Preliminary NJU6637 Preliminary 16-CHARACTER 3-LINE DOT MATRIX LCD CONTROLLER DRIVER ■ GENERAL DESCRIPTION The NJU6637 is a 1Chip Dot Matrix LCD controller driver for up to 16-character 3-line display. It contains microprocessor Interface circuits, Instruction decoder controller, character generator ROM/RAM and common and segment drivers. The bleeder resistance generates for LCD Bias voltage Internally. The CR oscillator Incorporates C and R, therefore no external components for oscillation are required. The microprocessor Interface circuits which operate 1MHz frequency, can be connected directly to serial I/F microprocessor. The character generator consists of 10,200 bits ROM and 8 x 5 bits RAM. The standard version ROM is coded with 255 characters including capital and small letter fonts. The 24-common and 80-segment drive up to 16-character 3-line LCD panel which divided two common electrode blocks. The rectangle outlook is very applicable to COG. ■ PACKAGE OUTLINE NJU6637CH ■ FEATURES ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 16-character 3-line Dot Matrix LCD Controller Driver Serial Direct Interface with Microprocessor Display Data RAM :48 x 8 bits : Maximum 16-character 3line Display Character Generator ROM :10,200 bits ; 255 characters for 5 x 8 dots Character Generator RAM :8 x 5 bits ; 1 Patterns( 5 x 8 dots) Microprocessor direst accessing to Display Data RAM and Character Generator RAM High Voltage LCD Driver :24-common / 80-segment Duty Ratio :1/24 Duty Maximum Display Characters :48 Characters Common Driver Order Assignment by mask option Version COM1 to COM24 (PAD Name) NJU6637A COM1 to COM24 NJU6637B COM24 to COM1 Useful Instruction Set Clear Display, Returns Home, Display ON/OFF Cont, Cursor ON/OFF Cont, Display Blink, Cursor Shift, Character Shift. Power On Reset / Hardware Reset Function Oscillation Circuit on chip Bleeder Resistance on chip Low Power Consumption Operating Voltage --- +3V Package Outline --- Bumped Chip C-MOS Technology Ver.1.1 Preliminary NJU6637 ■ PAD LOCATION DUMMY33 COM9 COM16 SEG1 SEG8 DUMMY34 DUMMY35 NJU6637A Mode A (SEL=”L”) DUMMY36 DUMMY32 DUMMY37 DUMMY38 DUMMY39 DUMMY40 DUMMY41 DUMMY42 SEG9 DUMMY31 DUMMY30 x DUMMY11 CS SI SCL RS RESET SEL TEST VDD VDD VDD VSS VSS VSS V5 V5 V5 OSC2 OSC1 DUMMY10 y SEG80 DUMMY43 DUMMY44 DUMMY45 DUMMY46 DUMMY47 DUMMY48 DUMMY49 DUMMY3 DUMMY2 1 DUMMY50 Bump Size : 90 x 45um Bump Height : 17.5um Bump Material :Au DUMMY53 COM1 COM8 COM17 COM24 DUMMY52 DUMMY51 Chip Size : 5.48 x 1.68mm Chip Size : X=0um, Y=0um Chip Thickness : 625um+30um DUMMY1 Preliminary DUMMY33 COM9 COM16 SEG80 SEG73 DUMMY34 DUMMY35 NJU6637A Mode B (SEL=”H”) NJU6637 DUMMY36 DUMMY32 DUMMY37 DUMMY38 DUMMY39 DUMMY40 DUMMY41 DUMMY42 SEG72 DUMMY31 DUMMY30 x DUMMY11 CS SI SCL RS RESET SEL TEST VDD VDD VDD VSS VSS VSS V5 V5 V5 OSC2 OSC1 DUMMY10 y SEG1 DUMMY43 DUMMY44 DUMMY45 DUMMY46 DUMMY47 DUMMY48 DUMMY49 DUMMY3 DUMMY2 1 DUMMY50 DUMMY1 DUMMY53 COM1 COM8 COM17 COM24 DUMMY52 DUMMY51 Preliminary DUMMY33 COM16 COM9 SEG1 SEG8 DUMMY34 DUMMY35 NJU6637B Mode A (SEL=”L”) NJU6637 DUMMY36 DUMMY32 DUMMY37 DUMMY38 DUMMY39 DUMMY40 DUMMY41 DUMMY42 SEG9 DUMMY31 DUMMY30 x DUMMY11 CS SI SCL RS RESET SEL TEST VDD VDD VDD VSS VSS VSS V5 V5 V5 OSC2 OSC1 DUMMY10 y SEG80 DUMMY43 DUMMY44 DUMMY45 DUMMY46 DUMMY47 DUMMY48 DUMMY49 DUMMY3 DUMMY2 1 DUMMY50 DUMMY1 DUMMY53 COM24 COM17 COM8 COM1 DUMMY52 DUMMY51 Preliminary DUMMY33 COM16 COM9 SEG80 SEG73 DUMMY34 DUMMY35 NJU6637B Mode B (SEL=”H”) NJU6637 DUMMY36 DUMMY32 DUMMY37 DUMMY38 DUMMY39 DUMMY40 DUMMY41 DUMMY42 SEG72 DUMMY31 DUMMY30 x DUMMY11 CS SI SCL RS RESET SEL TEST VDD VDD VDD VSS VSS VSS V5 V5 V5 OSC2 OSC1 DUMMY10 y SEG1 DUMMY43 DUMMY44 DUMMY45 DUMMY46 DUMMY47 DUMMY48 DUMMY49 DUMMY3 DUMMY2 1 DUMMY50 DUMMY1 DUMMY53 COM24 COM17 COM8 COM1 DUMMY52 DUMMY51 Preliminary Alignment Mark size 63 10.8 14.4 12.6 14.410.8 DUMMY1 DUMMY32 10.8 y 14.4 x 12.6 63 14.4 10.8 63 DUMMY36 DUMMY50 10.8 14.4 12.6 14.410.8 10.8 14.4 y x 39.6 14.4 10.8 90 NJU6637 Preliminary NJU6637 ■ PAD COORDINATES PAD No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PAD Name SEL=H SEL=L DMY1 DMY2 DMY3 DMY4 DMY5 DMY6 DMY7 DMY8 DMY9 DMY10 OSC1 OSC2 V5 V5 V5 VSS VSS VSS VDD VDD VDD TEST SEL RESET RS SCL SI CS DMY11 DMY12 DMY13 DMY14 DMY15 DMY16 DMY17 DMY18 DMY19 DMY20 DMY21 DMY22 DMY23 DMY24 DMY25 DMY26 DMY27 DMY28 DMY29 DMY30 DMY31 DMY32 DMY1 DMY2 DMY3 DMY4 DMY5 DMY6 DMY7 DMY8 DMY9 DMY10 OSC1 OSC2 V5 V5 V5 VSS VSS VSS VDD VDD VDD TEST SEL RESET RS SCL SI CS DMY11 DMY12 DMY13 DMY14 DMY15 DMY16 DMY17 DMY18 DMY19 DMY20 DMY21 DMY22 DMY23 DMY24 DMY25 DMY26 DMY27 DMY28 DMY29 DMY30 DMY31 DMY32 Chip Size(5.48mm x 1.68mm) X= µm Y= µm PAD No. -2599 -2520 -2460 -2400 -2340 -2280 -2220 -2160 -2100 -2040 -1860 -1620 -1440 -1380 -1320 -1080 -1020 -960 -900 -840 -780 -540 -300 -60 180 420 660 1140 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2599 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 -690 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 PAD Name SEL=H SEL=L DMY33 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 DMY34 DMY35 DMY36 DMY37 DMY38 DMY39 DMY40 DMY41 DMY42 SEG72 SEG71 SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 DMY33 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 DMY34 DMY35 DMY36 DMY37 DMY38 DMY39 DMY40 DMY41 DMY42 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 X= µm Y= µm 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2599 2520 2460 2400 2340 2280 2220 2160 2100 2040 1980 1920 1860 1800 1740 1680 1620 1560 1500 1440 1380 1320 1260 1200 1140 1080 1020 960 900 840 780 -540 -480 -420 -360 -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420 480 540 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 Preliminary 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 PAD Name SEL=H SEL=L SEG48 SEG33 SEG34 SEG47 SEG35 SEG46 SEG36 SEG45 SEG44 SEG37 SEG43 SEG38 SEG42 SEG39 SEG41 SEG40 SEG40 SEG41 SEG39 SEG42 SEG38 SEG43 SEG37 SEG44 SEG36 SEG45 SEG35 SEG46 SEG34 SEG47 SEG33 SEG48 SEG32 SEG49 SEG31 SEG50 SEG30 SEG51 SEG29 SEG52 SEG28 SEG53 SEG27 SEG54 SEG26 SEG55 SEG25 SEG56 SEG24 SEG57 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 DMY43 DMY44 PAD No. SEG58 SEG59 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 DMY43 DMY44 X= µm Y= µm PAD No. 720 660 600 540 480 420 360 300 240 180 120 60 0 -60 -120 -180 -240 -300 -360 -420 -480 -540 -600 -660 -720 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 -780 -840 -900 -960 -1020 -1080 -1140 -1200 -1260 -1320 -1380 -1440 -1500 -1560 -1620 -1680 -1740 -1800 -1860 -1920 -1980 -2040 -2100 -2160 -2220 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 698 NJU6637 PAD Name SEL=H SEL=L DMY45 DMY46 DMY47 DMY48 DMY49 DMY50 DMY51 DMY52 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 DMY53 DMY45 DMY46 DMY47 DMY48 DMY49 DMY50 DMY51 DMY52 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 DMY53 X= µm Y= µm -2280 -2340 -2400 -2460 -2520 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 -2599 698 698 698 698 698 698 540 480 420 360 300 240 180 120 60 0 -60 -120 -180 -240 -300 -360 -420 -480 -540 Preliminary NJU6637 ■ BLOCK DIAGRAM OSC1 RESET Address Counter Timing Gen. Segment Driver SEL Character Generator ROM(CGROM) 10,200bits Latch Character Generator RAM(CGRAM) 8 x 5bits Cursor Blink Cont. SI Data Reg.(DR) CS I/O Buffer SCL Common Driver RS 80bit Display Data RAM (DDRAM) 48 x 8bits 24bit Shift Reg. Power on Reset Instruction Decoder(ID) Instruction Reg.(IR) OSC2 CR OSC VSS Parallel to Serial Convertor VDD V1 V2 V3 V4 V5 V5 80bit Shift Reg. COM1 to COM24 SEG1 to SEG80 Preliminary NJU6637 ■ TERMINAL DESCRIPTION PAD No. SYMBOL I/O 19-21 16-18 13-15 11 VDD VSS V5 OSC1 – 12 OSC2 O 25 RS I Oscillation Frequency Adjustment Terminals. Normally Open. (Oscillation C and R are Incorporated, Osc Freq.=145kHZ) Oscillation Frequency Adjustment Terminals. Normally Open. This terminal also operates as the clock frequency monitor. Resister selection signal Input "1":Data Register Shift clock input – I FUNCTION Power Source : VDD = +3V, GND : VSS = 0V LCD driving Power Source "0":Instruction Resister 26 SCL I 28 27 23 CS SI SEL I I I 52-59 159-174 60-67 77-148 24 COM1 – COM24 O Chip select signal input Data input terminal Segment driver location order select terminal "0": Mode A "1": Mode B LCD Common driving signal Terminals SEG1 – SEG80 O LCD segment driving signal Terminals RESET I 22 TEST I 1-9 22-51 68-76 149-158 175 DUMMY1 – DUMMY53 – Reset Terminal When the “L” level Input over than 1.2ms to this terminal, the system will be reset.(fOSC=145kHz) Maker Test Terminal This terminal should be connected to Vss or open. Dummy Terminal These terminals are electrically open. Preliminary NJU6637 ■ FUNCTIONAL DESCRIPTION (1)Description for each blocks (1-1)Register The NJU6637 incorporates two 8-bit registers, an Instruction Register (IR) and a Data Register (DR). The Register (IR) stores Instruction codes such as “Clear Display” and “Return Home”, and address data for Display Data RAM (DD RAM) and Character Generator RAM (CG RAM). The Register (DR) is a temporary storing register, the data in the Register (DR) is written into the DD RAM or CG RAM. The data in the Register (DR) written by the MPU is transferred from the Register automatically to the DD RAM or CG RAM by Internal operation. These two registers are selected by the selection signal RS. (1-2)Address counter (AC) The address Counter (AC) addresses the DD RAM and CG RAM. When the address setting instruction is written into the Register (IR), the address information is transferred from Register (IR) to the counter (AC). The selection of either the DD RAM or CG RAM is also determined by this instruction. After writing (or reading) the display data to (or from) the DD RAM or CG RAM, the counter (AC) increments (or decrements) “1” automatically. (1-3)Display Data RAM (DD RAM) The display data RAM (DD RAM) consisting of 48 x 8 bits stores up to 48-character display data represented in 8-bit code. The DD RAM address data set in the address Counter (AC) is represented in hexadecimal. AC ←Higher order bit AC5 AC4 AC6 AC3 Hexadecimal Lower order bit→ AC2 AC1 AC0 (Example) DD RAM address “ 08 ” 0 0 0 1 0 0 0 0 Hexadecimal 8 16-character 2-line Display st 1 line nd 2 line rd 3 line 1 00 10 20 2 01 11 21 3 02 12 22 4 03 13 23 5 04 14 24 6 05 15 25 7 06 16 26 8 07 17 27 9 08 18 28 10 09 19 29 11 0A 1A 2A 12 0B 1B 2B 13 0C 1C 2C 14 0D 1D 2D 15 0E 1E 2E 16 0F 1F 2F ←Display position ←DD RAMaddress(Hex.) The relation between DD RAM address and display position on the LCD shown below. [ Left Shift Display ] (00) ← (10) ← (20) ← 01 11 21 02 12 22 03 13 23 04 14 24 05 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A 2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F 00 10 20 04 14 24 05 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A 2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E [ Right Sift Display ] 0F 1F 2F 00 10 20 01 11 21 02 12 22 03 13 23 → (0F) → (1F) → (2F) Preliminary NJU6637 (1-4)Character Generator ROM(CG ROM) The Character Generator ROM (CG ROM) generates 5 x 8 dots character pattern represented in 8-bit character codes. The storage capacity is up to 255 kinds of 5 x 8 dots character pattern. The correspondence between character code and standard character pattern is shown in Table 2. User-defined character pattern ( Custom Font ) are also available by mask option. Table 2. CG ROM Character Pattern ( ROM version –02 ) Lower 4 bit (Hexadecimal) Upper 4 bit (Hexadecimal) Preliminary NJU6637 (1-5)Character Generator RAM The character generator RAM (CG RAM) stores any kinds of character pattern in 5 x 8 dots written by the user program to display user’s original character pattern. The CG RAM stores 1 kinds of character in 5 x 8 dots mode. To display user’s original character pattern stored in the CG RAM, the address data (00)H should be written to the DD RAM as shown in Table 2. Table 3. shows the correspondence among the character pattern, CG RAM address and data. Table 3. Correspondence of CG RAM address, DD RAM character code Character Code (DD RAM data) 7654 3210 ← → Upper bit Lower bit 0000 0000 CG RAM address 7654 ← 3 Upper bit 0 1 0 0 210 → Lower bit 0 and CG RAM character pattern (5 x 8 dots) Character pattern (CG RAM data) 43210 ← → Upperbit 000 001 010 011 100 101 110 111 Lowerbit 11110 10001 10001 11110 10100 10010 10001 00000 Character Pattern Example ← Cursor Position Notes: 1. Character code bits 0 and 1 correspond to the CG RAM address 3 and 4. 2. CG RAM address 0, 1 and 2 designate a character pattern line position. The 8th line is the cursor position and the display is performed by logical OR with cursor. Therefore, in case of the cursor display, the data of 8th line should be “0”. If there is “1” in the 8th line, the bit “1” is always displayed on the cursor position regardless of cursor existence. 3. Character pattern row position corresponding to the CG RAM data bits 0 to 4 are all shown above. 4. ”1” for CG RAM data corresponds to display On and “0” to display Off. (1-6)Timing Generator The timing generator generates a timing signals for the DD RAM, CG RAM, CG ROM and other internal circuit operation. RAM read timing for the display and internal operation timing for MPU access are separately generated, so that they may not interfere with each other. Therefore, when the data write to the DD RAM for example, there will be undesirable Influence, such as flickering, in areas other than the display area. (1-7) LCD Driver LCD driver consists of 24-common driver and 80-segment driver. The 80 bits of character pattern data are shifted in the shift-register and latched when the 40 bits shift performed completely. This latched data controls display driver to output LCD driving waveform. (1-8) Common Driver Assignment The scanning order can be assigned by mask option as shown as follows: PAD No. Pin name Ver. A Ver. B 174 COM1 COM1 COM24 167 COM8 COM8 COM17 COM Outputs Terminals 166 159 COM17 COM24 COM17 COM24 COM8 COM1 59 COM16 COM16 COM9 52 COM9 COM9 COM16 Preliminary NJU6637 (1-9) Cursor Blinking Control Circuit This circuits controls cursor On/Off and cursor position character blinks. The cursor or blinks appears in the digit position at the DD RAM address set in the address counter(AC). When the address counter is (08)H, a cursor position is shown as follows: AC6 0 AC st 1 line nd 2 line rd 3 line 1 00 10 20 2 01 11 21 3 02 12 22 4 03 13 23 AC5 0 5 04 14 24 AC4 0 6 05 15 25 7 06 16 26 AC3 1 8 07 17 27 AC2 0 9 08 18 28 AC1 0 10 09 19 29 11 0A 1A 2A AC0 0 12 0B 1B 2B 13 0C 1C 2C 14 0D 1D 2D 15 0E 1E 2E 16 0F 1F 2F ← Display Position ← DD RAM Address (Hexadecimal) Cursor Position Note) The cursor or blinks appears when the address counter (AC) selects the CG RAM. But the displayed cursor and blink are meaningless. If the AC stores the CG RAM address data, the cursor and blink are displayed in the meaningless position. (2)Power on Initialization by internal circuits (2-1) Initialization By internal Reset circuits The NJU6637 is initialized automatically by the internal power on initialization circuits when the power is turned on. In the internal power on initialization, following instructions are executed. During the internal power on initialization is kept 4ms after VDD = 2.4V. (fosc=145KHz) Initialization flow is shown below: Display On/Off Control D=0 C=0 B=0 :Display Off :Cursor Off :Cursor Blink Off Entry Mode Set I/D=1 S=0 :Increment by 1 :No Shift Clear Display Note) If the condition of power supply rise time described in the Electrical Characteristics is not satisfied, the internal Power on initialization Circuits will not operate and initialization will not be performed. In this case, the initialization by MPU software is required. (2-2) Initialization By Hardware The NJU6637 incorporates RESET terminal to initialize the all system. When the “L” level input over than 1.2ms to the RESET terminal, the reset sequence is executed. In this time, the initialization during 4ms after RESET terminal goes to “H”. • Operation timing Over 1.2ms External Reset Signal Initialization set time 4ms Preliminary NJU6637 (3)Instructions The NJU6637 incorporates two resisters, which are Instruction Register (IR) and a Data Register (DR). These two registers store control information temporarily to allow interface between NJU6637 and MPU or peripheral ICs operating different cycles. The operation of NJU6637 is determined by this control signal from MPU. The control information includes register selection signals (RS) and data bus signals (DB0 to DB7). Table 5. Shows each instruction and its operating time. Note) The execution time mentioned in Table 5. is based on fcp or fOSC=145kHz. If the oscillation frequency is changed, the execution time is also changed. INSTRUCTION Table 5. Table of Instruction CODE RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Maker Test 0 0 0 0 0 0 0 0 0 Clear Display 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ∗ 0 0 0 0 0 0 1 I/D S 0 0 0 0 0 1 D C B 0 0 0 0 1 ∗ ∗ 0 1 Return Home Entry Mode Set Display ON/OFF Control Cursor or Display Shift S/C R/L Set RAM Address Write Data to CG or DD RAM Explanation of Abbreviation *:Don't care 1 RAM address Write Data(DD RAM) ∗ ∗ ∗ DESCRIPTION All “0” code is using for maker testing. Display clear and sets DD RAM address 0 in AC. Sets DD RAM address 00H In AC and returns display being shifted to original position. DD RAM contents remain unchanged. Sets cursor move direction and species shift of display are performed In data write. I/D=1:Increment, I/D=D:Decrement, S=1:Accopanies display shift. Sets of display On/Off(D), cursor On/Off(C) and blink of cursor position character(B) Move cursor and shifts display without changing DD RAM contents. S/C=1 : Display shift S/C=0 : Cursor shift R/L=1 : Shift to right R/L=0 : Shift to the left Sets RAM address. After this instruction, the data is transferred to RAM. Writes data into CG or DD RAM. (CG RAM) DD RAM : Display data RAM, CG RAM : Character generator RAM ACG : CG RAM address, ADD : DD RAM address, Corresponds to cursor address AC : Address counter used for both DD and CG RAM EXEC TIME (fOSC=145kHz)* – 2ms 0µs 0µs 0µs 0µs 0µs 55µs Preliminary NJU6637 (3-1)Description of instruction a) Maker Test Code RS 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 0 DB2 0 DB1 0 DB0 0 All “0” code is using device testing mode ( only for maker ). b) Clear Display Code RS 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 0 DB2 0 DB1 0 DB0 1 Clear display instruction is executed when the code “1” is written into DB0. when this instruction is executed, the space code (20)H is written into every DD RAM address, the DD RAM address 0 is set into the address counter and entry mode is set an increment. If the st cursor or blink are displayed, they are returned to the left end of the 1 line on the LCD. The S of entry mode and CG RAM data does not change. Note: The character pattern for character code (20)H must be blank code in the user-defined character pattern( Custom font ). c) Return Home Code RS 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 0 DB2 0 DB1 1 DB0 ∗ ∗=Don’t Care Return home instruction is executed when the code “1” is written Into DB1. When this Instruction is executed, the DD RAM address 0 is set to address counter. Display is returned to the original position if shifted, the cursor or blink is returned to the left end of the LCD. If the cursor or blink are on the display, the DD RAM contents are not changed. d) Entry Mode Set Code RS 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 0 DB2 1 DB1 I/D DB0 S Entry mode set instruction which sets cursor moving direction and display shift On/Off, is executed when the code “1” is written into DB2 and the codes of (I/D) and (S) are written into DB1 (I/D) and DB0 (S) as shown below. (I/D) sets the address increment or decrement, and the (S) sets the entire display shift in the DD RAM writing. I/D 1 0 S 1 0 FUNCTION Address increment : The address of the DD RAM increment ( +1) when the write, and the cursor or blink moves to the right. Address decrement : The address of the DD or CG RAM decrement ( -1) when the write, and the cursor or blink move to the left. FUNCTION Entire display shift. The shift direction is determined by I/D: shift to the left at I/D=1 and shift to the right at the I/D=0. The shift is operated with only the character, so that it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DD RAM and writing into CG RAM. The display does not shifting Preliminary NJU6637 e) Display ON/OFF Control Code RS 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 1 DB2 D DB1 C DB0 B Display On/Off control instruction which controls the display On/Off, the cursor On/Off and the cursor position character blink, is executed when the code “1” is written into DB3 and the codes of (D), (C) and (B) are written into DB2(D), DB1(C) and DB0(B) as shown below. D 1 0 FUNCTION Display On. Display Off. In this mode, the display data remains in the DD RAM so that it is retrieved immediately on the display when the D change to 1. C 1 0 FUNCTION Cursor On. The cursor is displayed by 5 dots on the 8th line. Cursor Off. Even if the display data write, the I/D etc does not change. B 1 FUNCTION The cursor position character is blinking. Blinking rate is 600ms at fOSC=145kHz. The blink is displayed alternatively with all on (it means all black) and characters display. The cursor and the blink can be displayed simultaneously. The character does not blink. 0 !"""! "!!!" "!!!" "!!!" """"" "!!!" "!!!" """"" !"""! "!!!" "!!!" "!!!" """"" "!!!" "!!!" !!!!! Character Font 5 x 7dots (1) Cursor display example """"" """"" """"" """"" """"" """"" """"" """"" Alternating display (2) Blink display example f) Cursor Display Shift Code RS 0 DB7 0 DB6 0 DB5 0 DB4 1 DB3 S/C DB2 R/L DB1 ∗ DB0 ∗ ∗=Don’t Care The Cursor/Display shift instruction shifts the cursor position or display the right or left without writing reading display data. This function is used to correct or search the display. The cursor moves to the 2nd line when it passes the 16th digit of the 1st line. Notice that the every 1st to 3rd line displays shift at the same time. When the displayed data are shifted repeatedly, each line moves only horizontally. The 2nd and 3rd line display does not shift into the 1st and 2nd line. The contents of address counter (AC) is not changed by operation of display shift only. This instruction is executed when the code “1” is written into DB4 and the codes of (S/C) and (R/L) are written into DB3 (S/C) and DB2(R/L) as shown below. S/C R/L FUNCTION 0 0 Shifts the cursor position to the left ((AC) is decrement by 1) 0 1 Shifts the cursor position to the right ((AC) is incremented by 1) 1 0 Shifts the entire display to the left and the cursor follows it. 1 1 Shifts the entire display to the right and the cursor follows it. Preliminary NJU6637 g) Set RAM Address Code RS 0 DB7 1 DB6 DB5 DB4 A A A ←Higher order bit DB3 A DB2 DB1 DB0 A A A Lower order bit→ The RAM address set instruction is executed when the code "1" is written into DB7 and the address is written into DB6 to DB0 as shown above. The address data (DB6 to DB0) is written into the address counter (AC) by this instruction. After this instruction execution, the data writing is performed into the addressed RAM. The RAM includes DD RAM and CG RAM, and these RAMs are shared by address as shown below. DD RAM address DD RAM 1-Line : (00)H – (0F)H DD RAM 2-Line : (10)H – (1F)H DD RAM 2-Line : (20)H – (2F)H CG RAM 1character : (40)H – (47)H h) Write Data to CG or DD RAM • Write data to DD RAM Code • RS 1 DB7 DB6 DB5 D D D ←Higher order bit DB4 D DB3 D DB2 DB1 DB0 D D D Lower order bit→ DB7 DB6 DB5 ∗ ∗ ∗ ←Higher order bit DB4 D DB3 D DB2 DB1 DB0 D D D Lower order bit→ Write data to CG RAM Code RS 1 ∗=Don’t Care Write Data to CG RAM or DD RAM instruction is executed when the code ”1” is written into (RS) and code “0” is written into (R/W). By the execution of this instruction, the binary 5-bit data “DDDDD” are written into the CG RAM, and the binary 8-bit data “DDDDDDDD” are written into the DD RAM. The selection of the CG RAM or DD RAM is determined by the previous instruction. After this instruction execution, the address increment(+1) or decrement(-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode set. Preliminary NJU6637 (3-2) Initialization by instruction If the power supply conditions for the correct operation of the internal reset circuits are not method, the NJU6637 must be initialized by the instruction. Initialized. No display appears. Power On Wait more than 4 ms after VDD rises to 2.4V Display Off Display Clear Entry Mode Set RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 Write data to the CG or DD RAM and set the instruction. 0 0 0 0 0 0 1 0 0 0 0 1 Example for set address increment and cursor right shift when the data write to the DD RAM. Preliminary NJU6637 (4) Bleeder Resistance Each LCD driving voltage ( V1, V2, V3, V4 ) is generated by the high impedance bleeder resistance buffered by voltage follower OP-AMP to get a enough display characteristics with low operating current. The bleeder resistance is set 1/6.3 bias suitable for 1/24 duty ratio and 5MΩ resistance in total. The capacitor connected between V5 and VDD is needed for stabilizing V5. The determination of the each capacitance of C1, C2 and C3 generating for LCD operating voltage, is required to operate with the LCD panel actually. The capacitance for the typical application is shown below : Power Supply LCD Driving Voltage vs. Duty Ratio Duty Ratio 1/24 Bias V5 1/6.3 VDD-VLCD ∗ The VLCD is maximum swing of LCD waveform. NJU6637 VDD 952kΩ V1 952kΩ V2 2192kΩ V3 952kΩ V4 952kΩ V5 V5 LCD Driving Voltage example VLCD Preliminary NJU6637 (5) Relation between oscillation frequency and LCD frame frequency. As the NJU6637 incorporate oscillation capacitor and resistor for CR oscillation, 145kHz oscillation is available without any external components. The LCD frame frequency example mentioned below is based on 145kHz oscillation.(1clock =6.875µs) • 1/24 duty 96 clock 1 2 3 4 •••••• 24 1 2 3 4 •••••• 24 1 2 3 VLCD V1 V2 V4 VSS 1 frame 1 frame 1 frame = 6.875 (µs) x 96 x 24 = 15.84 (ms) Frame frequency = 1 / 15.84 (ms) = 63.1 (Hz) (6) Interface with MPU Serial interface circuit is activated when the chip select terminal (CS) goes to "L" level. The data input is MSB first like as the order of DB7, DB6 ---- DB0. The input data is entered into the shift register synchronized at the rise edge of the serial clock SCL. The shift register converted to parallel data at the CS rise edge input. In case of entering over than 8-bit data, valid data is last 8-bit data. The time chart for the serial interface is shown below. Note : The level ("L" or "H") of RS terminals should be set before CS terminal goes to "L" level. RS CS SCL SI DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Preliminary NJU6637 ■ ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage (1) Supply Voltage (2) Input Voltage Operating Temperature Storage Temperature (Ta=25°C) SYMBOL VDD VLCD VIN Topr Tstg RATINGS UNIT -0.3 – +7.0 VDD-7.0 – VDD+0.3 -0.3 – VDD+0.3 V V V °C °C -30 – +80 -55 – +125 NOTE V5 Terminal Note 1.) If the LSI is used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability. Note 2.) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the LSI. Note 3.) All voltage values are specified as VSS =0V Note 4.) The relation VDD>V5≥VSS, VSS=0V must be maintained. ■ ELECTRICAL CHARACTERISTICS PARAMETER Operating Volt. Input Voltage 1 Input Voltage 2 Output Voltage Driver On-resist.(COM) Driver On-resist.(SEG) Driver On-resist.(COM) Driver On-resist.(SEG) Input Leakage Current SYMBOL SYMBOL MIN VDD VDD 2.4 All Input / Output Terminals except 0.8 VDD VIH1 OSC1 Terminals VSS VIL1 VIH2 VDD-0.5 OSC1 Terminal VSS VIL2 VOH -IOH=0.205mA, VDD=3V 2.0 IOL=1.6mA, VDD=3V – VOL MAX 3.6 VDD 0.2 VDD VDD 0.5 – 0.5 UNIT V V V V V V V ±Id=1µA, Vo= VDD,V5 – – 20 kΩ RSEG1 ±Id=1µA, Vo= VDD,V5 – – 30 kΩ RCOM2 ±Id=1µA, Vo= V1,V4 – – 40 kΩ RSEG2 ±Id=1µA, Vo= V2,V3 – – 50 kΩ VIN=0 to VDD -1 – 1 µA ILI Operating Current IDD2 Oscillation Frequency LCD Driving Voltage V5 Terminal Current TYP 3.0 – – – – – – RCOM1 IDD1 LCD Driving Voltage (VDD=2.4 – 3.6V, VSS=0V, Ta=25°C) V1 V2 V3 V4 VDD=3V fOSC=Internal Osc. V5=2V,during display VDD=3V fOSC=Internal Osc. during access, TCYCE=5us VDD=3V, Ta=25°C, V5=2V fOSC VDD=3V, Ta=25°C VLCD VDD=3V, V5 Terminal I5 VDD=3V, V5=2V T.B.D. µA T.B.D. µA NOTE 5 6 7 2.08 1.28 -0.54 -1.34 2.21 1.41 -0.41 -1.21 2.34 1.54 -0.28 -1.08 V 110 145 180 kHz VDD-3 – VDD-6 V 200 µA Note 5.) Apply to the OSC2 Terminals. Note 6.) Except pull-down resistance current. (All input terminal except OSC terminal) Note 7.) Except Input / Output current but including the current flow on bleeder resistance. If the input level is medium, current consumption will increase due to the penetration current. Therefore, the input level must be fixed to “H” or “L”. Preliminary NJU6637 ■ Bus timing characteristics • (VDD=2.4 – 3.6V, VSS=0V, Ta=25°C) Serial Interface Sequence PARAMETER Serial clock cycle time “High” level Serial clock width Low” level Serial clock rise and fall Time Chip select pulse width Chip select set up time Chip select hold time Chip Select rise and fall Time Address set up time Address hold time Serial input data set up time Serial input data hold time SYMBOL tCYCE tSCH tSCL tSCr, tSCf PW CS tCSU tCH tCSr, tCSf tAS tAH tSISU tSIH MIN 1 300 700 – 500 200 200 – 200 200 200 200 MAX – – – 20 – – – 20 – – – – UNIT µs ns ns ns ns ns ns ns ns ns ns ns CONDITION Fig.1 Serial Interface timing RS VIH VIL tAS CS tCYCE tCSU tCH VIH VIL tAH VIH VIL PW CS tSCH tSCL SCL tSISU tSIH VIH VIL SI Fig.1 • External clock input PARAMETER External clock operation Frequency External clock Duty External clock rise Time External clock fall Time SYMBOL fCP Duty tCPr tCPf MIN 110 45 – – MAX 180 55 0.2 0.2 UNIT KHz % µs µs CONDITION Fig.2 Tfcp Duty= OSC1 Tk Tk+Ti 0.5VDD Tfcp=1/fcp Tk Ti Fig.2 Preliminary • NJU6637 The Input Condition when using the Hardware Reset Circuit PARAMETER RESET input ”Low” level width SYMBOL CONDITION MIN TYP MAX UNIT tRSL fOSC =145kHz 1.2 – – ms TYP – – MAX 5 – Input timing VRSL RESET VIL • Power supply condition when using the internal initialization circuit PARAMETER Power supply rise time Power supply OFF time SYMBOL trDD tOFF CONDITION – – 3V 2.4V 0.2V 0.2V VDD trDD 0.1ms<trDD<10ms MIN 0.1 1 UNIT ms ms *tOFF specifies the power OFF time in a short period OFF or cyclical ON/OFF tOFF tOFF>1ms Note.) Since the internal initialization circuits will not operate normally unless the above conditions are met, in such a case initialize by instruction(Refer to initialization by the instruction). Preliminary NJU6637 ■ LCD DRIVING WAVE FROM NJU6637 1/24 Duty driving 1 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 2 3 4 •••••• 22 23 24 1 2 3 4 •••••• 22 23 24 COM1 VDD V1 V2 V3 V4 V5 COM2 VDD V1 V2 V3 V4 V5 COM3 VDD V1 V2 V3 V4 V5 SEG1 SEG5 SEG4 SEG3 SEG2 SEG1 SEG2 COM1-SEG1 COM1-SEG2 VDD V1 V2 V3 V4 V5 VDD V1 V2 V3 V4 V5 V5 V4 V3 V2 V1 VDD -V1 -V2 -V3 -V4 -V5 V5 V4 V3 V2 V1 VDD -V1 -V2 -V3 -V4 -V5 Preliminary NJU6637 ■ APPLICATION CIRCUITS LCD Panel (16-character 3-line) BOTTOM VIEW 16-character 3-line Display Example (The terminal description is “Mode A”.) COM1 COM24 SEG80 SEG1 COM16 COM9 NJU6637A Preliminary NJU6637 LCD Panel (16-character 3-line) 16-character 3-line Display Example (The terminal description is “Mode B”.) COM9 TOP VIEW COM16 SEG80 SEG1 COM24 COM1 NJU6637A MEMO [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.