NTE NTE7156

NTE7156
Integrated Circuit
DC–Coupled Vertical Deflection Circuit
Description:
The NTE7156 is a power circuit in a 9–Lead SIP type package designed for use in 90° and 110° color
deflection systems for field frequencies of 50Hz to 120Hz. This device provides a DC driven vertical
deflection output circuit, operating as a highly efficient class G system.
Features:
D Few External Components
D Highly Efficient Fully DC–Coupled Vertical Output Bridge Circuit
D Vertical Flyback Switch
D Guard Circuit
D Protection Aaginst:
– Short–Circuit of the Output Pins (7 and 4)
– Short–Circuit of the Output Pins to VP
D Temperature Protection
D High EMC Immunity Because of Common Mode Inputs
D A Guard Signal in Zoom Mode
Absolute Maximum Ratings:
DC Supply
Supply Voltage, VP
Non–Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V
Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V
Flyback Supply Voltage, VFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50V
Note 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60V
Vertical Circuit
Output Current (Peak–to–Peak Value, Note 2), IO(P–P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3A
Output Voltage (Pin7), VO(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52V
Note 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62V
Flyback Switch
Peak Output Current, IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15A
Thermal Data
Virtual Junction Temperature, TVJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Operating Ambient Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20° to +75°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +150°C
Thermal Resistance, Virtual Junction–to–Ambient, RthVJ–C . . . . . . . . . . . . . . . . . . . . . . . . . . . 40K/W
Thermal Resistance, Virtual Junction–to–Case, RthVJ–A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4K/W
Short–Circuit Time (Note 3), tsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Hour
Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor
in series with a 22Ω resistor (depending on IO and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of VFB has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω.
Note 2. IO maximum determined by current protection.
Note 3. Up to VP = 18V.
Electrical Characteristics: (VP = 17.5V, TA = +25°C, VFB = 45V, fi = 50Hz, II(sb) = 400µA
unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
DC Supply
Operating Supply Voltage
VP
9
–
25
V
Flyback Supply Voltage
VFB
VP
–
50
V
VP
–
60
V
–
30
55
mA
19.8
–
–
V
Note 1
Supply Current
IP
No Load, No Signal
Output Voltage Swing (Scan)
VO
Idiff = 0.6mA(P–P), Vdiff = 1.8V(P–P),
IO = 3A(P–P)
Linearity Error
LE
IO = 3A(P–P), Note 4
–
1
3
%
IO = 50mA(P–P), Note 4
–
1
3
%
Vertical Circuit
Output Voltage Swing (Flyback)
VO(A) – VO(B)
VO
Idiff = 0.3mA, IO = 1.5A
–
39
–
V
Forward Voltage of the Internal
Efficiency Diode (VO(A) – VFB)
VDF
IO = –1.5A, Idiff = 0.3mA
–
–
1.5
V
Output Offset Current
|IOS|
Idiff = 0, II(sb) = 50µA to 500µA
–
–
30
mA
Idiff = 0
–
–
72
µV/K
Offset Voltage at the Input of the
Feedback Amplifier (VI(fb) – VO(B))
∆VOS T
DC Output Voltage
VO(A)
Idiff = 0, Note 5
–
8
–
V
Open Loop Voltage Gain (V7–4/V1–2)
GVO
Note 6, Note 7
–
80
–
dB
Note 6
–
80
–
dB
–
0
–
dB
–
40
–
Hz
Open Loop Voltage Gain
(V7–4/V9–4, V1–2 = 0)
Voltage Ratio V1–2/V9–4
VR
Frequency Response (–3dB)
fres
Current Gain (IO/Idiff)
GI
–
5000
–
∆GC T
–
–
10–4
K
Signal Bias Current
II(sb)
50
400
500
µA
Flyback Supply Current
IFB
During Scan
–
–
100
µA
Note 9
–
80
–
dB
–
2.7
–
V
Current Gain Drift as a Function
of Temperature
Open Loop, Note 8
Power Supply Ripple Rejection
PSRR
DC Input Voltage
VI(DC)
Common Mode Input Voltage
VI(CM)
II(sb) = 0
0
–
1.6
V
Ibias
II(sb) = 0
–
0.1
0.5
µA
∆II(sub) = 300µA(P–P), fi = 50Hz,
Idiff = 0
–
0.2
–
mA
Not Active, VO(guard) = 0V
–
–
50
µA
1.0
–
2.5
mA
4.6
–
5.5
V
–
–
40
V
Input Bias Current
Common Mode Output Current
IO(CM)
Guard Circuit
Output Current
IO
Active, VO(guard) = 3.6V
Output Voltage on Pin8
Allowable Voltage on Pin8
VO(guard) IO = 100µA
Maximum Leakage Current =
10µA
Notes:
Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22–nF capacititor
in series with a 22Ω resistor (depending on IO and the inductance of the coil) has to be connected between Pin7 and GND. The decoupling capacitor of VFB has to be connected between Pin6 and Pin3. This supply voltage line must have a resistance of 33Ω.
Note 4. The linearity error is measured without S–correction and based on the same measurement
principle as performed on the screen. The measuring method is as follows:
Divide the output signal I4 – I7 (VRM) into 22 equal parts ranging from 1 to 22 inclusive. Measure
the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending
with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error
for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below:
LEAB =
ak – a(k + 1)
– amin
a
; LEAB = max
aavg
aavg
Note 5. Referenced to VP.
Note 6. The V values within formulae relate to voltages at or across relative pin numbers, i.e.
V7–4/V1–2 = voltage value across Pin7 and Pin4 divided by voltage value across Pin1 and Pin2.
Note 7. V9–4 AC short–circuited.
Note 8. Frequency response V7–4/V9–4 is equal to frequency response V7–4/V1–2.
Note 9. At V(ripple) = 500mV eff; measured across RM; fi = 50Hz.
Pin Connection Diagram
(Front View)
9
8
7
6
5
4
3
2
1
VI(fb)
VO(guard)
VO(A)
VFB
GND
VO(B)
VP
Idrive(neg)
Idrive(pos)
.945 (24.0) Max
.788 (20.0) Max
.173 (4.4)
Seating Plane
.130 (3.25) R
.472
(12.0)
1
9
.079
(2.0)
.100 (2.54)
.663
(16.85)
.017 (0.43)