DATA SHEET MOS INTEGRATED CIRCUIT µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 16-BIT SINGLE-CHIP MICROCONTROLLERS DESCRIPTION The µPD784214A, 784215A, 784216A, 784217A, and 784218A are products of the µPD784216A/784218A Subseries in the 78K/IV Series. Besides a high-speed and high performance CPU, these controllers have ROM, RAM, I/O ports, 8-bit resolution A/D and D/A converters, timers, serial interfaces, a real-time output port, interrupt functions, and various other peripheral hardware. The µPD784214AY, 784215AY, 784216AY, 784217AY, and 784218AY are based on the µPD784216Y/784218Y Subseries with the addition of a multimaster-supporting I2C bus interface. The µPD78F4218A and 78F4218AY, products with a flash memory instead of the internal ROM of mask ROM versions, and various development tools are also available. Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before designing. µPD784216A, 784216AY Subseries User’s Manual Hardware: U13570E µPD784218A, 784218AY Subseries User’s Manual Hardware: U12970E 78K/IV Series User’s Manual Instructions: U10905E FEATURES • 78K/IV Series • Inherits peripheral functions of µPD78078, 78078Y Subseries • Minimum instruction execution time 160 ns (@fXX = 12.5 MHz operation with main system clock) 61 µs (@fXT = 32.768 kHz operation with subsystem clock) • I/O port: 86 pins • Timer/event counter: • 16-bit timer/event counter × 1 unit • 8-bit timer/event counter × 6 units • Serial interface: 3 channels • UART/IOE (3-wire serial I/O): 2 channels • CSI (3-wire serial I/O, I2C bus supporting multimaster Note): 2 channels Note µPD784216AY/784218AY Subseries only • Supply voltage: VDD = 1.8 to 5.5 V • Standby function HALT/STOP/IDLE mode In low-power consumption mode: HALT/IDLE mode (with subsystem clock) • Clock division function • Watch timer: 1 channel • Watchdog timer: 1 channel • Clock output function Selectable from fXX, fXX/2, fXX/22, fXX/23, fXX/24, fXX/25, fXX/26, fXX/27, fXT • Buzzer output function 10 11 12 13 Selectable from fXX/2 , fXX/2 , fXX/2 , fXX/2 • A/D converter: 8-bit resolution × 8 channels • D/A converter: 8-bit resolution × 2 channels APPLICATIONS Cellular phones, PHS, cordless telephones, CD-ROM, AV equipment Unless otherwise specified, references in this document to the µPD784218A, 784218AY refer to the µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, and 784218AY. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. U14121EJ2V0DS00 (2nd edition) Date Published August 2000 N CP(K) Printed in Japan The mark shows major revised points. 2000 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY ORDERING INFORMATION Part Number Package Internal ROM (Bytes) Internal RAM (Bytes) µPD784214AGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 96 K 3,584 µPD784214AGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 96 K 3,584 µPD784215AGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 128 K 5,120 µPD784215AGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 128 K 5,120 µPD784216AGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 128 K 8,192 µPD784216AGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 128 K 8,192 µPD784217AGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 192 K 12,800 µPD784217AGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 192 K 12,800 µPD784218AGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 256 K 12,800 µPD784218AGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 256 K 12,800 µPD784214AYGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 96 K 3,584 µPD784214AYGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 96 K 3,584 µPD784215AYGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 128 K 5,120 µPD784215AYGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 128 K 5,120 µPD784216AYGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 128 K 8,192 µPD784216AYGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 128 K 8,192 µPD784217AYGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 192 K 12,800 µPD784217AYGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 192 K 12,800 µPD784218AYGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 256 K 12,800 µPD784218AYGF-×××-3BA 100-pin plastic QFP (14 × 20 mm) 256 K 12,800 Remark ××× indicates ROM code suffix. 2 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 78K/IV SERIES LINEUP : Products in mass-production : Products under development Supports I2C bus µ PD784038Y µ PD784038 Standard models µ PD784026 Enhanced A/D converter, 16-bit timer, and power management Enhanced internal memory capacity Pin-compatible with the µ PD784026 Supports multimaster I2C bus µ PD784225Y µ PD784225 80-pin, ROM correction added Supports multimaster I2C bus Supports multimaster I2C bus µPD784216AY µPD784218AY µ PD784216A 100-pin, enhanced I/O and internal memory capacity µ PD784218A Enhanced internal memory capacity, ROM correction added µ PD784054 µPD784046 ASSP models On-chip 10-bit A/D converter µ PD784956A For DC inverter control µ PD784908 On-chip IEBusTM controller µPD784938A Enhanced functions of the µ PD784908, enhanced internal memory capacity, ROM correction added. µ PD784967 Enhanced functions of the µ PD784938A, enhanced I/O and internal memory capacity. Supports multimaster I2C bus µ PD784928Y µPD784915 Software servo control On-chip analog circuit for VCRs Enhanced timer µ PD784928 Enhanced functions of the µ PD784915 µ PD784976A On-chip VFD controller/driver Data Sheet U14121EJ2V0DS00 3 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY OVERVIEW OF FUNCTIONS (1/2) Part Number Item µPD784214A, µPD784215A, µPD784216A, µPD784217A, µPD784218A, µPD784214AY µPD784215AY µPD784216AY µPD784217AY µPD784218AY Number of basic instructions (mnemonics) 113 General-purpose registers 8 bits × 16 registers × 8 banks, or 16 bits × 8 registers × 8 banks (memory mapping) Minimum instruction execution time • 160 ns/320 ns/640 ns/1,280 ns/2,560 ns (@fXX = 12.5 MHz operation with main system clock) • 61 µs (@fXT = 32.768 kHz operation with subsystem clock) Internal memory 96 KB 128 KB 3,584 bytes 5,120 bytes ROM RAM Memory space I/O ports Pins with additional functionsNote 1 192 KB 8,192 bytes 12,800 bytes 1 MB with program and data spaces combined Total 86 CMOS input 8 CMOS I/O 72 N-ch open-drain I/O 6 Pins with pull-up resistor 70 LED direct drive output 22 Middle-voltage pin 6 Real-time output port 4 bits × 2 or 8 bits × 1 Timer/event counter Timer/event counter: (16-bit) Timer counter × 1 Pulse output Capture/compare register × 2 • PPG output • Square wave output • One-shot pulse output Timer/event counter 1: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Timer/event counter 2: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Timer/event counter 5: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Timer/event counter 6: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Timer/event counter 7: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Timer/event counter 8: Timer counter × 1 (8-bit) Compare register × 1 Pulse output • PWM output • Square wave output Serial interface • UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) • CSI (3-wire serial I/O, multimaster supporting I2C busNote 2): 1 channel A/D converter 8-bit resolution × 8 channels D/A converter 8-bit resolution × 2 channels Notes 1. Pins with additional functions are included with the I/O pins. 2. µPD784216AY/784218AY Subseries only 4 256 KB Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY OVERVIEW OF FUNCTIONS (2/2) µPD784214A, µPD784215A, µPD784216A, µPD784217A, µPD784218A, Item µPD784214AY µPD784215AY µPD784216AY µPD784217AY µPD784218AY Clock output Selectable from fXX, fXX/2, fXX/2 , fXX/2 , fXX/2 , fXX/2 , fXX/2 , fXX/2 , fXT Part Number 2 10 11 3 12 4 5 6 7 13 Buzzer output Selectable from fXX/2 , fXX/2 , fXX/2 , fXX/2 Watch timer 1 channel Watchdog timer 1 channel Standby • HALT/STOP/IDLE modes • In low power consumption mode (with subsystem clock): HALT/IDLE modes Interrupt Hardware sources 29 (internal: 20, external: 9) Software sources BRK instruction, BRKCS instruction, operand error Non-maskable Internal: 1, external: 1 Maskable Internal: 19, external: 8 • 4 programmable priority levels • 3 service modes: Vectored interrupt/macro service/context switching Supply voltage VDD = 1.8 to 5.5 V Package 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) Data Sheet U14121EJ2V0DS00 5 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY CONTENTS 1. DIFFERENCES AMONG MODELS IN µPD784216A, 784216AY/784218A, 784218AY SUBSERIES....... 8 2. MAJOR DIFFERENCES FROM µPD78078Y SUBSERIES ................................................................ 9 3. PIN CONFIGURATION (TOP VIEW).................................................................................................. 10 4. BLOCK DIAGRAM ............................................................................................................................... 13 5. PIN 5.1 5.2 5.3 FUNCTIONS .................................................................................................................................. 14 Port Pins ...................................................................................................................................... 14 Non-Port Pins .............................................................................................................................. 16 Pin I/O Circuits and Recommended Connections of Unused Pins ........................................ 18 6. CPU ARCHITECTURE ......................................................................................................................... 22 6.1 Memory Space ............................................................................................................................. 22 6.2 CPU Registers.............................................................................................................................. 29 6.2.1 General-purpose registers ..............................................................................................................29 6.2.2 Control registers..............................................................................................................................30 6.2.3 Special function registers (SFRs)....................................................................................................31 7. PERIPHERAL HARDWARE FUNCTIONS.......................................................................................... 36 7.1 Ports ............................................................................................................................................. 36 7.2 Clock Generator........................................................................................................................... 37 7.3 Real-Time Output Port ................................................................................................................ 39 7.4 Timer/Event Counter ................................................................................................................... 40 7.5 A/D Converter .............................................................................................................................. 42 7.6 D/A Converter .............................................................................................................................. 43 7.7 Serial Interface............................................................................................................................. 44 7.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE) ..........................................................45 7.7.2 Clocked serial interface (CSI) .........................................................................................................47 7.8 Clock Output Function................................................................................................................ 49 7.9 Buzzer Output Function.............................................................................................................. 49 7.10 Edge Detection Function .......................................................................................................... 50 7.11 Watch Timer ............................................................................................................................... 50 7.12 Watchdog Timer ........................................................................................................................ 51 8. INTERRUPT FUNCTIONS.................................................................................................................... 52 8.1 Interrupt Sources......................................................................................................................... 52 8.2 Vectored Interrupt ....................................................................................................................... 54 8.3 Context Switching ....................................................................................................................... 55 8.4 Macro Service .............................................................................................................................. 56 8.5 Application Example of Macro Service ..................................................................................... 57 6 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 9. LOCAL BUS INTERFACE................................................................................................................. 58 9.1 Memory Expansion ..................................................................................................................... 59 9.2 Programmable Wait .................................................................................................................... 59 10. STANDBY FUNCTION ....................................................................................................................... 60 11. RESET FUNCTION ............................................................................................................................ 62 12. INSTRUCTION SET ........................................................................................................................... 63 13. ELECTRICAL SPECIFICATIONS ...................................................................................................... 68 14. PACKAGE DRAWINGS ..................................................................................................................... 88 15. RECOMMENDED SOLDERING CONDITIONS................................................................................ 90 APPENDIX A. DEVELOPMENT TOOLS ................................................................................................ 92 APPENDIX B. RELATED DOCUMENTS................................................................................................ 95 Data Sheet U14121EJ2V0DS00 7 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 1. DIFFERENCES AMONG MODELS IN µPD784216A, 784216AY/784218A, 784218AY SUBSERIES The only difference among the µPD784214A, 784215A, 784216A, 784217A, and 784218A lies in the internal memory capacity. The µPD784214AY, 784215AY, 784216AY, 784217AY, and 784218AY are models with the addition of an I2C bus control function. The µPD78F4216A, 78F4216AY, 78F4218A, and 78F4218AY are provided with a 128 KB/256 KB flash memory instead of the mask ROM of the above models. These differences are summarized in Table 1-1. Table 1-1. Differences Among Models in µPD784216A, 784216AY/784218A, 784218AY Subseries µPD784214A, µPD784215A, µPD784216A, µPD784217A, µPD784218A, µPD78F4216A, µPD78F4218A, Item µPD784214AY µPD784215AY µPD784216AY µPD784217AY µPD784218AY µPD78F4216AY µPD78F4218AY Internal ROM 96 KB (Mask ROM) 128 KB (Mask ROM) 192 KB (Mask ROM) 256 KB (Mask ROM) 128 KB (Flash memory) 256 KB (Flash memory) Internal RAM 3,584 bytes 5,120 bytes 12,800 bytes 5,120 bytes 12,800 bytes Internal memory size switching register (IMS) Not provided ROM correction Not provided Provided Not provided Provided External access status function Not provided Provided Not provided Provided Supply voltage VDD = 1.8 to 5.5 V Electrical specifications Refer to the data sheet for each device. Part Number 8,192 bytes ProvidedNote VDD = 1.9 to 5.5 V Recommended soldering conditions EXA pin Not provided Provided Not provided TEST pin Provided Not provided VPP pin Not provided Provided Provided Note The internal flash memory capacity and internal RAM capacity can be changed using the internal memory size switching register (IMS). Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (not engineering samples) of the mask ROM version. 8 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 2. MAJOR DIFFERENCES FROM µPD78078Y SUBSERIES µPD784216A, 784216AY/784218A, 784218AY Subseries Series Name Item CPU µPD78078Y Subseries 16-bit CPU 8-bit CPU With main system clock 160 ns (@12.5 MHz operation) 400 ns (@5.0 MHz operation) With subsystem clock 61 µs (@32.768 kHz operation) 122 µs (@32.768 kHz operation) 1 MB 64 KB Total 86 88 CMOS input 8 2 CMOS I/O 72 78 N-ch open-drain I/O 6 8 Pins with pull-up resistor 70 86 LED direct drive output 22 16 Middle-voltage pin 6 8 Timer/counter • 16-bit timer/event counter × 1 unit • 8-bit timer/event counter × 6 units • 16-bit timer/event counter × 1 unit • 8-bit timer/event counter × 4 units Serial interface • UART/IOE (3-wire serial I/O) × 2 channels • CSI (3-wire serial I/O, multimaster 2 supporting I C busNote 2) × 1 channel • UART/IOE (3-wire serial I/O) × 1 channel • CSI (3-wire serial I/O, 2-wire serial 2 I/O, I C bus) × 1 channel • CSI (3-wire serial I/O, 3-wire serial I/O with automatic transmit/receive function) × 1 channel NMI pin Provided Not provided Macro service Provided Not provided Context switching Provided Not provided Programmable priority 4 levels Not provided Standby function • HALT/STOP/IDLE modes • In low power consumption mode: HALT/IDLE modes HALT/STOP modes Package • 100-pin plastic LQFP (fine pitch) (14 × 14 mm) • 100-pin plastic QFP (14 × 20 mm) • 100-pin plastic LQFP (fine pitch) (14 × 14 mm) • 100-pin plastic QFP (14 × 20 mm) • 100-pin ceramic WQFN (14 × 20 mm) (µPD78P078Y only) Minimum instruction execution time Memory space I/O ports Pins with additional functionsNote 1 Interrupts Notes 1. Pins with additional functions are included with the I/O pins. 2. µPD784216AY/784218AY Subseries only Data Sheet U14121EJ2V0DS00 9 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 3. PIN CONFIGURATION (TOP VIEW) • 100-pin plastic LQFP (fine pitch) (14 × 14 mm) ×××-8EU, ×××-8EU, ×××-8EU, ×××-8EU, ××× ××× ××× ××× µPD784214AGC-××× µPD784215AGC-××× µPD784216AGC-××× µPD784217AGC-××× ×××-8EU, µPD784214AYGC-××× ×××-8EU, ×××-8EU, ××× ××× ××× µPD784218AGC-××× µPD784215AYGC-××× P67/ASTB P66/WAIT P65/WR P64/RD P63/A19 P30/TO0 P103/TI8/TO8 P102/TI7/TO7 P101/TI6/TO6 P100/TI5/TO5 VDD P36/TI01 P35/TI00 P34/TI2 P33/TI1 P32/TO2 P31/TO1 P37/EXANote 5 P62/A18 P61/A17 P60/A16 VSS P57/A15 P56/A14 P55/A13 P54/A12 P53/A11 P52/A10 P51/A9 P50/A8 P47/AD7 P46/AD6 P45/AD5 P44/AD4 P43/AD3 P42/AD2 P41/AD1 P40/AD0 P87/A7 P86/A6 P85/A5 P84/A4 P83/A3 P80/A0 P81/A1 P82/A2 P26/SO0 P27/SCK0/SCL0Note 4 P23/PCL P24/BUZ P25/SI0/SDA0Note 4 P70/RxD2/SI2 P71/TxD2/SO2 P72/ASCK2/SCK2 P20/RxD1/SI1 P21/TxD1/SO1 P22/ASCK1/SCK1 P13/ANI3 P14/ANI4 P15/ANI5 P16/ANI6 P17/ANI7 AVSSNote 3 P130/ANO0 P131/ANO1 AVREF1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 1 74 2 73 3 72 4 71 5 70 6 69 7 68 8 67 9 66 10 65 11 64 12 63 13 62 14 61 15 60 16 59 17 58 18 57 19 56 20 55 21 54 22 53 23 52 24 51 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P11/ANI1 P12/ANI2 P120/RTP0 P121/RTP1 P122/RTP2 P123/RTP3 P124/RTP4 P125/RTP5 P126/RTP6 P127/RTP7 VDD X2 X1 VSS XT2 XT1 RESET P00/INTP0 P01/INTP1 P02/INTP2/NMI P03/INTP3 P04/INTP4 P05/INTP5 P06/INTP6 AVDDNote 2 AVREF0 P10/ANI0 P90 TESTNote 1 P95 P94 P93 P92 P91 ×××-8EU, ×××-8EU, ×××-8EU ××× ××× ××× µPD784216AYGC-××× µPD784217AYGC-××× µPD784218AYGC-××× Notes 1. Connect the TEST pin to VSS directly or via a pull-down resistor. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 kΩ. 2. Connect the AVDD pin to VDD. 3. Connect the AVSS pin to VSS. 4. The SCL0 and SDA0 pins are available in µPD784216AY/784218AY Subseries products only. 5. The EXA pin is available in µPD784218A, 784218AY Subseries products only. 10 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY • 100-pin plastic QFP (14 × 20 mm) ×××-3BA, ×××-3BA, ×××-3BA, ×××-3BA, ××× ××× ××× ××× µPD784214AGF-××× µPD784215AGF-××× µPD784216AGF-××× µPD784217AGF-××× ×××-3BA, µPD784214AYGF-××× ×××-3BA, ×××-3BA, ××× ××× ××× µPD784218AGF-××× µPD784215AYGF-××× VSS P57/A15 P56/A14 P55/A13 P54/A12 P53/A11 P52/A10 P51/A9 P50/A8 P47/AD7 P46/AD6 P45/AD5 P44/AD4 P43/AD3 P42/AD2 P41/AD1 P40/AD0 P87/A7 P86/A6 P85/A5 ×××-3BA, ×××-3BA, ×××-3BA ××× ××× ××× µPD784216AYGF-××× µPD784217AYGF-××× µPD784218AYGF-××× P60/A16 P61/A17 P62/A18 P63/A19 P64/RD P65/WR P66/WAIT P67/ASTB VDD P100/TI5/TO5 P101/TI6/TO6 P102/TI7/TO7 P103/TI8/TO8 P30/TO0 P31/TO1 P32/TO2 P33/TI1 P34/TI2 P35/TI00 P36/TI01 P37/EXANote 5 TESTNote 1 P90 P91 P92 P93 P94 P95 P84/A4 P83/A3 P82/A2 P81/A1 P80/A0 P27/SCK0/SCL0Note 4 P26/SO0 P25/SI0/SDA0Note 4 P24/BUZ P23/PCL P22/ASCK1/SCK1 P21/TxD1/SO1 P20/RxD1/SI1 P72/ASCK2/SCK2 P71/TxD2/SO2 P70/RxD2/SI2 AVREF1 P131/ANO1 P130/ANO0 AVSSNote 3 P17/ANI7 P16/ANI6 P15/ANI5 P14/ANI4 P13/ANI3 P12/ANI2 P11/ANI1 P10/ANI0 AVREF0 AVDDNote 2 P122/RTP2 P123/RTP3 P124/RTP4 P125/RTP5 P126/RTP6 P127/RTP7 VDD X2 X1 VSS XT2 XT1 RESET P00/INTP0 P01/INTP1 P02/INTP2/NMI P03/INTP3 P04/INTP4 P05/INTP5 P06/INTP6 P120/RTP0 P121/RTP1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 1 79 2 78 3 77 4 76 5 75 6 74 7 73 8 72 9 71 10 70 11 69 12 68 13 67 14 66 15 65 16 64 17 63 18 62 19 61 20 60 21 59 22 58 23 57 24 56 25 55 26 54 27 53 28 52 29 51 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Notes 1. Connect the TEST pin to VSS directly or via a pull-down resistor. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 kΩ. 2. Connect the AVDD pin to VDD. 3. Connect the AVSS pin to VSS. 4. The SCL0 and SDA0 pins are available in µPD784216AY/784218AY Subseries products only. 5. The EXA pin is available in µPD784218A, 784218AY Subseries products only. Data Sheet U14121EJ2V0DS00 11 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY A0 to A19: Address Bus P120 to P127: Port 12 AD0 to AD7: Address/Data Bus P130, P131: Port 13 ANI0 to ANI7: Analog Input PCL: Programmable Clock ANO0, ANO1: Analog Output RD: Read Strobe ASCK1, ASCK2: Asynchronous Serial Clock RESET: Reset ASTB: Address Strobe RTP0 to RTP7: Real-time Output Port AVDD: Analog Power Supply RxD1, RxD2: Receive Data AVREF0, AVREF1: Analog Reference Voltage SCK0 to SCK2: Serial Clock AVSS: Analog Ground SCL0Note 1: Serial Clock BUZ: Buzzer Clock SDA0Note 1: Serial Data External Access Status Output SI0 to SI2: Serial Input Note 2 EXA : INTP0 to INTP6: Interrupt from Peripherals SO0 to SO2: Serial Output NMI: Non-maskable Interrupt TEST: Test P00 to P06: Port 0 TI00, TI01, P10 to P17: Port 1 TI1, TI2, TI5 to TI8: P20 to P27: Port 2 TO0 to TO2, TO5 to TO8: Timer Output P30 to P37: Port 3 TxD1, TxD2: Transmit Data Timer Input P40 to P47: Port 4 VDD: Power Supply P50 to P57: Port 5 VSS: Ground P60 to P67: Port 6 WAIT: Wait P70 to P72: Port 7 WR: Write Strobe P80 to P87: Port 8 X1, X2: Crystal (Main System Clock) P90 to P95: Port 9 XT1, XT2: Crystal (Subsystem Clock) P100 to P103: Port 10 Notes 1. The SCL0 and SDA0 pins are available in µPD784216AY/784218AY Subseries products only. 2. The EXA pin is available in µPD784218A, 784218AY Subseries products only. 12 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 4. BLOCK DIAGRAM INTP2/NMI INTP0, INTP1, INTP3 to INTP6 UART/IOE1 Baud-rate generator Programmable interrupt controller TI00 TI01 TO0 Timer/event counter (16 bits) TI1 TO1 Timer/event counter 1 (8 bits) TI2 TO2 Timer/event counter 2 (8 bits) TI5/TO5 Timer/event counter 5 (8 bits) UART/IOE2 Baud-rate generator Clocked serial interfaceNote 1 RxD1/SI1 TxD1/SO1 ASCK1/SCK1 RxD2/SI2 TxD2/SO2 ASCK2/SCK2 SI0/SDA0 SO0 SCK0/SCL0 AD0 to AD7 A0 to A7 A8 to A15 Bus I/F A16 to A19 RD WR WAIT ASTB EXANote 2 TI6/TO6 Timer/event counter 6 (8 bits) Timer/event counter 7 (8 bits) Port 0 P00 to P06 TI7/TO7 Port 1 P10 to P17 Timer/event counter 8 (8 bits) Port 2 P20 to P27 Port 3 P30 to P37 Port 4 P40 to P47 Port 5 P50 to P57 Port 6 P60 to P67 Port 7 P70 to P72 Port 8 P80 to P87 Port 9 P90 to P95 Port 10 P100 to P103 Port 12 P120 to P127 Port 13 P130, P131 TI8/TO8 Watch timer 78K/IV CPU Core ROM RAM Watchdog timer RTP0 to RTP7 NMI/INTP2 ANO0 ANO1 AVREF1 AVSS P03/INTP3 ANI0 to ANI7 AVREF0 AVDD AVSS PCL Real-time output port D/A converter A/D converter RESET X1 Clock output control System control X2 XT1 BUZ Buzzer output XT2 VDD VSS TEST 2 Notes 1. This function supports the I C bus interface and is available in µPD784216AY/784218AY Subseries products only. 2. The EXA pin is available in µPD784218A, 784218AY Subseries products only. Remark The internal ROM and RAM capacities differ depending on the product. Data Sheet U14121EJ2V0DS00 13 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 5. PIN FUNCTIONS 5.1 Port Pins (1/2) Pin Name P00 I/O I/O Alternate Function INTP0 P01 INTP1 P02 INTP2/NMI P03 INTP3 P04 INTP4 P05 INTP5 P06 INTP6 P10 to P17 P20 Input I/O Port 1 (P1): • 8-bit input only port RxD1/SI1 Port 2 (P2): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. TxD1/SO1 P22 ASCK1/SCK1 P23 PCL P24 BUZ P25 SI0/SDA0Note 1 P26 SO0 P27 SCK0/SCL0Note 1 I/O Port 0 (P0): • 7-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. ANI0 to ANI7 P21 P30 Function TO0 P31 TO1 P32 TO2 P33 TI1 P34 TI2 P35 TI00 P36 TI01 P37 EXANote 2 Port 3 (P3): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. P40 to P47 I/O AD0 to AD7 Port 4 (P4): • 8-bit I/O port • Input/output can be specified in 1-bit units. • All pins set in input mode can be connected to on-chip pull-up resistors by means of software. • LEDs can be driven directly. P50 to P57 I/O A8 to A15 Port 5 (P5): • 8-bit I/O port • Input/output can be specified in 1-bit units. • All pins set in input mode can be connected to on-chip pull-up resistors by means of software. • LEDs can be driven directly. Notes 1. This function is available in µPD784216AY/784218AY Subseries products only. 2. This function is available in µPD784218A, 784218AY Subseries products only. 14 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 5.1 Port Pins (2/2) Pin Name P60 I/O I/O Alternate Function A16 P61 A17 P62 A18 P63 A19 P64 RD P65 WR P66 WAIT P67 ASTB P70 I/O Port 6 (P6): • 8-bit I/O port • Input/output can be specified in 1-bit units. • All pins set in input mode can be connected to on-chip pull-up resistors by means of software. RxD2/SI2 P71 TxD2/SO2 P72 ASCK2/SCK2 P80 to P87 I/O P90 to P95 I/O P100 I/O A0 to A7 TI5/TO5 TI6/TO6 P102 TI7/TO7 P103 TI8/TO8 Port 7 (P7): • 3-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. Port 8 (P8): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. • The interrupt control flag (KRIF) is set to 1 when a falling edge is detected at a pin of this port. − P101 Function Port 9 (P9): • N-ch open-drain middle-voltage I/O port • 6-bit I/O port • Input/output can be specified in 1-bit units. • LEDs can be driven directly. Port 10 (P10): • 4-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. P120 to P127 I/O RTP0 to RTP7 Port 12 (P12): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. P130, P131 I/O ANO0, ANO1 Port 13 (P13): • 2-bit I/O port • Input/output can be specified in 1-bit units. Data Sheet U14121EJ2V0DS00 15 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 5.2 Non-Port Pins (1/2) Pin Name TI00 I/O Alternate Function Function P35 External count clock input to 16-bit timer counter TI01 P36 Capture trigger signal input to capture/compare register 00 TI1 P33 External count clock input to 8-bit timer counter 1 TI2 P34 External count clock input to 8-bit timer counter 2 TI5 P100/TO5 External count clock input to 8-bit timer counter 5 TI6 P101/TO6 External count clock input to 8-bit timer counter 6 TI7 P102/TO7 External count clock input to 8-bit timer counter 7 TI8 P103/TO8 External count clock input to 8-bit timer counter 8 P30 16-bit timer output (shared by 14-bit PWM output) TO1 P31 8-bit timer output (shared by 8-bit PWM output) TO2 P32 TO5 P100/TI5 TO6 P101/TI6 TO7 P102/TI7 TO8 P103/TI8 TO0 RxD1 Input Output Input RxD2 TxD1 Output TxD2 ASCK1 Input ASCK2 SI0 Input P20/SI1 Serial data input (UART1) P70/SI2 Serial data input (UART2) P21/SO1 Serial data output (UART1) P71/SO2 Serial data output (UART2) P22/SCK1 Baud rate clock input (UART1) P72/SCK2 Baud rate clock input (UART2) Note P25/SDA0 Serial data input (3-wire serial I/O 0) SI1 P20/RxD1 Serial data input (3-wire serial I/O 1) SI2 P70/RxD2 Serial data input (3-wire serial I/O 2) P26 Serial data output (3-wire serial I/O 0) SO0 Output SO1 P21/TxD1 Serial data output (3-wire serial I/O 1) SO2 P71/TxD2 Serial data output (3-wire serial I/O 2) P25/SI0 Serial data input/output (I C bus) SCK0 P27/SCL0Note Serial clock input/output (3-wire serial I/O 0) SCK1 P22/ASCK1 Serial clock input/output (3-wire serial I/O 1) SCK2 P72/ASCK2 Serial clock input/output (3-wire serial I/O 2) SCL0 P27/SCK0 Serial clock input/output (I C bus) P02/INTP2 Non-maskable interrupt request input INTP0 P00 External interrupt request input INTP1 P01 INTP2 P02/NMI INTP3 P03 INTP4 P04 SDA0 NMI I/O Input INTP5 P05 INTP6 P06 2 2 Note This function is available in µPD784216AY/784218AY Subseries products only. 16 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 5.2 Non-Port Pins (2/2) Pin Name I/O Alternate Function Function PCL Output P23 Clock output (for trimming main system clock and subsystem clock) BUZ Output P24 Buzzer output RTP0 to RTP7 Output P120 to P127 Real-time output port that outputs data in synchronization with trigger I/O P40 to P47 Lower address/data bus for expanding memory externally Output P80 to P87 Lower address bus for expanding memory externally AD0 to AD7 A0 to A7 A8 to A15 P50 to P57 Middle address bus for expanding memory externally A16 to A19 P60 to P63 Higher address bus for expanding memory externally P64 Strobe signal output for reading from external memory P65 Strobe signal output for writing to external memory RD Output WR WAIT Input P66 Wait insertion at external memory access ASTB Output P67 Strobe output that externally latches address information output to ports 4 through 6 and 8 to access external memory EXANote Output P37 Status signal output at external memory access RESET Input − System reset input X1 Input − Connecting crystal resonator for main system clock oscillation X2 − − Connecting crystal resonator for subsystem clock oscillation XT1 Input XT2 − ANI0 to ANI7 Input P10 to P17 ANO0, ANO1 Output P130, P131 AVREF0 − A/D converter analog input D/A converter analog output − A/D converter reference voltage input AVREF1 D/A converter reference voltage input AVDD A/D converter positive power supply. Connect to VDD. AVSS GND for A/D converter and D/A converter. Connect to VSS. VDD Positive power supply VSS GND TEST Connect this pin to VSS directly or via a pull-down resistor. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 kΩ (this pin is for IC test). Note This function is available in µPD784218A, 784218AY Subseries products only. Data Sheet U14121EJ2V0DS00 17 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 5.3 Pin I/O Circuits and Recommended Connections of Unused Pins The input/output circuit type of each pin and recommended connections of unused pins are shown in Table 5-1. For each type of input/output circuit, refer to Figure 5-1. Table 5-1. Types of Pin Input/Output Circuits and Recommended Connection of Unused Pins (1/2) Pin Name P00/INTP0 I/O Circuit Type I/O 8-N I/O P01/INTP1 Recommended Connection of Unused Pins Input: Independently connect to VSS via a resistor Output: Leave open P02/INTP2/NMI P03/INTP3 to P06/INTP6 P10/ANI0 to P17/ANI7 9 P20/RxD1/SI1 10-K P21/TxD1/SO1 10-L P22/ASCK1/SCK1 10-K P23/PCL 10-L Input I/O Connect to VSS or VDD Input: Independently connect to VSS via a resistor Output: Leave open P24/BUZ P25/SI0/SDA0Note 1 10-K P26/SO0 10-L Note 1 P27/SCK0/SCL0 10-K P30/TO0 to P32/TO2 12-E P33/TI1, P34/TI2 8-N P35/TI00, P36/TI01 10-M P37/EXA Note 2 P40/AD0 to P47/AD7 12-E 5-A P50/A8 to P57/A15 P60/A16 to P63/A19 P64/RD P65/WR P66/WAIT P67/ASTB P70/RxD2/SI2 8-N P71/TxD2/SO2 10-M P72/ASCK2/SCK2 8-N P80/A0 to P87/A7 12-E P90 to P95 13-D P100/TI5/TO5 8-N P101/TI6/TO6 P102/TI7/TO7 P103/TI8/TO8 P120/RTP0 to P127/RTP7 12-E P130/ANO0, P131/ANO1 12-F Notes 1. This function is available in µPD784216AY/784218AY Subseries products only. 2. This function is available in µPD784218A, 784218AY Subseries products only. 18 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 5-1. Types of Pin Input/Output Circuits and Recommended Connection of Unused Pins (2/2) Pin Name I/O Circuit Type RESET 2-G XT1 16 AVREF1 Recommended Connection of Unused Pins − Input Connect to VSS − XT2 AVREF0 I/O − Leave open Connect to VSS Connect to VDD AVDD AVSS Connect to VSS TEST Connect this pin to VSS directly or via a pull-down resistor. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 kΩ. Remark Because the circuit type numbers are standardized among the 78K Series products, they are not sequential in some models (i.e., some circuits are not provided). Data Sheet U14121EJ2V0DS00 19 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Figure 5-1. Types of Pin I/O Circuits (1/2) Type 2-G Type 10-K VDD Pullup enable P-ch IN VDD Data P-ch IN/OUT Open drain Output disable N-ch Schmitt-triggered input with hysteresis characteristics Type 5-A Type 10-L VDD Pullup enable VDD Pullup enable P-ch P-ch VDD Data VDD Data P-ch P-ch IN/OUT Output disable IN/OUT Open drain Output disable N-ch N-ch VSS Input enable Type 8-N Type 10-M VDD Pullup enable VDD Pullup enable P-ch P-ch VDD VDD Data Data P-ch P-ch IN/OUT Output disable N-ch Output disable N-ch VSS VDD Type 12-E Type 9 IN IN/OUT P-ch N-ch Comparator + Pullup enable P-ch VDD Data – P-ch IN/OUT Output disable (Threshold voltage) Input enable 20 Input enable Data Sheet U14121EJ2V0DS00 N-ch P-ch Analog output voltage N-ch µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Figure 5-1. Types of Pin I/O Circuits (2/2) Type 16 Type 12-F VDD Data Feedback cut-off P-ch P-ch IN/OUT Output disable Input enable N-ch VSS Analog output voltage P-ch N-ch XT1 VSS XT2 Type 13-D IN/OUT Data Output disable N-ch VDD RD P-ch Middle-voltage input buffer Data Sheet U14121EJ2V0DS00 21 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 6. CPU ARCHITECTURE 6.1 Memory Space A memory space of 1 MB can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be specified by the LOCATION instruction. The LOCATION instruction must always be executed after reset cancellation, and must not be used more than once. (1) When LOCATION 0H instruction is executed • Internal memory The internal data area and internal ROM area are mapped as follows. Part Number Internal Data Area Internal ROM Area µPD784214A, µPD784214AY 0F100H to 0FFFFH 00000H to 0F0FFH 10000H to 17FFFH µPD784215A, µPD784215AY 0EB00H to 0FFFFH 00000H to 0EAFFH 10000H to 1FFFFH µPD784216A, µPD784216AY 0DF00H to 0FFFFH 00000H to 0DEFFH 10000H to 1FFFFH µPD784217A, µPD784217AY 0CD00H to 0FFFFH 00000H to 0CCFFH 10000H to 2FFFFH µPD784218A, µPD784218AY 00000H to 0CCFFH 10000H to 3FFFFH Caution The following areas that overlap the internal data area of the internal ROM cannot be used when the LOCATION 0H instruction is executed. Part Number Unusable Area µPD784214A, µPD784214AY 0F100H to 0FFFFH (3,840 bytes) µPD784215A, µPD784215AY 0EB00H to 0FFFFH (5,376 bytes) µPD784216A, µPD784216AY 0DF00H to 0FFFFH (8,448 bytes) µPD784217A, µPD784217AY 0CD00H to 0FFFFH (13,056 bytes) µPD784218A, µPD784218AY • External memory The external memory is accessed in external memory expansion mode. 22 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (2) When LOCATION 0FH instruction is executed • Internal memory The internal data area and internal ROM area are mapped as follows. Part Number Internal Data Area Internal ROM Area µPD784214A, µPD784214AY FF100H to FFFFFH 00000H to 17FFFH µPD784215A, µPD784215AY FEB00H to FFFFFH 00000H to 1FFFFH µPD784216A, µPD784216AY FDF00H to FFFFFH 00000H to 1FFFFH µPD784217A, µPD784217AY FCD00H to FFFFFH 00000H to 2FFFFH µPD784218A, µPD784218AY 00000H to 3FFFFH • External memory The external memory is accessed in external memory expansion mode. Data Sheet U14121EJ2V0DS00 23 24 Figure 6-1. Memory Map of µPD784214A, 784214AY On execution of LOCATION 0H instruction On execution of LOCATION 0FH instruction F F F F FH External memory (928 KB) 1 8 0 0 0H 1 7 F F FH General-purpose registers (128 bytes) Note 1 0 FE8 0H 0 FE 7 FH function registers (SFR) (256 bytes) Internal RAM (3,584 bytes) FFE8 0H F FE 7 FH FF 1 0 0H F F 0 F FH Internal ROM Data Sheet U14121EJ2V0DS00 (32,768 bytes) 1 0 0 0 0H 0 F F F FH Special function registers 0 F FDFH Note 1 0 F FD0H (256 bytes) 0 FF 0 0H 0 FEF FH 0 F E 3 BH (SFR) 0 FE0 6H Macro service control word area (54 bytes) F F E 3 BH FFE0 6H Data area (512 bytes) 0 FD0 0H 0 FCF FH Internal RAM (3,584 bytes) F FD0 0H F FCF FH External memory (980,736 bytes) Program/data area (3,072 bytes) 0 F 1 0 0H 0 F 0 F FH 0 F 1 0 0H FF 1 0 0H 1 7 F F FH 1 0 0 0 0H 1 7 F F FH Note 1 Note 2 0 F 0 F FH Program/data area Note 4 Note 3 0 1 0 0 0H 0 0 F F FH CALLF entry area (2 KB) Internal ROM (61,696 bytes) 0 0 8 0 0H 0 0 7 F FH 0 0 0 8 0H 0 0 0 7 FH 0 0 0 4 0H 0 0 0 3 FH 0 0 0 0 0H 0 0 0 0 0H 1 8 0 0 0H 1 7 F F FH CALLT table area (64 bytes) Vector table area (64 bytes) Internal ROM (96 KB) 0 0 0 0 0H Notes 1. Accessed in external memory expansion mode. 2. This 3,840-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed. 3. On execution of LOCATION 0H instruction: 94,464 bytes, on execution of LOCATION 0FH instruction: 98,304 bytes 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area. Note 4 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY F FEF FH 0 FEF FH F F F F F H Special F F FDFH Note 1 F F FD0H FFF 0 0H F FEF FH Figure 6-2. Memory Map of µPD784215A, 784215AY On execution of LOCATION 0FH instruction F F F F FH External memory (896 KB) Note 1 F FEF FH 0 FEF FH General-purpose registers (128 bytes) 0 FE8 0H 0 FE 7 FH 2 0 0 0 0H 1 F F F FH Data Sheet U14121EJ2V0DS00 1 0 0 0 0H 0 F F F FH Special 0 F FDFH Note 1 0 F FD0H 0 FF 0 0H 0 FEF FH F F F F F H Special F F FDFH Note 1 F F FD0H FFF 0 0H F FEF FH Internal ROM (65,536 bytes) 0 F E 3 BH function registers (SFR) 0 FE0 6H (256 bytes) (256 bytes) Internal RAM (5,120 bytes) FFE8 0H F FE 7 FH Macro service control word area (54 bytes) function registers (SFR) FEB 0 0H FEAF FH F F E 3 BH FFE0 6H Data area (512 bytes) 0 FD0 0H 0 FCF FH Internal RAM (5,120 bytes) F FD0 0H F FCF FH External memory (912,128 bytes) Program/data area (4,608 bytes) 0 EB 0 0H 0 EAF FH 0 EB 0 0H FEB 0 0H 1 F F F FH 1 0 0 0 0H 1 F F F FH Note 1 Note 2 0 EAF FH Program/data area Note 4 Note 3 0 1 0 0 0H 0 0 F F FH CALLF entry area (2 KB) Internal ROM (60,160 bytes) 0 0 8 0 0H 0 0 7 F FH 0 0 0 8 0H 0 0 0 7 FH 0 0 0 4 0H 0 0 0 3 FH 0 0 0 0 0H 0 0 0 0 0H 2 0 0 0 0H 1 F F F FH CALLT table area (64 bytes) Vector table area (64 bytes) Internal ROM (128 KB) 0 0 0 0 0H Notes 1. Accessed in external memory expansion mode. 2. This 5,376-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed. 3. On execution of LOCATION 0H instruction: 125,696 bytes, on execution of LOCATION 0FH instruction: 131,072 bytes 25 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area. Note 4 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY On execution of LOCATION 0H instruction 26 Figure 6-3. Memory Map of µPD784216A, 784216AY On execution of LOCATION 0H instruction On execution of LOCATION 0FH instruction F F F F FH Note 1 General-purpose registers (128 bytes) 0 FE8 0H 0 FE 7 FH 2 0 0 0 0H 1 F F F FH Data Sheet U14121EJ2V0DS00 1 0 0 0 0H 0 F F F FH Special 0 F FDFH Note 1 0 F FD0H 0 FF 0 0H 0 FEF FH Internal ROM (65,536 bytes) 0 F E 3 BH function registers (SFR) 0 FE0 6H (256 bytes) (256 bytes) Internal RAM (8,192 bytes) FFE8 0H F FE 7 FH Macro service control word area (54 bytes) function registers (SFR) FDF 0 0H FDE F FH F F E 3 BH FFE0 6H Data area (512 bytes) 0 FD0 0H 0 FCF FH Internal RAM (8,192 bytes) F FD0 0H F FCF FH External memory (909,056 bytes) Program/data area (7,680 bytes) 0DF 0 0H 0 DE F FH 0DF 0 0H FDF 0 0H 1 F F F FH 1 0 0 0 0H 1 F F F FH Note 1 Note 2 0 DE F FH Program/data area Note 4 Note 3 0 1 0 0 0H 0 0 F F FH CALLF entry area (2 KB) Internal ROM (57,088 bytes) 0 0 8 0 0H 0 0 7 F FH 0 0 0 8 0H 0 0 0 7 FH 0 0 0 4 0H 0 0 0 3 FH 0 0 0 0 0H 0 0 0 0 0H 2 0 0 0 0H 1 F F F FH CALLT table area (64 bytes) Vector table area (64 bytes) Internal ROM (128 KB) 0 0 0 0 0H Notes 1. Accessed in external memory expansion mode. 2. This 8,448-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed. 3. On execution of LOCATION 0H instruction: 122,624 bytes, on execution of LOCATION 0FH instruction: 131,072 bytes 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area. Note 4 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY External memory (896 KB) F FEF FH 0 FEF FH F F F F F H Special F F FDFH Note 1 F F FD0H FFF 0 0H F FEF FH Figure 6- 4. Memory Map of µPD784217A, 784217AY On execution of LOCATION 0FH instruction F F F F FH F FEF FH 0 FEF FH External memory (928 KB) 1 8 0 0 0H 1 7 F F FH F F F F F H Special F F FDFH Note 1 F F FD0H FFF 0 0H F FEF FH General-purpose registers (128 bytes) Note 1 0 FE8 0H 0 FE 7 FH function registers (SFR) (256 bytes) Internal RAM (12,800 bytes) FFE8 0H F FE 7 FH F CD 0 0 H F CC F F H Internal ROM Data Sheet U14121EJ2V0DS00 (32,768 bytes) 1 0 0 0 0H 0 F F F FH Special function registers 0 F FDFH Note 1 0 F FD0H (256 bytes) 0 FF 0 0H 0 FEF FH 0 F E 3 BH (SFR) 0 FE0 6H Macro service control word area (54 bytes) F F E 3 BH FFE0 6H Data area (512 bytes) 0 FD0 0H 0 FCF FH Internal RAM (12,800 bytes) F FD0 0H F FCF FH External memory (838,912 bytes) Program/data area (12,288 bytes) 0 CD 0 0 H 0 CC F F H 0 CD 0 0 H F CD 0 0 H 2 F F F FH 1 0 0 0 0H 1 7 F F FH Note 1 Note 2 0 F 0 F FH Program/data area Note 4 Note 3 0 1 0 0 0H 0 0 F F FH CALLF entry area (2 KB) Internal ROM (52,480 bytes) 0 0 8 0 0H 0 0 7 F FH 0 0 0 8 0H 0 0 0 7 FH 0 0 0 4 0H 0 0 0 3 FH 0 0 0 0 0H 0 0 0 0 0H 3 0 0 0 0H 2 F F F FH CALLT table area (64 bytes) Vector table area (64 bytes) Internal ROM (192 KB) 0 0 0 0 0H Notes 1. Accessed in external memory expansion mode. 2. This 13,056-byte area can be used as internal ROM only when the LOCATION 0FH instruction is executed. 3. On execution of LOCATION 0H instruction: 183,552 bytes, on execution of LOCATION 0FH instruction: 196,608 bytes 27 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area. Note 4 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY On execution of LOCATION 0H instruction 28 Figure 6-5. Memory Map of µPD784218A, 784218AY On execution of LOCATION 0H instruction On execution of LOCATION 0FH instruction F F F F FH F FEF FH 0 FEF FH External memory (768 KB) General-purpose registers (128 bytes) 0 FE8 0H 0 FE 7 FH 4 0 0 0 0H 3 F F F FH Data Sheet U14121EJ2V0DS00 1 0 0 0 0H 0 F F F FH Special 0 F FDFH Note 1 0 F FD0H 0 FF 0 0H 0 FEF FH Internal ROM (196,608 bytes) 0 F E 3 BH function registers (SFR) 0 FE0 6H (256 bytes) (256 bytes) Internal RAM (12,800 bytes) FFE8 0H F FE 7 FH Macro service control word area (54 bytes) function registers (SFR) F CD 0 0 H F CC F F H F F E 3 BH FFE0 6H Data area (512 bytes) 0 FD0 0H 0 FCF FH Internal RAM (12,800 bytes) F FD0 0H F FCF FH Note 1 External memory (773,376 bytes) Program/data area (12,288 bytes) 0 CD 0 0 H 0 CC F F H 0 CD 0 0 H F CD 0 0 H 3 F F F FH 1 0 0 0 0H 3 F F F FH Note 2 0 CC F F H Note 3 Program/data area Note 4 0 1 0 0 0H 0 0 F F FH CALLF entry area (2 KB) Internal ROM (52,480 bytes) 0 0 8 0 0H 0 0 7 F FH 0 0 0 8 0H 0 0 0 7 FH 0 0 0 4 0H 0 0 0 3 FH 0 0 0 0 0H 0 0 0 0 0H 4 0 0 0 0H 3 F F F FH CALLT table area (64 bytes) Vector table area (64 bytes) Internal ROM (256 KB) 0 0 0 0 0H Notes 1. Accessed in external memory expansion mode. 2. This 13,056-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed. 3. On execution of LOCATION 0H instruction: 249,088 bytes, on execution of LOCATION 0FH instruction: 262,144 bytes 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area. Note 4 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Note 1 F F F F F H Special F F FDFH Note 1 F F FD0H FFF 0 0H F FEF FH µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 6.2 CPU Registers 6.2.1 General-purpose registers Sixteen 8-bit general-purpose registers are available. Two 8-bit registers can also be used in pairs as a 16-bit register. Of the 16-bit registers, four can be used in combination with an 8-bit register for address expansion as 24bit address specification registers. Eight banks of these register sets are available and can be selected by using software or the context switching function. The general-purpose registers except the V, U, T, and W registers for address expansion are mapped to the internal RAM. Figure 6-6. General-Purpose Register Format A (R1) X (R0) AX (RP0) B (R3) C (R2) BC (RP1) R5 R4 RP2 R7 R6 RP3 V R9 R8 VP (RP4) VVP (RG4) U R11 R10 T UP (RP5) UUP (RG5) D (R13) E (R12) W DE (RP6) TDE (RG6) H (R15) L (R14) 8 banks WHL (RG7) HL (RP7) Names in parentheses indicate absolute names. Caution Registers R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only for recycling the program of the 78K/III Series. Data Sheet U14121EJ2V0DS00 29 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 6.2.2 Control registers (1) Program counter (PC) The program counter is a 20-bit register whose contents are automatically updated when the program is executed. Figure 6-7. Format of Program Counter (PC) 19 0 PC (2) Program status word (PSW) This register holds the statuses of the CPU. Its contents are automatically updated when the program is executed. Figure 6-8. Format of Program Status Word (PSW) PSWH 15 14 13 12 11 10 9 8 UF RBS2 RBS1 RBS0 – – – – 7 6 5 4 3 2 1 0 AC IE P/V 0 CY PSW S PSWL Z RSS Note Note This flag is provided to maintain compatibility with the 78K/III Series. Be sure to clear this flag to 0, except when the software for the 78K/III Series is used. (3) Stack pointer (SP) This is a 24-bit pointer that holds the first address of the stack. Be sure to write 0 to the higher 4 bits of this pointer. Figure 6-9. Format of Stack Pointer (SP) 23 SP 30 0 20 0 0 0 0 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 6.2.3 Special function registers (SFRs) The special function registers, such as the mode registers and control registers of the internal peripheral hardware, are registers to which special functions are assigned. These registers are mapped to the 256-byte space of addresses 0FF00H to 0FFFFHNote. Note On execution of the LOCATION 0H instruction. FFF00H to FFFFFH on execution of the LOCATION 0FH instruction. Caution Do not access an address in this area to which no SFR is assigned. If such an address is accessed by mistake, the µPD784218A may enter a deadlocked state. This deadlock state can be cleared only by inputting the RESET signal. Table 6-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows. • Symbol ................................ Symbol indicating an SFR. This symbol is reserved for NEC's assembler (RA78K4). It can be used as an sfr variable by means of the #pragma sfr command in the C compiler (CC78K4). • R/W ..................................... Indicates whether the SFR is read-only, write-only, or read/write. R/W: Read/write R: Read-only W: Write-only • Bit units for manipulation ..... Bit units in which the value of the SFR can be manipulated. SFRs that can be manipulated in 16-bit units can be described as the operand sfrp of an instruction. To specify the address of this SFR, describe an even address. SFRs that can be manipulated in 1-bit units can be described as the operand of a bit manipulation instruction. • After reset............................ Indicates the status of the register when the RESET signal has been input. Data Sheet U14121EJ2V0DS00 31 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 6-1. Special Function Register (SFR) List (1/4) AddressNote 1 Special Function Register (SFR) Name Symbol R/W Bit Units for Manipulation 1 Bit 8 Bits 16 Bits 0FF00H Port 0 P0 R/W √ √ − 0FF01H Port 1 P1 R √ √ − 0FF02H Port 2 P2 R/W √ √ − 0FF03H Port 3 P3 √ √ − 0FF04H Port 4 P4 √ √ − 0FF05H Port 5 P5 √ √ − 0FF06H Port 6 P6 √ √ − 0FF07H Port 7 P7 √ √ − 0FF08H Port 8 P8 √ √ − 0FF09H Port 9 P9 √ √ − 0FF0AH Port 10 P10 √ √ − 0FF0CH Port 12 P12 √ √ − 0FF0DH Port 13 P13 √ √ − 0FF10H 16-bit timer counter TM0 R − − √ Capture/compare register 00 (16-bit timer/event counter) CR00 R/W − − √ Capture/compare register 01 (16-bit timer/event counter) CR01 − − √ After Reset 00HNote 2 0000H 0FF11H 0FF12H 0FF13H 0FF14H 0FF15H 0FF16H Capture/compare control register 0 CRC0 √ √ − 0FF18H 16-bit timer mode control register TMC0 √ √ − 0FF1AH 16-bit timer output control register TOC0 √ √ − 0FF1CH Prescaler mode register 0 PRM0 √ √ − 0FF20H Port 0 mode register PM0 √ √ − √ − 0FF22H Port 2 mode register PM2 √ 0FF23H Port 3 mode register PM3 √ √ − 0FF24H Port 4 mode register PM4 √ √ − 0FF25H Port 5 mode register PM5 √ √ − 0FF26H Port 6 mode register PM6 √ √ − 0FF27H Port 7 mode register PM7 √ √ − 0FF28H Port 8 mode register PM8 √ √ − 0FF29H Port 9 mode register PM9 √ √ − 0FF2AH Port 10 mode register PM10 √ √ − 0FF2CH Port 12 mode register PM12 √ √ − 0FF2DH Port 13 mode register PM13 √ √ − 00H FFH Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed. 2. Because each port is initialized to input mode after reset, "00H" is not actually read. The output latch is initialized to "0". 32 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 6-1. Special Function Register (SFR) List (2/4) AddressNote Special Function Register (SFR) Name Symbol R/W Bit Units for Manipulation 1 Bit 8 Bits 16 Bits 0FF30H Pull-up resistor option register 0 PU0 √ √ − 0FF32H Pull-up resistor option register 2 PU2 √ √ − 0FF33H Pull-up resistor option register 3 PU3 √ √ − 0FF37H Pull-up resistor option register 7 PU7 √ √ − 0FF38H Pull-up resistor option register 8 PU8 √ √ − 0FF3AH Pull-up resistor option register 10 PU10 √ √ − 0FF3CH Pull-up resistor option register 12 PU12 √ √ − 0FF40H Clock output control register CKS √ √ − 0FF42H Port function control register PF2 √ √ − 0FF4EH Pull-up resistor option register PUO √ √ − 0FF50H 8-bit timer counter 1 TM1 − √ √ 0FF51H 8-bit timer counter 2 TM2 − √ 0FF52H Compare register 10 (8-bit timer/event counter 1) CR10 CR1W 0FF53H Compare register 20 (8-bit timer/event counter 2) CR20 0FF54H 8-bit timer mode control register 1 TMC1 TMC1W √ √ 0FF55H 8-bit timer mode control register 2 TMC2 √ √ 0FF56H Prescaler mode register 1 PRM1 PRM1W √ √ 0FF57H Prescaler mode register 2 PRM2 0FF60H 8-bit timer counter 5 TM5 0FF61H 8-bit timer counter 6 TM6 0FF62H 8-bit timer counter 7 TM7 0FF63H 8-bit timer counter 8 TM8 0FF64H Compare register 50 (8-bit timer/event counter 5) CR50 CR5W 0FF65H TM1W R/W R R/W − √ − √ √ √ − √ − √ − √ − √ − √ Compare register 60 (8-bit timer/event counter 6) CR60 − √ 0FF66H Compare register 70 (8-bit timer/event counter 7) CR70 CR7W − √ 0FF67H Compare register 80 (8-bit timer/event counter 8) CR80 − √ 0FF68H 8-bit timer mode control register 5 TMC5 TMC5W √ √ 0FF69H 8-bit timer mode control register 6 TMC6 √ √ 0FF6AH 8-bit timer mode control register 7 TMC7 TMC7W √ √ 0FF6BH 8-bit timer mode control register 8 TMC8 √ √ 0FF6CH Prescaler mode register 5 PRM5 PRM5W √ √ 0FF6DH Prescaler mode register 6 PRM6 √ √ 0FF6EH Prescaler mode register 7 PRM7 PRM7W √ √ 0FF6FH Prescaler mode register 8 PRM8 √ √ 0FF70H Asynchronous serial interface mode register 1 ASIM1 √ √ 0FF71H Asynchronous serial interface mode register 2 ASIM2 0FF72H Asynchronous serial interface status register 1 ASIS1 0FF73H Asynchronous serial interface status register 2 ASIS2 TM5W R TM7W R/W R After Reset 00H 0000H √ √ √ √ √ √ √ √ √ √ √ − √ √ − √ √ − √ √ − 00H Note When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed. Data Sheet U14121EJ2V0DS00 33 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 6-1. Special Function Register (SFR) List (3/4) AddressNote 1 Special Function Register (SFR) Name Symbol R/W Bit Units for Manipulation 1 Bit 8 Bits 16 Bits After Reset Transmit shift register 1 TXS1 W − √ − Receive buffer register 1 RXB1 R − √ − 0FF75H Transmit shift register 2 TXS2 W − √ − RXB2 R − √ − 0FF76H Baud rate generator control register 1 BRGC1 R/W √ √ − 0FF77H Baud rate generator control register 2 BRGC2 √ √ − 0FF7AH Oscillation mode select register CC √ √ − 0FF80H A/D converter mode register ADM √ √ − 0FF81H A/D converter input select register ADIS √ √ − 0FF83H A/D conversion result register ADCR R − √ − Undefined 0FF84H D/A conversion value setting register 0 DACS0 R/W √ √ − 00H 0FF85H D/A conversion value setting register 1 DACS1 √ √ − 0FF86H D/A converter mode register 0 DAM0 √ √ − 0FF87H D/A converter mode register 1 DAM1 √ √ − 0FF74H Receive buffer register 2 0FF8CH External bus type select register EBTS √ √ − 0FF90H Serial operation mode register 0 CSIM0 √ √ − 0FF91H Serial operation mode register 1 CSIM1 √ √ − CSIM2 √ √ − 0FF92H Serial operation mode register 2 0FF94H Serial I/O shift register 0 SIO0 − √ − 0FF95H Serial I/O shift register 1 SIO1 − √ − 0FF96H Serial I/O shift register 2 SIO2 − √ − 0FF98H Real-time output buffer register L RTBL − √ − 0FF99H Real-time output buffer register H RTBH − √ − 0FF9AH Real-time output port mode register RTPM √ √ − √ − FFH 00H 0FF9BH Real-time output port control register RTPC √ 0FF9CH Watch timer mode control register WTM √ √ − 0FFA0H External interrupt rising edge enable register EGP0 √ √ − 0FFA2H External interrupt falling edge enable register EGN0 √ √ − 0FFA8H In-service priority register ISPR R √ √ − 0FFA9H Interrupt select control register SNMI R/W √ √ − 0FFAAH Interrupt mode control register √ √ − 80H 0FFACH Interrupt mask flag register 0L MK0L √ √ √ FFFFH 0FFADH Interrupt mask flag register 0H MK0H √ √ √ √ √ √ IMC 0FFAEH Interrupt mask flag register 1L MK1L 0FFAFH Interrupt mask flag register 1H MK1H 0FFB0H I2C bus control registerNote 2 0FFB2H Prescaler mode register for serial clock 0FFB4H Slave address register MK0 MK1 √ IICC0 √ √ − SPRM0 √ √ − SVA0 √ √ − 00H Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed. 2. µPD784216AY/784218AY Subseries only 34 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 6-1. Special Function Register (SFR) List (4/4) AddressNote 1 Special Function Register (SFR) Name 0FFB6H I2C bus status registerNote 2 0FFB8H Serial shift register 0FFC0H Standby control register 0FFC2H Watchdog timer mode register 0FFC4H Memory expansion mode register 0FFC7H Programmable wait control register 1 0FFCEH Clock status register 0FFCFH Oscillation stabilization time specification register 0FFD0H to 0FFDFH External SFR area Symbol R/W Bit Units for Manipulation 1 Bit 8 Bits 16 Bits After Reset IICS0 R √ √ − IIC0 R/W √ √ − STBC − √ − WDM − √ − 00H MM √ √ − 20H PWC1 PCS R OSTS R/W 00H 30H √ √ − AAH √ √ − 32H 00H √ √ − − √ √ − 0FFE0H Interrupt control register (INTWDTM) WDTIC √ √ − 0FFE1H Interrupt control register (INTP0) PIC0 √ √ − 0FFE2H Interrupt control register (INTP1) PIC1 √ √ − 0FFE3H Interrupt control register (INTP2) PIC2 √ √ − 0FFE4H Interrupt control register (INTP3) PIC3 √ √ − 0FFE5H Interrupt control register (INTP4) PIC4 √ √ − 0FFE6H Interrupt control register (INTP5) PIC5 √ √ − 0FFE7H Interrupt control register (INTP6) PIC6 √ √ − 0FFE8H Interrupt control register (INTIIC0/INTCSI0) CSIIC0 √ √ − 0FFE9H Interrupt control register (INTSER1) SERIC1 √ √ − 0FFEAH Interrupt control register (INTSR1/INTCSI1) SRIC1 √ √ − 0FFEBH Interrupt control register (INTST1) STIC1 √ √ − 0FFECH Interrupt control register (INTSER2) SERIC2 √ √ − 0FFEDH Interrupt control register (INTSR2/INTCSI2) SRIC2 √ √ − 0FFEEH Interrupt control register (INTST2) STIC2 √ √ − 0FFEFH Interrupt control register (INTTM3) TMIC3 √ √ − 0FFF0H Interrupt control register (INTTM00) TMIC00 √ √ − 0FFF1H Interrupt control register (INTTM01) TMIC01 √ √ − 0FFF2H Interrupt control register (INTTM1) TMIC1 √ √ − 0FFF3H Interrupt control register (INTTM2) TMIC2 √ √ − 0FFF4H Interrupt control register (INTAD) ADIC √ √ − 0FFF5H Interrupt control register (INTTM5) TMIC5 √ √ − 0FFF6H Interrupt control register (INTTM6) TMIC6 √ √ − 0FFF7H Interrupt control register (INTTM7) TMIC7 √ √ − √ − 0FFF8H Interrupt control register (INTTM8) TMIC8 √ 0FFF9H Interrupt control register (INTWT) WTIC √ √ − 0FFFAH Interrupt control register (INTKR) KRIC √ √ − − 43H Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed. 2. µPD784216AY/784218AY Subseries only Data Sheet U14121EJ2V0DS00 35 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7. PERIPHERAL HARDWARE FUNCTIONS 7.1 Ports The ports shown in Figure 7-1 are provided to make various control operations possible. Table 7-1 shows the function of each port. Ports 0, 2 through 8, 10, and 12 can be connected to on-chip pull-up resistors by means of software when in input mode. Figure 7-1. Port Configuration Port 7 Pprt 8 Port 9 Port 10 Port 12 Port 13 P70 P00 P06 P87 P90 P10 to P17 P20 P95 P100 P103 P120 P127 P130 P27 P30 P37 P40 P131 P47 P50 P57 P60 P67 36 Port 0 P72 P80 Data Sheet U14121EJ2V0DS00 8 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 7-1. Port Functions Port Name Pin Name Function Specification of Pull-up Resistor Connection by Software Port 0 P00 to P06 • Input/output can be specified in 1-bit units Port 1 P10 to P17 • Input port Port 2 P20 to P27 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 3 P30 to P37 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 4 P40 to P47 • Input/output can be specified in 1-bit units • LEDs can be driven directly Can be specified in 1-port units Port 5 P50 to P57 • Input/output can be specified in 1-bit units • LEDs can be driven directly Can be specified in 1-port units Port 6 P60 to P67 • Input/output can be specified in 1-bit units Can be specified in 1-port units Port 7 P70 to P72 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 8 P80 to P87 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 9 P90 to P95 • N-ch open-drain I/O port • Input/output can be specified in 1-bit units • LEDs can be driven directly Port 10 P100 to P103 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 12 P120 to P127 • Input/output can be specified in 1-bit units Can be specified in 1-bit units Port 13 P130, P131 • Input/output can be specified in 1-bit units Can be specified in 1-bit units − − − 7.2 Clock Generator An on-chip clock generator necessary for operation is provided. This clock generator has a frequency divider. If high-speed operation is not necessary, the internal operating frequency can be lowered by the frequency divider to reduce the current consumption. Figure 7-2. Block Diagram of Clock Generator XT1 XT2 Subsystem fXT clock oscillator Watch timer, clock output function IDLE controller fX Frequency divider fX 2 Clock to peripheral hardware Prescaler fXX fXX 2 fXX 22 fXX 23 STOP or bit 2 (MCK) of the standby control register (STBC) is set to 1 when the subclock is selected as the CPU clock Selector X2 Main system clock oscillator Selector Prescaler X1 STOP, IDLE controller HALT controller CPU clock (fCPU) Internal system clock (fCLK) Data Sheet U14121EJ2V0DS00 37 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Figure 7-3. Example of Using Main System Clock Oscillator (1) Crystal/ceramic oscillation (2) External clock X2 X2 X1 VSS External clock µ PD74HCU04 Crystal resonator or ceramic resonator X1 Figure 7-4. Example of Using Subsystem Clock Oscillator (1) Crystal oscillation 32.768 kHz (2) External clock VSS XT2 XT2 External clock XT1 Caution XT1 µPD74HCU04 When using the main system clock and subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in Figures 7-3 and 7-4 to avoid an adverse effect from wiring capacitance. • Keep the wiring length as short as possible. • Do not cross the wiring with other signal lines. • Do not route the wiring near a signal line through which a high fluctuating current flows. • Always make the ground point of the oscillator capacitor the same potential as VSS. Do not ground the capacitor to a ground pattern through which a high current flows. • Do not fetch signals from the oscillator. Note that the subsystem clock oscillator has a low amplification factor to reduce the current consumption. 38 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.3 Real-Time Output Port The real-time output function is to transfer data set in advance to the real-time output buffer register to the output latch as soon as the timer interrupt or external interrupt has occurred in order to output the data to an external device. The pins that output the data to the external device constitute a port called a real-time output port. Because the real-time output port can output signals without jitter, it is ideal for controlling a stepper motor. Figure 7-5. Block Diagram of Real-Time Output Port Internal bus Real-time output port control register (RTPC) RTPOE BYTE EXTR INTP2TRG INTTM1 Output trigger Controller INTTM2 High-order 4 bits of real-time output buffer register (RTBH) Low-order 4 bits of real-time output buffer register (RTBL) Real-time output port mode register (RTPM) Port 12 output latch Real-time output port output latch P127······································ P120 RTP7······································ RTP0 RTPOE bit P12n/RTPn pin output (n = 0 to 7) P127/ P120/ RTP7······································ RTP0 Data Sheet U14121EJ2V0DS00 39 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.4 Timer/Event Counter One unit of 16-bit timer/event counter and six 8-bit timer/event counters are provided. Because a total of eight interrupt requests are supported, these timer/event counters can be used as eight timer/counters. Table 7-2. Operations of Timers Name Item Count width Operation mode 8 bits − 16 bits √ Interval timer √ √ √ √ √ √ √ √ 1 ch 1 ch 1 ch 1 ch 1 ch 1 ch √ √ √ √ √ √ √ 1 ch 1 ch 1 ch 1 ch 1 ch 1 ch 1 ch PPG output √ − − − − − − PWM output − √ √ √ √ √ √ Square wave output √ √ √ √ √ √ √ One-shot pulse output √ − − − − − − 2 inputs − − − − − − 2 1 1 1 1 1 1 Timer output Pulse width measurement Number of interrupt requests 40 √ 1 ch External event counter Function 8-Bit 8-Bit 8-Bit 8-Bit 8-Bit 8-Bit 16-Bit Timer/ Timer/ Timer/ Timer/ Timer/ Timer/ Timer/ Event Event Event Event Event Event Event Counter Counter 1 Counter 2 Counter 5 Counter 6 Counter 7 Counter 8 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Figure 7-6. Block Diagram of Timer/Event Counters 16-bit timer/event counter Clear Selector fXX/4 fXX/16 INTTM3 16-bit timer counter (TM0) 16 INTTM00 16-bit capture/compare register 00 (CR00) 16 INTTM01 TI00 16-bit capture/compare register 01 (CR01) Edge detector Output controller Edge detector Selector TI01 TO0 8-bit timer/event counter 1, 5, 7 fXX/22 Clear fXX/25 fXX/27 8-bit timer counter n (TMn) Output controller TOn 8 fXX/29 TIn OVF Edge detector Selector fXX/24 Selector fXX/23 8-bit compare register n0 (CRn0) INTTMn INTTMn + 1 Remarks 1. n = 1, 5, 7 2. OVF: Overflow flag 8-bit timer/event counter 2, 6, 8 TMn – 1 fXX/22 Clear fXX/24 5 fXX/2 Selector fXX/23 7 fXX/2 8-bit timer counter n (TMn) OVF Output controller TOn 8 fXX/29 TIn Edge detector 8-bit compare register n0 (CRn0) INTTMn Remarks 1. n = 2, 6, 8 2. OVF: Overflow flag Data Sheet U14121EJ2V0DS00 41 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.5 A/D Converter An A/D converter converts an analog signal input into a digital signal. This microcontroller is provided with an A/D converter with a resolution of 8 bits and eight channels (ANI0 to ANI7). This A/D converter is of successive approximation type and the result of conversion is stored in an 8-bit A/D conversion result register (ADCR). The A/D converter can be started in the following two ways: • Hardware start Conversion is started by trigger input (P03). • Software start Conversion is started by setting the A/D converter mode register (ADM). One analog input channel is selected from ANI0 to ANI7 for A/D conversion. When A/D conversion is started by means of hardware start, conversion is stopped after it has been completed. When conversion is started by means of software start, A/D conversion is repeatedly executed. Each time conversion has been completed, an interrupt request (INTAD) is generated. Figure 7-7. Block Diagram of A/D Converter Series resistor string AVDD ANI0 AVREF0 ANI2 ANI4 Voltage comparator Selector ANI3 ANI5 Tap selector Sample & hold circuit ANI1 ANI6 AVSS ANI7 INTP3/P03 Successive approximation register (SAR) Edge detector Edge detector Controller INTAD A/D conversion result register (ADCR) INTP3 Internal bus 42 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.6 D/A Converter A D/A converter converts a digital signal input into an analog signal. This microcontroller is provided with a voltage output type D/A converter with a resolution of 8 bits and two channels. The conversion method is of R-2R resistor ladder type. D/A conversion is started by setting DACE0 of D/A converter mode register 0 (DAM0) and DACE1 of D/A converter mode register 1 (DAM1). The D/A converter operates in the following two modes: • Normal mode The converter outputs an analog voltage immediately after it has completed D/A conversion. • Real-time output mode The converter outputs an analog voltage in synchronization with an output trigger after it has completed D/A conversion. Figure 7-8. Block Diagram of D/A Converter DACS0 8 2R ANO0 AVREF1 2R R Selector R 2R DACS1 2R 8 2R ANO1 2R R Selector R 2R AVSS 2R Data Sheet U14121EJ2V0DS00 43 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.7 Serial Interface Three independent serial interface channels are provided. • Asynchronous serial interface (UART)/3-wire serial I/O (IOE) × 2 • Clocked serial interface (CSI) × 1 • 3-wire serial I/O (IOE) • I2C bus interface (I2C) (µPD784216AY/784218AY Subseries only) Therefore, communication with an external system and local communication within the system can be simultaneously executed (refer to Figure 7-9). Figure 7-9. Example of Serial Interface (a) UART + I2C (b) µPD784218AY (master) VDD VDD µ PD4711A [UART] RS-232-C driver/receiver SDA0 RxD1 µPD780078Y (slave) [I2C] SDA SCL SCL0 TxD1 Port µPD780308Y (slave) µ PD4711A SDA [UART] RS-232-C driver/receiver LCD SCL RxD2 TxD2 Port (b) UART + 3-wire serial I/O µPD784218AY (master) µ PD4711A SO1 [UART] RxD2 RS-232-C driver/receiver TxD2 Port µ PD753106 (slave) [3-wire serial I/O] SI1 SO SCK1 INTPm SCK Note Port Note Handshake line 44 SI Data Sheet U14121EJ2V0DS00 Port INT µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE) Two channels of serial interfaces for which an asynchronous serial interface mode and a 3-wire serial I/O mode can be selected are provided. (1) Asynchronous serial interface mode In this mode, data of 1 byte following the start bit is transmitted or received. Because an on-chip baud rate generator is provided, a wide range of baud rates can be set. Moreover, the clock input to the ASCK pin can be divided to define a baud rate. When the baud rate generator is used, a baud rate conforming to the MIDI standard (31.25 kbps) can also be obtained. Figure 7-10. Block Diagram in Asynchronous Serial Interface Mode Internal bus 8 Receive buffer register 1, 2 (RXB1, RXB2) 8 8 RxD1, RxD2 Receive shift register 1, 2 (RX1, RX2) Transmit shift register 1, 2 (TXS1, TXS2) TxD1, TxD2 Receive control parity check INTSR1, INTSR2 Transmit control parity addition INTST1, INTST2 Baud rate generator 5-bit counter × 2 transmit/ receive clock generation Selector fXX to fXX/25 ASCK1, ASCK2 Data Sheet U14121EJ2V0DS00 45 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (2) 3-wire serial I/O mode In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock. This mode is used to communicate with a device having a conventional clocked serial interface. Basically, communication is established by using three lines: serial clocks (SCK1 and SCK2), serial data inputs (SI1 and SI2), and serial data outputs (SO1 and SO2). To connect two or more devices, a handshake line is necessary. Figure 7-11. Block Diagram in 3-Wire Serial I/O Mode Internal bus 8 Serial I/O shift register 1, 2 (SIO1, SIO2) SI1, SI2 SO1, SO2 SCK1, SCK2 46 Serial clock counter Interrupt generator INTCSI1, INTCSI2 Serial clock controller Selector TO2 fXX/8 fXX/16 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.7.2 Clocked serial interface (CSI) In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock. (1) 3-wire serial I/O mode This mode is to communicate with devices having a conventional clocked serial interface. Basically, communication is established in this mode with three lines: serial clock (SCK0) serial data input (SI0), and serial data output (SO0) lines. Generally, a handshake line is necessary to check the reception status. Figure 7-12. Block Diagram in 3-Wire Serial I/O Mode Internal bus 8 SI0 Serial I/O shift register 0 (SIO0) SO0 SCK0 Serial clock counter Interrupt generator INTCSI0 Serial clock controller Selector TO2 fXX/8 fXX/16 Data Sheet U14121EJ2V0DS00 47 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (2) I2C bus (Inter IC) bus mode (supporting multimaster) (µPD784216AY/784218AY Subseries only) This mode is for communication with devices conforming to the I2C bus format. This mode is for transferring 8-bit data between two or more devices by using two lines: serial clock (SCL0) and serial data bus (SDA0) lines. During transmission, a “start condition”, “data”, and “stop condition” can be output onto the serial data bus. During reception, these data are automatically detected by hardware. Figure 7-13. Block Diagram of I2C Bus Mode Internal bus 8 8 Direction controller Slave address register (SVA0) Wake-up controller 8 SDA0 Serial I/O shift register 0 (SIO0) Output latch Acknowledge generator Start condition/acknowledge detector Stop condition detector SCL0 INTIIC0 Selector TO2/18 to TO2/68 fXX/24 to fXX/178 Serial clock counter Serial clock controller 48 Interrupt generator Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.8 Clock Output Function Clocks of the following frequencies can be output as clock output. • 97.7 kHz/195 kHz/391 kHz/781 kHz/1.56 MHz/3.13 MHz/6.25 MHz/12.5 MHz (@12.5 MHz operation with main system clock) • 32.768 kHz (@32.768 kHz operation with subsystem clock) Figure 7-14. Block Diagram of Clock Output Function fXX fXX/2 fXX/23 fXX/24 fXX/25 Selector fXX/22 Synchronization circuit Output controller PCL 6 fXX/2 fXX/27 fXT 7.9 Buzzer Output Function Clocks of the following frequencies can be output as buzzer output. • 1.5 kHz/3.1 kHz/6.1 kHz/12.2 kHz (@12.5 MHz operation with main system clock) fXX/210 fXX/211 fXX/212 fXX/213 Selector Figure 7-15. Block Diagram of Buzzer Output Function Output controller Data Sheet U14121EJ2V0DS00 BUZ 49 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.10 Edge Detection Function The interrupt input pins (INTP0, INTP1, NMI/INTP2, INTP3 to INTP6) are used not only to input interrupt requests but also to input trigger signals to the internal hardware units. Because these pins operate at an edge of the input signal, they have a function to detect an edge. Moreover, a noise elimination function is also provided to prevent erroneous detection due to noise. Pin Name Detectable Edge Noise Elimination Either or both of rising and falling edges NMI By analog delay − INTP0 to INTP6 7.11 Watch Timer The watch timer has the following functions: • Watch timer • Interval timer The watch timer and interval timer functions can be used at the same time. (1) Watch timer The watch timer sets the WTIF flag of the interrupt control register (WTIC) at time intervals of 0.5 seconds by using the 32.768 kHz subsystem clock. (2) Interval timer The interval timer generates an interrupt request (INTTM3) at predetermined time intervals. Prescaler fW 25 fW 26 fW 27 fW 28 5-bit counter fW 29 INTWT fW 25 Selector fW 24 fW 214 Selector fXT fW Selector fXX/27 Selector Figure 7-16. Block Diagram of Watch Timer INTTM3 To 16-bit timer/counter 50 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 7.12 Watchdog Timer A watchdog timer is provided to detect a CPU runaway. This watchdog timer generates a non-maskable or maskable interrupt unless it is cleared by software within a specified interval time. Once enabled to operate, the watchdog timer cannot be stopped by software. Whether the interrupt by the watchdog timer or the interrupt input from the NMI pin takes precedence can be specified. Figure 7-17. Block Diagram of Watchdog Timer fCLK Timer fCLK/221 RUNNote HALT IDLE STOP fCLK/219 Selector fCLK/220 INTWDT fCLK/217 Note Write “+” to bit 7 (RUN) of the watchdog timer (WDM) Remark fCLK: Internal system clock (fXX to fXX/8) Data Sheet U14121EJ2V0DS00 51 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 8. INTERRUPT FUNCTIONS The three types of interrupt request servicing shown in Table 8-1 can be selected by program. Table 8-1. Servicing of Interrupt Request Servicing Mode Entity of Servicing Vectored interrupt Servicing Software Context switching Macro service Firmware Contents of PC and PSW Branches and executes servicing routine (servicing is arbitrary) Saves to and restores from stack Automatically switches register bank, branches and executes servicing routine (servicing is arbitrary) Saves to or restores from fixed area in register bank Executes data transfer between memory and I/O (servicing is fixed) Retained 8.1 Interrupt Sources Table 8-2 shows the interrupt sources available. As shown, interrupts are generated by 29 types of sources, execution of the BRK instruction, BRKCS instruction, or an operand error. The priority of interrupt servicing can be set to four levels, so that nesting can be controlled during interrupt servicing and so that which of the two or more interrupts that simultaneously occur should be serviced first can be determined. When the macro service function is used, however, nesting always proceeds. The default priority is the priority (fixed) of the service that is performed if two or more interrupt requests, having the same priority, are simultaneously generated (refer to Table 8-2). Table 8-2. Interrupt Sources (1/2) Type Default Priority − Software − Non-maskable Maskable 52 Source Name Trigger BRK instruction Instruction execution BRKCS instruction Instruction execution Operand error If result of exclusive OR between operands byte and byte is not FFH when “MOV STBC, #byte” instruction, “MOV WDM, #byte” instruction, or LOCATION instruction is executed Internal/ External Macro Service − − − NMI Pin input edge detection External INTWDT Overflow of watchdog timer Internal 0 (highest) INTWDTM Overflow of watchdog timer Internal 1 INTP0 Pin input edge detection External 2 INTP1 3 INTP2 4 INTP3 5 INTP4 6 INTP5 7 INTP6 8 INTIIC0 INTCSI0 End of 3-wire transfer by CSI0 9 INTSER1 Occurrence of UART reception error in ASI1 2 End of I C bus transfer by CSI0 Data Sheet U14121EJ2V0DS00 Internal √ µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 8-2. Interrupt Sources (2/2) Type Maskable Default Priority 10 Source Name Trigger INTSR1 End of UART reception by ASI1 INTCSI1 End of 3-wire transfer by CSI1 11 INTST1 End of UART transmission by ASI1 12 INTSER2 Occurrence of UART reception error in ASI2 13 INTSR2 End of UART reception by ASI2 INTCSI2 End of 3-wire transfer by CSI2 14 INTST2 End of UART transmission by ASI2 15 INTTM3 Reference time interval signal from watch timer 16 INTTM00 Signal indicating match between 16-bit timer counter and capture/compare register (CR00) 17 INTTM01 Signal indicating match between 16-bit timer counter and capture/compare register (CR01) 18 INTTM1 Occurrence of match signal of 8-bit timer/event counter 1 19 INTTM2 Occurrence of match signal of 8-bit timer/event counter 2 20 INTAD End of conversion by A/D converter 21 INTTM5 Occurrence of match signal of 8-bit timer/event counter 5 22 INTTM6 Occurrence of match signal of 8-bit timer/event counter 6 23 INTTM7 Occurrence of match signal of 8-bit timer/event counter 7 24 INTTM8 Occurrence of match signal of 8-bit timer/event counter 8 25 INTWT Overflow of watch timer 26 (lowest) INTKR Detection of falling edge of port 8 Internal/ External Macro Service Internal √ External Remarks 1. ASI: Asynchronous Serial Interface CSI: Clocked Serial Interface 2. There are two interrupt sources for the watchdog timer: non-maskable interrupts (INTWDT) and maskable interrupts (INTWDTM). Either one (but not both) should be selected for actual use. Data Sheet U14121EJ2V0DS00 53 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 8.2 Vectored Interrupt Execution branches to a servicing routine by using the memory contents of a vector table address corresponding to the interrupt source as the address of the branch destination. So that the CPU performs interrupt servicing, the following operations are performed: • On branching: Saves the status of the CPU (contents of PC and PSW) to stack • On returning: Restores the status of the CPU (contents of PC and PSW) from stack To return to the main routine from an interrupt service routine, the RETI instruction is used. The branch destination address is in a range of 0 to FFFFH. Table 8-3. Vector Table Address Interrupt Source Vector Table Address Interrupt Source Vector Table Address BRK instruction 003EH INTST1 001CH TRAP0 (operand error) 003CH INTSER2 001EH NMI 0002H INSR2 0020H INTWDT (non-maskable) 0004H INTCSI2 INTWDTM (maskable) 0006H INTST2 0022H INTP0 0008H INTTM3 0024H INTP1 000AH INTTM00 0026H INTP2 000CH INTTM01 0028H INTP3 000EH INTTM1 002AH INTP4 0010H INTTM2 002CH INTP5 0012H INTAD 002EH INTP6 0014H INTTM5 0030H INTIIC0 0016H INTTM6 0032H INTTM7 0034H INTCSI0 INTSER1 0018H INTTM8 0036H INTSR1 001AH INTWT 0038H INTKR 003AH INTCSI1 54 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 8.3 Context Switching When an interrupt request is generated or when the BRKCS instruction is executed, a predetermined register bank is selected by hardware. Context switching is a function that branches execution to a vector address stored in advance in the register bank, while at the same time stacking the current contents of the program counter (PC) and program status word (PSW) to the register bank. The branch address is in a range of 0 to FFFFH. Figure 8-1. Context Switching Operation When Interrupt Request Is Generated Register bank (0 to 7) 0000B <7> Transfer Register bank n (n = 0 to 7) PC19-16 PC15-0 <2> Save (Bits 8 to 11 of temporary register) <6> Exchange <5> Save Temporary register <1> Save A X B C R5 R4 R7 R6 V VP U UP T D E W H L <3> Switching of register bank (RBS0 to RBS2 ← n) <4> RSS ← 0 IE ← 0 PSW Data Sheet U14121EJ2V0DS00 55 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 8.4 Macro Service This function is to transfer data between memory and a special function register (SFR) without intervention by the CPU. A macro service controller accesses the memory and SFR in the same transfer cycle and directly transfers data without loading it. Because this function does not save or restore the status of the CPU, or load data, data can be transferred at high speeds. Figure 8-2. Macro Service Read CPU Memory Write Write Macro service controller Internal bus 56 Data Sheet U14121EJ2V0DS00 SFR Read µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 8.5 Application Example of Macro Service (1) Serial interface transmission Transmit data storage buffer (memory) Data n Data n – 1 Data 2 Data 1 Internal bus TxD1, TxD2 Transmit shift register TXS1, TXS2 (SFR) Transmit control INTST1, INTST2 Each time macro service requests INTST1 and INTST2 are generated, the next transmit data is transferred from memory to TXS1 and TXS2. When data n (last byte) has been transferred to TXS1 and TXS2 (when the transmit data storage buffer has become empty), vectored interrupt requests INTST1 and INTST2 are generated. (2) Serial interface reception Receive data storage buffer (memory) Data n Data n – 1 Data 2 Data 1 Internal bus Receive buffer register RXB1, RXB2 (SFR) RxD1, RxD2 Receive shift register Receive control INTSR1, INTSR2 Each time macro service requests INTSR1 and INTSR2 are generated, the receive data is transferred from RXB1 and RXB2 to memory. When data n (last byte) has been transferred to memory (when the receive data storage buffer has become full), vectored interrupt requests INTSR1 and INTSR2 are generated. Data Sheet U14121EJ2V0DS00 57 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 9. LOCAL BUS INTERFACE The local bus interface can connect an external memory or I/O (memory mapped I/O) and support a memory space of 1 MB (refer to Figure 9-1). Figure 9-1. Example of Local Bus Interface (a) Multiplexed bus mode VDD µ PD784218A SRAM CS Data bus RD OE WR WE I/O1 to I/O8 Address bus A8 to A19 A0 to A19 Address latch ASTB LE Q0 to Q7 D0 to D7 OE AD0 to AD7 (b) Separate bus mode µ PD784218A VDD SRAM CS OE RD WR Address bus A0 to A19 AD0 to AD7 58 Data Sheet U14121EJ2V0DS00 WE I/O1 to I/O8 A0 to A19 Data bus µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 9.1 Memory Expansion External program memory and data memory can be connected in two stages: 256 KB and 1 MB. To connect the external memory, ports 4 through 6 and port 8 are used. The external memory can be connected in the following two modes: • Multiplexed bus mode: The external memory is connected by using a time-division address/data bus. The number of ports used when the external memory is connected can be reduced in this mode. • Separate bus mode: The external memory is connected by using an address bus and data bus independent of each other. Because an external latch circuit is not necessary, this mode is useful for reducing the number of components and mounting area on the printed wiring board. 9.2 Programmable Wait Wait state(s) can be inserted to the memory space (00000H to FFFFFH) while the RD and WR signals are active. In addition, there is an address wait function that extends the active period of the ASTB signal to gain the address decode time. Data Sheet U14121EJ2V0DS00 59 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 10. STANDBY FUNCTION This function is to reduce the power consumption of the chip, and can be used in the following modes: • HALT mode: Stops supply of the operating clock to the CPU. This mode is used in combination with the normal operation mode for intermittent operation to reduce the average power consumption. • IDLE mode: Stops the entire system except for the oscillator, which continues operating. The power consumption in this mode is close to that in the STOP mode. However, the time required to restore the normal program operation from this mode is almost the same as that from the HALT mode. • STOP mode: Stops the main system clock and thereby stops all the internal operations of the chip. Consequently, the power consumption is minimized with only leakage current flowing. • Low power consumption mode: The main system clock is stopped and the subsystem clock is used as the system clock. The CPU can operate on the subsystem clock to reduce the current consumption. • Low power consumption HALT mode: This is a standby function in the low power consumption mode and stops the operation clock of the CPU, to reduce the power consumption of the entire system. • Low power consumption IDLE mode: This is a standby function in the low power consumption mode and stops the entire system except the oscillator, to reduce the power consumption of the entire system. These modes are programmable. The macro service can be started from the HALT mode or low power consumption HALT mode. After macro service processing is executed, the system returns to the HALT mode again. The transition of the standby status is shown in Figure 10-1. 60 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Figure 10-1. Standby Function State Transitions t es qu s re end ice sing s rv se ces nd ro pro e e ac ime rvic M se e-t On cro a M On e-t Ma ime cro pro ce se ss r vi ing ce req en ue ds st Macro service ET ES R Interrupt request for masked interrupt t pu in Low con pow sum er ptio Retu nm rn to ode norm set al o pera tion Low power consumption Low Low power consumption HALT mode set Low power IDLE mode set Low power power consumption consumption NMI, INTP0 to INTP6 input, mode consumption Note 2 IDLE mode (Subsystem HALT mode INTWT, key return interrupt Interrupt requestNote 1 clock operation) (Standby) (Standby) Ti SE RE Interrupt request for masked interrupt t npu Macro service request One-time processing ends Macro service ends Macro service STOP (Standby) Interrupt request for masked interrupt IDLE (Standby) Interrupt request for masked interrupt Interrupt request for masked interrupt RE rv ice re oc es que sin st g en ds se pr ro e tim ac t T ET t pu in 2 HALT (Standby) pu SE NM RE SE INT I, IN Ti T WT P0 np ,k ut t ey o IN ret TP urn 6 i int npu err t, up N t ote e- M On se t es qu re t pt npu ru er ET i t Int S se RE ALT H t P O ST NM ke I, I ID y r NT LE etu P0 se rn t t int o IN er TP ru 6 pt No in te pu 2 t, I NT RESET inpu W t T , Normal operation (Main system clock operation) in S RE Wait for stable oscillation Notes 1. Only unmasked interrupt requests 2. Only unmasked INTP0 to INTP6, INTWT, key return interrupt (P80 to P87) Remark NMI is valid only for an external input. The watchdog timer cannot be used for the release of standby (HALT mode/STOP mode/IDLE mode). Data Sheet U14121EJ2V0DS00 61 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 11. RESET FUNCTION When a low-level signal is input to the RESET pin, the system is reset, and each hardware unit is initialized (reset). During the reset period, oscillation of the main system clock is unconditionally stopped. Consequently, the current consumption of the entire system can be reduced. When the RESET signal goes high, the reset status is cleared. And after the oscillation stabilization time (84.0 ms at 12.5 MHz operation) elapses, the contents of the reset vector table are set to the program counter (PC), execution branches to an address set to the PC, and program execution is started from that branch address. Therefore, the program can be reset and started from any address. Figure 11-1. Oscillation of Main System Clock During Reset Period Main system clock oscillator Oscillation is unconditionally stopped during reset period fCLK RESET input Oscillation stabilization time The RESET input pin has an analog delay noise eliminator to prevent malfunctioning due to noise. Figure 11-2. Acknowledgement of Reset Signal Time until clock starts oscillating Analog delay Analog delay RESET input Internal reset signal Internal clock 62 Data Sheet U14121EJ2V0DS00 Analog delay Oscillation stabilization time µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 12. INSTRUCTION SET (1) 8-bit instructions (instructions in parentheses are combinations realized by describing A as r) MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC Table 12-1. Instruction List by 8-Bit Addressing Second Operand #byte A r saddr r' saddr' sfr !addr16 !!addr24 First Operand A (MOV) ADD Note 1 (MOV) (XCH) MOV ADD Note 1 Note 6 (XCH) XCH Note 1 r Note 6 (MOV) MOV Note 1 Notes 1, 6 MOV XCH Note 1 Note 1 ADD (MOV) MOV MOV MOV MOV (XCH) XCH XCH XCH XCH ADD Note 1 [WHL−] (XCH) (ADD) Note 1 PSWL PSWH (MOV) (ADD) ADD [saddrp] [%saddrg] (XCH) (ADD) Note 1 [WHL+] MOV (ADD) (ADD) r3 mem ADD ADD MOV Note 2 None n (MOV) (XCH) Note 1 Note 1 (ADD) ROR Note 3 MULU DIVUW Note 1 INC DEC saddr Note 6 (MOV) MOV ADD Note 1 Note 1 (ADD) MOV ADD Note 1 MOV INC XCH DEC ADD sfr MOV ADD !addr16 MOV Note 1 MOV Note 1 DBNZ MOV Note 1 PUSH Note 1 (ADD) ADD (MOV) MOV POP Note 1 !!addr24 ADD mem MOV [saddrp] ADD Note 1 [%saddrg] mem3 ROR4 ROL4 MOV r3 MOV PSWL PSWH B, C DBNZ STBC, WDM [TDE+] [TDE−] MOV Note 6 (MOV) MOVBK Note 5 Note 1 (ADD) Note 4 MOVM Notes 1. The operands of ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as that of ADD. 2. Either the second operand is not used, or the second operand is not an operand address. 3. The operands of ROL, RORC, ROLC, SHR, and SHL are the same as that of ROR. 4. The operands of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as that of MOVM. 5. The operands of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as that of MOVBK. 6. The code length of some instructions having saddr2 as saddr in this combination is short. Data Sheet U14121EJ2V0DS00 63 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (2) 16-bit instructions (instructions in parentheses are combinations realized by describing AX as rp) MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW Table 12-2. Instruction List by 16-Bit Addressing Second Operand #word AX rp saddrp rp' saddrp' sfrp !addr16 ADDW Note 1 MOVW ADDW Note 1 (MOVW) (MOVW) (XCHW) (XCHW) (XCHW) Note 1 Notes 1, 3 MOVW ADDW !addr16 Note 1 MOVW (MOVW) MOVW (MOVW) (XCHW) XCHW Note 2 None (XCHW) (ADDW) (MOVW) MOVW MOVW MOVW (XCHW) XCHW XCHW XCHW Note 3 (MOVW) Note 1 (ADDW) ADDW Note 1 MOVW ADDW Note 1 ADDW MOVW Note 1 XCHW Note 1 (ADDW) ADDW MOVW SHRW MULU SHLW INCW Note 1 DECW INCW XCHW DECW Note 1 MOVW Note 1 PUSH Note 1 (ADDW) ADDW (MOVW) MOVW Note 4 MOVW ADDW sfrp MOVW (ADDW) Note 1 MOVW Note 1 Note 3 (ADD) (ADDW) ADDW Note 3 (MOVW) Note 1 saddrp n [%saddrg] (MOVW) rp byte !!addr24 [saddrp] First Operand AX [WHL+] mem POP MOVTBLW !!addr24 MOVW mem [saddrp] [%saddrg] PSW PUSH POP SP ADDWG SUBWG post PUSH POP PUSHU POPU [TDE+] (MOVW) SACW byte MACW MACSW Notes 1. The operands of SUBW and CMPW are the same as that of ADDW. 2. Either the second operand is not used, or the second operand is not an operand address. 3. The code length of some instructions having saddrp2 as saddrp in this combination is short. 4. The operands of MULUW and DIVUX are the same as that of MULW. 64 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (3) 24-bit instructions (instructions in parentheses are combinations realized by describing WHL as rg) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP Table 12-3. Instruction List by 24-Bit Addressing Second Operand #imm24 WHL rg saddrg !!addr24 mem1 [%saddrg] SP Note None rg' First Operand WHL rg (MOVG) (MOVG) (MOVG) (MOVG) (ADDG) (ADDG) (ADDG) ADDG (SUBG) (SUBG) (SUBG) SUBG MOVG (MOVG) MOVG MOVG MOVG MOVG INCG MOVG (MOVG) MOVG ADDG (ADDG) ADDG DECG SUBG (SUBG) SUBG PUSH POP saddrg (MOVG) MOVG !!addr24 (MOVG) MOVG mem1 MOVG [%saddrg] MOVG SP MOVG MOVG INCG DECG Note Either the second operand is not used, or the second operand is not an operand address. Data Sheet U14121EJ2V0DS00 65 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (4) Bit manipulation instructions MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET Table 12-4. Instruction List by Bit Manipulation Instruction Addressing Second Operand CY First Operand CY Note None saddr.bit sfr.bit /saddr.bit /sfr. bit A.bit X.bit /A.bit /X.bit PSWL.bit PSWH.bit /PSWL.bit /PSWH.bit mem2.bit /mem2.bit !addr16.bit !!addr24.bit /!addr16.bit /!!addr24.bit MOV1 AND1 NOT1 AND1 OR1 SET1 OR1 CLR1 XOR1 saddr.bit MOV1 NOT1 sfr.bit SET1 A.bit CLR1 X.bit BF PSWL.bit BT PSWH.bit BTCLR mem2.bit BFSET !addr16.bit !!addr24.bit Note Either the second operand is not used, or the second operand is not an operand address. 66 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (5) Call and return/branch instructions CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ Table 12-5. Instruction List by Call and Return/Branch Instruction Addressing Operand of Instruction $addr20 $!addr20 !addr16 !!addr20 rp rg [rp] [rg] !addr11 [addr5] RBn None Address BC Basic instruction Note BR Compound instruction CALL CALL CALL CALL CALL CALL CALL BR BR BR BR BR BR BR CALLF CALLF BRKCS BRK RET RETCS RETI RETCSB RETB BF BT BTCLR BFSET DBNZ Note The operands of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as that of BC. (6) Other instructions ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS Data Sheet U14121EJ2V0DS00 67 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 13. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°°C) Parameter Supply voltage Symbol Conditions Ratings Unit VDD −0.3 to +6.5 V AVDD −0.3 to VDD + 0.3 V AVSS −0.3 to VSS + 0.3 V AVREF0 A/D converter reference voltage input −0.3 to VDD + 0.3 V AVREF1 D/A converter reference voltage input −0.3 to VDD + 0.3 V VI1 Other than P90 to P95 −0.3 to VDD + 0.3 V VI2 P90 to P95 −0.3 to +12 V Analog input voltage VAN Analog input pin AVSS − 0.3 to AVREF0 + 0.3 V Output voltage VO −0.3 to VDD + 0.3 V Output current, low IOL Per pin 15 mA Total of P2, P4 to P8 75 mA Total of P0, P3, P9, P10, P12, P13 75 mA Total of all pins 100 mA Per pin −10 mA Total of all pins −50 mA Input voltage Output current, high IOH N-ch open drain Operating ambient temperature TA −40 to +85 °C Storage temperature Tstg −65 to +150 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. 68 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Operating Conditions • Operating ambient temperature (TA): −40 to +85°C • Power supply voltage and clock cycle time: See Figure 13-1 • Power supply voltage with subsystem clock operation: VDD = 1.8 to 5.5 V Figure 13-1. Power Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fCPU) 10,000 8,000 Clock cycle time tCYK [ns] 500 400 Guaranteed operating range 320 300 200 160 100 80 0 0 1 1.8 2 2.7 3 4 4.5 5 5.5 6 Supply voltage [V] Capacitance (TA = 25°°C, VDD = VSS = 0 V) Parameter Input capacitance Output capacitance I/O capacitance Symbol CI CO CIO Conditions f = 1 MHz Unmeasured pins returned to 0 V. MAX. Unit Other than Port 9 15 pF Port 9 20 pF Other than Port 9 15 pF Port 9 20 pF Other than Port 9 15 pF Port 9 20 pF Data Sheet U14121EJ2V0DS00 MIN. TYP. 69 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Main System Clock Oscillator Characteristics (TA = −40 to +85°°C) Resonator Ceramic resonator or crystal resonator Recommended Circuit X2 X1 VSS External clock Parameter Oscillation frequency (fX) X1 input frequency (fX) X2 µ PD74HCU04 X1 Conditions TYP. MAX. Unit MHz 4.5 V ≤ VDD ≤ 5.5 V 2 12.5 2.7 V ≤ VDD < 4.5 V 2 6.25 2.0 V ≤ VDD < 2.7 V 2 3.125 1.8 V ≤ VDD < 2.0 V 2 2 4.5 V ≤ VDD ≤ 5.5 V 2 12.5 2.7 V ≤ VDD < 4.5 V 2 6.25 2.0 V ≤ VDD < 2.7 V 2 3.125 1.8 V ≤ VDD < 2.0 V 2 2 15 250 ns 4.5 V ≤ VDD ≤ 5.5 V 0 5 ns 2.7 V ≤ VDD < 4.5 V 0 10 2.0 V ≤ VDD < 2.7 V 0 20 1.8 V ≤ VDD < 2.0 V 0 30 X1 input high-/lowlevel width (tWXH, tWXL) X1 input rising/falling time (tXR, tXF) MIN. MHz Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. • Keep the wiring length as short as possible. • Do not cross the wiring with other signal lines. • Do not route the wiring near a signal line through which a high fluctuating current flows. • Always make the ground point of the oscillator capacitor the same potential as VSS. • Do not ground the capacitor to a ground pattern through which a high current flows. • Do not fetch signals from the oscillator. 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched back to the main system clock after the oscillation stabilization time is secured by the program. Remark For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation. 70 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Subsystem Clock Oscillator Characteristics (TA = −40 to +85°°C) Resonator Crystal resonator Recommended Circuit VSS XT2 XT1 Parameter Oscillation frequency (fXT) Oscillation stabilization timeNote External clock XT2 XT1 µ PD74HCU04 Conditions MIN. TYP. MAX. Unit 32 32.768 35 kHz 1.2 2 s 4.5 V ≤ VDD ≤ 5.5 V 1.8 V ≤ VDD < 4.5 V 10 XT1 input frequency (fXT) 32 35 kHz XT1 input high-/lowlevel width (tXTH, tXTL) 14.3 15.6 µs Note Time required to stabilize oscillation after applying supply voltage (VDD). Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. • Keep the wiring length as short as possible. • Do not cross the wiring with other signal lines. • Do not route the wiring near a signal line through which a high fluctuating current flows. • Always make the ground point of the oscillator capacitor the same potential as VSS. • Do not ground the capacitor to a ground pattern through which a high current flows. • Do not fetch signals from the oscillator. 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock. Remark For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation. Data Sheet U14121EJ2V0DS00 71 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY DC Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) (1/3) Parameter Input voltage, low Symbol VIL1 VIL2 V 2.2 V ≤ VDD ≤ 5.5 V 0 0.3VDD 1.8 V ≤ VDD < 2.2 V 0 0.2VDD P00 to P06, P20, P22, P33, 2.2 V ≤ VDD ≤ 5.5 V P34, P70, P72, 1.8 V ≤ VDD < 2.2 V P100 to P103, RESET 0 0.2VDD 0 0.15VDD Note 1 0.3VDD 1.8 V ≤ VDD < 2.2 V 0 0.2VDD VIL4 P10 to P17, P130, P131 2.2 V ≤ VDD ≤ 5.5 V 0 0.3VDD 1.8 V ≤ VDD < 2.2 V 0 0.2VDD VIH1 X1, X2, XT1, XT2 2.2 V ≤ VDD ≤ 5.5 V 0 0.2VDD 1.8 V ≤ VDD < 2.2 V 0 0.1VDD 2.2 V ≤ VDD ≤ 5.5 V 0 0.3VDD 1.8 V ≤ VDD < 2.2 V 0 0.2VDD 2.2 V ≤ VDD ≤ 5.5 V 0.7VDD VDD 1.8 V ≤ VDD < 2.2 V 0.8VDD VDD P00 to P06, P20, P22, P33, 2.2 V ≤ VDD ≤ 5.5 V P34, P70, P72, 1.8 V ≤ VDD < 2.2 V P100 to P103, RESET 0.8VDD VDD 0.85VDD VDD 0.7VDD 12 P25, P27 Note 1 VIH3 P90 to P95 (N-ch open drain) 2.2 V ≤ VDD ≤ 5.5 V 1.8 V ≤ VDD < 2.2 V 0.8VDD VDD VIH4 P10 to P17, P130, P131 2.2 V ≤ VDD ≤ 5.5 V 0.7VDD VDD 1.8 V ≤ VDD < 2.2 V 0.8VDD VDD 2.2 V ≤ VDD ≤ 5.5 V 0.8VDD VDD 1.8 V ≤ VDD < 2.2 V 0.85VDD VDD 2.2 V ≤ VDD ≤ 5.5 V 0.7VDD VDD 1.8 V ≤ VDD < 2.2 V 0.8VDD VDD VIH6 VOL1 X1, X2, XT1, XT2 P25, P27 V V V V V V V V V 0.4 V P40 to P47, P50 to P57 Note 2 IOL = 8 mA 4.5 V ≤ VDD ≤ 5.5 V 1.0 V VOL2 IOL = 400 µA VOH1 IOH = −1 mA VIN = 0 V ILIL2 VIN = VDD 4.5 V ≤ VDD ≤ 5.5 V 0.8 Note 2 Note 2 IOL = −100 µA ILIH1 V 4.5 V ≤ VDD ≤ 5.5 V Note 2 ILIL1 V For pins other than P40 to P47, P50 to P57, Note 1 P90 to P95 IOL = 1.6 mA P90 to P95 IOL = 15 mA Input leakage current, high Unit 0 VIH5 Input leakage current, low MAX. 2.2 V ≤ VDD ≤ 5.5 V VIH2 Output voltage, high TYP. P90 to P95 (N-ch open drain) VIL6 Output voltage, low MIN. VIL3 VIL5 Input voltage, high Conditions 2.0 V 0.5 V 4.5 V ≤ VDD ≤ 5.5 V VDD − 1.0 V VDD − 0.5 V Note 2 Except X1, X2, XT1, XT2 −3 µA X1, X2, XT1, XT2 −20 µA 3 µA Except X1, X2, XT1, XT2 20 µA ILIH3 VIN = 12 V (N-ch open drain) P90 to P95 20 µA Output leakage current, low ILOL1 VOUT = 0 V −3 µA Output leakage current, high ILOH1 VOUT = VDD 3 µA ILIH2 X1, X2, XT1, XT2 Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127 2. Per pin 72 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY DC Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) (2/3) (1) µPD784214A, 784215A, 784216A, 784214AY, 784215AY, 784216AY Parameter Supply current Symbol IDD1 IDD2 IDD3 IDD4 IDD5 IDD6 Conditions Operation mode HALT mode IDLE mode Operation modeNote HALT modeNote IDLE modeNote TYP. MAX. Unit fXX = 12.5 MHz, VDD = 5.0 V ±10% MIN. 11 40 mA fXX = 6 MHz, VDD = 3.0 V ±10% 3 17 mA fXX = 2 MHz, VDD = 2.0 V ±10% 1 8 mA fXX = 12.5 MHz, VDD = 5.0 V ±10% 5 20 mA fXX = 6 MHz, VDD = 3.0 V ±10% 2 8 mA fXX = 2 MHz, VDD = 2.0 V ±10% 0.3 3.5 mA fXX = 12.5 MHz, VDD = 5.0 V ±10% 1 2.5 mA fXX = 6 MHz, VDD = 3.0 V ±10% 0.4 1.3 mA fXX = 2 MHz, VDD = 2.0 V ±10% 0.2 0.9 mA fXX = 32 kHz, VDD = 5.0 V ±10% 80 200 µA fXX = 32 kHz, VDD = 3.0 V ±10% 60 110 µA fXX = 32 kHz, VDD = 2.0 V ±10% 30 100 µA fXX = 32 kHz, VDD = 5.0 V ±10% 60 160 µA fXX = 32 kHz, VDD = 3.0 V ±10% 20 80 µA fXX = 32 kHz, VDD = 2.0 V ±10% 10 70 µA fXX = 32 kHz, VDD = 5.0 V ±10% 50 150 µA fXX = 32 kHz, VDD = 3.0 V ±10% 15 70 µA fXX = 32 kHz, VDD = 2.0 V ±10% 5 60 µA Data retention voltage VDDDR HALT, IDLE modes Data retention current IDDDR STOP mode 1.8 VDD = 2.0 V ±10% 2 VDD = 5.0 V ±10% Pull-up resistor RL VIN = 0 V 10 5.5 V 10 µA 10 50 µA 30 100 kΩ Note When main system clock is stopped and subsystem clock is operating. Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins. Data Sheet U14121EJ2V0DS00 73 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY DC Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) (3/3) (2) µPD784217A, 784218A, 784217AY, 784218AY Parameter Supply current Symbol IDD1 IDD2 IDD3 IDD4 IDD5 IDD6 Conditions Operation mode HALT mode IDLE mode Operation modeNote HALT modeNote IDLE modeNote TYP. MAX. Unit fXX = 12.5 MHz, VDD = 5.0 V ±10% MIN. 11 40 mA fXX = 6 MHz, VDD = 3.0 V ±10% 4 17 mA fXX = 2 MHz, VDD = 2.0 V ±10% 1 8 mA fXX = 12.5 MHz, VDD = 5.0 V ±10% 6 20 mA fXX = 6 MHz, VDD = 3.0 V ±10% 2 8 mA fXX = 2 MHz, VDD = 2.0 V ±10% 0.4 3.5 mA fXX = 12.5 MHz, VDD = 5.0 V ±10% 1 2.5 mA fXX = 6 MHz, VDD = 3.0 V ±10% 0.4 1.3 mA fXX = 2 MHz, VDD = 2.0 V ±10% 0.2 0.9 mA fXX = 32 kHz, VDD = 5.0 V ±10% 80 200 µA fXX = 32 kHz, VDD = 3.0 V ±10% 60 110 µA fXX = 32 kHz, VDD = 2.0 V ±10% 30 100 µA fXX = 32 kHz, VDD = 5.0 V ±10% 60 160 µA fXX = 32 kHz, VDD = 3.0 V ±10% 20 80 µA fXX = 32 kHz, VDD = 2.0 V ±10% 10 70 µA fXX = 32 kHz, VDD = 5.0 V ±10% 50 150 µA fXX = 32 kHz, VDD = 3.0 V ±10% 15 70 µA fXX = 32 kHz, VDD = 2.0 V ±10% 5 60 µA Data retention voltage VDDDR HALT, IDLE modes Data retention current IDDDR STOP mode 1.8 VDD = 2.0 V ±10% 2 VDD = 5.0 V ±10% Pull-up resistor RL VIN = 0 V 10 5.5 V 10 µA 10 50 µA 30 100 kΩ Note When main system clock is stopped and subsystem clock is operating. Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins. 74 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY AC Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) (1) Read/write operation (1/2) Parameter Cycle time Symbol tCYK Address setup time (to ASTB↓) tSAST Address hold time (from ASTB↓) tHSTLA ASTB high-level width Address hold time (from RD↑) tWSTH tHRA Delay time from address to RD↓ tDAR Address float time (from RD↓) Data input time from address Data input time from ASTB↓ Data input time from RD↓ tFAR tDAID tDSTID tDRID Conditions Data hold time (from RD↑) tDSTR tHRID TYP. MAX. Unit 4.5 V ≤ VDD ≤ 5.5 V 80 ns 2.7 V ≤ VDD < 4.5 V 160 ns 2.0 V ≤ VDD < 2.7 V 320 ns 1.8 V ≤ VDD < 2.0 V 500 ns VDD = 5.0 V ±10% (0.5 + a)T − 20 ns VDD = 3.0 V ±10% (0.5 + a)T − 40 ns VDD = 2.0 V ±10% (0.5 + a)T − 80 ns VDD = 5.0 V ±10% 0.5T − 19 ns VDD = 3.0 V ±10% 0.5T − 24 ns VDD = 2.0 V ±10% 0.5T − 34 ns VDD = 5.0 V ±10% (0.5 + a)T − 17 ns VDD = 3.0 V ±10% (0.5 + a)T − 40 ns VDD = 2.0 V ±10% (0.5 + a)T − 110 ns VDD = 5.0 V ±10% 0.5T − 14 ns VDD = 3.0 V ±10% 0.5T − 14 ns VDD = 2.0 V ±10% 0.5T − 14 ns VDD = 5.0 V ±10% (1 + a)T − 24 ns VDD = 3.0 V ±10% (1 + a)T − 35 ns VDD = 2.0 V ±10% (1 + a)T − 80 ns VDD = 5.0 V ±10% 0 ns VDD = 3.0 V ±10% 0 ns VDD = 2.0 V ±10% 0 ns VDD = 5.0 V ±10% (2.5 + a + n)T − 37 ns VDD = 3.0 V ±10% (2.5 + a + n)T − 52 ns VDD = 2.0 V ±10% (2.5 + a + n)T − 120 ns VDD = 5.0 V ±10% (2 + n)T − 35 ns VDD = 3.0 V ±10% (2 + n)T − 50 ns VDD = 2.0 V ±10% (2 + n)T − 80 ns VDD = 5.0 V ±10% (1.5 + n)T − 40 ns = 3.0 V ±10% (1.5 + n)T − 50 ns VDD = 2.0 V ±10% (1.5 + n)T − 90 ns VDD Delay time from ASTB↓ to RD↓ MIN. VDD = 5.0 V ±10% 0.5T − 9 ns VDD = 3.0 V ±10% 0.5T − 9 ns VDD = 2.0 V ±10% 0.5T − 20 ns VDD = 5.0 V ±10% 0 ns VDD = 3.0 V ±10% 0 ns VDD = 2.0 V ±10% 0 ns Remark T: tCYK = 1/fXX (fXX: main system clock frequency) a: 1 (during address wait), otherwise, 0 n: Number of waits (n ≥ 0) Data Sheet U14121EJ2V0DS00 75 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY AC Characteristics (1) Read/write operation (2/2) Parameter Address active time from RD↑ Delay time from RD↑ to ASTB↑ RD low-level width Symbol tDRA tDRST tWRL Delay time from address to WR↓ tDAW Address hold time (from WR↑) tHRD Conditions MIN. TYP. MAX. Unit VDD = 5.0 V ±10% 0.5T − 2 ns VDD = 3.0 V ±10% 0.5T − 12 ns VDD = 2.0 V ±10% 0.5T − 35 ns VDD = 5.0 V ±10% 0.5T − 9 ns VDD = 3.0 V ±10% 0.5T − 9 ns VDD = 2.0 V ±10% 0.5T − 40 ns VDD = 5.0 V ±10% (1.5 + n)T − 25 ns VDD = 3.0 V ±10% (1.5 + n)T − 30 ns VDD = 2.0 V ±10% (1.5 + n)T − 25 ns VDD = 5.0 V ±10% (1 + a)T − 24 ns VDD = 3.0 V ±10% (1 + a)T − 34 ns VDD = 2.0 V ±10% (1 + a)T − 70 ns VDD = 5.0 V ±10% 0.5T − 14 ns VDD = 3.0 V ±10% 0.5T − 14 ns VDD = 2.0 V ±10% 0.5T − 14 ns Delay time from ASTB↓ to data tDSTOD VDD = 5.0 V ±10% 0.5T + 15 ns output VDD = 3.0 V ±10% 0.5T + 30 ns VDD = 2.0 V ±10% 0.5T + 240 ns Delay time from WR↓ to data tDWOD VDD = 5.0 V ±10% 0.5T − 30 ns output VDD = 3.0 V ±10% 0.5T − 30 ns VDD = 2.0 V ±10% 0.5T − 30 ns Delay time from ASTB↓ to WR↓ tDSTW Data setup time (to WR↑) Data hold time (from WR↑) tSODWR tHWOD Delay time from WR↑ to ASTB↑ tDWST WR low-level width tWWL VDD = 5.0 V ±10% 0.5T − 9 ns VDD = 3.0 V ±10% 0.5T − 9 ns VDD = 2.0 V ±10% 0.5T − 20 ns VDD = 5.0 V ±10% (1.5 + n)T − 20 ns VDD = 3.0 V ±10% (1.5 + n)T − 25 ns VDD = 2.0 V ±10% (1.5 + n)T − 70 ns VDD = 5.0 V ±10% 0.5T − 14 ns VDD = 3.0 V ±10% 0.5T − 14 ns VDD = 2.0 V ±10% 0.5T − 50 ns VDD = 5.0 V ±10% 0.5T − 9 ns VDD = 3.0 V ±10% 0.5T − 9 ns VDD = 2.0 V ±10% 0.5T − 30 ns VDD = 5.0 V ±10% (1.5 + n)T − 25 ns VDD = 3.0 V ±10% (1.5 + n)T − 30 ns VDD = 2.0 V ±10% (1.5 + n)T − 30 ns Remark T: tCYK = 1/fXX (fXX: main system clock frequency) a: 1 (during address wait), otherwise, 0 n: Number of wait states (n ≥ 0) 76 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY AC Characteristics (2) External wait timing Parameter Input time from address to Symbol tDAWT WAIT↓ Input time from ASTB↓ to tDSTWT WAIT↓ Conditions MIN. VDD = 5.0 V ±10% Hold time from ASTB↓ to WAIT Delay time from ASTB↓ to tDSTWTH WAIT↑ Input time from RD↓ to WAIT↓ Hold time from RD↓ to WAIT↓ Delay time from RD↓ to WAIT↑ Data input time from WAIT↑ Delay time from WAIT↑ to RD↑ Delay time from WAIT↑ to WR↑ Input time from WR↓ to WAIT↓ tDRWTL tHRWT tDRWTH tDWTID tDWTR tDWTW tDWWTL Hold time from WR↓ to WAIT Delay time from WR↓ to WAIT↑ tDWWTH Unit ns (2 + a)T − 60 ns VDD = 2.0 V ±10% (2 + a)T − 300 ns VDD = 5.0 V ±10% 1.5T − 40 ns VDD = 3.0 V ±10% 1.5T − 60 ns 1.5T − 260 ns VDD = 5.0 V ±10% (0.5 + n)T + 5 ns VDD = 3.0 V ±10% (0.5 + n)T + 10 ns VDD = 2.0 V ±10% (0.5 + n)T + 30 ns VDD = 5.0 V ±10% (1.5 + n)T − 40 ns VDD = 3.0 V ±10% (1.5 + n)T − 60 ns VDD = 2.0 V ±10% (1.5 + n)T − 90 ns VDD = 5.0 V ±10% T − 40 ns VDD = 3.0 V ±10% T − 60 ns VDD = 2.0 V ±10% T − 70 ns VDD = 5.0 V ±10% nT + 5 ns VDD = 3.0 V ±10% nT + 10 ns VDD = 2.0 V ±10% nT + 30 ns VDD = 5.0 V ±10% (1 + n)T − 40 ns VDD = 3.0 V ±10% (1 + n)T − 60 ns VDD = 2.0 V ±10% (1 + n)T − 90 ns VDD = 5.0 V ±10% 0.5T − 5 ns VDD = 3.0 V ±10% 0.5T − 10 ns VDD = 2.0 V ±10% 0.5T − 30 ns VDD = 5.0 V ±10% 0.5T ns VDD = 3.0 V ±10% 0.5T ns VDD = 2.0 V ±10% 0.5T + 5 ns VDD = 5.0 V ±10% 0.5T ns VDD = 3.0 V ±10% 0.5T ns VDD = 2.0 V ±10% 0.5T + 5 ns VDD = 5.0 V ±10% T − 40 ns VDD = 3.0 V ±10% T − 60 ns VDD = 2.0 V ±10% tHWWT MAX. (2 + a)T − 40 VDD = 3.0 V ±10% VDD = 2.0 V ±10% tHSTWT TYP. T − 90 ns VDD = 5.0 V ±10% nT + 5 ns VDD = 3.0 V ±10% nT + 10 ns VDD = 2.0 V ±10% nT + 30 ns VDD = 5.0 V ±10% (1 + n)T − 40 ns VDD = 3.0 V ±10% (1 + n)T − 60 ns VDD = 2.0 V ±10% (1 + n)T − 90 ns Remark T: tCYK = 1/fXX (fXX: main system clock frequency) a: 1 (during address wait), otherwise, 0 n: Number of wait states (n ≥ 0) Data Sheet U14121EJ2V0DS00 77 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Serial Operation (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) (a) 3-wire serial I/O mode (SCK: Internal clock output) Parameter Symbol Conditions SCK cycle time tKCY1 2.7 V ≤ VDD ≤ 5.5 V SCK high-/low-level width tKH1, tKL1 2.7 V ≤ VDD ≤ 5.5 V tSIK1 2.7 V ≤ VDD ≤ 5.5 V SI setup time (to SCK↑) SI hold time (from SCK↑) tKSI1 SO output delay time (from SCK↓) tKSO1 MIN. TYP. MAX. Unit 800 ns 3,200 ns 350 ns 1,500 ns 10 ns 30 ns 40 ns 30 ns MAX. Unit (b) 3-wire serial I/O mode (SCK: External clock input) Parameter Symbol Conditions SCK cycle time tKCY2 2.7 V ≤ VDD ≤ 5.5 V SCK high-/low-level width tKH2 tKL2 2.7 V ≤ VDD ≤ 5.5 V tSIK2 2.7 V ≤ VDD ≤ 5.5 V SI setup time (to SCK↑) SI hold time (from SCK↑) tKSI2 SO output delay time (from SCK↓) tKSO2 MIN. TYP. 800 ns 3,200 ns 400 ns 1,600 ns 10 ns 30 ns 40 ns 30 ns MAX. Unit (c) UART mode Parameter ASCK cycle time Symbol tKCY3 Conditions 4.5 V ≤ VDD ≤ 5.5 V 2.7 V ≤ VDD < 4.5 V ASCK high-/low-level width 78 tKH3 tKL3 MIN. TYP. 417 ns 833 ns 1,667 ns 4.5 V ≤ VDD ≤ 5.5 V 208 ns 2.7 V ≤ VDD < 4.5 V 416 ns 833 ns Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (d) I2C bus mode Parameter Symbol Standard Mode High-Speed Mode Unit MIN. MAX. MIN. MAX. SCL0 clock frequency fCLK 0 100 0 400 kHz Bus free time (between stop and start conditions) tBUF 4.7 − 1.3 − µs tHD : STA 4.0 − 0.6 − µs Low-level width of SCL0 clock tLOW 4.7 − 1.3 − µs High-level width of SCL0 clock tHIGH 4.0 − 0.6 − µs Setup time of start/restart conditions tSU : STA 4.7 − 0.6 − µs Data hold When using CBUStime compatible master tHD : DAT 5.0 − − − µs 0Note 2 − 0Note 2 0.9Note 3 µs Hold timeNote1 2 When using I C bus Data setup time tSU : DAT 250 − Note 4 − ns Note 5 20 + 0.1Cb 300 ns 100 Rise time of SDA0 and SCL0 signals tR − 1,000 Fall time of SDA0 and SCL0 signals tF − 300 20 + 0.1CbNote 5 300 ns Setup time of stop condition tSU : STO 4.0 − 0.6 − µs Pulse width of spike restricted by input filter tSP − − 0 50 ns Load capacitance of each bus line Cb − 400 − 400 pF Notes 1. For the start condition, the first clock pulse is generated after the hold time. 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on VIHmin.) with at least 300 ns of hold time. 3. If the device does not extend the SCL0 signal low-level hold time (tLOW), only the maximum data hold time tHD : DAT needs to be satisfied. 4. The high-speed mode I2C bus can be used in a standard mode I2C bus system. In this case, the conditions described below must be satisfied. • If the device does not extend the SCL0 signal low-level hold time tSU : DAT ≥ 250 ns • If the device extends the SCL0 signal low-level hold time Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released (tRmax. + tSU : DAT = 1,000 + 250 = 1,250 ns by standard mode I2C bus specification) 5. Cb: Total capacitance per bus line (unit: pF) Data Sheet U14121EJ2V0DS00 79 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Other Operations (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) Parameter Symbol NMI high-/low-level width tWNIL tWNIH INTP input high-/low-level width tWITL tWITH RESET high-/low-level width tWRSL tWRSH Conditions INTP0 to INTP6 MIN. TYP. MAX. Unit 10 µs 100 ns 10 µs Clock Output Operation (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) Parameter Symbol Conditions MIN. TYP. MAX. Unit PCL cycle time tCYCL 4.5 V ≤ VDD ≤ 5.5 V, nT 80 31,250 ns PCL high-/low-level width tCLL tCLH 4.5 V ≤ VDD ≤ 5.5 V, 0.5T − 10 30 15,615 ns PCL rise/fall time tCLR tCLF 4.5 V ≤ VDD ≤ 5.5 V 5 ns 2.7 V ≤ VDD < 4.5 V 10 ns 1.8 V ≤ VDD < 2.7 V 20 ns Remark T: tCYK = 1/fXX (fXX: Main system clock frequency) n: Divided frequency ratio set by software in the CPU • When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128 • When using the subsystem clock: n = 1 80 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY A/D Converter Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) Parameter Symbol Conditions MIN. TYP. MAX. Unit 8 8 8 bits 2.7 V ≤ VDD ≤ 5.5 V 2.2 V ≤ AVREF0 ≤ VDD ±1.2 %FSR 1.8 V ≤ VDD < 2.7 V 1.8 V ≤ AVREF0 ≤ VDD ±1.6 %FSR 144 µs Resolution Notes 1, 2 Overall error Conversion time tCONV 14 Sampling time tSAMP 24/fXX Analog input voltage VIAN AVSS AVREF0 V Reference voltage AVREF0 1.8 AVDD V Resistance between AVREF0 and AVSS RAVREF0 When not A/D converting µs 40 kΩ Notes 1. Quantization error (±1/2 LSB) is not included. 2. Overall error is indicated as a ratio to the full-scale value. Remark fXX : Main system clock frequency D/A Converter Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) Parameter Symbol Conditions MIN. TYP. MAX. Unit 8 8 8 Bits R = 10 MΩ, 2.0 V ≤ AVREF1 ≤ VDD, 2.0 V ≤ VDD ≤ 5.5 V ±0.6 %FSR R = 10 MΩ, 1.8 V ≤ AVREF1 ≤ VDD, 1.8 V ≤ VDD ≤ 2.0 V ±1.2 %FSR 4.5 V ≤ AVREF1 ≤ 5.5 V 10 µs 2.7 V ≤ AVREF1 < 4.5 V 15 µs 1.8 V ≤ AVREF1 < 2.7 V 20 µs Resolution Notes 1, 2 Overall error Settling time Load conditions: C = 30 pF Output resistance RO Reference voltage AVREF1 AVREF1 current AIREF1 DACS0, 1 = 55H 8 1.8 For only 1 channel kΩ VDD V 2.5 mA Notes 1. Quantization error (±1/2 LSB) is not included. 2. Overall error is indicated as a ratio to the full-scale value. Data Sheet U14121EJ2V0DS00 81 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Data Retention Characteristics (TA = −40 to +85°°C, VDD = AVDD = 1.8 to 5.5 V, VSS = AVSS = 0 V) Parameter Symbol Conditions MIN. TYP. 1.8 MAX. Unit 5.5 V Data retention voltage VDDDR STOP mode Data retention current IDDDR VDDDR = 5.0 V ±10% 10 50 µA VDDDR = 2.0 V ±10% 2 10 µA VDD rise time tRVD 200 µs VDD fall time tFVD 200 µs VDD hold time (from STOP mode setting) tHVD 0 ms STOP release signal input time tDREL 0 ms Oscillation stabilization wait time tWAIT Crystal resonator 30 ms Ceramic resonator 5 ms RESET, P00/INTP0 to P06/INTP6 0 0.1VDDDR V 0.9VDDDR VDDDR V Low-level input voltage VIL High-level input voltage VIH AC Timing Test Points VDD − 1 V 0.8VDD or 1.8 V 0.8VDD or 1.8 V Test points 0.45 V 82 0.8 V 0.8 V Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Timing Waveforms (1) Read operations (CLK) tCYK A0 to A7 (Output) Lower address Lower address A8 to A19 (Output) Higher address Higher address tDAID tHRA tDRA tDSTID AD0 to AD7 (Input/output) Hi-Z Hi-Z Lower address (Output) tSAST Data (Input) Hi-Z Lower address (Output) tHRID tHSTLA tFAR ASTB (Output) tWSTH tDSTR tDAR tDRST tDRID RD (Output) tWRL tDRWTL tDAWT tDRWTH tHRWT tDWTR tDWTID WAIT (Input) tDSTWT tDSTWTH tHSTWT Remark The signal is output from pins A0 to A7 when P80 to P87 are unused. Data Sheet U14121EJ2V0DS00 83 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (2) Write operation (CLK) tCYK A0 to A7 (Output) Lower address Lower address A8 to A19 (Output) Higher address Higher address tDAID tHWA tDAW tDSTOD AD0 to AD7 (Output) Hi-Z Lower address (Output) tSAST Hi-Z tHWOD tHSTLA tSODWR tFAR ASTB (Output) Hi-Z Data (Output) tWSTH tDSTW tDWST tDAW tDWOD WR (Output) tWWL tDWWTL tDAWT tDWWTH tHWWT tDWTW tDWTID WAIT (Input) tDSTWT tDSTWTH tHSTWT Remark The signal is output from pins A0 to A7 when P80 to P87 are unused. 84 Data Sheet U14121EJ2V0DS00 Lower address (Output) µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Serial Operation (1) 3-wire serial I/O mode tKCY1, 2 tKH1, 2 tKL1, 2 SCK tKSO1, 2 tKSI1, 2 tSIK1, 2 SI/SO (2) UART mode tKCY3 tKH3 tKL3 ASCK (3) I2C bus mode (µPD784216AY/784218AY Subseries only) tR SCL0 tHD : DAT tHD : STA tHIGH tSU : DAT tF tSU : STA tHD : STA tSP tSU : STO SDA0 tBUF Stop condition Restart condition Start condition Data Sheet U14121EJ2V0DS00 Stop condition 85 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Clock Output Timing tCLH tCLL CLKOUT tCLR tCLF tCYCL Interrupt Input Timing tWNIH tWNIL tWITH tWITL tWRSH tWRSL NMI INTP0 to INTP6 Reset Input Timing RESET 86 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Clock Timing tWXH tWXL X1 tXR tXF 1/fX tXTH tXTL XT1 1/fXT Data Retention Characteristics STOP mode setting VDD VDDDR tHVD tFVD tRVD tDREL tWAIT RESET NMI (Cleared by falling edge) NMI (Cleared by rising edge) Data Sheet U14121EJ2V0DS00 87 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 14. PACKAGE DRAWINGS 100-PIN PLASTIC LQFP (FINE PITCH) (14x14) A B 75 76 51 50 detail of lead end S C D Q R 26 25 100 1 F G H I J M K P S N S L M NOTE Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS A 16.00±0.20 B 14.00±0.20 C 14.00±0.20 D 16.00±0.20 F 1.00 G 1.00 H 0.22 +0.05 −0.04 I J 0.08 0.50 (T.P.) K 1.00±0.20 L 0.50±0.20 M 0.17 +0.03 −0.07 N 0.08 P 1.40±0.05 Q 0.10±0.05 R +7° 3° −3° S 1.60 MAX. S100GC-50-8EU, 8EA-2 Remark The external dimensions and material of the ES version are the same as those of the mass-produced version. 88 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 100-PIN PLASTIC QFP (14x20) A B 51 50 80 81 detail of lead end S C D Q R 31 30 100 1 F G J H I M P K S N S L M NOTE ITEM Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition. MILLIMETERS A 23.6±0.4 B 20.0±0.2 C 14.0±0.2 D 17.6±0.4 F 0.8 G H 0.6 0.30±0.10 I 0.15 J K L 0.65 (T.P.) 1.8±0.2 0.8±0.2 M 0.15+0.10 −0.05 N 0.10 P 2.7±0.1 Q R 0.1±0.1 5°±5° S 3.0 MAX. P100GF-65-3BA1-4 Remark The external dimensions and material of the ES version are the same as those of the mass-produced version. Data Sheet U14121EJ2V0DS00 89 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 15. RECOMMENDED SOLDERING CONDITIONS The µPD784218A should be soldered and mounted under the following recommended conditions. For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Table 15-1. Surface Mounting Type Soldering Conditions (1/2) ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) (1) µPD784214AGC-××× ××× ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) ××× µPD784215AGC-××× ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) ××× µPD784216AGC-××× ×××-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm) ××× µPD784217AGC-××× ×××-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm) ××× µPD784218AGC-××× ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) ××× µPD784214AYGC-××× ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) ××× µPD784215AYGC-××× ×××-8EU:100-pin plastic LQFP(fine pitch) (14 × 14 mm) ××× µPD784216AYGC-××× ×××-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm) ××× µPD784217AYGC-××× ×××-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm) ××× µPD784218AYGC-××× Soldering Method Infrared reflow Soldering Conditions Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Note Count: Two times or less, Exposure limit: 7 days (after that, prebake at 125°C Recommended Condition Symbol IR35-107-2 for 10 hours) VPS Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Note Count: Two times or less, Exposure limit: 7 days (after that, prebake at 125°C VP15-107-2 for 10 hours) Partial heating Pin temperature: 300°C max., Time: 3 seconds max. (per pin row) − Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period. Caution 90 Do not use different soldering methods together (except for partial heating). Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Table 15-1. Surface Mounting Type Soldering Conditions (2/2) ×××-3BA:100-pin (2) µPD784214AGF-××× plastic QFP(14 × 20 mm) ××× ×××-3BA:100-pin plastic QFP(14 × 20 mm) ××× µPD784215AGF-××× ×××-3BA:100-pin plastic QFP(14 × 20 mm) ××× µPD784216AGF-××× ×××-3BA: 100-pin plastic QFP (14 × 20 mm) ××× µPD784217AGF-××× ×××-3BA: 100-pin plastic QFP (14 × 20 mm) ××× µPD784218AGF-××× ×××-3BA:100-pin plastic QFP(14 × 20 mm) ××× µPD784214AYGF-××× ×××-3BA:100-pin plastic QFP(14 × 20 mm) ××× µPD784215AYGF-××× ×××-3BA:100-pin plastic QFP(14 × 20 mm) ××× µPD784216AYGF-××× ×××-3BA: 100-pin plastic QFP (14 × 20 mm) ××× µPD784217AYGF-××× ×××-3BA: 100-pin plastic QFP (14 × 20 mm) ××× µPD784218AYGF-××× Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less IR35-00-2 VPS Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less VP15-00-2 Wave soldering Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature) WS60-00-1 Partial heating Pin temperature: 300°C max., Time: 3 seconds max. (per pin row) Caution − Do not use different soldering methods together (except for partial heating). Data Sheet U14121EJ2V0DS00 91 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY APPENDIX A. DEVELOPMENT TOOLS The following development tools are available for system development using the µPD784218A. Also refer to (5) Cautions on using development tools. (1) Language processing software RA78K4 Assembler package common to 78K/IV Series CC78K4 C compiler package common to 78K/IV Series DF784218 Device file common to µPD784216A, 784216AY, 784218A, 784218AY Subseries CC78K4-L C compiler library source file common to 78K/IV Series (2) Flash memory writing tools Dedicated flash programmer for microcontroller incorporating flash memory Flashpro II (Model number: FL-PR2), Flashpro III (Model number: FL-PR3, PG-FP3) FA-100GF Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory. Connection must be performed in accordance with the target product. FA-100GC Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory. Connection must be performed in accordance with the target product. Flashpro II controller, Flashpro III controller Control program that runs on a personal computer and is attached to Flashpro II, Flashpro III. TM Operates on Windows 95, etc. (3) Debugging tools • When IE-78K4-NS in-circuit emulator is used IE-78K4-NS In-circuit emulator common to 78K/IV Series IE-70000-MC-PS-B Power supply unit for IE-78K4-NS IE-70000-98-IF-C Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported) IE-70000-CD-IF-A PC card and cable when PC-9800 series notebook PC is used as host machine (PCMCIA socket supported) IE-70000-PC-IF-C Interface adapter required when using IBM PC/AT supported) IE-70000-PCI-IF Interface adapter required when using PC that incorporates PCI bus as host machine TM compatibles as host machine (ISA bus IE-784225-NS-EM1 Emulation board to emulate µPD784216A, 784216AY, 784218A, 784218AY Subseries NP-100GF Emulation probe for 100-pin plastic QFP (GF-3BA type) NP-100GC Emulation probe for 100-pin plastic LQFP (GC-8EU type) EV-9200GF-100 Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type) TGC-100SDW Conversion adapter to connect the NP-100GC and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted ID78K4-NS Integrated debugger for IE-78K4-NS SM78K4 System simulator common to 78K/IV Series DF784218 Device file common to µPD784216A, 784216AY, 784218A, 784218AY Subseries 92 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY • When IE-784000-R in-circuit emulator is used IE-784000-R In-circuit emulator common to 78K/IV Series IE-70000-98-IF-C Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported) IE-70000-PC-IF-C Interface adapter required when using IBM PC/AT and compatibles as host machine (ISA bus supported) IE-70000-PCI-IF Interface adapter required when using PC that incorporates PCI bus as host machine IE-78000-R-SV3 Interface adapter and cable required when EWS is used as host machine IE-784225-NS-EM1 Emulation board to emulate µPD784216A, 784216AY, 784218A, 784218AY Subseries IE-784000-R-EM Emulation board common to 78K/IV Series IE-78K4-R-EX3 Emulation probe conversion board required when using IE-784225-NS-EM1 on IE-784000-R. EP-784218GF-R Emulation probe for 100-pin plastic QFP (GF-3BA type) EP-78064GC-R Emulation probe for 100-pin plastic LQFP (GC-8EU type) EV-9200GF-100 Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type) TGC-100SDW Conversion adapter to connect the EP-78064GC-R and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted ID78K4 Integrated debugger for IE-784000-R SM78K4 System simulator common to 78K/IV Series DF784218 Device file common to µPD784216A, 784216AY, 784218A, 784218AY Subseries (4) Real-time OS RX78K/IV Real-time OS for 78K/IV Series MX78K4 OS for 78K/IV Series Data Sheet U14121EJ2V0DS00 93 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY (5) Cautions on using development tools • The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784218. • The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784218. • The FL-PR2, FL-PR3, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813). • The TGC-100SDW is a product made by TOKYO ELETECH CORPORATION. For further information, contact Daimaru Kogyo, Ltd. Tokyo Electronic Division (TEL: +81-3-3820-7112) Osaka Electronic Division (TEL: +81-6-6244-6672) • For third party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E). • The host machine and OS suitable for each software are as follows: Host Machine PC EWS Software PC-9800 series [Windows] IBM PC/AT and compatibles [Japanese/English Windows] HP9000 Series 700 [HP-UX ] TM TM TM SPARCstation [SunOS , Solaris ] TM TM NEWS (RISC) [NEWS-OS ] RA78K4 √Note √ Note √ [OS] CC78K4 √ TM ID78K4-NS √ − ID78K4 √ √ √ − SM78K4 RX78K/IV Note √ √ MX78K4 √Note √ Note DOS-based software 94 Data Sheet U14121EJ2V0DS00 TM µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY APPENDIX B. RELATED DOCUMENTS Documents related to devices Document Name Document No. English Japanese µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Data Sheet This document U14121J µPD78F4216A, 78F4216AY, 78F4218A, 78F4218AY Data Sheet To be prepared To be prepared µPD784216A, 784216AY Subseries User’s Manual Hardware U13570E U13570J µPD784218A, 784218AY Subseries User’s Manual Hardware U12970E U12970J 78K/IV Series User’s Manual Instructions U10905E U10905J 78K/IV Series Instruction Table − U10594J 78K/IV Series Instruction Set − U10595J 78K/IV Series Application Note Software Basics − U10095J Documents related to development tools (user’s manuals) Document Name Document No. English RA78K4 Assembler Package Japanese Language U11162E U11162J Operation U11334E U11334J U11743E U11743J Language U11571E U11571J Operation U11572E U11572J IE-78K4-NS U13356E U13356J IE-784000-R U12903E U12903J IE-784218-R-EM1 U12155E U12155J IE-784225-NS-EM1 U13742E U13742J EP-78064 EEU-1469 EEU-934 RA78K Structured Assembler Preprocessor CC78K4 C Compiler SM78K4 System Simulator Windows Based Reference U10093E U10093J SM78K Series System Simulator External Part User Open Interface Specifications U10092E U10092J ID78K4-NS Integrated Debugger PC Based Reference U12796E U12796J ID78K4 Integrated Debugger Windows Based Reference U10440E U10440J ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS based Reference U11960E U11960J Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing. Data Sheet U14121EJ2V0DS00 95 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Documents related to embedded software (user’s manuals) Document Name Document No. English 78K/IV Series Real-Time OS 78K/IV Series OS MX78K4 Japanese Fundamental U10603E U10603J Installation U10604E U10604J Debugger − U10364J Fundamental − U11779J Other documents Document Name Document No. English Japanese SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM) X13769X Semiconductor Device Mounting Technology Manual C10535E C10535J Quality Grades on NEC Semiconductor Devices C11531E C11531J NEC Semiconductor Device Reliability/Quality Control System C10983E C10983J Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) C11892E C11892J Guide to Microcomputer-Related Products by Third Party Caution U11416J The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing. 96 − Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet U14121EJ2V0DS00 97 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, pIease contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860 United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics (France) S.A. NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 NEC Electronics Taiwan Ltd. NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829 J00.7 98 Data Sheet U14121EJ2V0DS00 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY IEBus is a trademark of NEC Corporation. Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. PC/AT is a trademark of International Business Machines Corporation. HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. Solaris and SunOS are trademarks of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation. Data Sheet U14121EJ2V0DS00 99 µPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY 2 2 Purchase of NEC I C components conveys a license under the Philips I C Patent Rights to use these components 2 2 in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips. The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. • The information in this document is current as of August, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. • NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. • NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4