NJRC NJU6682

NJU6682
PRELIMINARY
160-common x 132-segment
DOT MATRIX LCD DRIVER FOR 4 GRAY SCALE
■GENERAL DESCRIPTION
The NJU6682 is a bit map LCD driver to display graphics or characters.
It contains 84,480 bits display data RAM, microprocessor interface circuits,
instruction decoder, and 160-common and 132-segment drivers.
The bit image data is transferred to the internal display data RAM by
serial interface or 8-bit/16-bit parallel interface.
The NJU6682 features 4-gray scale function which creates 4 types gray
scale (for example : white/light gray/dark gray/black) or black & white with
displays 160 x 132 dots graphics or 8-caracter 10line by 16 x 16 dots
characters.
It oscillates by built-in OSC circuit without any external components.
Furthermore, the NJU6682 features Partial Display Function which
creates up to 2 blocks of active display area and optimizes duty cycle ratio.
This function sets optimum boosted voltage by the combination with both
of programmable voltage booster circuit and electrical variable resister. As
result, it reduces the operating current.
The operating voltage from 2.4V to 3.3V and low operating current are
useful for small size battery operating items.
■PACKAGE OUTLINE
NJU6682CH
■FEATURES
●Direct Correspondence between Display Data RAM and LCD Pixel
●Display Data RAM - 84,480 bits ;( 160-Com x 132-Seg) x 2-area ) x 2bit
….2 times over than display size
●Display Method – Monochrome 4-Gray Scale / Black & White
●Partial Display Function
( 2 blocks of active display area and automatic duty cycle ratio selection )
●Variable RAM Mapping
– The display screen can be composed from the RAM area in a maximum of 8 blocks not to continue.
●Easy Vertical Scroll by the variable start line address and over size display data RAM
(This function doesn’t work in Variable RAM Mapping mode )
●LCD drivers – 160-common and 132-segment
●Direct 8-bit / 16-bit Microprocessor interface for both of 68 type and 80 type MPU
●Serial Interface
●Programmable Bias selection ; 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14 bias
●Common Driver Order Assignment by mask option
Version
C0 to C159( Pin Name )
NJU6682A
COM0 to COM159
NJU6682B
COM159 to COM0
●Useful Instruction Set
Display Data Read/Write, Display ON/OFF, Z-Address Set, X-Address Set, Y-Address Set, Status Read, Normal or
Inverse ON/OFF, Static Drive ON/OFF, Partial Display, n-Line Inverse, EVR Resister Set, Variable RAM Mapping
Mode, Gray Scale Level Select, Bias Select, Voltage Converter Multiple Select ( 7-times maximum ), Read Modify
Write, Reset ,Internal Power Supply, Driver Outputs ON/OFF, Power Save, ADC Select, Display Mode Select, 8-bit /
16-bit Buss Select, etc.
●Power Supply Circuit for LCD; Programmable Booster Circuits( 7-time maximum ), Regulator, Voltage Follower x 4
●Precision Electrical Variable Resistance
●Low Power Consumption
T.B.D ( typ. )
●Operating Voltage
2.4 to 3.3 V
●LCD Driving Voltage
6.0 to 18.0V
●Package Outline
Bumped Chip / TCP
●C-MOS Technology
MAY 2000 Ver-1.3
NJU6682
■PAD LOCATION
C80
C81
C158
C159
S131
S130
S81
S80
S79
S78
C79
C78
Y
X
S1
S0
C1
C0
VDD
V1
V2
V3
V4
V5
VR
VDD
C1+
C1+
C2
C2C3C4C5C6VOUT
VSS
D15
D14
D13
D12
D11
D10
D9
D8
D7(SI)
D6(SCL)
D5
D4
D3
D2
D1
D0
RD
WR
A0
CS
OSC2
OSC1
VSS
RES
SEL68
PS0
PS1
DUMMY2
DUMMY1
DUMMY0
VDD
Chip Center
Chip Size
Chip Thickness
Bump Size
Pad Pitch
Bump Heght
Bump Material
:X=0um,Y=0um
:X=8.27m,Y=5.67mm
:675um ± 30um
:45um x 83um
:60um (min)
:15um (typ)
:Au
NJU6682
■ PAD Cordinates
PAD No. Terminal
1
VDD
2
DUMMY0
3
DUMMY1
4
DUMMY2
5
PS1
6
PS0
7
SEL68
8
RES
9
VSS
10
OSC1
11
OSC2
12
CS
13
A0
14
WR
15
RD
16
D0
17
D1
18
D2
19
D3
20
D4
21
D5
22
D6(SCL)
23
D7(SI)
24
D8
25
D9
26
D10
27
D11
28
D12
29
D13
30
D14
31
D15
32
VSS
33
VOUT
34
C6
35
C5
36
C4
37
C3
38
C2
+
39
C2
40
C1
+
41
C1
42
VDD
43
VR
44
V5
45
V4
46
V3
47
V2
48
V1
49
VDD
50
C0
X(um)
-3933
-3863
-3793
-3723
-3562
-3325
-3105
-2869
-2712
-2555
-2319
-2098
-1862
-1641
-1405
-1168
-948
-727
-507
-287
-66
153
374
594
814
1035
1255
1476
1696
1916
2137
2298
2368
2464
2613
2683
2832
2902
3050
3120
3269
3339
3519
3589
3659
3729
3799
3869
3939
3975
Y(um)
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2675
-2186
Chip Size 8.27x5.67mm(Chip Center X=0um, Y=0um)
PAD No. Terminal
X(um)
Y(um)
51
C1
3975
-2126
52
C2
3975
-2066
53
C3
3975
-2006
54
C4
3975
-1946
55
C5
3975
-1886
56
C6
3975
-1826
57
C7
3975
-1766
58
C8
3975
-1706
59
C9
3975
-1646
60
C10
3975
-1586
61
C11
3975
-1526
62
C12
3975
-1466
63
C13
3975
-1406
64
C14
3975
-1346
65
C15
3975
-1286
66
C16
3975
-1226
67
C17
3975
-1166
68
C18
3975
-1106
69
C19
3975
-1046
70
C20
3975
-986
71
C21
3975
-926
72
C22
3975
-866
73
C23
3975
-806
74
C24
3975
-746
75
C25
3975
-686
76
C26
3975
-626
77
C27
3975
-566
78
C28
3975
-506
79
C29
3975
-446
80
C30
3975
-386
81
C31
3975
-326
82
C32
3975
-266
83
C33
3975
-206
84
C34
3975
-146
85
C35
3975
-86
86
C36
3975
-26
87
C37
3975
34
88
C38
3975
94
89
C39
3975
154
90
C40
3975
214
91
C41
3975
274
92
C42
3975
334
93
C43
3975
394
94
C44
3975
454
95
C45
3975
514
96
C46
3975
574
97
C47
3975
634
98
C48
3975
694
99
C49
3975
754
100
C50
3975
814
NJU6682
PAD No.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Terminal
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66
C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88
C89
C90
C91
C92
C93
C94
C95
C96
C97
C98
C99
C100
X(um)
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3975
3930
3870
3810
3750
3690
3630
3570
3510
3450
3390
3330
3270
3210
3150
3090
3030
2970
2910
2850
2790
2730
Y(um)
874
934
994
1054
1114
1174
1234
1294
1354
1414
1474
1534
1594
1654
1714
1774
1834
1894
1954
2014
2074
2134
2194
2254
2314
2374
2434
2494
2554
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
PAD No.
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Terminal
C101
C102
C103
C104
C105
C106
C107
C108
C109
C110
C111
C112
C113
C114
C115
C116
C117
C118
C119
C120
C121
C122
C123
C124
C125
C126
C127
C128
C129
C130
C131
C132
C133
C134
C135
C136
C137
C138
C139
C140
C141
C142
C143
C144
C145
C146
C147
C148
C149
C150
X(um)
2670
2610
2550
2490
2430
2370
2310
2250
2190
2130
2070
2010
1950
1890
1830
1770
1710
1650
1590
1530
1470
1410
1350
1290
1230
1170
1110
1050
990
930
870
810
750
690
630
570
510
450
390
330
270
210
150
90
30
-30
-90
-150
-210
-270
Y(um)
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
NJU6682
PAD No.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
Terminal
C151
C152
C153
C154
C155
C156
C157
C158
C159
S131
S130
S129
S128
S127
S126
S125
S124
S123
S122
S121
S120
S119
S118
S117
S116
S115
S114
S113
S112
S111
S110
S109
S108
S107
S106
S105
S104
S103
S102
S101
S100
S99
S98
S97
S96
S95
S94
S93
S92
S91
X(um)
-330
-390
-450
-510
-570
-630
-690
-750
-810
-870
-930
-990
-1050
-1110
-1170
-1230
-1290
-1350
-1410
-1470
-1530
-1590
-1650
-1710
-1770
-1830
-1890
-1950
-2010
-2070
-2130
-2190
-2250
-2310
-2370
-2430
-2490
-2550
-2610
-2670
-2730
-2790
-2850
-2910
-2970
-3030
-3090
-3150
-3210
-3270
Y(um)
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
PAD No.
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Terminal
S90
S89
S88
S87
S86
S85
S84
S83
S82
S81
S80
S79
S78
S77
S76
S75
S74
S73
S72
S71
S70
S69
S68
S67
S66
S65
S64
S63
S62
S61
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S42
S41
X(um)
-3330
-3390
-3450
-3510
-3570
-3630
-3690
-3750
-3810
-3870
-3930
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
Y(um)
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2675
2517
2457
2397
2337
2277
2217
2157
2097
2037
1977
1917
1857
1797
1737
1677
1617
1557
1497
1437
1377
1317
1257
1197
1137
1077
1017
957
897
837
777
717
657
597
537
477
417
357
297
237
NJU6682
PAD No.
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
Terminal
S40
S39
S38
S37
S36
S35
S34
S33
S32
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0
X(um)
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
-3975
Y(um)
177
117
57
-2
-62
-122
-182
-242
-302
-362
-422
-482
-542
-602
-662
-722
-782
-842
-902
-962
-1022
-1082
-1142
-1202
-1262
-1322
-1382
-1442
-1502
-1562
-1622
-1682
-1742
-1802
-1862
-1922
-1982
-2042
-2102
-2162
-2222
NJU6682
■BLOCK DIAGRAM
S0
S131 C0
C159
Vss
Vdd
SEG
Driver
V1toV5
COM
Driver
5
C1+
C1-
Y Address Resister
VR
132 x 2 x 160 x 2
FRC/PWM
Controler
Display Data RAM
Z Register
C6-
Display Data Latch
Z Counter
C5-
132 x 2
Z Address Decoder
C4-
Gray Scale/Black & White Control
Y Address Decoder
C3-
Output Assignment Resister
C2-
132
Voltage Generator
C2+
Common
Timing
Generator
Shift
Register
I/O Buffer
X Address Decoder
X Address Counter
6bit
X Address Resister
6bit
Display
Timing
Generator
OSC
I/O Buffer
Multiplexer
Status
Instruction
Decoder
BF
Bus Holder
Internal Bus
MPU Interface
Reset
RES
CS
A0
RD
WR SEL68 P/S0 P/S1
D0toD5 D8toD15
D6(SCL)
D7(SI)
OSC1
OSC2
NJU6682
■TERMINAL DESCRIPTION
No.
Symbol
2 to 4
DUMMY
1,42,49
9,32
VDD
VSS
I/O
Power
GND
Function
Dummy Terminals.
These terminals are insulated.
2.4V to 3.3V
GND
LCD Driving Voltage Supplying Terminal. When the internal voltage booster is not
used, supply each level of LCD driving voltage from outside with following relation.
VDD≥V1≥V2≥V3≥V4≥V5
When the internal power supply is used, the internal circuits generate and supply
following LCD bias voltage from V1 to V4 terminals.
48
47
46
45
44
V1
V2
V3
V4
V5
Power
41
40
39
38
37
36
35
34
C1+
C1C2+
C2C3C4C5C6-
O
33
VOUT
O
43
VR
I
16
to
23
(23)
(22)
D0
to
D7
(SI)
(SCL)
Bias
1/4Bias
1/5Bias
1/6Bias
1/7Bias
1/8Bias
1/9Bias
1/10Bias
1/11Bias
1/12Bias
1/13Bias
1/14Bias
V1
V5+3/4Vlcd
V5+4/5Vlcd
V5+5/6Vlcd
V5+6/7Vlcd
V5+7/8Vlcd
V5+8/9Vlcd
V5+9/10Vlcd
V5+10/11Vlcd
V5+11/12Vlcd
V5+12/13Vlcd
V5+13/14Vlcd
V2
V5+2/4Vlcd
V5+3/5Vlcd
V5+4/6Vlcd
V5+5/7Vlcd
V5+6/8Vlcd
V5+7/9Vlcd
V5+8/10Vlcd
V5+9/11Vlcd
V5+10/12Vlcd
V5+11/13Vlcd
V5+12/14Vlcd
V3
V5+2/4Vlcd
V5+2/5Vlcd
V5+2/6Vlcd
V5+2/7Vlcd
V5+2/8Vlcd
V5+2/9Vlcd
V5+2/10Vlcd
V5+2/11Vlcd
V5+2/12Vlcd
V5+2/13Vlcd
V5+2/14Vlcd
V4
V5+1/4Vlcd
V5+1/5Vlcd
V5+1/6Vlcd
V5+1/7Vlcd
V5+1/8Vlcd
V5+1/9Vlcd
V5+1/10Vlcd
V5+1/11Vlcd
V5+1/12Vlcd
V5+1/13Vlcd
V5+1/14Vlcd
(Vlcd=Vdd-V5)
Step up capacitor connecting terminals.
Voltage booster circuit ( adjustable with 2 to 7 times )
Step up voltage output terminal. Connect the step up capacitor between this terminal
and VSS.
Voltage adjust terminal. V5 level is adjusted by external bleeder resistance connecting
between VDD and V5 terminal.
( P/S="H" )In Pararel Interface Mode
•8-bit bus mode*1: I/O terminals for 8-bit bus.
•16-bit bus mode*1: I/O terminals for the 8-bits of lower ranks of 16-bit bus.
1
* To set these 8-bit / 16-bit mode, use Instruction ” 8-bit / 16-bit Bus
Select ”.
I/O
( P/S="L" )In Serial Interface Mode
•D7: Input terminal for serial data ( SI ).
•D6: Input terminal for serial data clock ( SCL ).
When select these mode, D0 to D5 will be Hi-Z status.
( CS=”H” ) D0 to D7 shown Hi-Z.
NJU6682
No.
24
to
30
Symbol
D8
to
D15
I/O
I/O
Function
8-bit Bus Mode & Serial Mode
•Output terminal with Hi-Z status.
16-bit Bus Mode
•I/O terminals for the upper 8-bits of 16-bit bus.
Normaly, connect to the address bus of MPU. The data on the D0 to D7 is
distinguished as Display Data or Instruction by status of A0.
PS1 terminal
PS0 terminal
Ao terminal
Distinction

H
Display Data
H
13
A0
I
H
L
Instruction
H
Display Data
L
Instruction

The 17th data of serial
data is recognized as A0.
L
L
 : H or L
8
RES
I
Reset terminal. When the RES terminal goes to “L”, the initialization is performed.
Reset operation is executing during “L” state of RES.
12
CS
I
Chip serect terminal. Data Input/Output are available during CS=”L”.
RD
I
< In case of 80 type MPU ( PS1=”H”, SEL68=”L” ) >
RD signal of 80 type MPU input terminal. Active “L”.
During this signal is “L”, D0 to D7 terminals are output.
(E)
I
< In case of 68 type MPU ( PS1=”H”, SEL68=”H” ) >
Enable signal of 68 type MPU input terminal. Active “H”.
I
< In case of 80 type MPU ( PS1=”H”, SEL68=”L” ) >
Connect to the 80 type MPU WR signal. Active “L”.
The data on the data bus input syncronizeing the rise edge of this terminal.
15
WR
< In case of 68 type MPU ( PS1=”H”, SEL68=”H” ) >
The read / Write control signal of 68 type MPU input terminal.
14
(R/W)
I
R/W
State
H
Read
L
Write
MPU interface type selection terminal.
7
SEL68
I
SEL68
State
H
68 type
L
80 type
Serial or parallel type interface selection terminal.
6
5
10
11
PS0
PS1
OSC1
OSC2
PS1
PS0
Interface
Chip
Select
Data/
Command
Data
Read/
Write
Serial
Clock
“H”
-
Parallel
CS
A0
RD WR
Write
Only
-
“H”
Serial
4-wire
CS
A0
SI(D7)
Write
Only
SCL
(D6)
“L”
Serial
3-wire
CS
The 17th data of serial
data is recognized as A0.
SI(D7)
Write
Only
SCL
(D6)
I
“L”
I/O
•In case of serial interface ( PS1=0 ), RD and WR must be fixed to “H” or “L”,
and D0 to D5 will be Hi-Z.
System clock input terminal for Maker testing. ( This terminal should be Open )
For external clock operation, the clock should be input to OSC1 terminal.
NJU6682
No
Symbol
50
C0
to
to
209
C159
I/O
O
341
S0
to
to
210
S131
Function
LCD driving signal output terminal.
•Common output terminal :C0 to C159
•Segment output terminal :S0 to S131
•Segment output terminal
The following output voltage are selected by the combination of
FR and data in the RAM.
Alternating
Sn OutPut Voltage
RAM Data
Signal
Disp. Positive
Disp. Negative
H
VDD
V2
H
L
V5
V3
H
V2
VDD
L
L
V3
V5
•Common output terminal
The following output voltage are selected by the combination of FR
and status of common.
Scan Data
H
L
Alternating
Signal
H
L
H
L
COn Output Voltage
V5
VDD
V1
V4
NJU6682
Functional Description
(1)Description for each blocks
1-1) Busy Flag (BF)
As for NJU6682, in case of the inner operation, busy flag (BF) doesn't accept an instruction except of "1". In the
status reed instruction, a busy flag is output by the D7 terminal. If cycle time (tcyc) is secured, to check this flag in
front of the instruction isn't necessary and the throughput of the CPU can be substantially improved.
1-2) X-Address Counter
The X-address counter is the 6 bit presettable counter which gives an address for the row of the display data RAM
as shown in figure 1 and is done in +1 increment by the execution of the display data read / write instruction. But,
when the X-address counter reaches the maximum of the exist address, the count locks by the X-address counter.
With to set X-address once again, as for the count lock of cancellation again this counter is independent with
Y-address register.
By the address inverse instruction(ADC), it is possible for X-address decoder to reverse correspondence relation
between X-address and segment output of display data RAM.
1-3)Z-Address counter
The Y-address counter generates an address to the display RAM direction of the line, it is reset when the inner FR
signal switching timing and count up synchronizes with common cycle of NJU6682.
1-4)Y-Address Register
Y-address register is which gives an address to the display data RAM direction of the line as shown in figure 1.
When replacing Y-address from the CPU and accessing to them, it does by the instruction of the set of Y-address.
1-5)Z-Address Register
Z-address register can be generally used for the scrolling of a screen, in addition to the display with the register
which sets the low address of the data RAM which corresponds to the display line ( being the best line generally ) of
COM0. It sets a display beginning line by setting the display beginning address of 9 bits in this register by the
instruction of the set of Z-address.
1-6)Display data RAM
Display data RAM is the bit map RAM which stores the data for the display which corresponds to the LCD pixel
and is composed of 84,480 bits. Each bit of the display data RAM corresponds to 2:1 in case of gray scale display to
each pixel of LCD and in case of Black and White display, it corresponds to 1:1. The relation between the display
data and the LCD in case of gray scale display is as follows.
The relation between Display data and LCD in Gray Scale Display
The Display RAM data : "00" = Gray Scale Level 0 ( setting by the gray scale level select )
The Display RAM data : "01" = Gray Scale Level 1 (
“
)
The Display RAM data : "10" = Gray Scale Level 2 (
“
)
The Display RAM data : "11" = Gray Scale Level 3 (
“
)
The relation between Display data and LCD in Black and White Display
In Positive Display : "1"=Turn-On Display,"0" =Turn-Off Display
In Negative Display: "1"=Turn-Off Display,"0" =Turn-On Display
When the Display method chooses 16 bit access by the gray scale display, because RAM area of X-address = 16
become 8 bits, lower 8bit (D7-D0) is ignored ( Figure 1-1 ). When the display method chooses 16 bit access by the
Black and White display, as for RAM area of X-address = 8 (Layer0) or 40 (Layer1) becomes 4-bits, lower 12 bit
(D11-D0) is ignored. The bus with in access to the Display Data RAM is 8-bit access an d 16-bit access with the 8-bit
/ 16-bit Bus Select instruction. The access can be chosen.
Fig.1-1
131
130
129
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D15
D14
D13
D12
D11
D10
D9
D8
0FH
(000000)
128
127
0FH
(001111)
126
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
ADC=0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
00H
(000000)
125
124
7
D8
D9
D10
D11
D12
D13
D14
D15
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
ADC=1
X Address
10H
(010000)
6
5
4
3
2
1
0
Output
Sn
NJU6682
Correspondence with Display Data RAM Address ( in gray scale mode)
10H
(010000)
0
(000000)
Y
Address
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
138
139
13A
13B
13C
13D
13E
13F
0H
(000000)
(101000)
28H
Layer 0
Fig.1-1
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D15
D14
D13
D12
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D15
D14
D13
D12
8H
20H
(100000)
27H
(100111)
124
125
126
127
128
129
130
131
ADC=0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
(001000)
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
7H
(000111)
D12
D13
D14
D15
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
8H
7H
(000111)
0
1
2
3
4
5
6
7
(001000)
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D12
D13
D14
D15
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
ADC=1
X Address
0H
(000000)
124
125
126
127
128
129
130
131
0
1
2
3
4
5
6
7
Output
Sn
NJU6682
Correspondence with Display Data RAM Address ( in black & white mode)
27H
(100111)
(101000)
28H
20H
(100000)
Y
address
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
Layer 1
138
139
13A
13B
13C
13D
13E
13F
NJU6682
1-7)Output Assignment Register
This circuit can choose the direction of the scan of the common output.
Table1
Common Output Terminal
PAD No.
50
Terminal
C0
Name
Ver. A
COM0
Ver. B
COM159
209
C159
COM159
COM0
•Able to be changed with the mask option of it by the choice (version A or B) to the common scan direction.
1-8)Reset Circuit
This reset circuit does following initialization when the RES input becomes “L” level.
•The initialization condition (The default setting)
1.It sets a display method in the 4 Gray Scale Display Mode.
2.Display Off
3.Display Positive
4.ADC select ; Positive
5.Read Modify Write
6.Voltage Booster off, Voltage Regulator off, Voltage follower off
7.Static Drive off
8.Driver output off
9.Clear the register data of serial interface
10.Set the X-address counter to (00)h
11.Set the Y-Address register to (00)h
12.Set the Z-Address at (00)h
13.The continuous RAM address(Variable RAM Mapping Mode)
14.Set the EVR register to (FF)h
15.Set the Duty 1/160 (Whole Display On)
16.Bias select D3,2,1,0="1,0,1,0" (1/14 Bias)
17.Voltage Booster Select D2,1,0,="1,0,1" ((7 times)
18.Set n-line inverting register to (0)h
19.Set to 8 Bit bus interface mode
To be in " the MPU interface ( the reference example ) ", the RES terminal make connect with the reset terminal of
the MPU and does at the same time as a MPU is initialized. The reset signal must put "L" pulse above minimum 10us
to be in the clause of " the DC characteristic ". The RES signal becomes an operation condition generally after 1us
from the rise-up edge.
When not using a built-in LCD power supply circuit in NJU6682, in case of the outside liquid crystal power supply
turning on, it is necessary to be RES="L". It clears each register by RES="L" and it is set in the above initialization
condition but it doesn't have an influence about the oscillation circuit and output terminal (D0-D15).
When initialization by the RES terminal isn't accomplished in power supply impressing, it sometimes enters the
condition about which it is impossible to cancel.
When using a reset instruction, 9 - 19 of the above initialization are executed.
NJU6682
1-9)The LCD drive circuit system
1-9-1)The LCD drive circuit
The common output has a shift register and it forwards a common scan signal in order. It outputs liquid crystal
drive voltage in the combination of the display data, the common scan signal, the inner FR signal, the liquid crystal
flowing mutually signal. A segment, common output corrugated example are shown in figure 2.
1-9-2)Display Data Latch-Circuit
The display data latch circuit is the latch which stores the display data of 132 x 2 bits which are addressed by the
Z-address counter and are output from the display data RAM to the LCD drive circuit every 1 common 1 period
temporarily. Data in the display data RAM is changed and not held because display turn to Positive / Negative ( In
case of Black & White display ),displaying on / off, Static Drive On / Off instructions are controls data in this latch
circuit.
1-9-3)Gray Scale / Black & White Control Circuit
A Gray Scale control circuit chooses the gray scale level which was set by the command instruction from the gray
scale data of 264 bits which latched with the display data latch circuit and is output for LCD drive output Sn. A Black
& White display control circuit chooses layer which was set by the command instruction from the 264 bit Black &
White data which latched with the display data latch circuit and is output for LCD drive output Sn.
1-9-4)Z-Counter, Signal Genelate of Display Data Latch Circuit
It generates a latch signal to the clock(CL) to Z-counter and to the display data latch circuit. It synchronizes with
the internal display clock and the line address of the display data RAM occurs, and the display data of 132 x 2 bits
synchronizes with the display clock, latches by the display data latch circuit and is output by the gray scale control /
Black & White display control circuit. The read out to the display data LCD drive circuit is independent totally with the
access to the display data RAM from the CPU.
1-9-5)Display Timing Genelate Circuit
The display timing occurrence circuit generates the internal timing of the display system by the master clock and
the internal FR signal. As for it, the internal FR signal and the LCD flowing mutually signal make the drive corrugation
of the 2 frame alternating current drive or the n-line inverting drive method occur to the LCD Driving circuit.
1-9-6)FRC / PWM Control Circuit
PWM & FRC(Frame Rate Control) to realize 4Gray Scale display function.
NJU6682
1-9-7)Common Timing Genegation
The common timing is generated by display clock CL ( refer to Fig.
①
)
2 frame alternating current drive mode
159 160
1
2
3
4
5
6
7
8
158 159 160
1
2
3
4
5
6
7
CL
FR
Vdd
V1
C0
V4
V5
Vdd
V1
C1
V4
V5
RAM DATA
Vdd
V2
Sn
V3
V5
②
n-line inverting drive mode
159 160
1
2
3
4
5
6
7
8
158 159 160
1
2
3
4
5
6
7
CL
FR
Vdd
V1
C0
V4
V5
Vdd
V1
C1
V4
V5
RAM DATA
Vdd
V2
Sn
V3
V5
Fig.2
Waveform of Display Timing
NJU6682
1-9-8)Oscillation Circuits
The Oscillation Circuit is a low power CR oscillator incorporating with a Resistor and a Capacitor. it generates clocks
for display timing signal source and the clock for step up circuits for LCD driving. The oscillation circuit output
frequency is divided as display clock CL.
Table 3
Duty
1/4
1/8
1/12
1/16
1/20
1/24
1/28
1/32
1/36
1/40
1/44, 1/48
1/52, 1/56
Divide
1/1200
1/600
1/400
1/300
1/240
1/200
1/170
1/150
1/135
1/120
1/105
1/90
Duty
1/60, 1/64, 1/68
1/72, 1/76, 1/80, 1/84, 1/88
1/92, 1/96, 1/100, 1/104, 1/108, 1/112, 1/116, 1/120
Divide
1/75
1/60
1/45
Duty
1/124, 1/128, 1/132, 1/136, 1/140, 1/144, 1/148, 1/152, 1/156, 1/160
Divide
1/30
1-9-9)Power Supply Circuits
Internal Power Supply Circuit generates voltage for LCD driving. The power supply circuits consists of Step Up
Circuits ( 2 times to 7 times ), Regulator Circuits, and Voltage Followers. The internal Power Supply is designed for
small size LCD panel, therefore it is not suitable for the large size LCD panel application, please supply the external.
The suitable value of the capacitors connecting to the V1 to V5 terminals and the step up circuit, and the feedback
resistors for V5 operational amplifier depend on the LCD panel. And the power consumption with the LCD panel is
depending on the display pattern. Please evaluate with actual LCD module.
The operation of Internal Power Supply Circuits is controlled by the Internal Power Supply Control Instruction.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
0
D10
0
D9
0
D8
1
D7
*
D6
*
D5
*
D4
*
D3
*
D2
DC
D1
VR
D0
VF
*:Don’t Care
DC : Step Up Circuit
DC=1 : Step Up Circuit ON
DC=0 : Step Up Circuit OFF ( In this time, terminals C1+,C1-,C2+,C2-,C3-,C4-,C5- and C6- should be open, and
VOUT should be supplied from outside. )
VR : Regulator Circuit
VR=1 : Regulator Circuit ON
VR=0 : Regulator Circuit OFF ( In this time, terminal VR should be open, and V5 should be supplied from outside. )
VF : Voltage Follower
VR=1 : Voltage Follower ON
VR=0 : Voltage Follower OFF ( In this time, terminals V1 to V5 should be supplied from outside. )
NJU6682
Examples for application circuits of the internal Power Supply
①None of the internal power supply functions
( DC,VR,VF ) = ( 0, 0, 0 )
②All of the internal power supply functions.
( Step Up, Voltage Regulator, Voltage Follower )
( DC,VR,VF ) = ( 1, 1, 1 )
VDD
V2
+
+
+
V3
+
V4
+
V5
+
VOUT
VSS
+
+
+
+
V3
+
V5
VOUT
VSS
( Caution )
+
V2
V4
V5
VOUT
V1
V2
V3
V4
V5
VOUT
VSS
: These switches should be open during the power save mode.
NJU6682
+
V4
VDD
NJU6682
+
V3
④Some of the internal power supply functions.
( Voltage Follower )
( DC,VR,VF ) = ( 0, 0, 1 )
VDD
V1
V2
VSS
③Some of the internal power supply functions
( Voltage Regulator, Voltage Follower )
( DC,VR,VF ) = ( 0, 1, 1 )
+
V1
NJU6682
NJU6682
V1
VDD
NJU6682
(2)Instruction
The NJU6682 distinguishes the signal on the data bus D0 to D15 by conbination of A0, RD, and WR(R/W). The decode of the
instruction and exection performes only depending on the internal timing only neither the external clock. In case of serial interface, the
data input as MSB first serially.
The table.4 shows the instruction codes of the NJU6682.
Table.4
Code
Instruction
Description
A0 RD WR D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0
1
0
0
0
0
0
0
0
0
(2)
Z Address Set
0
1
0
0
0
1
0
1
0
1
(3)
X Address Set
0
1
0
0
0
1
0
0
0
0
(4)
Y Address Set
0
1
0
0
0
1
0
1
0
0
(5)
Status Read
0
0
1
(6) Write Desplay Data
1
1
0
Write Data
Write the data into the Display
Data RAM
(7) Read Desplay Data
1
0
1
Read Data
Read the data from the Display
Data RAM
(8)
Normal or Inverse
of ON/OFF
0
1
0
0
0
0
0
0
0
0
1
*
0
1
Inverse the ON and OFF Display
D0=0:Normal D0=1:Inverse
(9)
Static Drive
ON/OFF
0
1
0
0
0
0
0
0
0
1
0
*
0
1
Whole Display Turns ON
0
1
0
0
0
1
1
0
0
0
0
*
Start Unit of 1st Block
0
1
0
0
0
1
1
0
0
0
1
*
Display Unit Number of 1st Block
0
1
0
0
0
1
1
0
0
1
0
*
Start Unit of 2nd Block
0
1
0
0
0
1
1
0
0
1
1
*
Display Unit Number of 2nd Block
0
1
0
0
0
1
1
0
1
0
0
(10)
Partial
Display
0
0
1
0
0
0
0
0
0
0
1
1
(12)
EVR Resister Set
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
1
0
1
0
0
1
0
0
1
1
0
(13)
1
0
0
1
0
0
1
1
1
1
0
0
1
0
1
0
0
0
*
0
0
0
*
Determine the X Address of
Display RAM.
X Address
Determine the Y Address of
Display RAM.
Y Address
n-Line Inverse
Resister Set
0
Determine the Line Address of
RAM to the COM0.
Line Address
(11)
Variable RAM
Mapping Mode
*
LCD Display ON/OFF
D0=0:OFF, D0=1:ON
Display ON/OFF
Status
0
0
1
(1)
Status
0
*
*
0
Set the Display Start Unit of Block 2
0
The Number of
Inverse Line
*
*
Set Y address of Display block 1
Line Number of Block 1
*
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
1
0
1
0
0
1
0
1
1
0
0
0
1
0
0
1
0
1
1
0
1
0
1
0
0
1
0
1
1
1
0
0
1
0
0
1
0
1
1
1
1
0
0
1
0
0
1
1
0
0
0
0
0
*
*
Line Number of Block 4
*
Line Number of Block 5
Set the line number of Display block 6
Set Y address of Display block 7
Line Number of Block 7
Set the line number of Display block 7
Set Y address of Display block 8
Line Number of Block 8
*
Set the line number of Display block 5
Set Y address of Display block 6
Line Number of Block 6
Y Address of Display Block 8
*
Set the line number of Display block 4
Set Y address of Display block 5
Y Address of Display Block 7
0
Set the line number of Display block 3
Set Y address of Display block 4
Y Address of Display Block 6
0
Set the line number of Display block 2
Set Y address of Display block 3
Line Number of Block 3
Y Address of Display Block 5
0
Set the line number of Display block 1
Set Y address of Display block 2
Line Number of Block 2
Y Address of Display Block 4
0
Display the Status
Set the V5 output level to the
EVR resister
Y Address of Display Block 3
0
Set the Display Unit Number of Block 2
Set the number of inverse line
Y Address of Display Block 2
0
D0=1:Whole Display ON
Set the Display Unit Number of Block 1
EVR Resister Data
*
D0=0:Normal
Set the Display Start Unit of Block 1
Y Address of Display Block 1
0
Read out the internal status.
0
1
Set the line number of Display block 8
Variable RAM Mapping Mode
D0=0:ON D0=1:OFF
NJU6682
Code
Instruction
(14)
Select
Gray Scale Level
0
1
0
0
1
1
1
0
0
0
0
PWM Data
(Frame No.1)
PWM Data
(Frame No.2)
Gray Scale Level 0:Set the PWM
Data of Frame No.1 and No.2
0
1
0
0
1
1
1
0
0
0
1
PWM Data
(Frame No.3)
PWM Data
(Frame No.4)
Gray Scale Level 0:Set the PWM
Data of Frame No.3 and No.4
0
1
0
0
1
1
1
0
0
1
0
PWM Data
(Frame No.1)
PWM Data
(Frame No.2)
Gray Scale Level 1:Set the PWM
Data of Frame No.1 and No.2
0
1
0
0
1
1
1
0
0
1
1
PWM Data
(Frame No.3)
PWM Data
(Frame No.4)
Gray Scale Level 1:Set the PWM
Data of Frame No.3 and No.4
0
1
0
0
1
1
1
0
1
0
0
PWM Data
(Frame No.1)
PWM Data
(Frame No.2)
Gray Scale Level 2:Set the PWM
Data of Frame No.1 and No.2
0
1
0
0
1
1
1
0
1
0
1
PWM Data
(Frame No.3)
PWM Data
(Frame No.4)
Gray Scale Level 2:Set the PWM
Data of Frame No.3 and No.4
0
1
0
0
1
1
1
0
1
1
0
PWM Data
(Frame No.1)
PWM Data
(Frame No.2)
Gray Scale Level 3:Set the PWM
Data of Frame No.1 and No.2
0
1
0
0
1
1
1
0
1
1
1
PWM Data
(Frame No.3)
PWM Data
(Frame No.4)
Gray Scale Level 3:Set the PWM
Data of Frame No.3 and No.4
0
1
0
0
0
0
0
1
0
0
1
*
Bias
Select Bias (11 types)
Boost
Multiple
Set the Boost Multiple :2 to 7 times
(15)
Bias Select
(16)
Voltage Converter
Multiple Select
0
1
0
0
0
0
0
1
0
1
0
(17)
Read Modify Write
/End
0
1
0
0
0
0
1
0
0
0
0
Reset
0
(18)
Description
A0 RD WR D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
1
0
0
0
0
1
0
0
0
*
1
*
Internal
Power Supply
(20)
Driver Outputs
ON/OFF
0
1
0
0
0
0
1
0
0
1
1
*
(21)
Powehr Save
(dual command)
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
*
(22)
ADC Select
0
1
0
0
0
0
1
1
0
0
0
*
1
0
0
0
0
1
0
0
1
0
1
Increase X Address Counter +1 when
writing but no-change when reading
D0=0:ON
D0=1:END
Initialize the internal circuits
DC=1:Voltage converter ON
DC=0:Voltage converter OFF
VR=1:Voltage Regurator ON
DC VR VF
VR=0:Voltage Regurator OFF
VF=1:Voltage Follower ON
VF=0:Voltage Follower OFF
(19)
0
0
1
*
*
Set LCD driver outputs after the inter-
(23)
Display Mode
Select
0
1
0
0
0
0
1
1
0
0
1
(24)
8-bit/16-bit
Bus Select
0
1
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
nal(external) power supply ON
D0=0:Driver Outouts OFF
D0=1:Driver Outputs ON
Set the Power Save mode
(Reverse input sequence is possible)
Output the Disp. RAM address Sn
D0=0:Normal D0=1:Reverse
Set Display mode
GB=1:Gray scale mode
GB=0:Black and white mode
GS L1 L0 L1=1:Select layer 1
L1=0:Not select layer 1
L0=1:select layer 0
L0=0:Not select layer 0
*
*
D8=0:Set 8-bit interface bus
D8=1:Set 16-bit interface bus
( * : Don’t care)
NJU6682
(3)Explanation of Instruction Code
3-1)Display ON/OFF
This instruction executes whole display ON/OFF without relationship of the data in the Display Data RAM and internal
conditions.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
0
1
0
0
0
0
0
0
0
0
0
*
*
*
*
*
*
D1
D0
*
D
* : Don’t Care
D=0:Display OFF
D=1:Display ON
3-2)Z Address Set
This instruction sets the line address of Display Data RAM which correspond to COM0 terminal (Normally, it means the
most upper line of the display ). The display area is only the number of lines which is equivalent to display duty in the
increasing direction from the line address is automatically.
At that time, the data of Display Data RAM isn’t changed at all. When the RAM mapping is set to Variable RAM
Mapping Mode, the status of Variable RAM Mapping takes priority over this instruction. Therefore, the status of this Z
Address Set instruction will be unavailable.
(R/W)
A0
0
RD
1
WR
0
D15
0
R/W
A8
A7
0
0
0
0
1
1
0
0
D14
0
D13
1
D12
0
D11
1
D10
0
D9
1
D8
A8
A6
0
0
A5
0
0
A3
0
0
A2
0
0
A1
0
0
A0
0
1
0
0
1
1
A4
0
0
:
:
:
1
1
1
1
1
1
1
1
0
1
D7
A7
D6
A6
D5
A5
D4
A4
Z Address (HEX)
0
1
:
:
:
13E
13F
D3
A3
D2
A2
D1
A1
D0
A0
NJU6682
3-3)X Address Set
In the case of access to the Display Data RAM from MPU side, it is needed that to set the X Address which correspond
to Column Address by using of this X Address Set instruction, before data writing. The access to the Display Data RAM is
possible by set of both X Address and Y Address. There is no influence to the Display with changing the Y Address.
The area of X Address is depended on the Display mode. In gray scale mode, it is from 00H to 10H. In black and white
mode, it is from 00H to 08H(layer 0), and from 20H to 28H(layer 1). When Address is set unlike listed above, the Address
will be invalid.
When MPU accesses to the Display Data RAM continuously, X Address is increased +1 from initial X Address every
time RAM is accessed. Therefore, the MPU can access the only Data continuously without resetting of X Address.
The increment of X Address is stopped automatically at the point of the maximum value of X Address which is due to
each mode +1.
At that time, Y Address isn’t changed at all.
(R/W)
WR
0
D15
0
D14
0
D13
1
D12
0
D11
0
D10
0
D9
0
D8
0
D7
*
D6
*
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
* : Don’t Care
X Address
A5 A4 A3 A2 A1 A0
Gray Scale Mode
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
:
:
0
0
1
:
:
0
0
0
0
0
1
1
1
0
0
1
2
:
:
:
:
:
14
15
16
Black & White Mode
Layer 0
RD
1
1
1
0
0
0
0
:
:
1
1
0
0
0
1
Address Set is Invalid
1
0
:
:
:
1
0
1
0
0
1
2
:
:
8
Address Set is Invalid
:
:
:
:
Layer 1
A0
0
32
33
:
:
39
40
Address Set is Invalid
D0
A0
NJU6682
3-4)Y Address Set
In case of access to the Display Data RAM from MPU side, it is needed that to set the Low Address by using of this Y
Address Set instruction, in addition to the using of 3-3) the X Address Set instruction is already described, before data
writing.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
0
A8
0
0
A7
0
0
A6
0
0
A5
0
0
1
1
0
0
0
0
1
1
D11
1
D10
0
A4
0
0
:
:
1
1
D9
0
D8
A8
D7
A7
D6
A6
A3
0
0
A2
0
0
A1
0
0
A0
0
1
1
1
1
1
1
1
0
1
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
Y Address(HEX)
0
1
:
:
13E
13F
7-5)Status Read
This instruction reads out the intenal status of "BUSY", "ADC", "ON/OFF", "RESET", "GB" and "LY" are described
below. When the extenal bus is set to 8-bit mode, this Status Read instruction will finish in 1 cycle.
(R/W)
A0
0
RD
0
WR
1
D15
BUSY
D14
D13
ADC
ON/
OFF
D12
RESET
D11
GB
D10
LY1
D9
LY0
D8
0
D7
BUSY
D6
D5
D4
D3
D2
D1
D0
ADC
ON/
OFF
RESET
GB
LY1
LY0
0
BUSY
:BUSY=1 indicates the operationg or the Reset cycle.
This instruction can be input after the BUSY status change to “0”.
ADC
:Indidates the output correspondence of X Address(Segment Address) and Segment Driver.
0:Counterclockwise output (Inverse)
1:Clockwise output (Normal)
(Note)The data “0=Inverse” and “1=Normal” of ADC is inverted with the ADC Select instruction of
“1=Inverse” and “0=Normal”.
ON/OFF :Indicates the whole display ON/OFF status.
0:Whole Display “ON”
1:Whole Display “OFF”
(Note)The data “0=ON” and “1=OFF” of Display ON/OFF status read out is inverted with the Display
ON/OFF instruction data of “1=ON” and ”0=OFF”.
RESET :Indicates the initializing period by RES signal or Reset instruction.
0:Without Reset status
1:In the Reset status
GB
:Indicates the current Display Mode.
0:Black & White Mode
1:Gray Scale Mode
LY1
:Indicates the status of Layer 1 when the Display Mode is set to Black & White Mode.
0:Layer 1 isn’t selected
1:Layer 1 is selected
LY0
:Indicates the status of Layer 0 when the Display Mode is set to Black & White Mode.
0:Layer 0 isn’t selected
1:Layer 0 is selected
NJU6682
3-6)Write Display Data
This instruction writes the data on the data bus into the Display Data RAM. The X Address increases automatically after
data writing, therefore, the MPU can write the data into the Display Data RAM continuously without any address setting
after the start address setting.
(R/W)
A0
1
RD
1
WR
0
D15
D15
D14
D14
D13
D13
D12
D12
D11
D11
D10
D10
D9
D9
D8
D8
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
D15-D0:Write Data
3-7)Read Display Data
This instruction reads out the 16-bit data ftom Display Data RAM which addressed by the X Assress and Y Address. The
X Address increase “+1” automaticaly after 16-bit data reading out, therefore, the MPU can read out the 16-bit data ftom
Display Data RAM continuously without any address setting after the atart address setting. The one time of dummy read
must operate after X Address set as the explanation in “(5-4) Access to the Display Data RAM and internal Resister”. In
the serial interface mode, the display data is not read out.
(R/W)
A0
1
RD
0
WR
1
D15
D15
D14
D14
D13
D13
D12
D12
D11
D11
D10
D10
D9
D9
D8
D8
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
D15-D0:Read Data
3-8)Normal or Inverse ON/OFF Set
This instruction changes the condition of display turn ON and OFF as normal or inverse. The contents of Display Data
RAM is not changed by this instruction exection.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
0
D11
0
D10
0
D9
0
D8
1
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
D
*:Don’t Care
Black & White Mode:
D
RAM=”1”
0(Normal)
LCD ON
1(Inverse)
LCD OFF
Gray Scale Mode:
D
RAM=”00”
0(Normal)
Gray Scale Level 0
1(Inverse)
Gray Scale Level 3
RAM=”0”
LCD OFF
LCD ON
RAM=”01”
Gray Scale Level 1
Gray Scale Level 2
RAM=”10”
Gray Scale Level 2
Gray Scale Level 1
RAM=”11”
Gray Scale Level 3
Gray Scale Level 0
NJU6682
3-9)Static Drive ON/OFF
This instruction turns ON the all pixels independent of the contents of the Display Data RAM. At this time, the contents of
Display Data RAM is not changed and kept. This instruction takes precedence over the “Normal or Inverse ON/OFF Set”
Instruction.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
0
D11
0
D10
0
D9
1
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
D
* : Don’t Care
D=0:Normal Display
D=1:Whole Displplay Turns ON
If this Static Drive ON/OFF instruction is executed when Display OFF status, the NJU6682 will be in Power Save Mode.
The details about this Power Save Mode is descrived in it’s own section.
3-10)Partial Display
This instrcution devides display area into 40 unit with 4-common each, then display these required area which is
selected. Therefore, the duty will be low automatically, so that LCD driving voltage will be low. So, it is suitable when low
operating power is requied.
•Display Unit Construction
UNIT
UNIT
UNIT
UNIT
:
:
:
UNIT
UNIT
UNIT
UNIT
0
1
2
3
160-common
36
37
38
39
132-segment
When executing the Partial Display function, at first, it must be defined both the Top Unit Number of display area (the
Start Unit) and the number of the effective unit start from the Start Unit. And it is possible to set these definition as two
blocks. If setting the Start Unit of the 1st Block as “0” (0,0,0,0), and then if setting the Display Unit Number as “40”
(1,0,1,0,0,0), it means that to define the all unit of the Display, it becomes that all Display ON (1/160 Duty), and the
definition of the 2nd Block will be invalid. And when Partial Display instruction is executed, the duty is changed to
optimum condition automaticaly, but LCD Driving Voltage and Bias Voltage aren’t changed at all. Therefore, before
execution of Partial Display instruction, “Driver Output OFF” instruction must be done, then execute the instruction Bias
Set, Voltage Converter Multiple Select, and EVR Resister Set to reset each status with execution of this Partial Display
instruction.
(Notes) •The Start Unit of the 1st Block must be less than the Start Unit of the 2nd Block.
•Don’t overlap the 1st Block and the 2nd Block.
•The Start Unit of the 1st Block must not be more than 39.
•The all Display Unit Number (the sum of the 1st Block Unit Number and the 2nd Block Unit Number) must not
be more than 39.
•According to a setting, the area is made from the 1st Block to the 2nd Block may be empty, but the Y Address
of the Display RAM is continuous.
NJU6682
(1)Set the Start Unit of the 1st Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
0
D9
0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
(2)Set the Display Unit Number of the 1st Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
0
D9
0
D8
1
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
D12
1
D11
0
D10
0
D9
1
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
D10
0
D9
1
D8
1
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
(3)Set the Start Unit of the 2nd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
(4)Set the Display Unit Number of the 2nd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
* : Don’t Care
D5 to D0 : The Start Unit, or the Display Unit Number
Finally, by execution of the command below, it will be changed into the status of the Display have already
been defined, and it will be changed into the optimum Duty Ratio.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
1
D9
0
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
* : Don’t Care
D0
0
NJU6682
The example and the method of Partial Display are listed below.
UNIT 0
UNIT 1
the 1st Block
:
UNIT
UNIT
:
UNIT
UNIT
Available Display Area
14
15
the 2nd Block
28
29
:
(1)Set the Start Unit of the 1st Block “0”.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
0
D9
0
D8
0
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
0
(2)Set the Display Unit Number of the 1st Block “2”.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
0
D9
0
D8
1
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
1
D0
0
D11
0
D10
0
D9
1
D8
0
D7
0
D6
0
D5
0
D4
0
D3
1
D2
1
D1
1
D0
0
D9
1
D8
1
D7
0
D6
0
D5
0
D4
1
D3
0
D2
0
D1
0
D0
0
D9
0
D8
0
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
0
(3)Set the Start Unit of the 2nd Block “14”.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
(4)Set the Display Unit Number of the 2nd Block “16”.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
0
Then, the Duty will be changed to 1/128 automatically.
(4)Execute the Partial Display
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
1
D12
1
D11
0
D10
1
NJU6682
The Sequence about the Partial Display function
Driver Output OFF
Partial Display
n-Line Inverse Set
EVR Resister Set
Bias Set
Voltage Converter Multiple Select
(Waiting Time)
Driver Outputs O
3-11)n-Line Inverse Resister Set
This instruction drives the Display with inverse mode at the specified line.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
0
D11
0
D10
0
D9
1
D8
1
D7
*
D6
*
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
* : Don’t Care
A5
0
0
0
A4
0
0
0
A3
0
0
0
A2
0
0
0
A1
0
0
1
A0
0
1
0
1
1
1
1
0
1
:
:
1
1
1
1
1
1
Inverse Line
2
3
:
:
63
64
✱When A5 to A0 are “000000”, it will be 2-frame alternating drive mode.
NJU6682
3-12)EVR Resister Set
This instruction controls Voltage Adjustment Circuit of internal LCD power supply and changes LCD driving voltage
“V5”. Finally, it adjusts the contrast of LCD display. By setting a data into EVR resister, V5 output voltage selects one
condition out of 201-voltage conditions. The range of V5 voltage is adjusted by setting external resister as mentioned in
(4-2) Voltage Regulator
(R/W)
A0
0
RD
1
WR
0
A7
0
D15
0
A6
0
D14
0
D13
0
A5
1
D12
0
A4
1
D11
1
D10
0
D9
0
D8
0
D7
A7
A3
0
A2
1
A1
1
A0
1
1
1
1
1
1
1
0
1
:
:
1
1
1
1
1
1
1
1
VLCD=VDD-V5
If EVR isn’t used, set the EVR Resister to (1,1,1,1,1,1,1,1).
D6
A6
D5
A5
VLCD
Low
:
:
:
High
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
NJU6682
3-13)Variable RAM Mapping Mode
At this Variable RAM Mapping Mode, it is possible to define the RAM area in a maximum of 8-blocks not to continue
to display the screen. Therefore, it is easy to replace a part of the Display Data each other(Fig.7, 8).
When using this Variable RAM Mapping Mode, the Z Address is defined by “3-2)Z Address Set instruction” will
be invalid. So, Vertical Scroll with changing a Z Address will be unable.
And, it is available to define the Display Line Number of each blocks as “1” to “63”, but it must not define as “0”.
If setting the all Display Line Number more than the Duty, the line data which is over the Duty will not be displaied.
After Reset is executed, the resister about this Variable RAM Mapping Mode will be indefinite.
1st Block Y Address
A
1st Block
Display Line Number
B
2nd Block
Display Line Number
C
C
3rd Block
Display Line Number
D
D
4th Block
Display Line Number
E
A
2nd Block Y Address
3rd Block Y Address
4th Block Y Address
B
5th Block Y Address
6th Block Y Address
E
5th Block
Display Line Number
F
6th Block
Display Line Number
G
7th Block
Display Line Number
F
G
7th Block Y Address
H
8th Block Y Address
H
Fig.7-1
8th Block
Display Line Number
The setup of Variable RAM Mapping
Mode, and the Address Map
Fig.7-2
The actual view of the Display
NJU6682
The Example of Variable RAM Mapping Mode
1st Block Y Address
A
1st Block
Display Line Number
B
3rd Block
Display Line Number
3rd Block Y Address
Y Address=80H
Y Address=100H
C
D
Fig.8-1
The setup of Variable RAM Mapping Mode, and the Address Map
A
A
A
C
D
C
B
B
B
Fig.8-2 The actual Views of the Display when the 2nd Block Y-Address is changed like
the sequence of “80”H -> “100”H -> “80”H
NJU6682
(1)Set the Y Address of the 1st Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
0
D10
0
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 1st Block (0 to 319)
(2)Set the Display Line Number of the 1st Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
0
D10
0
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 1st Block (1 to 63)
(3)Set the Y Address of the 2nd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
0
D10
1
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 2nd Block (0 to 319)
(4)Set the Display Line Number of the 2nd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
0
D10
1
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 2nd Block (1 to 63)
(5)Set the Y Address of the 3rd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
1
D10
0
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 3rd Block (0 to 319)
(6)Set the Display Line Number of the 3rd Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
1
D10
0
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 3rd Block (1 to 63)
(7)Set the Y Address of the 4th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
1
D10
1
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 4th Block (0 to 319)
(8)Set the Display Line Number of the 4th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
0
D11
1
D10
1
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 4th Block (1 to 63)
NJU6682
(9)Set the Y Address of the 5th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
0
D10
0
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 5th Block (0 to 319)
(10)Set the Display Line Number of the 5th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
0
D10
0
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 5th Block (1 to 63)
(11)Set the Y Address of the 6th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
0
D10
1
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 6th Block (0 to 319)
(12)Set the Display Line Number of the 6th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
0
D10
1
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 6th Block (1 to 63)
(13)Set the Y Address of the 7th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
1
D10
0
D9
1
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 7th Block (0 to 319)
(14)Set the Display Line Number of the 7th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
1
D10
0
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 7th Block (1 to 63)
(15)Set the Y Address of the 8th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
1
D10
1
D9
0
D8
A8
D7
A7
D6
A6
D5
A5
D4
A4
D3
A3
D2
A2
D1
A1
D0
A0
D8
0
D7
*
D6
*
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
A8 to A0:the Y Address of the 8th Block (0 to 319)
(16)Set the Display Line Number of the 8th Block
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
0
D12
1
D11
1
D10
1
D9
1
* : Don’t Care
D5 to D0:the Display Line Number of the 8th Block (1 to 63)
NJU6682
By using of the following instruction, Variable RAM Mapping Mode will be executed.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
1
D12
0
D11
0
D10
0
D9
0
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
1
* : Don’t Care
And, by using of the following instruction, it will go back to the normal status from Variable RAM Mapping Mode.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
1
D13
1
D12
0
D11
0
D10
0
D9
0
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
0
* : Don’t Care
NJU6682
3-14)Gray Scale Level Select
This instruction sets the level of 4-gray scale. The setting of each gray scale level is executed by writing the PWM
data (0 to FH) to the 4-Resisters of the 4-Flames consists of 1st to 4th.
And, among the 4-gray scale levels, the level 0 corresponds to the data (0,0) of the Display Data RAM, the level 1 is
the data (0,1), the level 2 is the data (1,0), and the level 3 is the data (1,1).
Just after Reset, a Resister is related to the Gray Scale Level Select will be initialized like a following table.
PWM Data
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
HEX
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Gray Scale Level
0/15(initialized value of level 0)
1/15
2/15
3/15
4/15
5/15(initialized value of level 1)
6/15
7/15
8/15
9/15
10/15(initialized value of level 2)
11/15
12/15
13/15
14/15
15/15(initialized value of level 3)
(1)Set the PWM Data of both the 1st Frame and the 2nd Frame with the Gray Scale Level 0.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
0
0
0
D13
D12
D11
D10
D23
D22
D21
D20
D13 to D10 : the PWM Data of the 1st Frame
D23 to D20 : the PWM Data of the 2nd Frame
(2)Set the PWM Data of both the 3rd Frame and the 4th Frame with the Gray Scale Level 0.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
0
0
1
D33
D32
D31
D30
D43
D42
D41
D40
D33 to D30 : the PWM Data of the 3rd Frame
D43 to D40 : the PWM Data of the 4th Frame
(3)Set the PWM Data of both the 1st Frame and the 2nd Frame with the Gray Scale Level 1.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
0
1
0
D13
D12
D11
D10
D23
D22
D21
D20
D13 to D10 : the PWM Data of the 1st Frame
D23 to D20 : the PWM Data of the 2nd Frame
(4)Set the PWM Data of both the 3rd Frame and the 4th Frame with the Gray Scale Level 1.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
0
1
1
D33
D32
D31
D30
D43
D42
D41
D40
D33 to D30 : the PWM Data of the 3rd Frame
D43 to D40 : the PWM Data of the 4th Frame
NJU6682
(5)Set the PWM Data of both the 1st Frame and the 2nd Frame with the Gray Scale Level 2.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
1
0
0
D13
D12
D11
D10
D23
D22
D21
D20
D13 to D10 : the PWM Data of the 1st Frame
D23 to D20 : the PWM Data of the 2nd Frame
(6)Set the PWM Data of both the 3rd Frame and the 4th Frame with the Gray Scale Level 2.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
1
0
1
D33
D32
D31
D30
D43
D42
D41
D40
D33 to D30 : the PWM Data of the 3rd Frame
D43 to D40 : the PWM Data of the 4th Frame
(7)Set the PWM Data of both the 1st Frame and the 2nd Frame with the Gray Scale Level 3.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
1
1
0
D13
D12
D11
D10
D23
D22
D21
D20
D13 to D10 : the PWM Data of the 1st Frame
D23 to D20 : the PWM Data of the 2nd Frame
(8)Set the PWM Data of both the 3rd Frame and the 4th Frame with the Gray Scale Level 3.
(R/W)
A0
RD
WR
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
0
1
1
1
D33
D32
D31
D30
D43
D42
D41
D40
D33 to D30 : the PWM Data of the 3rd Frame
D43 to D40 : the PWM Data of the 4th Frame
NJU6682
3-15)Bias Select
This instruction sets the Bias Voltage. And it must be done with the setting of the Partial Display Mode.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
0
D11
1
D10
0
D9
0
D8
1
D7
*
D6
*
D5
*
D4
*
D3
A3
D2
A2
D1
A1
D0
A0
* : Don’t Care
A3
A2
A1
A0
Bias
0
0
0
0
1/4
0
0
0
1
1/5
0
0
1
0
1/6
0
0
1
1
1/7
0
1
0
0
1/8
0
1
0
1
1/9
0
1
1
0
1/10
0
1
1
1
1/11
1
0
0
0
1/12
1
0
0
1
1/13
1
*
1
*
1/14
*: Don’t Care
3-16)Voltage Converter Multiple Select
This instruction sets the boost level multiple of Internal Voltage Converter Circuits(2-times to 7-times). It must be done
with the setting of the Partial Display Mode. If the external capasitor is connected as the boost level multiple is lower than
6-times, don’t select the multiple with this instruction over its multiple is owing to its connection of the external capacitor.
There is a fear of an incorrect function.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
0
D11
1
D10
0
D9
1
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
A2
D1
A1
D0
A0
* : Don’t Care
A2
0
A1
0
A0
0
Boost Multiple
2-times
0
0
1
3-times
0
0
1
1
0
1
4-times
5-times
1
1
0
0
1
6-times
7-times
* : Don’t Care
*
3-17)Read Modify Write
This instruction sets the Read Modify Write Mode for the page address increment control. In this mode, the X
Address insreases “+1” automatically when the Display Data Write instruction is exexuted, but the X Address
doesn’t change when the Display Data Read Instruction is executed. This status is continued until the End
instruction execution. When the End instruction is executed, the X Adddress goes back to the start address before
the execution of this Read Modify Write instruction. This function reduces the load of MPU for repeating the display
data change in the fixed area(ex. cursor blink).
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
0
D10
0
D9
0
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
* : Don’t Care
D=0:Read Modify Write ON
D=1:End
(Note)In mode of this Read Modify Write, any instructions except Y Address Set can execute.
D0
D
NJU6682
The Example of Read Modify Write Sequence
Executed Instructions
Display Contents
Y Address Set
(In 8-bit bus mode, ↓ indicates the X Address)
Set the Start Address
of the Cursor Display *1
X Address Set
N
N+1
N+2
N+3
Start
Read Modify Write
the Read Mdify Write
Dummy Read
The data will be ignor
X Counter does’t increase
Data Read
X Counter does’t increase
Read out the data
The data is inversed
at MPU
N
N+1
N+2
Data Write
X Counter increase “+1”
N+3
Dummy Read
N
N
N
N+1
N+1
N+1
N+2
N+2
N+2
N+3
N+3
N+3
N+4
Write back the data
Repeat the same
X Counter doesn’t increase sequence
Data Read
X Counter doesn’t increase
Data Write
X Counter increase “+1”
Dummy Read
X Counter doesn’t increase
Data Read
X Counter doesn’t increase
Data Write
X Counter increase “+1”
Dummy Read
X Counter doesn’t increase
Data Read
X Counter doesn’t increase
Data Write
X Counter increase “+1”
N+4
End
the Read Modify Write
End
N
N+1
N+2
N+3
N+4
No
X Counter is reset to
Finish ?
Yes
the value of *1
NJU6682
3-18)Reset
This instruction executes the following initialization.
Initialization
1:Clear the Resister of the Selial Interface.
2:Set the X Address Counter (00)H.
3:Set the Y Address Resister (000)H.
4:Set the Z Address Counter (000)H
5:Normal RAM Address Mapping(Variable RAM Mapping Mode OFF).
6:Set the EVR Resister (FF)H.
7:Set the Duty “1/160”(All ON).
8:Set the Bias Select “1/14”.
9:Set the Voltage Boost Multiple “7-times”.
10:Set the n-Line Inverse Resister (0)H.
11:Set the Bus 8-bit Bus Mode.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
0
D10
0
D9
0
D8
1
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
D
* : Don’t Care
At this time, the Display Data RAM is not influenced.
The reset signal input to the RES terminal ( hardware reset ) must be input for the power on intialization.
Reset instruction does not perform completely instead of hardware reset using the RES terminal.
3-19)Internal Power Supply
This instruction set ON/OFF of Voltage Converter, Voltage Regulator and Voltage Follower. To operate the Voltage
Converter, the oscillation circuits must be operating.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
0
D10
0
D9
1
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
DC
D1
VR
D0
VF
* : Don’t Care
DC=1:Voltage
DC=0:Voltage
VR=1:Voltage
VR=0:Voltage
VF=1:Voltage
VF=0:Voltage
❇1)At
Converter ON
1)
Converter OFF❇
Regulator ON
2)
Regulator OFF❇
Follower ON
3)
Follower OFF❇
this time,
and VOUT
❇2)At this time,
❇3)At this time,
terminals C1+,C1-,C2+,C2-,C3-,C4-,C5- and C6- should be open,
should be supplied from outside.
terminal VR should be open, and V5 should be supplied from outside.
terminals V1 to V5 should be supplied from outside.
❇The time which is needed for complitely starting up of the Internal Power Supply is depending on each settings (Supply
Voltage, VLCD=VDD-V5, External Capacitor of Voltage Converter, External Capacitor which is connected to V1 to V5).
To know the time corretly, the test with actual LCD module must be needed.
NJU6682
3-20)Driver Outputs ON/OFF
This instruction controlls ON/OFF of the LCD Driver Outputs.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
0
D10
0
D9
1
D8
1
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
D
* : Don’t Care
D=0:Driver Outputs OFF(No signal is output)
D=1:Driver Outputs ON(Signal is output)
The NJU6682 contains low power LCD driving voltage generator circuit reducing own operating current. Therefore, it
requires the following sequence procedures at power on for power source stabilized operation.
●LCD Driving Power Supply ON/OFF Sequences
The following sequences are required when the power supply is turned ON/OFF.
When the Power Supply is turned on again after the turn off (by the Power Save instruction), the power save release
sequence(s) is required.
❍Turn ON Sequence
❍Turn OFF Sequence
Output Assign Register Set
Display OFF
EVR Resister Set
Static Drive ON
Internal Power Supply ON
Internal Power Supply ON
or
or
External Power Supply ON
External Power Supply ON
(Wait Time)
Driver Outputs OFF
Driver Outputs ON
NJU6682
3-21)Power Save
When both of Display OFF and Static Drive ON are executed( its sequence is not required ), the internal circuits go to
the Power Saving Mode and the operating current is reduced as same as the stand by current.
The internal status in this Power Save Mode is shown in follows;
1:The operation of both the Oscillation Circuits and the Internal Power Supply Circuits is stopped.
2:LCD driving is stopped. Segment and Common drivers output Vdd level voltage.
3:Both the display data and the operating mode just before the Power Save Mode is kept.
4:All of the LCD driving bias voltage is fixed to the VDD level.
*1 In the Power Save sequence, the Power Save Mode is started after the second instruction (Static Drive ON).
*2 In the Power Save release sequence, the Power Save Mode is released after the Static Drive OFF instruction.The
Display ON instruction can input at any timming after the Static Drive OFF instruction in Power Save release
sequence.
*3 LCD driving signal isn’t output until the xexection of the Driver Outputs ON instruction.
*4 In case of the external power supply for LCD driving, it should be turn off and made condition like as disconnection or
connection to VDD before the Power Save Mode or at the same time. In this time, VOUT terminal should be made
codition like as disconection or connection to the lowest voltage of the system.
❍Power Save Sequence
❍Power Save Release Sequence
Display OFF
Static Drive OFF
Static Drive ON
Display ON
(Wait Time)
Driver Outputs OFF
Driver Outputs ON
❈NJU6682 spends the current regularly without the execution of the Driver Outputs OFF instruction. The LCD drive
signal will not be output until the Driver Outputs ON instruction is done.
3-22)ADC Select
This instruction defines the correspondence of X Address of the display RAM with the Segment Driver Outputs.
By using of this instruction, it is possible to invert the sequence of the Segment Driver Output. Therefore, the limitation like
a arrangement of IC with LCD module making will decrease.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
1
D10
0
D9
0
D8
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
D
* : Don’t Care
D=0:Clockwise Output (Normal)
D=1:Counterclockwise Output (Inverting)
NJU6682
3-23)Display Mode Select
This instruction selects the Display Mode.
(R/W)S
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
1
D10
0
D9
0
D8
1
D7
*
D6
*
D5
*
D4
*
D3
*
D2
GS
D1
L1
D0
L0
* : Don’t Care
GS=1:Gray Scale Mode
GS=0:Black & White Mode
❈When GS=0(Black & White Mode), the following L1 and L2 bit are valid.
L1=1:Select the
L1=0:Not select
L0=1:Select the
L0=0:Not select
Layer 1
the Layer 1
Layer 0
the Layer 0
3-24)8-bit/16-bit Bus Select
This instruction sets the interface bus as 8-bit or 16-bit.
(R/W)
A0
0
RD
1
WR
0
D15
0
D14
0
D13
0
D12
1
D11
1
D10
0
D9
1
D8
D
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
*
D0
*
* : Don’t Care
D=0:Select 8-bit interface bus (D7 to D0).
D=1:Select 16-bit interface bus (D15 to D0)
NJU6682
(4)Internal Power Supply
4-1)7-Time Voltage Booster circuits
7-time voltage booster circuit connecting seven capacitors between C1+, C1- and C2+, C2- and ,C3-,C4-, C5- and
C6- ,VSS and VOUT boost the voltage of VDD-VSS to negative Voltage(VDD Common) and output the boosted voltage
from VOUT terminal. It selects one of boost time from 2 to 7 times by external capacitors connection.Furthermore,it also
selects one of boost time by “Voltage Booster circuits mulitiple select” instruction.The boost voltage and the voltage
booster circuits are shown below.
Voltage Booster circuits requires the clock signals from internal oscillation circuit,therefore ,the oscillation circuits must
be operating when voltage boost operation. The boost voltage times are shown in below.
When 7 times boost operation,the operation voltage of VDD-VOUT should be less than 18V.
The relationship with Boosted voltage and VDD,VSS
VDD=+2.5V
VDD=+3V
VSS=±0V
VOUT=-VDD=-3V
VOUT=-2VDD=-6V
VOUT=-3VDD=-9V
VOUT=-4VDD=-12V
VOUT=-5VDD=-15V
VOUT=-6VDD=-15V
2-Time
3-Time
4-Time
5-Time
6-Time
7-Time
Example of Capacitor connection in voltage Booster circuits
7-Times
6-Times
VSS
C1+
C1C2+
VSS
C1+
VSS
C1+
C1-
+
+
C3-
+
C4C5C6VOUT
C4-
+
C5-
+
C6-
C2C3C4-
C3-
+
C1-
C2C3-
VOUT
2-times
VSS
C1+
C1-
+
+
+
C2+
+
C2C3-
C4-
C4-
C5-
C5-
C6-
C6-
C6-
VOUT
VOUT
VOUT
C5-
+
C6-
C2+
+
+
C5-
3-times
+
+
+
+
VSS
C1+
+
C2-
C4-
+
VOUT
VSS
C1+
C2+
+
+
4-Times
C1-
+
C3-
+
+
C2+
C2-
+
C1-
+
C2+
C2-
5-Times
+
NJU6682
4-2)Voltage Adjust Circuit
The boosted voltage of VOUT output from V5 through the voltage adjust circuits for LCD driving. The output voltage
of V5 is adjusted by changing the Ra+Rb within the range of |V5| < |VOUT|.
The output is calcurated by the following fomula(1).
VLCD=VDD-V5=(1+Rb/Ra)•VREG
------------------------------------------(1)
The voltage of VREG is a standard voltage produce from built-in bleeder registance.VREG is possibleto be
fine-adjusted by EVR functions mentioned in(4-3).
For fine-adjustment of V5,R2 as variable resistor,R1 and R3 as fixed constant should be connectedto VDD terminal,VR
and V5 ,as shown below.
VDD
Vreg
Ra
+
Vr
-
V5
Rb
< Design example for R1, R2 and R3 /Reference >
•R1+R2+R3=5MΩ
(Determind by the current flown between VDD-V5)
•Variable voltage range by the R2. 6V to 7.5V (VLCD=VDD-V5)
(Determind by the LCD electrical characteristics)
•VREG=3V
(In case of VDD=3V)
R1,R2 and R3 are calculated by above conditions and the fomula of(1) to below;
R1=2.0MΩ
R2=0.5MΩ
R3=2.5MΩ
Note) If the power supply voltage between VDD and VSS changes,V5 changes too.therefore the power
supply voltage should be stabilized for V5 stable operation.
NJU6682
4-3)Contrast adjustment by the EVR function
The EVR control voltage of VREG by instruction and changes voltage of V5.
AS result,LCD Display contrast is adjusted by V5.The EVR selects a voltage of VREG in the following
201 conditions by setting 8 bits data into the EVR register.
A step with EVR is set like table shown below.
EVR register
(37)h
(38)h
(39)h
:
:
:
:
(FD)h
(FE)h
(FF)h
VREG
(100/300) x (VDD-VSS)
(101/300) x (VDD-VSS)
(102/300) x (VDD-VSS)
:
:
:
:
(298/300) x (VDD-VSS)
(299/300) x (VDD-VSS)
(300/300) x (VDD-VSS)
When using an EVR function, the voltage adjustment circuit must be turn on by the power supply
instruction.
●Adjustable range of the LCD driving voltage by EVR function
The adjustable range is decided by the power supply voltage VDD and the ratio of external resistors.
Example) NJU6682
Condition:VDD=3.0V
Ra=1MΩ, Rb=4MΩ (Ra:Rb=1:4)
The adjustable range and step voltage are calculated as follows in the above condition.
In case of setting 37(H) in the EVR register,
VLCD=(1+Rb/Ra) x VREG
=(1+4) x (100/300) x 3.0
=5.0
In case of setting FF(H) in the EVR register,
VLCD=(1+Rb/Ra) x VREG
=(1+4) x (300/300) x 3.0
=15.0
NJU6682
4-4)LCD Driving Voltage Generation Circuit
The LCD driving bias voltage of V1,V2,V3,V4 are generated internally by dividing the V5 voltage with the internal
bleeder resistance.And it is supplied to the LCD driving circuits after the impedence conversion with voltage follower
circuit.
As shown Fig-3,Five capacitors are required to connect to each LCD driving voltage terminal for voltage atabilizing. And
the value of C7 to C11 are determind depending on the actual LCD panel display evaluation.
In case of Internal Power Supply
In case of using External Power Supply
VSS
VSS
+
C1+
C1+
C1
C1-
+
C2
C2+
C1C2+
C2+
C3 +
Cout +
C4
C2C3C3-
+
C4-
C4-
+
C5 +
+
C5-
C5-
C6 +
C6-
C6-
*2
NJU6682
NJU6682
Vout
Vout
V5
V5
VR
VR
VDD
VDD
V1
V1
V2
V2
R3
*1
R2
R1
+
+
+
+
+
C7
C8
C9
C10
C11
External
V3
V3
Power Supply
V4
V4
V5
V5
Fig-3
*1 Short wiring or sealed wiring to the VR terminal is
required due to the high impedance of VR Terminal.
*2 Following connection of VOUT is required when external
power supply using.
When VSS>V5 --- VOUT=V5
When VSS≤V5 --- VOUT=VSS
Reference set up value
VLCD=VDD-V5≅9.0 to 10.5V
COUT
~1.0uF
C1 to C6
C7 to C11
R1
~1.0uF
0.1~0.47 uF
2MΩ
R2
500KΩ
R3
2.5MΩ
NJU6682
(b) Interface with 16 bit MPU (16 bit BUS Interface Mode)
A0 Terminal
WR Termin
RD Terminal
D15 to D8
D15toD8
Status
D15toD8
D15toD8
D15toD8
D7toD0
Status
D7toD0
D7toD0
D7toD0
Terminal
D7 to D0
Terminal
Write
BUSY Flag
Write
Dummy
Read
Instruction
Check
Display
Read
Display
(Status read)
Data
Data
5-3) Serial Data Input (PS1=”L”)
In the serial interface of NJU6682 consists 16-bit shift register and 4-bit counter, In case of chip select (CS=L) means it
becomes to input D7(SI) and D6(SCL), and in case of chip isn't select, a shift register and a counter are reset to the initial
condition.
The data input from terminal(SI) is MSB first like as the order of D15, D14, •••D0 by a serial interface, it is entered into
with rise edge of serial clock(SCL). The data converted into parallel data of 16-bit with the rise edge of 16th serial clock
and processed.
The serial interface of NJU6682 can two way select to 3-wire type and 4-wire type by PS0 terminal. In choosen PS0
terminal to "H", it become 4-wire interface and discliminate display data, instructions by A0 input terminal. A0 is read with
rise edge of (16 X n)th of serial clock (SCL), it is recognize display data by A0=H” and instruction by A0=”L”. A0 input is
read in the rise edge of (16 X n)th of serial clock (SCL) after chip select and distinguished.
However,in case of RES=“L” or CS=”H” with trasfered data does not fill 16 bit, attention is necessary
because it will processed as there was command input. Always, input the data of (16 X n) style. In choosen PS0 terminal
to “L”,it becomes 3-wire interface and discleminate data after the serial data of 16-bit as the A0 data.
Note) The SCL signal must be careful of the termination reflection by the wiring length and the
external noise and confirmation by the actual machine is recommended by it.
NJU6682
(a) 4-wired Serial Interface
CS
First transfer data
SI
Next transfer data
D15
D14
D13
D12
D1
D0
D15
D14
1
2
3
4
15
16
17
18
SCL
A0
Fig 4-1
A0=”H”: Display Data
A0=”L”: Instruction
(b) 3-wire Serial Interface
CS
Next transfer data
First transfer data
SI
D15
D14
D13
D12
D1
D0
1
2
3
4
15
16
A0
D15
SCL
Fig 4-2
17
18
A0="1":Display Data
A0="0":Instruction
5-4)Display Data RAM , Access of Internal Register
NJU6682 communicates with the CPU through bus holder with the internal data BUS.
In case of reads the display data contents in Data RAM, the data which was read in the first data read cycle ( the
dummy read ) is memorized in bus holder and is read on the system BUS from BUS holder in the following data read
cycle. Also, In case of MPU writes into Display Data RAM, after once maintained by bus holder, it is written
Into Display Data RAM by the following data write cycle.
Therefore, the restrict in case of access by NJU6682 which was seen from MPU side is not access time
(tACC,tDS) of Display Data RAM and the cycle time becomes dominant. With this, speed-up of the data transfer with the
MPU becomes possible. In case of cycle time isn't met, the MPU inserts NOP operation and becomes equivalent to for
this to execute wait operation on sutisfy condition.In MPU . But, there is an restricts in the read sequence of Display Data
RAM.
When setting an address, the data of the specified address isn't output by the read operation immediately after setting
an address and the data of the specification address is output at the the 2nd data read.
Therefore, the dummy read is always necessary once after address set and the write cycle.
NJU6682
■ASOLUTE MAXIMUM RATING
PARAMETER
Supply Voltage(1)
Supply Voltage(2)
Supply Voltage(3)
Input Voltage
Operating Temperature
Strage
TCP
Temperature Bare chip
SYMBOL
RATINGS
UNIT
VDD
V5 , VOUT
V1,V2,V3,V4
-0.3 to +5.0
VDD-20.0 to VDD+0.3
V5 to VDD+0.3
V
V
V
VIN
-0.3 to VDD+0.3
V
TOPR
-30 to +80
-55 to +100
-55 to +125
°C
TSTG
VDD
°C
VDD
VSS
V5
(Note 1) Voage values are specified as VSS=0.
(Note 2) Inase of using voltage boost circuit, as for the supply voltage, conditioned of 18.0V≥VDD-VOUT
(Note 3) The relation VDD≥V1≥V2≥V3≥V4≥V5;VDD>VSS≥VOUT must be maintained.
When inputting external LCD driving voltage , LCD drive voltage is simultaneous with the rise of VDD power
supply or after rises VDD.
(Note 4) If the LSI are used on condition above the absolute maximum rating,the LSI may be destroyed.
Using LSI within electrical characteristics is strongly recommended for normal operation.
Use beyond the erectric characteristics conditions will cause malfunction and poor reliability.
(Note 5) Decoupling capacitor should be connected between VDD and VSS due to stabilized operation for the Voltage
Converter.
NJU6682
■ELECTRICAL CHARACTERISTICS
PARAMETER
CONDITIONS
SYMBOL
VDD
V5
Operating Voltage(2) V1,V2
V3,V4
Input
High Level VIHC1
Voltage Low Level VILC1
Output High Level VHC11
Voltage
Low Level VOLC11
Operating voltage(1)
Input Leagage
Current
Voltage boost
output voltage
Voltage boost
On-resistance
Adjustment range
of LCD driving
Voltage
Voltage Follower
A0,D0-D15,RD,WR,RES,CS
Exclude P/S, SEL68,OSC1 terminal
D0toD1
Terminal
IOH=-0.5mA
IOL= 0.5mA
IDDQ
All input terminal, D0 to D15 Terminal
in High Z
Ta=25°C
VLCD=15V
During Power Save Mode
CIN
Ta=25°C
fOSC
VDD= 3.0V, Ta=25°C
tR
RES terminal
ILI0
Driver On-resistance RON
Stand-by Current
Input Terminal
Capacitance
Oscillation
Frequency
Reset Time
Reset “L” level pulse
Width
VLCD=VDD-V5
(VDD=2.4 to 3.3V, VSS=0V, Ta=-30 to +80°C)
MIN
TYP
MAX
UNIT NOTE
2.4
3.3
V
1
VDD-18.0V
VDD-6.0V
V
2
VDD-0.5VLCD
VDD
V5
VDD - 0.5VLCD
0.8VDD
VDD
V
VSS
0.2VDD
0.8VDD
VDD
V
VSS
0.2VDD
-1.0
1.0
2.0
3.0
T.B.D
T.B.D
kΩ
3
µA
4
10
pF
6
T.B.D
kHz
1.0
10
tRW
µA
µS
7
µS
8
VOUT1
7-times boost, VDD=2.5V
RTRI
7-times boost,
VDD=2.5V,Cout=4.7µF
VOUT2
Voltage boost operation off
VDD - 8.0V
VDD - 6.0V
V
V5
Voltage adjustment circuit “OFF”
VDD - 18.0V
VDD - 6.0V
V
Operating Current
IDD01
Display VLCD=16V
TBD
TBD
In use external
Power supply
IDD02
Access fCYC=200KHz
TBD
TBD
In use internal power
supply
IDD
Display VDD=3V,VLCD=16V , 6-time boost
COn/Sn are Open , non-access ,
Display Checkerd pattern
300
TBD
µA
Voltage Regulator
VREG%
T.B.D
%
VDD-17.5V
VDD-17.0V
3.0
V
kΩ
9
µA
Operating Current
VDD=3.0V, Ta=25°C
10
11
*1:NJU6682 can ooerate wide operating rangr,but it is not guarantee immideate voltage changing during the accessing
of the MPU.
*2:The operating current in use external power supply.
*3:RON is the resistance values beteen power supply terminals (V1,V2,V3,V4) and each output terminals of common
and segment suppliedby 0.1V. This is specified within the range of supply voltage(2).
*4,5:In case of not use internal power supply circuit,meaning current of IC’s. LCD driving power supply are external
power supply.
*4,5,11:The value of after execute driver output-oninstruction.
*4:Apply no access from MPU.
*5:The operating current when always writing a vertical stripe pattern in tcyc. In accessing current is proportional to
the access frequency approximately. When not accessed, I become only IDD01.
*6:Apply A0,D0toD15,RD,WR,CS,RES,SEL68,PS0,PS1 terminals.
*7:tR ( the reset time ) shows the time of the inner circuit reset completion from the rise edge of the RES signal.
NJU6682
*8:Apply minimum pulse width of the RES signal. To operate the reset, the "L" pulse over tRW must be inputted.RES.
*9:The voltage adjustment circuit controls V5 in the voltage follower operation voltage
*10:Each operating current is defined as being measured in the following condition.
POWER SUPPLY
SET INSTRUCTION
SYMBOL
DC
VR
VF
IDD1
1
1
OPERATING CONDITION
Internal
Oscillator
1
Validity
Voltage
Booster
Validity
(6-time boost)
Voltage
Adjustment
V/F Circuit
Validity
Validity
EXTERNAL
VOLTAGE
SUPPLY
(INPUT TERMINAL)
Unuse
•LCD output terminal Open.
•Display on,Display checered pattern,No access from MPU
•Set VLCD=16V
•Set to R1+R2+R3=2MΩ
Mesurment Block Diagram
:IDD1
R1
R2
R2
VR
V5
VDD
NJU6682
A
VSS
C1-
C3-
C1+
+
C5-
C2-
+
+
+
C4-
C2+
+
+
+
C6-
VOUT
NJU6682
*11:As for power supply VREG, provide by the error of the VLCD output with the electronic volume.
It use the measurement system shown below.
VDD
XΩ
NJU6682
Ra
V
VR
XΩ
Rb
V5
VREG%=(VREAL-VIDEAL)/VIDEALX100
- VIDEAL means a ideal value and VREAL
means a measurement value.
- As for the calculation of VIDEAL, refer to
voltage adjustment circuit (6-9-11), the
voltage
adjustment circuit (6-9-11) which used an
electronic volume function.
Vout
*12:The voltage change by the output current prescribes a range within Vlcd X 5%. VLCD=12.0V;(VDD-Vout)=16.0V.
It define a measurement system shown below.
*:Vn shows either of V1-V5 measurement terminal. V/F current supply performance is reduceed to the
minimize because of the low consumption current.
Therefore, when measuring, the current which flows through the voltmeter in the figure, too, becomes not able
to be ignored. When measuring, it requeire enough consideration.
V
VDD
NJU6682
A
V5
Measurement circuit for
Source current
NJU6682
Vn
A
Vn
Measurement circuit for
Sink current
V
NJU6682
■BUS TIMING CHARACTERISTICS
•Read/Write operation sequence(80 type MPU)
tCYC8
A0
tr
tf
tAH8
tAW8
tCCL
WR,RD
(CS)
tCCH
tDH8
tDS8
D0 to D8
D0 to D15(16 bit BUS Mode)
(Write)
tACC8
D0 to D8
D0 to D15(16bit BUS Mode)
(Read)
PARAMETER
SIGNAL
SYMBOL
Address Hold Time
Address Set up Time
System Cycle Time (WRITE)
System Cycle Time (READ)
Control Pulse Width (WR)
Control Pulse Width (RD)
Control “H” Pulse Width
Data Set Up Time
Data Hold Time
Rdaccess Time
Output Disable Time
tAH8
tAW8
tCYC8(W)
WR
tCYC8(R)
tCCL(W)
RD
tCCL(R)
WR,RD tCCH
tDS8
D0 to D7 tDH8
D8 to D15 tACC8
tOH8
Rise Time / FallTime
CS,WR,RD tr, tf
A0,CS
*1 All timing based on 20% and 80% of VDD.
tOH8
(VDD=2.4V to 3.3V, Ta=-30 to 80°C)
Measurement
MIN
TYP
MAX
UNIT
Condition
0
0
160
360
50
250
ns
110
30
5
240
CL=100pF
0
50
15
NJU6682
•System BUS Sequence (Read / Write) (68-type MPU)
tCYC6
E
tr
tf
tEWH
tEWL
R/W
tAW6
tAH6
A0,CS
tACC6
D0 to D7,
D8 to D15(16 bit BUS Mode)
(Read)
PARAMETER
Address Hold Time
Address Set Up time
System Cycle Time (WRITE)
System Cycle Time (READ)
READ
WRITE
Enable “L” PilseWidth (READ/WRITE)
Data Set Up Time
Data Hold Time
Access Time
Output Disable Time
Rise Time / Fall Time
Enable “H” Pulse Width
tDH6
tDS6
D0 to D7,
D8 to D15(16 bit BUS Mode
(Write)
SIGNAL
A0,CS
R/W
E
SYMBOL
tAH6
tAW6
tCYC6(W)
tCYC6(R)
tEWH
tEWL
tDS6
D0toD7, tDH6
D8toD15 tACC6
tOH6
tr, tf
E
tOH6
(VDD=2.4V to 3.3V, Ta=-30 to 80°C)
Measurement
MIN
TYP
MAX
UNIT
Condition
0
0
160
360
250
50
ns
110
30
5
240
CL=100pF
0
50
15
*1 All timing are based on 20% and 80% of VDD.
*2 tCYC6 shows the cycle of the E signal to place in the in active CS.
NJU6682
•Serial Interfave
CS
tCSH
tCSS
A0
tSAS
SCL
tSCYC1
tSAH
tSHW
tSLW
tr
tf
tSDS
SI
tSDH
(VDD=2.4V to 3.3V, Ta=-30 to 80°C)
PARAMETER
Serial Clock Cycle
SIGNAL
Instruction Input
2)
Instruction Time*
SCL"H" Pulse Width
SCL"L" Pilse Width
Address Set Up Time
Address Hold Time
Data Set Up Time
Data Hold Time
SCL
CS-SCLTime
CS
Rise Time / Fall Time
SCL
A0
SI
SYMBOL
Measurement
Condition
MIN
tSCYC1
60
tSCYC2
tSHW
tSLW
tSAS
tSAH
tSDS
tSDH
tCSS
tCSH
tf, tr
200
30
30
15
15
15
15
30
30
TYP
MAX
ns
15
*1 All timing are based on 20% and 80% of VDD.
*2 When inputting an instruction continuously, provide the cycle of SCL among the instructions as follows
by 200 nS.
th
SCL 16 Clock(4-wire)
th
SCL 17 Clock(3-wire)
st
SCL 1 Clock
SCL
Instruction (n th)
tSCYC2 (200nS)
SCL”L”Pulse Width
(Instruction Time)
Instruction (n+1 th)
UNIT
NJU6682
■LCD Driving Wave Form (Black & Whitr Mode)
VDD
VSS
VDD
V1
V2
V3
V4
V5
FR
C0
C0
C1
C2
C3
C4
C5
C6
C7
VDD
V1
V2
V3
V4
V5
C1
C8
C9
C10
C11
C12
C13
C14
C15
VDD
V1
V2
V3
V4
V5
C2
VDD
V1
V2
V3
V4
V5
S0
S4
S3
S2
S1
S0
VDD
V1
V2
V3
V4
V5
S1
V5
V4
V3
V2
V1
VDD
-V1
-V2
-V3
-V4
-V5
C0-S0
V5
V4
V3
V2
V1
VDD
-V1
-V2
-V3
-V4
-V5
C0-S1
Fig 4
NJU6682
■APPLICATION CIRCUIT
MPU Interface Example
NJU6682 can direct connection with 80 type MPU and 68 type MPU. Moreover, with to use a serial interface,
it is possible to control by the signal line with the more small being.
*:CEL68 terminal should be connect VDD or VSS.
•80 type MPU
Vcc
A0
A0
VDD
SEL68
A0 to A7
MPU
Decoder
CS
NJU6682
IORQ
GND
D0 to D7
D0 to D7
D8 to D15
D8 to D15
VDD
PS1
RD
RD
WR
WR
RES
RES
VSS
A0
VDD
PS0
VDD
or
GND
RESET
•68 type MPU
Vcc
A0
VDD
SEL68
A0 to A15
MPU
Decoder
CS
NJU6682
VMA
D0 to D7
D0 to D7
D8 to D15
D8 to D15
E
E
GND
VDD
PS1
R/W
R/W
RES
RES
PS0
VDD
or
GND
VSS
RESET
•Serial Interface (4-Wire)
Vcc
A0
A0
VDD
SEL68
A1 to A7
Decoder
CS
NJU6682
MPU
Port 1
D7(SI)
Port 2
D6(SCL)
PS1
PS0
GND
RES
RES
RESET
VSS
VDD
or
GND
VDD
MEMO
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.