NTE NTE7162

NTE7162
Integrated Circuit
DC−Coupled Vertical Deflection
and East−West Output Circuit
Description:
The NTE7162 is a power circuit in a 13−Lead Staggered SIP type package designed for use in 90°
and 110° color deflection systems for field frequencies of 50Hz to 120Hz. The circuit provides a DC
driven vertical deflection output circuit, operating as a highly effecient class G system and an East−
West driver for sinking the diode modulator current.
Features:
D Few External Components
D Highly Efficient Fully DC−Coupled Vertical Output Bridge Circuit
D Vertical Flyback Switch
D Guard Circuit
D Protection Against:
Short−Circuit of the Output Pins
Short−Circuit of the Output Pins to VP
D High EMC Immunity due to Common Mode Inputs
D Temperature Protectection
D East−West Output Stge with One Single Conversion Resistor
Absolute Maximum Ratings:
Supply Voltage, VP
Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V
Non−Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V
Flyback Supply Voltage, VFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50V
Flyback Supply Voltage (Note 1), VFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60V
Output Current (Peak−to−Peak Value, Note 2), IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3A
Output Voltage (Pin9), VO(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52V
Output Voltage (Pin9, Note 1), VO(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52V
Peak Output Current, IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.5A
Output Voltage (IO(sink) = 10µA, Note 3), VO(sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V
Output Current (VO(sink) = 2V, Note 3), IO(sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mA
Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in
series with a 22Ω resistor (depending on IO and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of VFB has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33Ω.
Note 2. IO maximum determined by current protection.
Note 3. The operating area is limited by a straight line between the points VO(sink) = 40V; IO(sink) = 10µA
and VO(sink) = 2V; IO(sink) = 500mA.
Absolute Maximum Ratings (Cont’d):
Virtual Junction Temperature, TVJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Operating Ambient Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25° to +75°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65° to +150°C
Thermal Resistance, Virtual Junction−to−Case, RthVJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4K/W
Thermal Resistance, Virtual Junction−to−Ambient (In Free Air), RthVJA . . . . . . . . . . . . . . . . . 40K/W
Short−Circuiting Time (Note 4), tsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Hour
Note 4. Up to VP = 10V.
Electrical Characteristics: (VP = 17.5V, VFB = 45V, VO(sink) = 20V, fi = 50Hz, II(sb) = 400µA,
TA = +25°C unless otherwise specified)
Parameter
DC Supply
Operating Supply Voltage
Flyback Supply Voltage
Symbol
Test Conditions
VP
VFB
IP
Note 1
No Signal, No Load
Min
Typ
Max
Unit
9
VP
−
−
−
−
−
30
25
50
60
55
V
V
V
mA
19.8
−
−
V
−
−
−
1
1
39
3
3
−
%
%
V
Supply Current
Vertical Circuit
Output Voltage Swing (Scan)
VO
Linearity Error
LE
Output Voltage Swing (Flyback)
VO(A) − VO(B)
Forward Voltage of the Internal
Effeciency Diode (VO(A) − VFB)
Output Offset Current
Offset Voltage at the Input of the
Feedback Amplifier VI(fb) = VO(B)
Output Offset Voltag as a
Function of Temperature
DC Output Voltage
Open Loop Voltage Gain
V9−5/V1−2
V9−5/V3−5, V1−2 = 0
VO
Idiff = 0.6mA (Peak−to−Peak),
Vdiff = 1.8V (Peak−to−Peak),
IO = 3A (Peak−to−Peak)
IO = 3A (Peak−to−Peak), Note 5
IO = 50mA (Peak−to−Peak), Note 5
Idiff = 0.3mA, IO = 1.5A
VDF
IO = −1.5A, Idiff = 0.3mA
−
−
1.5
V
Idiff = 0, II(sb) = 50µA to 500µA
Idiff = 0, II(sb) = 50µA to 500µA
−
−
−
−
30
18
mA
mV
Idiff = 0
−
−
72
µV/K
Idiff = 0, Note 6
−
8
−
V
Note 7, Note 8
Note 7
−
−
80
80
−
−
dB
dB
|IOS|
|VOS|
∆VOS T
VO(A)
GV
Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in
series with a 22Ω resistor (depending on IO and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of VFB has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33Ω.
Note 5. The linearity error is measured without S−correction and based on the same measurement
priinciple as performed on the screen. The measuring method is as follows:
Divide the output signal I5 − I9 (VRM) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and
ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for lineariy
error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given
below:
ak − a(k + 1)
amax − amin
LEAB =
; LENAB =
aavg
aavg
Note 6. Referenced to VP.
Note 7. The V values within formulae relate to voltages at or across the relative pin numbers, i.e.
V9−5/V1−2 = voltage value across Pin9 and Pin5 divided by voltage value across Pin1 and
Pin2.
Note 8. V3−5 AC short−circuited.
Electrical Characteristics Cont’d):
Parameter
(VP = 17.5V, VFB = 45V, VO(sink) = 20V, fi = 50Hz, II(sb) = 400µA,
TA = +25°C unless otherwise specified)
Symbol
Voltage Ratio V1−2/V3−5
Frequency Response (−3dB)
Current Gain (IO/Idiff)
Current Gain as a Function of
Temperature
Signal Bias Current
Flyback Supply Current
Power Supply Ripple Rejection
DC Voltage at the Input
Common Mode Input Voltage
Input Bias Current
Common Mode Output Current
II(sb)
IFB
PSRR
VI(DC)
VI(CM)
Ibias
IO(CM)
East−West Amplifier
Saturation Voltage
Open Loop Voltage Gain (V11/V12)
Frequency Response (−3dB)
Linearity Error
VO(sink)
GV
fres
LE
Input Bias Current (Pin12)
DC Input Voltage
Offset Voltage Set Current
Maximum Allowed Voltage at Pin13
Guard Circuit
Output Current
Output Voltage
Allowable Voltage on Pin10
VR
fres
GI
∆GI T
Test Conditions
Note 9
During Scan
Note 10
II(sb) = 0
II(sb) = 0
∆II(sb) = 300µA (Peak−to−Peak),
fi = 50Hz, Idiff = 0
IO(sink) = 500mA, II(corr) = 0µA, Note 11
VO(sink) = 3V
VO(sink) = 10V, Note 5
Ibias
VI(DC)
Iset
V13−7
IO
VO(guard)
Not Active, VO(guard) = 0V
Active, VO(guard) = 3.6V
IO = 100µA
Maximum Leakage Current = 10µA
Min
Typ
Max
Unit
−
−
−
−
0
40
5000
−
−
−
−
10−4
dB
Hz
50
−
−
−
0
−
−
400
−
80
2.7
−
0.1
0.2
500
100
−
−
1.6
0.5
−
µA
µA
dB
V
V
µA
mA
−
−
−
−
−
−
−
−
−
2.0
47
4000
−
−
−
1
1
−
2.5
−
−
1
0.5
2
−
−
0.3
V
dB
Hz
%
%
µA
V
mA
V
−
1.0
4.6
−
−
−
−
−
50
2.5
5.5
40
µA
mA
V
V
/K
Note 5. The linearity error is measured without S−correction and based on the same measurement
priinciple as performed on the screen. The measuring method is as follows:
Divide the output signal I5 − I9 (VRM) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and
ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for lineariy
error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given
below:
ak − a(k + 1)
amax − amin
LEAB =
; LENAB =
aavg
aavg
Note 9. Frequency response V9−5/V3−5 is equal to frequency response V9−5/V1−2.
Note10. At V(ripple) = 500mV eff; measured across RM; fi = 50Hz.
Note 11. The output Pin11 requires a capacitor with a minimum value of 68nF.
Pin Connection Diagram
(Front View)
13 II (set)
12 II (corr)
11 VO (sink)
10 VO (guard)
9 Output Voltage A
8 VFB
7 GND
6 N.C.
5 Output Voltage B
4 VP
3 Feedback Voltage Input
2 Idrive (neg)
1 Idrive (pos)
.944 (24.0) Max
.173 (4.4)
.780 (19.8)
.127
3.25
1
.472
(12.0)
.640
(16.25)
13
.460
(11.7)
.134 (3.4)
.169 (4.3)
.200 (5.08)