
32.768
35
kHz
1.0
2
ms
10
ms
32
100
kHz
5
15
µs
Oscillation stabiliza- VDD = 4.5 to 6.0 V
tion time*2
C4
Unit
VDD
External Clock
XT1 input frequency
(f XT)*1
XT1
XT2
XT1 input high-,
low-level widths
(t XTH, tXTL )
*1: Indicates only the characteristics of the oscillator circuit. For instruction execution time, refer to
AC Characteristics.
2: Time required for oscillation to stabilize after VDD has reached the minimum value of the oscillation
voltage range.
Note: When using the oscillation circuit of the subsystem clock, wire the portion enclosed in dotted
line in the figures as follows to avoid adverse influences on the wiring capacity:
• Keep the wiring length as short as possible.
• Do not cross the wiring over the other signal lines.
• Do not route the wiring in the vicinity of lines through which a high alternating current flows.
• Always keep the ground point of the capacitor of the oscillator circuit at the same potential
as VDD. Do not connect the ground pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce
the current dissipation and therefore, the subsystem clock oscillation circuit is influenced by
noise more easily than the main system clock oscillation circuit. When using the subsystem
clock, therefore, exercise utmost care in wiring the circuit.
47
★
µPD75048
DC CHARACTERISTICS (Ta = -10 to +70°C, VDD = 2.7 to 6.0 V)
Parameter
High-Level Input
Voltage
Low-level Input
Voltage
Symbol
0.7VDD
VDD
V
0.8VDD
VDD
V
VIH3
Ports 4,5,10
w/pull-up resistor
0.7VDD
VDD
V
Open-drain
0.7V DD
10
V
VDD-0.5
VDD
V
V
VIH4
X1, X2, XT1, XT2
VIL1
Ports 2-5, 8-11
0
0.3V DD
VIL2
Ports 0, 1, 6, 7, RESET
0
0.2VDD
V
VIL3
X1, X2, XT1, XT2
0
0.4
V
ILIH1
VDD-1.0
V
VDD-0.5
V
Ports 3,4,5
VDD = 4.5 to 6.0V,
IOL = 15mA
0.4
2.0
V
VDD = 4.5 to 6.0V, IOL = 1.6 mA
0.4
V
IOL = 400 µA
0.5
V
0.2V DD
V
SB0, 1
Open-drain pull-up
resistor ≥ 1 kΩ
VI = V DD
Other than below
3
µA
X1,X2,XT1
20
µA
ILIH3
VI = 9V
Ports 4,5,10
(open-drain)
20
µA
ILIL1
VI = 0V
Other than below
-3
µA
X1,X2,XT1
-20
µA
ILOH1
VO = VDD
Other than below
3
µA
ILOH2
VO = 9V
Ports 4,5,10
(open-drain)
20
µA
ILOL
VO = 0V
-3
µA
80
kΩ
ILIL2
RU2
48
VDD = 4.5 to 6.0V, IOH = -1 mA
IOH = -100 µA
ILIH2
Internal Pull-Up Resistor RU1
Internal Pull-Down
Resistor
Unit
Ports 0,1,6,7, RESET
VOL
Low-Level Output
Leakage Current
MAX.
Ports 2,3,8,9,11
Low-Level Output
Voltage
High-Level Output
Leakage Current
TYP.
VIH1
VOH
Low-Level Input
Leakage Current
MIN.
VIH2
High-Level Output
Voltage
High-Level Input
Leakage Current
Conditions
RD
Ports 0,1,2,3,6,7,8
VDD = 5.0V±10%
(except P00) VI = 0V
VDD = 3.0V±10%
15
40
30
Ports 4,5,10
VO = VDD -2.0 V
VDD = 5.0V±10%
15
VDD = 3.0V±10%
10
Port 9 VIN = VDD
VDD = 5.0V±10%
15
VDD = 3.0V±10%
10
40
40
300
kΩ
70
kΩ
60
kΩ
70
kΩ
60
kΩ
µPD75048
Parameter
Symbol
Supply Current *1 IDD1
IDD2
IDD3
TYP.
MAX.
Unit
4.19MHz crystal
Conditions
VDD = 5V±10%*2
3.5
10
mA
oscillator
VDD = 3V±10%*3
0.65
1.8
mA
C1 = C2 = 22pF
HALT mode
VDD = 5V±10%
800
2400
µA
VDD = 3V±10%
350
1000
µA
70
210
µA
20
60
µA
32.768kHz*4 crystal
oscillator
IDD4
IDD5
MIN.
Operation
mode
VDD = 3V±10%
HALT mode
VDD = 3V±10%
XT1 = 0V
VDD = 5V±10%
0.5
20
µA
STOP mode
VDD = 3V±10%
0.3
10
µA
5
µA
20
µA
Ta = 25°C
IDD6
32.768kHz oscillator VDD =
STOP mode
3V±10%*5
6
*1: Current flowing through internal pull-up resistor. Current flowing when EEPROM is accessed is
not included.
2: When µPD75048 operates in high-speed mode with processor clock control register (PCC) set to
0011.
3: When µ PD75048 operates in low-speed mode with PCC set to 0000.
4: When the system clock control register (SCC) is set to 1001, the oscillation of the main system clock
is stopped, and the subsystem clock is used.
5: When STOP instruction is executed with SCC set to 0000.
Note: Supply current when EEPROM is accessed is shown in EEPROM Characteristics.
49
µPD75048
AC CHARACTERISTICS (T a = -10 to +70°C, VDD = 2.7 to 6.0 V)
Parameter
Symbol
Conditions
w/main system clock
MIN.
VDD = 4.5-6.0V
TYP.
MAX.
Unit
0.95
32
µs
3.8
32
µs
125
µs
CPU Clock Cycle Time
(Minimum Instruction
Execution Time
= 1 Machine Cycle)*1
tCY
TI0 Input Frequency
fTI
V DD = 4.5 to 6.0 V
0
1
MHz
0
275
kHz
TI0 Input High-, LowLevel Widths
tTIH ,
tTIL
V DD = 4.5 to 6.0 V
0.48
µs
1.8
µs
Interrupt Input High-,
Low-Level Widths
tINTH ,
tINTL
INT0
*2
µs
INT1, 2, 4
10
µs
10
µs
RESET Low-Level Width
tRSL
10
µs
w/subsystem clock
114
KR0-7
122
*1: The CPU clock (Φ) cycle time is determined
by the oscillation frequency of the
tCY vs VDD
connected oscillator, system clock control
(with main system clock)
register (SCC), and processor clock control
register (PCC).
32
The figure on the right is cycle time tCY
vs. supply voltage VDD characteristics at
6
the main system clock.
5
*2: 2tCY or 128/fX depending on the setting of
4
m
Cycle time tCY [[µs]
s]
the interrupt mode register (IM0).
Operation
guaranteed
range
3
2
1
0.5
0
1
2
3
4
Supply voltage VDD [V]
50
5
6
µPD75048
SERIAL TRANSFER OPERATION
Two-Line and Three-Line Serial I/O Modes (SCK: internal clock output)
Parameter
SCK Cycle Time
SCK High-, Low-Level
Widths
Symbol
tKCY1
tKL1
Conditions
MIN.
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
TYP.
MAX.
Unit
1600
ns
3800
ns
tKCY1/2-50
ns
tKH1
tKCY1/2-150
ns
SI Set-Up Time (vs. SCK ↑)
tSIK1
150
ns
SI Hold Time (vs. SCK ↑ )
tKSI1
SCK ↓→ SO Output
Delay Time
tKSO1
400
RL = 1kΩ, C L = 100pF*
ns
VDD = 4.5 to 6.0V
250
ns
1000
ns
MAX.
Unit
TWO-LINE AND THREE-LINE SERIAL I/O MODES (SCK: external clock input)
Parameter
SCK Cycle Time
SCK High-, Low-Level
Widths
Symbol
tKCY2
tKL2
Conditions
VDD = 4.5 to 6.0V
VDD = 4.5 to 6.0V
MIN.
TYP.
800
ns
3200
ns
400
ns
tKH2
1600
ns
SI Set-Up Time (vs. SCK ↑)
tSIK2
100
ns
SI Hold Time (vs. SCK ↑)
tKSI2
SCK ↓→ SO Output
Delay Time
tKSO2
400
RL = 1kΩ, C L = 100 pF*
VDD = 4.5 to 6.0V
ns
300
ns
1000
ns
*: RL and C L are load resistance and load capacitance of the SO output line.
51
µPD75048
SBI MODE (SCK: internal clock output (master))
Parameter
SCK Cycle Time
Symbol
tKCY3
SCK High-, Low-Level
Widths
tKL3
tKH3
SB0, 1 Set-Up Time
(vs. SCK ↑ )
tSIK3
SB0, 1 Hold Time
(vs. SCK ↑ )
tKSI3
SCK ↓→ SB0, 1 Output
Delay Time
tKSO3
Conditions
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
RL = 1kΩ, C L = 100pF*
VDD = 4.5 to 6.0V
MIN.
TYP.
MAX.
Unit
1600
ns
3800
ns
tKCY3/2-50
ns
tKCY3/2-150
ns
150
ns
tKCY3/2
ns
0
250
ns
0
1000
ns
SCK ↑→ SB0, 1 ↓
tKSB
tKCY3
ns
SB0,1 ↓→ SCK
tSBK
tKCY3
ns
SB0, 1 Low-Level Width
tSBL
tKCY3
ns
SB0, 1 High-Level Width
tSBH
tKCY3
ns
SBI MODE (SCK: external clock input (slave))
Parameter
Symbol
Conditions
SCK Cycle Time
tKCY4
VDD = 4.5 to 6.0 V
SCK Ligh-, Low-Level
Widths
tKL4
tKH4
VDD = 4.5 to 6.0 V
SB0, 1 Set-Up Time
(vs. SCK ↑ )
MIN.
TYP.
MAX.
ns
3200
ns
400
ns
1600
ns
tSIK4
100
ns
SB0, 1 Hold Time
(vs. SCK ↑ )
tKSI4
tKCY4/2
ns
SCK ↓→ SB0, 1 Output
Delay Time
tKSO4
SCK ↑→ SB0, 1 ↓
tKSB
tKCY4
ns
SB0,1 ↓→ SCK ↓
tSBK
tKCY4
ns
SB0, 1 Low-Level Width
tSBL
tKCY4
ns
SB0, 1 High-Level Width
tSBH
tKCY4
ns
RL = 1kΩ, C L = 100pF*
VDD = 4.5 to 6.0V
0
300
0
1000
*: RL and C L are load resistance and load capacitance of the SB0 and SB1 output lines.
52
Unit
800
ns
ns
µPD75048
A/D CONVERTER (Ta = -10 to +70°C, VDD = 2.7 to 6.0V, AVSS = VSS = 0V)
Parameter
Symbol
Conditions
Resolution
MIN.
TYP.
8
8
2.5V ≤ AVREF ≤ VDD
Absolute Accuracy* 1
MAX.
Unit
8
bit
±1.5
LSB
Conversion Time*2
tCONV
168/fX
µs
Sampling Time*3
tSAMP
44/f X
µs
Analog Input Voltage
VIAN
AVREF+
V
Analog Supply Voltage
AVDD
2.5
VDD
V
Reference Input Voltage
AVREF+
2.5V ≤ (AVref+) – (AV ref-)
2.5
AVDD
V
Reference Input Voltage
AVREF-
2.5V ≤ (AVref+) – (AV ref-)
0
1.0
V
AVREF-
Analog Input Impedance
RAN
1000
AVREF Current
AIREF
0.25
*1: Absolute accuracy excluding quantization error (±
MΩ
2.0
mA
1
–2 LSB)
2: Time since execution of conversion start instruction until end of conversion (EOC = 1) (40.1 µs: fX
= 4.19 MHz)
3: Time since execution of conversion start instruction until end of sampling (10.5 µ s: fX = 4.19 MHz)
53
µPD75048
AC TIMING TEST POINT (excluding X1 and XT1 inputs)
0.8 VDD
0.8 VDD
Test points
0.2 VDD
0.2 VDD
CLOCK TIMING
1/fX
tXL
tXH
X1 input
VDD –0.5V
0.4 V
1/fXT
tXTL
tXTH
XT1 input
VDD –0.5V
0.4 V
TI0 TIMING
1/fTI
tTIL
TI0
54
tTIH
µPD75048
SERIAL TRANSFER TIMING
THREE-LINE SERIAL I/O MODE:
tKCY1
tKL1
tKH1
SCK
tSIK1
SI
tKSI1
Input data
tKS01
Output data
SO
TWO-LINE SERIAL I/O MODE:
tKCY2
tKH2
tKL2
SCK
tSIK2
tKSI2
SB0,1
tKSO2
55
µPD75048
SERIAL TRANSFER TIMING
BUS RELEASE SIGNAL TRANSFER:
t KCY3,4
tKL3,4
tKH3,4
SCK
tKSB
tSBL
tSBH
tSIK3,4
tSBK
SB0,1
tKS03,4
COMMAND SIGNAL TRANSFER:
tKCY3,4
tKL3,4
tKH3,4
SCK
tKSB
tSIK3,4
tSBK
SB0,1
tKS03,4
INTERRUPT INPUT TIMING
tINTL
INT0, 1, 2, 4
KR0-7
RESET INPUT TIMING
tRSL
RESET
56
tINTH
tKSI3,4
tKSI3,4
µPD75048
EEPROM CHARACTERISTICS
Parameter
Symbol
Supply current for
EEPROM access*1
IDD7
Conditions
MIN.
5V+10%*2
4.19MHz crystal oscillator V DD =
C1 = C = 22pF
V DD = 3V+10%*3
TYP.
MAX.
Unit
6.5
20
mA
2
6
mA
*1: Current flowing through the internal pull-up resistor is not included.
2: When the processor clock control register (PCC) is set to 0011 and the high-speed mode is used.
3: When PCC is set to 0000 and the low-speed mode is used.
EEPROM WRITE TIME
Select the write time of the EEPROM in accordance with the oscillation frequency of the main system
clock as follows:
Oscillation Frequency of Main
System Clock (fX)
Setting of EEPROM Control Register
Write time
EWTC1
EWTC0
fX = 2.0 to 5.0 MHz
0
0
212 x 18/fX (17.6 ms)
fX = 2.0 to 4.2 MHz
0
1
211 x 18/fX (8.8 ms)
fX = 2.0 MHz
1
0
210 x 18/fX
Remarks: ( ): fX = 4.19 MHz
LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE
(Ta = –10 to +70°C)
Parameter
Symbol
Data Retention Supply
Voltage
VDDDR
Data Retention Supply
Current*1
IDDDR
Release Signal Set Time
tSREL
Oscillation Stabilization
Wait Time*2
tWAIT
Conditions
MIN.
TYP.
2.0
VDDDR = 2.0 V
0.1
MAX.
Unit
6.0
V
10
µA
µs
0
Released by RESET
Released by interrupt request
2 17/fX
ms
*3
ms
*1: Does not include current flowing through internal pull-up resistor
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent
unstable operation when oscillation is started.
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:
BTM3
BTM2
BTM1
BTM0
–
0
0
0
220/fX (approx. 250 ms)
WAIT time ( ): fX = 4.19 MHz
–
0
1
1
217/fX (approx. 31.3 ms)
–
1
0
1
215/fX (approx. 7.82 ms)
–
1
1
1
213/fX (approx. 1.95 ms)
57
µPD75048
DATA RETENTION TIMING (releasing STOP mode by RESET)
Internal reset operation
HALT mode
STOP mode
Operation
mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction
execution
RESET
tWAIT
DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)
HALT mode
STOP mode
Operation
mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
Standby release signal
(interrupt request)
tWAIT
58
µPD75048
12. PERFORMANCE CURVE
IDD vs VDD (Crystal oscillation)
(T a = 25 °C)
10
5.0
High-speed mode PCC = 0011
Medium-speed mode
PCC = 0010
Low-speed mode PCC = 0000
Main system clock
HALT mode
1.0
0.5
Supply current IDD (mA)
Subsystem clock
Operation mode
0.1
With main system clock stopped
Subsystem clock HALT mode
0.05
Main system clock STOP mode
Subsystem clock oscillation
0.01
X1
0.005
22 pF
0.001
0
1
2
3
4
5
X2
XT1
XT2
Crystal
Crystal
4.19 MHz
32.768 kHz
22 pF
22 pF
V DD
V DD
6
330 kΩ
22 pF
7
Supply voltage VDD (V)
59
µPD75048
IDD vs VDD (Crystal oscillation)
(T a = 25 °C)
10
5.0
High-speed mode PCC = 0011
Medium-speed mode
PCC = 0010
Low-speed mode PCC = 0000
1.0
Main system clock
HALT mode
0.5
Supply current IDD (mA)
Subsystem clock
Operation mode
0.1
With main system clock stopped
Subsystem clock HALT mode
0.05
Main system clock STOP mode
Subsystem clock oscillation
0.01
X1
0.005
22 pF
0.001
0
1
2
3
4
Supply voltage VDD (V)
60
5
X2
XT1
XT2
Crystal
Crystal
2.0 MHz
32.768 kHz
22 pF
22 pF
V DD
V DD
6
330 kΩ
22 pF
7
µPD75048
13. PACKAGE DRAWINGS
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
B
C
M
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
61
µPD75048
64 PIN PLASTIC QFP (
14)
A
B
33
32
48
49
F
Q
5°±5°
S
C
D
detail of lead end
64
1
G
17
16
H
I M
J
M
P
K
N
L
P64GC-80-AB8-3
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
62
ITEM
MILLIMETERS
INCHES
A
17.6 ± 0.4
0.693 ± 0.016
B
14.0 ± 0.2
0.551+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
1.0
0.039
H
0.35 ± 0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8 ± 0.2
0.071 ± 0.008
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.55
0.100
Q
0.1 ± 0.1
0.004 ± 0.004
S
2.85 MAX.
0.112 MAX.
µPD75048
14. RECOMMENDED SOLDERING CONDITIONS
It is recommended that µPD75048 be soldered under the following conditions. For details on the
recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting
Manual" (IEI-616). For other soldering methods and conditions, consult NEC.
Table 14-1 Soldering Conditions of Surface Mount Type
µPD75048GC - xxx - AB8: 64-pin plastic QFP (
Soldering Method
*:
14 mm)
Soldering Conditions
Symbol for Recommended
Condition
Ware Soldering
Soldering bath temperature: 260°C max.,
time: 10 seconds max., number of times: 1,
maximum number of days: 2 days*,
(beyond this period, 16 hours of pre-baking is required
at 125°C), Pre-heating temperature: 120°C max.
WS60-162-1
Infrared Reflow
Package peak temperature: 230°C,
time: 30 seconds max. (210°C min.),
number of times: 1, maximum number of days: 2 days*
(beyond this period, 16 hours of pre-baking is required
at 125°C)
IR30-162-1
VPS
Package peak temperature: 215°C,
time: 40 seconds max. (200°C min.),
number of times: 1, maximum number of days: 2 days*
(beyond this period, 16 hours of pre-baking is required
at 125°C)
VP15-162-1
Pin Partial Heating
Pin temperature: 300°C max.,
time: 3 seconds max. (per side)
—
Number of days after unpacking the dry pack. Storage conditions are 25°C and 65%RH max.
Note:
Do not use two or more soldering methods in combination (except the pin partial heating
method).
Table 14-2 Soldering Conditions of Through-Hole Type
µPD75048CW - xxx: 64-pin plastic shrink DIP (750 mil)
Soldering Method
Soldering Conditions
Wave soldering
(lead parts only)
Soldering bath temperature: 260°C max.,
time: 10 seconds max.,
Pin Partial Heating
Pin temperature: 260oC max.,
time: 10 seconds max.
Caution:
The wave soldering must be performed at the lead part only. Note that the
soldering must not be directly contacted to the board.
Notice
A model that can be soldered under the more stringent conditions (infrared reflow peak temperature:
235°C, numbver of times:2, and an extended number of days) is also available.
For details, consult NEC.
63
µPD75048
APPENDIX A. DIFFERENCES BETWEEN µPD75048 AND 75028/75008 FUNCTIONS
µPD75048
Item
µPD75028
ROM (bytes)
µPD75008
8064
RAM (x4 bits)
512
EEPROM (x4 bits)
1024
None
Instruction Main System Clock 0.95 µs, 1.91 µs, 15.3 µs (4.19 MHz)
Cycle
Subsystem Clock
I/O Port
CMOS Input
CMOS I/O
N-ch OpenDrain I/O
A/D Converter
122µs (32.768 kHz)
12 • Pull-up via software: 27 (except P00)
48 24 • Pull-down via software: 4
• 8-bit resolution x 8 channels
• Low-voltage operation: VDD = 2.7 - 6.0
1 ch
Vector Interrupt
34 18 (except P00)
12 (10 V, pull-up by mask option)
16-bit Multifunction Timer
•
•
•
•
8-bit timer mode
PWM output mode
16-bit free running timer mode
16-bit integral A/D converter mode
External: 3, Internal: 6
Test Input
8 Pull-up via software
External: 3, Internal: 4
8 (10 V, pull-up
by mask option)
None
None
External: 3, Internal: 3
External: 1, Internal: 1
Buzzer Output (BUZ)
2 kHz, 4 kHz, 32 kHz (at 4.19 MHz, 32.768 kHz operation) 2 kHz (at 4.19 MHz,
32.768 kHz operation)
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (
Supply Voltage
• 42-pin plastic shrink DIP
(600 mil)
• 44-pin plastic QFP
( 10 mm)
14 mm)
VDD = 2.7 - 6.0 V
Operating Temperature
-10 to +70°C
-40 to +70°C
-40 to +85°C
PROM Model
µPD75P048
µPD75P036
µPD75P008
64
★
µPD75048
APPENDIX B. DEVELOPMENT TOOLS
The following development tools are readily available to support development of systems using
µPD75048:
Hardware
IE-75000-R*1
In-circuit emulator for 75X series
IE-75001-R
IE-75000-R-EM*2
Emulation board for IE-75000-R and IE-75001-R
EP-75028CW-R
Emulation prove for µPD75048
EP-75028GC-R
EV-9200GC-64
Emulation prove for µPD75048, provided with EV-9200GC-64, 64-pin
conversion socket
PG-1500
PROM programmer
PA-75P036GC
PROM programmer adapter solely used for µPD75P048GC. It is connected
to PG-1500.
PA-75P036CW
PROM programmer adapter solely used for µPD75P048CW. It is connected
to PG-1500.
Software
IE Control Program Host machine
PG-1500 Controller
PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00A*3)
RA75X Relocatable
IBM PC/ATTM (PC DOS TM Ver. 3.1)
Assembler
*1: Maintenance product
2: Not provided with IE-75001-R.
3: Ver. 5.00/5.00A has a task swap function, but this function cannot be used with this software.
Remarks : For development tools from other companies, refer to 75X Series Selection Guide (IF151).
65
µPD75048
[MEMO]
66
µPD75048
GENERAL NOTES ON CMOS DEVICES
➀
STATIC ELECTRICITY (ALL MOS DEVICES)
Exercise care so that MOS devices are not adversely influenced by static electricity while being
handled.
The insulation of the gates of the MOS device may be destroyed by a strong static charge.
Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case,
or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use
grounding when assembling the MOS device system. Do not leave the MOS device on a plastic
plate and do not touch the pins of the device.
Handle boards on which MOS devices are mounted similarly .
➁
PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)
Fix the input level of CMOS devices.
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its
input pin, intermediate level input may be generated due to noise, and an inrush current may flow
through the device, causing the device to malfunction. Therefore, fix the input level of the device
by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an
output pin (whose timing is not specified), each pin should be connected to VDD or GND through
a resistor.
Refer to “Processing of Unused Pins” in the documents of each devices.
➂
STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)
The initial status of MOS devices is undefined upon power application.
Since the characteristics of an MOS device are determined by the quantity of injection at the
molecular level, the initial status of the device is not controlled during the production process. The
output status of pins, I/O setting, and register contents upon power application are not guaranteed.
However, the items defined for reset operation and mode setting are subject to guarantee after
the respective operations have been executed.
When using a device with a reset function, be sure to reset the device after power application.
67
µPD75048
[MEMO]
NEC is manufacturing and selling the products under microcomputer
(with on-chip EEPROM) patent license with the BULL CP8.
This product should not be used for IC cards (SMART CARD).
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which
may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties b y or arising from use of a device described herein or any
other liability arising from use of such device. No license, either express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables,
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for
above applications or they intend to use "Standard" quality grade NEC devices for the applications not
intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard:
Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.
M4 92.6
MS-DOS is a trademark of Microsoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.
68