NJRC NJU6676

NJU6676
PRELIMINARY
64-Common X 132-Segment plus 1-Icon
Bit Map Type LCD Controller and Driver
■ GENERAL DESCRIPTION
The NJU6676 is a bit map LCD driver to display
graphics or characters. It contains 8,580 bits display data
RAM, microprocessor interface circuits, instruction
decoder, 132-segment drivers, 64-common drivers and 1icon drivers.
The bit image display data is transferred to the display
data RAM by serial or 8-bit parallel interface.
65 x 132 dots graphics or 8-character 4-line by 16 x 16
dots character with icon are displayed by NJU6676 itself.
The wide operating voltage from 2.2 to 5.5V and low
operating current are useful for small size battery
operating items.
The build-in Electrical Variable Resistance is very
precision, furtheremore the rectangle outlook is very
applicable to COG or Slim TCP.
■ PACKAGE
NJU6676CH
■ FEATURES
● Direct Correspondence between Display Data RAM and LCD Pixel
● Display Data RAM - 8,580 bits
● 197 LCD Drivers - 65-common and 132-segment
● Direct Microprocessor Interface for both of 68 and 80 type MPU
● Serial Interface
● Programmable Bias selection ; 1/7,1/9 bias
● Useful Instruction Set
Display Data Read/Write, Display ON/OFF Cont, Static indicator, Display Start Line Set, Bias Select,
Inverse Display, Common Driver order Assignment, Power control set, Page Address Set,
Column Address Set,Status Read, All On/Off, ADC Select, Read Modify Write, Power Saving.
● Power Supply Circuits for LCD Incorporated
Voltage Booster Circuits (4-time Maximum), Regulator, Voltage Follower x 4
● Precision Electrical Variable Resistance (64-step)
● Low Power Consumption 80uA(Typ.).
● Operating Voltage (All the voltages are based on VDD=0V.)
- Rogic Operating Voltage
: -2.2V ∼ -5.5V
- Voltage Booster Operating Voltage : -2.5V ∼
- LCD Driving Voltage
: -6.0V ∼ -18.0V
● Rectangle outlook for COG
● Package Outline : Bump-chip / TCP
● C-MOS Technology
Ver.1.31
NJU6676
PRELIMINARY
C32
C33
C63
COMM
■ PAD LOCATION
DUMMY4
S131
S130
DUMMY1
OSC1
OSC2
FRS
FR
CL
DOF
VSS
CS1
CS2
VDD
RES
A0
VSS
WR
RD
VDD
D0
D1
D2
D3
D4
D5
D6(SCL)
D7(SI)
VDD
VDD
VDD
VDD
VSS
VSS
VSS
VSS2
VSS2
VSS2
VSS2
VOUT
VOUT
C3C3C1+
C1+
C1C1C2C2C2+
C2+
VSS
VSS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
VDD
M/S
CLS
VSS
C86
P/S
VDD
VSS
VDD
DUMMY2
Y
X
Chip Center : X=0um, Y=0um
Chip Size
:X=8.72mm,Y=2.37mm
Chip Thickness : 675um ± 30um
Bump Size
: 45um x 83um
Pad Pitch : 60um(Min.)
Bump Height : 15um(Typ.)
Bump Material : Au
S1
S0
DUMMY3
COMM
C0
C30
C31
NJU6676
PRELIMINARY
n PAD COORDINATES
PAD No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Terminal
DUMMY1
OSC1
OSC2
FRS
FR
CL
DOF
VSS
CS1
CS2
VDD
RES
A0
VSS
WR
RD
VDD
D0
D1
D2
D3
D4
D5
D6(SCL)
D7(SI)
VDD
VDD
VDD
VDD
VSS
VSS
VSS
VSS2
VSS2
VSS2
VSS2
VOUT
VOUT
C3C3C1+
C1+
C1C1C2C2C2+
C2+
VSS
VSS
X(um)
-4139
-3347
-3287
-3129
-2909
-2688
-2468
-2311
-2251
-2191
-2131
-2071
-2011
-1951
-1891
-1831
-1771
-1613
-1393
-1172
-952
-731
-511
-291
-70
155
215
275
335
395
455
515
575
635
695
755
815
875
935
995
1055
1115
1175
1235
1295
1355
1415
1475
1535
1595
Y(um)
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
-1025
Chip Size 8.72 x 2.37mm(Chip Center X=0um, Y=0um)
PAD No. Terminal
X(um)
Y(um)
51
VDD
1655
-1025
52
VDD
1715
-1025
53
V1
1775
-1025
54
V1
1835
-1025
55
V2
1895
-1025
56
V2
1955
-1025
57
V3
2015
-1025
58
V3
2075
-1025
59
V4
2135
-1025
60
V4
2195
-1025
61
V5
2255
-1025
62
V5
2315
-1025
63
VR
2375
-1025
64
VR
2435
-1025
65
VDD
2495
-1025
66
VDD
2555
-1025
67
VDD
2615
-1025
68
M/S
2675
-1025
69
CLS
2810
-1025
70
VSS
2870
-1025
71
C86
2930
-1025
72
P/S
3065
-1025
73
VDD
3125
-1025
74
VSS
3185
-1025
75
VDD
3245
-1025
76
DUMMY2
4139
-1025
77
C31
4200
-935
78
C30
4200
-875
79
C29
4200
-815
80
C28
4200
-755
81
C27
4200
-695
82
C26
4200
-635
83
C25
4200
-575
84
C24
4200
-515
85
C23
4200
-455
86
C22
4200
-395
87
C21
4200
-335
88
C20
4200
-275
89
C19
4200
-215
90
C18
4200
-155
91
C17
4200
-95
92
C16
4200
-35
93
C15
4200
25
94
C14
4200
85
95
C13
4200
145
96
C12
4200
205
97
C11
4200
265
98
C10
4200
325
99
C9
4200
385
100
C8
4200
445
NJU6676
PRELIMINARY
PAD No.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Terminal
C7
C6
C5
C4
C3
C2
C1
C0
COMM
DUMMY3
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
X(um)
4200
4200
4200
4200
4200
4200
4200
4200
4200
4119
3933
3873
3813
3753
3693
3633
3573
3513
3453
3393
3333
3273
3213
3153
3093
3033
2973
2913
2853
2793
2733
2673
2613
2553
2493
2433
2373
2313
2253
2193
2133
2073
2013
1953
1893
1833
1773
1713
1653
1593
Y(um)
505
565
625
685
745
805
865
925
985
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
PAD No.
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Terminal
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
S52
S53
S54
S55
S56
S57
S58
S59
S60
S61
S62
S63
S64
S65
S66
S67
S68
S69
S70
S71
S72
S73
S74
S75
S76
S77
S78
S79
S80
S81
S82
S83
S84
S85
S86
S87
S88
S89
X(um)
1533
1473
1413
1353
1293
1233
1173
1113
1053
993
933
873
813
753
693
633
573
513
453
393
333
273
213
153
93
33
-27
-87
-147
-207
-267
-327
-387
-447
-507
-567
-627
-687
-747
-807
-867
-927
-987
-1047
-1107
-1167
-1227
-1287
-1347
-1407
Y(um)
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
NJU6676
PRELIMINARY
PAD No.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
Terminal
S90
S91
S92
S93
S94
S95
S96
S97
S98
S99
S100
S101
S102
S103
S104
S105
S106
S107
S108
S109
S110
S111
S112
S113
S114
S115
S116
S117
S118
S119
S120
S121
S122
S123
S124
S125
S126
S127
S128
S129
S130
S131
DUMMY4
C32
C33
C34
C35
C36
C37
C38
X(um)
-1467
-1527
-1587
-1647
-1707
-1767
-1827
-1887
-1947
-2007
-2067
-2127
-2187
-2247
-2307
-2367
-2427
-2487
-2547
-2607
-2667
-2727
-2787
-2847
-2907
-2967
-3027
-3087
-3147
-3207
-3267
-3327
-3387
-3447
-3507
-3567
-3627
-3687
-3747
-3807
-3867
-3927
-4119
-4200
-4200
-4200
-4200
-4200
-4200
-4200
Y(um)
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
985
925
865
805
745
685
625
PAD No.
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
Terminal
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
COMM
X(um)
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
-4200
Y(um)
565
505
445
385
325
265
205
145
85
25
-35
-95
-155
-215
-275
-335
-395
-455
-515
-575
-635
-695
-755
-815
-875
-935
NJU6676
PRELIMINARY
■ BLOCK DIAGRAM
C0 - - - - C31
C63 - - - - C32
S0 - - - - - - - - - - - - - S131
COMM
Vss
VDD
Common
Drivers
V1 to V5
Shift
Register
Shift
Register
Voltage
Regulator
Display Data Latch
Vout
Display Data RAM
65 X 132 = 8,580-bit
Colum Address Recoder
Display
Timing
Colum Address Counter
Page Address Register
Common Direction
Vss2
Line Address Decoder
C3-
Voltage
Converter
Low Address Decoder
C1+/C1C2+/C2-
Common
Timing
Initial Display Line
Add
VR
Voltage
Followers
Common
Drivers
Line Counter
Internal
Power
Circuits
Segment Drivers
M/S
FR
FRS
CL
CLS
DOF
Colum Address Register
Ocsailator
OSC1
OSC2
Multiplexer
Instruction
Decoder
Status
Busy Flag
Bus Holder
Internal Bus Line
Reset
RES
MPU Interface
CS1
CS2
A0
RD
WR
C86
D7
(SI)
D6
(SCL)
P/S
D5 to D0
NJU6676
PRELIMINARY
■ TERMINAL DESCRIPTION
Power Supply Peripheral
No.
Symbol
Description
11,17
VDD
VDD=+3V
26∼29
51,52
65∼67
73,75
8,14,
VSS
VSS=0V
3031,
32,49
50,70,74
33∼36
VSS2
Reference voltage for voltage booster
53,54
LCD Driving Voltage Supplying Terminal. When the internal voltage booster
V1
55,56
is not used, supply each level of LCD driving voltage from outside with
V2
57,58
following relation.
V3
59,60
VDD≥V1≥V2≥V3≥V4≥V5
V4
61,62
V5
When the internal power supply is on, the internal circuits generate and
supply following LCD bias voltage from V1 to V4 terminal.
Bias
V1
V2
V3
V4
1/7 Bias V5+6/7VLCD V5+5/7VLCD V5+2/7VLCD V5+1/7VLCD
1/9 Bias V5+8/9VLCD V5+7/9VLCD V5+2/9VLCD V5+1/9VLCD
(VLCD=VDD-V5)
LCD Driving Power Supply Peripheral
No.
Symbol
Description
41,42
C1+
Boosted capacitor connecting terminals used for voltage booster.
43,44
C147,48
C2+
Boosted capacitor connecting terminals used for voltage booster.
45,46
C239,40
C3Boosted capacitor connecting terminals used for voltage booster.
37,38
Vout
Voltage booster output terminal. Connect the boosted capacitor between
this terminal and VSS2.
63,64
VR
Voltage adjust terminal. V5 level is adjusted by external bleeder resistance
connecting between VDD and V5 terminal.
MPU Interface Peripheral
No.
Symbol
Description
18∼25
D0∼D7
P/S="H" : Tri-state bi-directional Data I/O terminal in 8-bit parallel operation.
(24,25)
(SCL,
P/S="L" : D7=Serial data input terminal. D6=Serial data clock signal input
terminal. Data from SI is loaded at the rising edge of SCL and
SI)
latched as the parallel data at 8th rising edge of SCL.
13
A0
Connect to the Address bus of MPU. The data on the D0 to D7 is
distinguished between Display data and Instruction by status of A0.
A0
H
L
Distin
Display Data
Instruction
.
12
RES
9
10
CS1
CS2
Reset terminal. When the RES terminal goes to “L”, the initialization is
performed.
Reset operation is executing during “L” state of RES.
Chip select terminal. Data Input/Output are available during CS1=”L” and
CS2=”H”.
NJU6676
PRELIMINARY
No.
16
Symbol
RD
(E)
Description
<In case of 80 Type MPU>
RD signal of 80 type MPU input terminal.
Active "L" During this signal is "L" , D0 to D7 terminals are output. <In
case of 68 Type MPU>
Enable signal of 68 type MPU input terminal.
Active "H"
<In case of 80 Type MPU> Connect to the 80 type MPU WR signal. Actie
"L".
The data on the data bus input syncronizing the rise edge of this
signal. <In case of 68 Type MPU>
The read/write control signal of 68
type MPU input terminal.
R/W
H
L
State
Read
Write
15
WR
(R/W)
71
C86
MPU interface type selection terminal.
C86
H
L
State
68 Type
80 Type
72
P/S
Serial or parallel interface selection terminal.
Serial
Clock
“H”
CS1, CS2
A0
D0∼D7
RD,WR
“L”
CS1, CS2
A0
SI(D7) Write Only SCL(D6)
RAM data and status read operation do not work in mode of
the serial interface.
In case of the serial interface (P/S="L"),RD and WR
must be fixed "H" or "L", and D0 to D5 are high impedance.
System clock input terminal for Maker testing.(This terminal should be
Open) For external clock operation, the clock shoud be input to OSC1
terminal.
Terminal to select whether or enable or disable the display clock internal
oscillator circuit.
CLS=”H” : Internal oscillator circuit is enabld
CLS=”L” : Internal oscillator circuit is disabled (requires external input)
When CLS=”L”, input the display clock through the CL terminal.
This terminal selects the master/slave operation for the NJU6676. Master
operation outputs the timing signals that are required for the LCD display,
while slave operation inputs the timing signals required for the LCD,
synchronizing the LCD system.
M/S = ”H” : Master operation
M/S = ”L” : Slave operation
The following is true depending on the M/S and CLS status:
Power Supply
M/S CLS OSC.
CL
FR
FRS
DOF
Circuit
“H” Available Available
Output Output Output Output
“H”
“L” Not Avail. Available
Input Output Output Output
“L”
* Not Avail. Not Avail.
Input
Input Output Input
*:Don’t Care
P/S
2
3
OSC1
OSC2
69
CLS
68
M/S
Chip Select Data/Command Data
Read/Write
NJU6676
PRELIMINARY
6
No.
Symbol
CL
5
FR
7
DOF
4
FRS
LCD Drivers
No.
Symbol
C31∼C0
77
∼108
111
∼242
S0∼S131
Description
Display clock input/output terminal.
The following is true depending on the M/S and CLS status.
M/S
CLS
CL
“H”
Output
“H”
“L”
Input
“L”
*
Input
*:Don’t Care
LCD alternating current signal I/O terminal.
M/S = ”H” : Output
M/S = ”L” : Input
LCD Display blanking control terminal.
M/S = ”H” : Display “On” = “H”, Display “Off” = “L”
M/S = ”L” : External control. Refer to the following table.
DOF
Command
H
L
Display On”
On
Off
Display Off”
Off
Off
The output terminal for the static drive.
This terminal is used in conjunction with the FR terminal.
Description
LCD driving signal output terminals.
-Segment output terminals : S0 ∼ S131
-Common output terminal : C0 ∼ C63
Segment output terminal
The following output voltages are selected by the combination of FR and
data in the RAM.
RAM
Data
H
L
244
∼275
C32∼C63
109,
276
COMM
FR
H
L
H
L
Output Voltage
Normal
Reverse
VDD
V2
V5
V3
V2
VDD
V3
V5
Common output terminal
The following output voltages are selected by the combination of FR and
status of common.
Scan
FR
Output Voltage
Data
H
V5
H
L
VDD
H
V1
L
L
V4
COM output terminals for the indicator. Both terminals output the same
signal.
Leave these open if they are not used.
(Terminals 1,76,110,243 are Dummy Pad)
NJU6676
PRELIMINARY
Functional description
(1) Block circuits description
(1-1) Busy Flag (BF)
During internal operation, the LSI is being busy and can’t accept any instructions except “status
read”. The BF data is output through D7 terminal by the “status read” instruction.
When the cycle time (tcyc) mentioned in the “AC characteristics ” is satisfied, the BF check isn’t
required after each instruction, so that MPU processing performance can be improved.
(1-2) Initial display line register
The initial display line register assigns a DDRAM line address, which corresponds, to COM0 by
“initial display line set” instruction. It is used for not only normal display but also vertical display
scrolling and page switching without changing the contents of the DDRAM.
th
However, the 65 address for icon display can’t be assigned for initial display line address.
(1-3) Line counter
The line counter provides a DDRAM line address. It initializes its contents at the switching of frame
timing signal (FR), and also counts-up in synchronization with common timing signal.
(1-4) Column address counter
The column address counter is an 8-bit preset counter which provides a DDRAM column address,
and it is independent of below-mentioned page address register.
It will increment (+1) the column address whenever “display data read” or “display data write”
instructions are issued. However, the counter will be locked when no-existing address above (84)H
are addressed. The count-lock will be able to be released by the “column address set” instruction
again. The counter can invert the correspondence between the column address and segment driver
direction by means of “ADC set” instruction.
(1-5) Page address register
The page address register provides a DDRAM page address.
The last page address “8” should be used for icon display because the only D0 is valid.
(1-6) Display data RAM (DDRAM)
The DDRAM contains 8,580-bit, and stores display data which is 1-to-1 correspondents to LCD
panel pixels.
When normal display mode, the display data “1” turns on and “0” turns off LCD pixels. When inverse
display mode, “1” turns off and “0” turns on.
NJU6676
PRELIMINARY
Fig.1 Display data RAM (DDRAM) Map
Page Address
D3,D2,D1,D0
(0,0,0,0)
D3,D2,D1,D0
(0,0,0,1)
D3,D2,D1,D0
(0,0,1,0)
:
:
:
:
D3,D2,D1,D0
(0,1,1,1)
(1,0,0,0)
Column
Address
ADC
Data
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
:
:
:
:
Display Pattern
Page 0
n
n
n
n
n n
n
n
n
n
n
n n
n
n
n
n
Page 1
Page 2
:
:
:
:
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
“0”
“1”
Segment Drivers
Line
Addres
s
(00)H
01
02
03
04
05
06
07
Initial
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
:
:
:
:
35
36
37
38
39
3A
3B
3C
3D
3E
3F
*
Page 7
Page 8
00
01
02
03
04
05
06
82
83
83
82
81
80
7F
7E 7D
01
00
130
131
0
1
2
3
4
5
6
Common
Driver
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
:
:
:
:
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COMI
For example the Initial
display is 08H.
Note ) COMI is independent of the “Initial display line set” instruction and always corresponds to the 65 th line.
NJU6676
PRELIMINARY
(1-7) Common direction register
The common direction register specifies common driver’s scanning direction.
Register
A3
Common drivers
PAD No.
Pin name
0
1
108
77
C0 ------------------------------ C31
COM0 ------------------ COM31
COM63 ----------------- COM32
275
244
C63 ---------------------------- C32
COM63 ----------------- COM32
COM0 ------------------ COM31
(1-8) Reset circuit
The reset circuit initializes the LSI to the following status by using of the reset signal into the RES
terminal.
Reset status using the RES terminal:
1. LCD Driver Set off
2. Display off
3. Normal Display (Non-inverse display)
4. ADC select : Normal mode (D0=0)
5. Power control register clear
6. Serial interface register clear
7. LCD bias select
: 1/9 bias
8. Read modify write off
9. Static indicator off
10. Initial display line address
: (00)H
11. Column address
: (00)H
12. Page address
: (0) page
13. Common direction register
: Normal mode (D3=0)
14. EVR mode off and EVR register
: (20)H
15. Test mode off
16. Entire display off
: Normal mode
The RES terminal should be connected to MPU’s reset terminal, and the reset operation should be
executed at the same timing of the MPU reset.
As described in the “DC characteristics”, it is necessary to input 10us or over “L” level signal into the
RES terminal in order to carry out the reset operation. The LSI will return to normal operation after
about 1us from the rising edge of the rest signal.
In case of using external power supply for LCD driving voltage, the RES terminal is required to be
being “L” level when the external power supply is turned-on.
The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RES
terminal. It executes above-mentioned only 8 to 16 items.
(1-9) LCD display circuits
a) Common and segment drivers
LCD drivers consist of 64-common drivers, 132-segment divers and 1-icon-common driver.
As shown in Fig.7, LCD driving waveforms are generated by the combination of display data,
common timing signal and internal FR timing signal.
NJU6676
PRELIMINARY
b) Display data latch circuit
The display data latch circuit temporally stores 132-bit display data transferred from the DDRAM in
the synchronization with the common timing signal, and then it transfers these stored data to the
segment drivers.
“Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the
contents of this latch circuit, they can’t change the contents of the DDRAM.
In addition, the LCD display isn’t affected by the DDRAM accuses during its displaying because the
data read-out timing from this latch circuit to the segment drivers is independent of accessing timing
to the DDRAM.
c) Line counter and latch signal or latch Circuits
The clock line counter and latch signal to the latch circuits are generated from the internal display
clock (CL). The line address of display data RAM is renewed synchronizing with display clock (CL).
132bits display data are latched in display latch circuits synchronizing with display clock, and then
output to the LCD driving circuits. The display data transfer to the LCD driving circuits is executed
independently with RAM access by the MPU.
d) Display timing generator
The display timing generates the timing signal for the display system bay combination of the master
clock CL and driving signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal
generate LCD driving waveform on the two frame alternative driving method.
e) Common timing generation
The common timing is generated by display clock CL (refer to Fig.2)
Fig.2 Display Timing
64 63 1
2
3
4
5
6
7
8
64 63 1
CL
FR
COM0
COM1
RAM data
SEG n
Fig.2 Waveform of Display Timing
2
3 4
5 6
7
8
NJU6676
PRELIMINARY
f) Oscillator
This is the low power consumption CR oscillator which provides the display clock and voltage
converter-timing clock.
e) Internal power circuits
The internal power circuits are composed of x4 boost voltage converter, output voltage regulator
including 64-step EVR and voltage followers.
The optimum values of the external passive components for the internal power circuits, such as
capacitors for V1 to V5 terminals and feed back resistors for VR terminal, depend on LCD panel size.
Therefore, it is necessary to evaluate the actual LCD module with these external components in
order to determine the optimum values.
Each portion of the internal power circuits is controlled by “power control set” instruction as shown in
Table.1. In addition, the combination of power supply circuits is described in Table.2.
Table.1) Power control set
Bits
D2
D1
D0
Portions
Status
Voltage converter
Voltage regulator
Voltage followers
1 :On
1 :On
1 :On
0: Off
0: Off
0: Off
Table.2) Power supply combinations
Status
D2
D1
D0
Voltage
converter
Voltage
regulator
Voltage
followers
External
voltage
Using all internal power circuits
Using voltage regulator and
Voltage followers
Using voltage followers
Using only external power supply
1
0
1
1
1
1
On
Off
On
On
On
On
0
0
0
0
1
0
Off
Off
Off
Off
On
Off
Vss2
Vout,
Vss2
V5, Vss2
V1 to V5
Capacito
r
terminals
Use
Open
Open
Open
Note1) Capacitor input terminals: C1+, C1-, C2+, C2-, C3Note2) Do not use other combinations except examples in Table.2.
Note3) Connect decoupling capacitors on V1 to V5 terminals whenever using the voltage followers.
NJU6676
PRELIMINARY
(2) Instruction set
The D7 to D0 data is distinguished as display data or instruction data by the combination of A0, RD
and WR signals.
Table.3 Instruction table
Instruction
1
2
Display On/Off
Initial display line set
Instruction code
Description
AO
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
0
0 :Off
1
1 :On
0
1
0
0
1
D5
D4
D3
D2
D1
D0
Specify DDRAM line
address for COM0
3
Page address set
0
1
0
1
0
1
1
D3
D2
D1
D0
DDRAM page address
4
Column address set
Upper 4-bit
0
1
0
0
0
0
1
D3
D2
D1
D0
DDRAM column address
of upper 4-bits
Column address set
Lower 4-bit
0
1
0
0
0
0
0
D3
D2
D1
D0
DDRAM column address
of lower 4-bits
5
Status read
0
0
1
D7
D6
D5
D4
0
0
0
0
6
Display data write
1
1
0
D7
D6
D5
D4
D3
D2
D1
D0
Write DDARM data
7
Display data read
1
0
1
D7
D6
D5
D4
D3
D2
D1
D0
Read DDRAM data
8
ADC select
0
1
0
1
0
1
0
0
0
0
0
Read internal status
Select segment direction
1
9
Inverse display On/Off
0
1
0
1
0
1
0
0
1
1
0
0 : Normal display
1
1 : Inverse display on
10
Entire display On/Off
0
1
0
1
0
1
0
0
1
0
0
1
0 : Normal display
1 : Entire display on
11
LCD bias select
0
1
0
1
0
1
0
0
0
1
0
1
0 : 1/9 bias
1 : 1/7 bias
12
Read modify write
0
1
0
1
1
1
0
0
0
0
0
Increment column address
13
End
0
1
0
1
1
1
0
1
1
1
0
Release read modify write
14
Reset
0
1
0
1
1
1
0
0
0
1
0
Internal reset
15
Common direction select
0
1
0
1
1
0
0
0
*
*
*
Select common direction
Set the status of internal
1
16
Power control set
0
1
0
0
0
1
0
1
D2
D1
D0
17
Driver On/Off
0
1
0
1
1
1
0
0
1
1
0
1
0 : Driver Off
1 : Driver On
18
EVR mode set
0
1
0
1
0
0
0
0
0
0
1
Set EVR mode
EVR register set
0
1
0
*
D5
D4
D3
D2
D1
D0
Static indicator On/Off
0
1
0
1
0
1
0
1
1
0
0
1
Static indicator register
set
0
1
0
*
*
*
*
*
*
D1
D0
Set static indicator register
20
Power save mode On/Off
-
-
-
-
-
-
-
-
-
-
-
Dual commands of display
Off & entire display On
21
NOP
0
1
0
1
1
1
0
0
0
1
1
22
Test
0
1
0
1
1
1
1
*
*
*
*
power circuits
19
*
*
Set EVR register
0 : Off
1 : On
Don’t use
NJU6676
PRELIMINARY
(3) Instruction description
3-1) Display On/Off
This instruction selects display turn-on or turn-off regardless of the contents of the DDRAM.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
1
D2
1
D1
1
D0
0
1
Display On or Off
0 :Off
1 :On
3-2) Initial display line set
This instruction specifies the DDRAM line address which corresponds to the COM0 position.
By means of repeating this instruction, the initial display line address will be dynamically changed; it
means smooth display scrolling will be enabled.
A0
0
RD
1
WR
0
D7
0
D6
1
D5
0
0
:
1
1
D4
0
0
:
1
1
D3
0
0
:
1
1
D2
0
0
:
1
1
D1
0
0
:
1
1
D0
0
1
:
0
1
Line address for COM0
0
1
:
62
63
3-3) Page address set
In order to access to the DDRAM for writing or reading display data, both “page address set ” and
“column address set” instructions are required before accessing.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
1
D3
0
0
:
0
1
D2
0
0
:
1
0
D1
0
0
:
1
0
D0
0
1
:
1
0
Page address
0
1
:
7
8
NJU6676
PRELIMINARY
3-4) Column address set
As above-mentioned, in order to access to the DDRAM for writing or reading display data, it is
necessary to execute both “page address set” and “column address set” before accessing. The 8-bit
column address data will be valid when both upper 4-bit and lower 4-bit data are set into the column
address register.
Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be
accessed, so that the DDRAM will be able to be continuously accessed without “column address set”
instruction.
The column address will stop increment and the page address will not be changed when the last
address (83)H is addressed.
A0
0
RD
1
WR
0
D7
0
D6
0
D5
0
D4
1
0
D3
A7
A3
D2
A6
A2
D1
A5
A1
D0
A4
A0
A7
0
0
:
1
1
A6
0
0
:
0
0
A5
0
0
:
0
0
A4
0
0
:
0
0
A3
0
0
:
0
0
A2
0
0
:
0
0
A1
0
0
:
1
1
A0
0
1
:
0
1
Upper 4-bit
Lower 4-bit
Column address
0
1
:
130
131
3-5) Status read
This instruction reads out the internal status regarding “busy flag”, “ADC select”, “display on/off ” and
“reset”.
A0
0
RD
0
WR
1
D7
D6
D5
D4
BUSY
ADC
On/Off
RESET
D3
0
D2
0
D1
0
D0
0
BUSY
: When D7 is “1”, the LSI is being busy and can’t accept any instructions.
ADC
: It shows the correspondence between the column address and segment drivers.
When D6 is “0”, the column address (131-n) corresponds to segment driver n.
When D6 is “1”, the column address (n) corresponds to segment driver n.
Please be careful that read out data is opposite of “ADC select” instruction data.
On/Off : It shows display on or off status.
When D5 is “0”, the LSI is in display-on status.
When D5 is “1”, the LSI is in display-off status.
Please be careful that read out data is opposite of “ADC select” instruction data.
RESET : It shows reset status.
When D4 is “0”, the LSI is in normal operation.
When D4 is “1”, the LSI is during reset operation.
NJU6676
PRELIMINARY
3-6) Display data write
This instruction writes display data into the selected column address on the DDRAM.
The column address automatically increments (+1) whenever the display data is written by this
instruction, so that this instruction can be continuously issued without “column address set”
instruction.
A0
1
RD
1
WR
0
D7
D6
D5
D4
D3
Write Data
D2
D1
D0
3-7) Display data read
This instruction reads out the display data stored in the selected column address on the DDRAM.
The column address automatically increments (+1) whenever the display data is read out by this
instruction, so that this instruction can be continuously issued without “column address set”
instruction.
After the ”column address set” instruction, a dummy read will be required, please refer to the (5-4).
In case of using serial interface mode, this instruction can’t be used.
A0
1
RD
0
WR
1
D7
D6
D5
D4
D3
Read Data
D2
D1
D0
3-8) ADC select
This instruction selects segment driver direction.
The correspondence between the column address and segment driver direction is shown in Fig.1.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
0
D1
0
D0
0
1
Segment driver direction
Normal
Inverse
3-9) Inverse display On/Off
This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the
contents of the DDRAM.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
1
D1
1
D0
0
1
Display status
Normal
Inverse
3-10) Entire display On/Off
This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change
the contents of DDRAM.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
1
D1
0
D0
0
1
Entire display on/off
Normal
Entire display on
NJU6676
PRELIMINARY
3-11) LCD bias set
This instruction selects LCD bias value.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
0
D1
1
D0
0
1
LCD bias
1/9
1/7
3-12) Read modify write
This instruction controls column address increment.
By using of this instruction, the column address can’t increment when read operation but it can
increment when write operation. This status will be continued until the below -mentioned “end”
instruction will be issued.
This instruction can reduce the load of MPU, during the display data in specific DDRAM area is
repeatedly changed for cursor blink or others.
A0
0
RD
1
WR
0
D7
1
D6
1
D5
1
D4
0
D3
0
D2
0
D1
0
D0
0
The sequence of cursor blink display
Page address set
Set address
for cursor line
Column address set
Read modify write
Start
“read
modify
Dummy read
Data read
Inverse data in MPU
Data write
Dummy read
Data read
Data write
Repeat
End
“read
End
No
Finish?
Yes
modify
NJU6676
PRELIMINARY
3-13) End
The “end” instruction cancels the read modify write mode and makes the column address return to
the initial value just before “read modify write” is started.
A0
0
RD
1
WR
0
D7
1
D6
1
D5
1
D4
0
D3
1
D2
1
D1
1
D0
0
Return
Column
Address
N
N+1
N+2
N+3
N+m
Read modify write
N
End
3-14) Reset
This instruction reset the LSI to the following status, however it doesn’t change the contents of the
DDRAM. Please be careful that it can’t be substituted for the reset operation by using of the RES
terminal.
Reset status by “reset” instruction:
1.
2.
3.
4.
5.
6.
7.
8.
Read modify write off
Static indicator off
Initial display line address
Column address
Page address
Common direction register
EVR mode off and EVR register
Test mode off
A0
0
RD
1
WR
0
D7
1
D6
1
D5
1
: (00)H
: (00)H
: (0) page
: Normal mode (D3=0)
: (20)H
D4
0
D3
0
D2
0
D1
1
D0
0
3-15) Common driver direction select
This instruction selects common driver direction.
Please refer to (1-7) common driver direction for more detail.
A0
0
RD
1
WR
0
D7
1
D6
1
D5
0
D4
0
D3
0
1
D2
*
D1
*
D0
*
Common driver direction
Normal
Inverse
NJU6676
PRELIMINARY
3-16) Power control set
This instruction controls the status of internal power circuits. Please refer to the (4) internal power
supply circuits for more detail.
A0
0
RD
1
WR
0
D7
0
D6
0
D5
1
D4
0
D3
1
D2
0
1
D1
D0
0
1
0
1
Status
Voltage converte r off
Voltage converter on
Voltage regulator off
Voltage regulator on
Voltage followers off
Voltage followers on
Note) The internal power supply must be Off when external power supply using.
* The wait time depends on the C3 to C7, COUT capacitors, and VDD and VLCD Voltage.
Therefore it requires the actual evaluation using the LCD module to get the correct time.
T.B.D
3-17) LCD Driver On/Off
This instruction controls LCD driving waveform output through the COM/SEG terminals.
A0
0
RD
1
WR
0
D7
1
D6
1
D5
1
D4
0
D3
0
D2
1
D1
1
D0
0
1
Driver
Off
On
The NJU6676 contains low power LCD driving voltage generator circuit reducing own operating
current. Therefore , it requires the following sequence procedures at power on for power source
stabilized operation.
NJU6676
PRELIMINARY
LCD Driving power supply On/Off sequences
The following sequences required when the power supply is turned On/Off.
When the power supply is turned on again after the turn off (by the power save instruction), the power
save release sequence(3-22) is required.
Turn ON sequence
Turn OFF sequence
Output Assign. Register Set
Display OFF
Static Indicater Set
Entire Display OFF
EVR Register Set
Internal Power Supply OFF
Or
External Power Supply OFF
Internal Power Supply ON
Or
External Power Supply ON
Wait Time
LCD Driver ON
LCD Drivier OFF
3-18) EVR mode set
This instruction sets the LSI into the EVR mode, and it is always used by the combination with “EVR
register set”.
The LSI can’t accept any instructions except the “EVR register set” during the EVR set mode. This
mode will be released after the “EVR register set” instruction.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
1
3-19) EVR register set
This instruction sets 6-bit data into the EVR register to determine the output voltage “V5” of the
internal voltage regulator.
A0
0
RD
1
WR
0
D7
*
D6
*
D5
0
0
:
1
1
D4
0
0
:
1
1
D3
0
0
;
1
1
D2
0
0
:
1
1
D1
0
0
:
1
1
D0
0
1
:
0
1
V5
Minimum
:
:
:
Maximum
3-20) Static indicator on/off
This instruction selects static indicator turn-on or turn-off, and it is always used by the combination
with the “ static indicator register set”.
A0
0
RD
1
WR
0
D7
1
D6
0
D5
1
D4
0
D3
1
D2
1
D1
0
D0
0
1
Static indicator
Off
On
NJU6676
PRELIMINARY
3-21) Static indicator register set
This instruction sets 2-bit data into the static indicator register.
A0
0
RD
1
WR
0
D7
*
D6
*
D5
*
D4
*
D3
*
D2
*
D1
0
0
1
1
D0
0
1
0
1
Status
Off
On (Blink at 1.0 s intervals)
On (Blink at 0.5s intervals)
On (Turn on at all time)
3-22) Power save mode On/Off
This instruction sets the LSI into the power save mode by the combination of “display off” and “whole
display on” instructions for reducing operating current as well as static operation’s.
The internal status and the contents of the DDRAM will be remained just before the “power save
mode on/off” instruction. In addition, the DDRAM can be accessed during the power save mode.
There are two power save modes, sleep mode and standby mode.
During sleep mode:
All LCD system stops as follows,
1. Oscillator and internal power circuits stop.
2. All common and segment drivers output VDD level.
During standby mode:
The LCD system except the static indicator stops as follows,
1. Oscillator and internal power circuits stop.
2. All common and segment drivers output VDD level.
3. The only static indicator is operating.
Fig.5 The sequence of power save mode
Static indicator off
Static indicator on
Power save on (Dual instructions)
Sleep mode
Standby mode
Power save off
Power save off
Entire display off
+
Static indicator on
Entire display off
Release Sleep mode
Release Standby mode
NJU6676
PRELIMINARY
(4) Internal power circuits
(a)Voltage converter
The voltage converter generates maximum 4x boosted negative-voltage from the voltage between
VDD and Vss2. The boosted voltage is output from the VOUT terminal.
The internal oscillator is required to be operating when using this converter, because the divided
signal provided from the oscillator is used for the internal timing of this circuit.
The boosted voltage between VDD and Vout must not exceed 18.0V.
The voltage converter requires external capacitors for boosting as shown in Fig.7.
Fig.7 The capacitors connection for the voltage regulator:
4x boost
+
+
+
Vss2
3x boost
+
Vss2
2x boost
+
Vss2
Vout
Vout
Vout
C3-
C3-
C3-
C1+
+
C1+
+
C1+
C1-
C1-
C1-
C2-
C2-
C2-
C2+
C2+
C2+
+
VDD
VDD
VDD
Vss2
Vss2
Vss2
Vout= 2x (VDD-Vss2)
Vout= 3x (VDD-Vss2)
Vout= 4x (VDD-Vss2)
NJU6676
PRELIMINARY
(b)Contrast control using the voltage regulator
The voltage regulator determines the LCD driving voltage “V5” according to the Rb/Ra ratio and
VREG voltage. The equations to calculate V5 are as follows:
Fig.5 Voltage regulator circuit
Voltage regulator
VDD
VREG
VLCD
Ra
+
V5
-
VR
Rb
Vout
VLCD = VDD – V5
= (1+Rb/Ra) x VREG
---[1]
VREG = (n/162) x (VDD-Vss2) ---[2]
VLCD
Ra, Rb
VREG
n
: LCD driving voltage
: Feed back resistors
: Contrast control voltage
: Parameter decided instruction
(c)Contrast control voltage VREG
As the equation [2] shows, the VREG value depends on the parameter “n”. The “n” is selected a
value within 99 to 162 by using of “EVR register set” instruction as described in Table.8.
Table.8 The relationship between EVR register and VLCD level
Register value
00
01
02
:
61
62
63
D5
0
0
0
:
1
1
1
D4
0
0
0
:
1
1
1
D3
0
0
0
:
1
1
1
D2
0
0
0
:
1
1
1
D1
0
0
1
:
0
1
1
D0
0
1
0
:
1
0
1
n
99
100
101
:
160
161
162
VREG
(99/162) x (VDD-Vss2)
(100/162) x (VDD-Vss2)
(101/162) x (VDD-Vss2)
(160/162) x (VDD-Vss2)
(161/162) x (VDD-Vss2)
(162/162) x (VDD-Vss2)
Minimum
:
:
:
:
:
Maximum
NJU6676
PRELIMINARY
- VLCD setting example
We recommend the total value of Ra and Rb is between 1MΩ and 5MΩ. When using Ra=1MΩ,
Rb=4MΩ and VDD=3V, the VLCD is calculated as follows:
The minimum VLCD:
VLCD =(1+Rb/Ra) X VREG
=(1+4/1) X [(99/162) X 3.0]
=9.15V
The maximum VLCD:
VLCD =(1+Rb/Ra) X VREG
=(1+4/1) X [(162/162) X 3.0]
=15.0V
NJU6676
PRELIMINARY
(d) LCD Driving Voltage Generation Circuits
The LCD driving bias voltage of V1,V2,V3,V4 are generated internally by dividing the V5 voltage
with the internal bleeder resistance. And it is supplied to the LCD driving circuits after the
impedance conversion with voltage follower circuit.
As shown in below, Five capacitors are required to connect to each LCD driving voltage terminal for
voltage stabilizing. And the value of capacitors C4, C5, C6, C7, and C8 are determined depending
on the actual LCD panel display evaluation.
Using the internal Power Supply
Using the external Power Supply
VSS
C1
+
VSS2
VSS
C1-
C1-
C1+
C1+
C3
+
Cout
+
C2
C3-
C3-
C2+
C2+
C2-
C2-
*2
VOUT
R3
V5
NJU6676
VOUT
V5
NJU6676
*1
R2
VR
VR
VDD
VDD
R1
+
C4
+
C5
+
C6
+
C7
+
C8
V1
V1
V2
External
V2
V3
Voltage
V3
V4
Generator
V4
V5
*1 Short wiring or sealed wiring to the VR terminal is
required due to the high impedance of VR terminal.
*2 Following connection of VOUT is required when external
power supply using.
When VSS > V5 --- VOUT=V5
When VSS < V5 --- VOUT=VSS
V5
Reference set up value
VLCD=VDD-V5=9.0 to 10.5V
COUT
C1/C2/C3
C4 ∼ C8
R1
R2
R3
∼1.0uF
∼1.0uF
0.1∼0.47uF
2MΩ
500KΩ
2.5MΩ
NJU6676
PRELIMINARY
(5) MPU interface
(5-1) Interface type selection
NJU6676 interfaces with MPU by 8-bit bidirectional data bus (D7 to D0) or serial (SI:D7). The 8 bit
parallel or serial interface is determined by a condition of the P/S terminal connecting to "H" or "L"
level as shown in Table 4. In case of the serial interface, status and RAM data read out operation is
impossible.
Table4
P/S
H
L
Type
Parallel
Serial
CS1
CS1
CS1
A0
A0
A0
RD
RD
-
WR
WR
-
C86
C86
-
SI(D7) SCL(D6) D0∼D5
D7
D6
D0∼D5
SI
SCL
Hi-z
“-“ : They should be fixed to “H” or “L”.
(5-2) Parallel Interface
The NJU6676 interfaces to 68 or 80 type MPU directly when the parallel interface (P/S="H") is
selected. 68 type MPU or 80 is determined by the condition of C86 terminal connecting to "H" or "L"
as shown in table 5.
C86
H
L
Type
68 type MPU
80 type MPU
CS1
CS1
CS1
A0
A0
A0
RD
E
RD
Table 5
WR
R/W
WR
D0∼D7
D0∼D7
D0∼D7
(5-3) Discrimination of Data Bus Signal
The NJU6676 discriminates the mean of signal on the data bus by the combination of A0, E, R/W,
and (RD,WR) signals as shown in Table 6.
Table 6
Common
A0
1
1
0
0
68 type
R/W
1
0
1
0
80 type
RD
WR
0
1
1
0
0
1
1
0
Function
Read Display Data
Write Display Data
Status Read
Write into the Register(Instruction)
NJU6676
PRELIMINARY
(5-4) Serial Interface.(P/S="L")
Serial interface circuits consist of 8 bits shift register and 3 bits counter. SI and SCL input are
activated when the chip select terminal CS1 set to "L"and P/S terminal set to "L". The 8 bits shift
register and 3 bits counter are reset to the initial condition when the chip is not selected. The data
input from SI terminal is MSB first like as the order of D7,D6,- - - - D0, and the data are entered into
the shift register synchronizing with the rise edge of the serial clock SCL. The data in the shift
register are converted to parallel data at the 8th serial clock rise edge input. Discrimination of the
display data or instruction of the serial input data is executed by the condition of A0 at the 8th serial
clock rise edge. A0="H" is display data and A0="L" is instruction. When RES terminal becomes "L"
or CS1 terminal becomes "H" before 8th serial clock rise edge, NJU6676 recognizes them as a
instruction data incorrectly. Therefore a unit of serial data must be structured by 8-bit. The time chart
for the serial interface is shown in Fig. 5. To avoid the noise trouble, the short wiring is required for
the SCL input.
Note) The read out function, such as the status or RAM data read out, is not supported in this serial
interface
CS1
CS2
SI
SCL
D7
1
D6
2
D5
3
D4
4
A0
Fig.5
D3
5
D2
6
D1
7
D0
8
D7
9
D6
10
NJU6676
PRELIMINARY
5-5) Access to the Display Data RAM and Internal Register.
The NJU6676 is operating as one of pipeline processor by the bus-holder connecting to the internal data bus to
adjust the operation frequency between MPU and the Display Data RAM or Internal Register.
For example, when the MPU reads out the data from the Display Data RAM, the read out data in the data read
cycle (dummy read) is held in the bus-holder, then it is read out from the bus-holder to the system bus at the
next data read cycle. When the MPU writes the data into the Display Data RAM, the data is held in the busholder, then it is written into the Display Data RAM by the next data write cycle.
Therefore high speed data transmission between MPU and NJU6676 is available because of it is not limited by
the tACC and tDS as display data RAM access time and is limited by the system cycle time (R) or (W).
If the cycle time is not be kept in the MPU operation, NOP should be inserted to the system instead of the
waiting operation.
The read out operation does not read out the data in the pointed address just after the address set operation.
And second read out operation can read out the data correctly from the pointed address.
Therefore, one dummy read operation is required after address setting or write cycle as shown in FIG. 6..
Write timing
WR
MPU signal
Data
N
N+1
N
Bus holder
N+2
N+1
N+3
N+2
N+3
Internal signal
WR
Read timing
WR
MPU signal
RD
Data
N
N
Address
set
n
Dummy
read
n +1
Data read
Data read
WR
RD
Internal signal
Column
address
Bus holder
N
N+1
n
N
Fig.6
N+2
n +1
NJU6676
PRELIMINARY
5-5) Chip select
CS1, CS2 are Chip Select terminals. In case of CS1="L" and CS2=”H”, the interface with MPU is
available. In case of CS1=”H” or CS2=”L”, the D0 to D7 are high impedance and A0, RD, WR,
D7(SI) and D6(SCL) inputs are ignored. If the serial interface is selected when CS1= ”H” or CS2= ”L”,
the shift register and the counter are reset. However, the reset is always operated in any conditions
of CS1 and CS2.
NJU6676
PRELIMINARY
n ABSOLUTE MAXIMUMN RATINGS
Ta=25°C
Parameter
Symbol
Ratings
Unit
Supply voltage
Supply voltage
VDD
Vss2
V
V
Supply voltage
V5
Vout
V1,V2
V3,V4
Vin
Topr
Tstg
-0.3 to +7.0
-7.0 to+0.3
-6.0 to +0.3 (When using 3x voltage converter)
-4.5 to +0.3 (When using 4x voltage converter)
-18.0 to +0.3
V5 to +0.3
V
-0.3 to VDD+0.3
-30 to +80
-55 to +100 (TCP)
-55 to +125 (Chip)
V
°C
°C
Supply voltage
Input voltage
Operating temperature
Storage temperature
V
Note1) All voltages are relative to the Vss = 0V reference.
The relationship among the supply voltages should be maintained the following condition.
VDD>V0>V1>V2>V3>V4>V5;VDD>Vss>Vout
Note2) When using the external power supply for LCD driving, the external power should be turn on at
the same timing of VDD or after VDD.
Note3) The LSI should be operated inside of the absolute maximum ratings in order to prevent
excessive stress. Otherwise, the stresses beyond the absolute maximum ratings may
cause permanent damage to the LSI.
Note4) The decoupling capacitor between VDD terminal and Vss terminal is required in order to
stabilize the LSI operation.
NJU6676
PRELIMINARY
DC Electrical Characteristics
VDD=2.7V to 3.3V, Vss=0V, Ta=-30 to +80°C
Parameter
Power supply(1)
Symbol
VDD
Power supply(2)
Power supply(3)
“H” level input voltage
“L” level input voltage
“H” level output voltage
“L” level output voltage
Input leakage current
Output leakage current
LCD on resistance
Vss1
V5
V1,V2
V3,V4
VIHC1
VILC1
VOHC1
VOLC1
ILI
ILO
RON1
Input pin capacitance
Oscillation frequency
Reset time
Reset pulse width
RON2
CIN
FOSC
TR
TRW
Conditions
Recommend
Possible
VLCD=VDD-V5
IOH=-0.5mA
IO=0.5mA
VLCD=14.0V,
Ta=25°C
VLCD=8.0V, Ta=25°C
Ta=25°C
Ta=25°C
Using RES terminal
Min.
2.7
2.2
VDD-6.0
VDD-18
0.4xV5
V5
0.8VDD
Vss
0.8VDD
Vss
-1.0
-3.0
-
Typ.
2.0
Max.
3.3
5.5
VDD-2.5
VDD-6
VDD
0.6xV5
VDD
0.2VDD
VDD
0.2VDD
1.0
3.0
3.5
Unit
V
V
V
V
V
V
V
V
V
V
UA
uA
kΩ
18
1.0
10
3.2
10
22
-
5.4
26
-
kΩ
pF
KHz
us
us
Min.
-6.0
Typ.
-
Max.
-2.5
Unit
V
-4.5
-
-2.5
V
-18.0
-
-
V
-
2500
3500
Ω
VDD
-18.0V
VDD
-18.0V
-
-
VDD
-6.0V
VDD
-6.0V
5.0
10
140
40
35
30
3.0
V
Note
5
6
9
10
11
Internal power supply
Parameter
Input voltage
Symbol
VDD1
VDD2
Voltage converter
Output voltage
Voltage converter
Output on resustance
Volateg regulator
Operating voltage
Voltage follower
Operating voltagae
Operating current
Reference Voltage
Note5)
Note6)
Conditions
VDD-Vss
Using 3x voltage converter
VDD-Vss
Using x4 voltage converter
Vout
RSTEP
Vout
C1 to C3, Cout=1.0uF
Using x4 booster
Voltage converter off
V5
Voltage regulator off
IDDQ1
IDDQ2
IDD1
IDD2
IDD3
IDD4
VREG
When sleep mode
When standby mode
VDD=3V, V5=-11V
Checker flag display
Without MPU access
All COM/SEG open
VDD=3V, Ta=25°C
0.01
4
80
20
18
15
Note
12
13
V
uA
uA
uA
uA
uA
uA
%
14
This parameter can’t be guaranteed for spike voltage during MPU access.
Apply to the resistance between each driver (COM, SEG) and power supply terminal (V1,V2,V3,V4)
when 0.1V voltage difference is supplied between these terminals.
Note7,8)Apply to the condition when internal power circuits aren’t used.
Note7) Apply to the condition when MPU doesn’t access to the LSI.
Note8) Apply to the condition when writing checker flag pattern to the DDRAM at the timing of tcyc.
Note9) Apply to A0, D7 to D0, RD, WR, CS, RES, C86 and P/S terminals.
Note10) Specified the time between the rising edge of the RES signal and completion of reset operation.
NJU6676
PRELIMINARY
Note11)
Note12)
Note13)
Note14)
specified the minimum pulse width of RES signal.
Apply to theVDD when using quadrupler.
LCD driving voltage can be adjusted within the voltage follower operating range.
Each value are specified in the following conditions:
Power Control
Symbol
Iout1
Iout2
Iout3
Iout4
D2
D1
D0
1
0
0
0
1
1
0
0
1
1
1
0
Operating Condition
Voltage
Voltage
Voltage
converter
regulator
followers
On
On
On
Off
On
On
Off
Off
On
Off
Off
Off
IDD 1,2,3,4 measurement circuits:
IDD1
VR
VDD
V5
A
Vss
2+
C2-C1-
+
C1+
C3-
Vout
+
+
IDD2
VR
VDD
V5
A
Vss
C2+
C2- C1-
C1+
C3-
Vout
C3-
Vout
IDD3
VR
VDD
V5
A
Vss
C2+
C2- C1-
C1+
External
Voltage Supply
(Input Terminal)
Use(VSS2)
Use(VOUT,VSS2)
Use(V5,VSS2)
Use(V1∼V5)
NJU6676
PRELIMINARY
IDD4
V1 V2 V3 V4
VR
VDD
V1 V2 V3 V4 V5
A
Vss
C2+
C2- C1-
C1+
C3-
Vout
NJU6676
PRELIMINARY
n BUS TIMING CHARACTERISTICS
Read and Write characteristics (80 type MPU)
tcyc8
A0,CS1,CS2
tAW8
tAH8
tCCL
WR,RD
tCCH
tDS8
D7 to D0
Write
tDH8
tf
tr
tACC8
tOH8
D7 to D0
Read
(Vss=0V, VDD=4.5 to 5.5V, Ta=-30 to 80°C)
Parameter
Address hold time
Address set up time
System cycle time
Control “H” pulse width (Read)
Control “H” pulse width (Write)
Control “L” pulse width (Read)
Control “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Input signal rising, falling edge
Terminal
A0,CS1,
CS2
WR,RD
D7 ∼ D0
CS1,CS2
RW,RD,A0,
D7 ∼ D0
Symbol
tAH8
tAW8
tcyc8
tCCHR
tCCHW
tCCLR
tCCLW
tDS8
tDH8
tACC8
tOH8
tr,tf
Condition
CL=100pF
Min.
0
0
166
30
70
30
30
30
10
5
Max.
70
50
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
(Vss=0V, VDD=2.7 to 4.5V, Ta=-30 to 80°C)
Parameter
Address hold time
Address set up time
System cycle time
Control “H” pulse width (Read)
Control “H” pulse width (Write)
Control “L” pulse width (Read)
Control “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Input signal rising, falling edge
Terminal
A0,CS1,
CS2
WR,RD
D7 ∼ D0
CS1,CS2
RW,RD,A0,
D7 ∼ D0
Symbol
tAH8
tAW8
tcyc8
tCCHR
tCCHW
tCCLR
tCCLW
tDS8
tDH8
tACC8
tOH8
Condition
CL=100pF
Min.
0
0
300
60
120
60
60
40
15
10
tr,tf
Max.
140
100
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
(Vss=0V, VDD=2.2 to 2.7V, Ta=-30 to 80°C)
Parameter
Address hold time
Address set up time
System cycle time
Control “H” pulse width (Read)
Control “H” pulse width (Write)
Control “L” pulse width (Read)
Control “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Input signal rising, falling edge
Terminal
A0,CS1,
CS2
WR,RD
D7 ∼ D0
CS1,CS2
RW,RD,A0,
D7 ∼ D0
Symbol
tAH8
tAW8
tcyc8
tCCHR
tCCHW
tCCLR
tCCLW
tDS8
tDH8
tACC8
tOH8
Condition
CL=100pF
tr,tf
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.
Min.
0
0
1000
120
240
120
120
80
30
10
Max.
280
200
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
Read and Write characteristics (68 type MPU)
tcyc6
E
tAW6
R/W
tEW
tr
tf
tAH6
A0,CS1,CS2
tDS6
D7 to D0
Write
tDH6
tOH6
tACC6
D7 to D0
Read
(Vss=0V, VDD=4.5 to 5.5V, Ta=-30 to 80°C)
Parameter
Address hold time
Address set up time
System cycle time
Enable “H” pulse width (Read)
Enable “H” pulse width (Write)
Enable “L” pulse width (Read)
Enable “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Input signal rising, falling edge
Terminal
A0,CS1,
CS2
E
D7 ∼ D0
E,R/W,A0,
D7 ∼ D0
Symbol
tAH6
tAW6
tcyc6
tCCHR
tCCHW
tCCLR
tCCLW
tDS6
tDH6
tACC6
tOH6
tr,tf
Condition
CL=100pF
Min.
0
0
166
70
30
30
30
30
10
10
Max.
70
50
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
(Vss=0V, VDD=2.7 to 4.5V, Ta=-30 to 80°C)
Parameter
Address hold time
Address set up time
System cycle time
Enable “H” pulse width (Read)
Enable “H” pulse width (Write)
Enable “L” pulse width (Read)
Enable “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Terminal
Input signal rising, falling edge
E,R/W,A0,
D7 ∼ D0
tr,tf
Parameter
Address hold time
Address set up time
System cycle time
Enable “H” pulse width (Read)
Enable “H” pulse width (Write)
Enable “L” pulse width (Read)
Enable “L” pulse width (Write)
Data set up time
Data hold time
RD access time
Output disable time
Terminal
Symbol
tAH6
tAW6
tcyc6
tCCHR
tCCHW
tCCLR
tCCLW
tDS6
tDH6
tACC6
tOH6
A0,CS1,
CS2
E
D7 ∼ D0
Symbol
tAH6
tAW6
tcyc6
tCCHR
tCCHW
tCCLR
tCCLW
tDS6
tDH6
tACC6
tOH6
Condition
CL=100pF
Min.
0
0
300
120
60
60
60
40
15
10
Max.
140
100
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
(Vss=0V, VDD=2.2 to 2.7V, Ta=-30 to 80°C)
Input signal rising, falling edge
A0,CS1,
CS2
E
D7 ∼ D0
E,R/W,A0,
D7 ∼ D0
Condition
CL=100pF
tr,tf
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.
Min.
0
0
1000
240
120
120
120
80
30
10
Max.
280
200
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
Write characteristics (Serial interface)
tCSH
tCSS
CS1,CS2
tSAS
tSAH
A0
tscyc
tSLW
SCL
tSHW
tSDH
SI
tSDH
tf
tr
(Vss=0V, VDD=4.5 to 5.5V, Ta=-30 to 80°C)
Parameter
Serial clock cycle
SCL “H” pulse width
SCL “L” pulse width
Address set up time
Address hold time
Data set up time
Data hold time
Terminal
CS-SCL time
CS1,CS2
Rising, falling edge
SCL
A0
SI
SCL,A0,
CS1,CS2,SI
Symbol
tscyc
tSHW
tSLW
tSAS
tSAH
tSDS
tSDH
tCSS
tCSH
tr,tf
Condition
Min.
200
75
75
50
100
50
50
100
100
Max.
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
(Vss=0V, VDD=2.7 to 4.5V, Ta=-30 to 80°C)
Parameter
Serial clock cycle
SCL “H” pulse width
SCL “L” pulse width
Address set up time
Address hold time
Data set up time
Data hold time
Terminal
CS-SCL time
CS1,CS2
SCL
A0
SI
Symbol
tscyc
tSHW
tSLW
tSAS
tSAH
tSDS
tSDH
tCSS
tCSH
SCL,A0,
CS1,CS2,SI
tr,tf
Parameter
Serial clock cycle
SCL “H” pulse width
SCL “L” pulse width
Address set up time
Address hold time
Data set up time
Data hold time
Terminal
CS-SCL time
CS1,CS2
Symbol
tscyc
tSHW
tSLW
tSAS
tSAH
tSDS
tSDH
tCSS
tCSH
Rising, falling edge
Condition
Min.
250
100
100
150
150
100
100
150
150
Max.
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
(Vss=0V, VDD=2.2 to 2.7V, Ta=-30 to 80°C)
Rising, falling edge
SCL
A0
SI
SCL,A0,
CS1,CS2,SI
Condition
tr,tf
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.
Min.
400
150
150
250
250
150
150
250
250
Max.
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
15
ns
NJU6676
PRELIMINARY
Display control timing characteristics
CL
(OUT)
tDFR
FR
Parameter
FR Delay Time
Terminal
Parameter
FR Delay Time
Terminal
Parameter
FR Delay Time
Terminal
FR
FR
FR
Symbol
tDFR
(VSS=0V, VDD=4.5~5.5V, Ta=-30~80°C)
Condition
Min.
Typ.
Max.
Unit
CL=50pF
10
40
ns
Symbol
tDFR
Condition
CL=50pF
(VSS=0V, VDD=2.7~4.5V, Ta=-30~80°C)
Min.
Typ.
Max.
Unit
10
80
ns
Symbol
tDFR
Condition
CL=50pF
(VSS=0V, VDD=2.2~2.7V, Ta=-30~80°C)
Min.
Typ.
Max.
Unit
50
200
ns
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.
Note) The delay time is applied to the master operation only.
Reset input timing
tRW
RES
tR
Internal circuit
status
During reset
Parameter
Reset Time
Reset ”L” Level Pulse
Width
Terminal
Symbol
tR
RES
tRW
Parameter
Reset Time
Reset ”L” Level Pulse
Width
Terminal
Symbol
tR
RES
tRW
Parameter
Reset Time
Reset ”L” Level Pulse
Width
Terminal
Symbol
tR
RES
tRW
Condition
End of reset
(VSS=0V, VDD=4.5~5.5V, Ta=-30~80°C)
Min.
Typ.
Max.
Unit
0.5
us
0.5
-
-
us
(VSS=0V, VDD=2.7~4.5V, Ta=-30~80°C)
Condition
Min.
Typ.
Max.
Unit
1.0
us
1.0
Condition
-
-
us
(VSS=0V, VDD=2.2~2.7V, Ta=-30~80°C)
Min.
Typ.
Max.
Unit
1.5
us
1.5
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.
-
-
us
NJU6676
PRELIMINARY
n LCD DRIVING WAVEFORM
0
FR
VDD
VSS
VDD
V1
V2
COM0 V3
V4
V5
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
VDD
V1
V2
COM1 V3
V4
V5
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
S S S S S
E E E E E
G GG GG
0
1
2
3
VDD
V1
V2
COM2 V3
V4
V5
4
SEG0
VDD
V1
V2
V3
V4
V5
SEG1
VDD
V1
V2
V3
V4
V5
COM0-SEG0
V5
V4
V3
V2
V1
VDD
-V1
-V2
-V3
-V4
-V5
COM0-SEG1
V5
V4
V3
V2
V1
VDD
-V1
-V2
-V3
-V4
-V5
1
2 3
4
64 65 0
1 2
3 4
5
64 65
NJU6676
PRELIMINARY
nAPPLICATION CIRCUIT
- Microprocessor Interface Example
The NJU6676 interfaces to 80 type or 68 type MPU directly.
And the serial interface also communicates with MPU.
* : C86 terminal must be fixed VDD or VSS.
l 80 Type MPU
VCC
A0
A0
A0∼A7
CS
VDD
C86
MPU
IORQ
Decoder
D0∼D7
GND
NJU6676
D0∼D7
RD
RD
WR
WR
RES
RES
P/S
VSS
RESET
l 68 Type MPU
VCC
A0
A0
VDD
C86
A0∼A15
MPU
VMA
CS
Decoder
D0∼D7
D0∼D7
E
GND
NJU6676
E
R/W
R/W
RES
RES
VSS
A0
A0
VDD
A1∼A7
CS
P/S
RESET
l Serial Interface
VCC
C86
NJU6676
Decoder
MPU
Port 1
SI
Port 2
SCL
RES
RES
VDD
P/S
GND
RESET
VSS
or
NJU6676
PRELIMINARY
- 65 x 264 dots Driving Application Circuits Example
(Common and Segment Drivers Extension by using two of NJU6676)
LCD Panel : 65 x 264
SEG
SEG
COM
COM
NJU6676
Master
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
M/S
M/S
CL
CL
FR
FR
DOF
DOF
NJU6676
Slave