E2L0068-19-61 ¡ Semiconductor MSM54V25632A ¡ Semiconductor This version: Jun. 1999 MSM54V25632A Previous version: Sep. 1998 131,072-Word ¥ 32-Bit ¥ 2-Bank Synchronous Graphics RAM DESCRIPTION The MSM54V25632A is a synchronous graphics random access memory organized as 128 K words ¥ 32 bits ¥ 2 banks. This device can operate up to 100 MHz by using synchronous interface. In addition, it has 8-column Block Write function and Write per bit function which improves performance in graphics systems. FEATURES • 131,072 words ¥ 32 bits ¥ 2 banks memory • Single 3.3 V ±0.3 V power supply • LVTTL compatible inputs and outputs • All input signals are latched at rising edge of system clock • Auto precharge and controlled precharge • Internal pipelined operation: column address can be changed every clock cycle • Dual internal banks controlled by A9 (Bank Address: BA) • Independent byte operation via DQM0 to DQM3 • 8-column Block Write function • Persistent write per bit function • Programmable burst sequence (Sequential/Interleave) • Programmable burst length (1, 2, 4, 8 and full page) • Programmable CAS latency (1, 2 and 3) • Burst stop function (full-page burst) • Power Down operation and Clock Suspend operation • Auto refresh and self refresh capability • 1,024 refresh cycles/16 ms • Package: 100-pin plastic QFP (QFP100-P-1420-0.65-BK4) (Product : MSM54V25632A-xxAGBK4) xx indicates speed rank. PRODUCT FAMILY Family Clock Frequency MHz (Max.) MSM54V25632A-10 100 MSM54V25632A-12 83 Package 100-pin Plastic QFP (14 ¥ 20 mm) 1/66 ¡ Semiconductor MSM54V25632A 82 VSSQ 81 DQ29 84 DQ31 83 DQ30 86 NC 85 VSS 88 NC 87 NC 90 NC 89 NC 92 NC 91 NC 96 VCC 95 NC 94 NC 93 NC 80 DQ28 79 VCCQ 1 2 78 DQ27 77 DQ26 3 4 76 VSSQ 75 DQ25 5 6 74 DQ24 73 VCCQ 7 8 72 DQ15 71 DQ14 9 10 70 VSSQ 69 DQ13 11 12 68 DQ12 67 VCCQ 13 14 66 VSS 65 VCC 15 16 18 64 DQ11 63 DQ10 19 20 62 VSSQ 61 DQ9 21 60 DQ8 59 VCCQ 17 22 58 NC 57 DQM3 23 24 56 DQM1 55 CLK 25 26 54 CKE 53 DSF 27 28 52 NC 51 A8 29 49 50 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 A0 A1 A2 A3 VCC NC NC NC NC NC NC NC NC NC NC VSS A4 A5 A6 A7 32 30 31 DQ3 VCCQ DQ4 DQ5 VSSQ DQ6 DQ7 VCCQ DQ16 DQ17 VSSQ DQ18 DQ19 VCCQ VCC VSS DQ20 DQ21 VSSQ DQ22 DQ23 VCCQ DQM0 DQM2 WE CAS RAS CS BA (A9) NC 98 DQ1 97 DQ0 100 DQ2 99 VSSQ PIN CONFIGURATION (TOP VIEW) 100-Pin Plastic QFP Pin Name Function Pin Name Address Inputs A0 - A8 Row Address Inputs DSF Special Function Enable A0 - A7 Column Address Inputs CKE Clock Enable Bank Address CLK System Clock Input Data Inputs/Outputs VCC Supply Voltage A9 DQ0 - DQ31 CS Note: Function A0 - A9 Chip Select DQM0 - DQM3 VSS DQ Mask Enable Ground RAS Row Address Strobe VCCQ Supply Voltage for DQ CAS Column Address Strobe VSSQ Ground for DQ WE Write Enable NC No Connection The same power supply voltage must be provided to every VCC pin and VCCQ pin. The same GND voltage level must be provided to every VSS pin and VSSQ pin. 2/66 ¡ Semiconductor MSM54V25632A BLOCK DIAGRAM A9 Row Decoders Timing Generator 4Mb Memory Cells Bank - A VCC VSS Sense Amplifiers 32 Column Decoders Row Decoders A0 A1 A2 Address Buffers Refresh Counter I/O Buffers 4Mb Memory Cells Bank - B Sense Amplifiers Column Decoders CLK CKE CS RAS CAS WE DSF 32 32 DQ0 to 31 DQM0 to 3 Color Register (32 bits) Mask Register (32 bits) 3/66 ¡ Semiconductor MSM54V25632A PIN DESCRIPTION CLK Fetches all inputs at the "H" edge. CS Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE, DQM0, DQM1, DQM2 and DQM3. CKE Masks system clock to deactivate the subsequent CLK operation. If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is deactivated. CKE should be asserted at least one cycle prior to a new command. Address Row & column multiplexed. Row address: RA0 – RA8 Column address: CA0 – CA7 BA (A9) Selects bank to be activated during row address latch time and selects bank for precharge and read/ write during column address latch time. A9 = "L" : Bank A, A9 = "H" : Bank B RAS CAS Functionality depends on the combination. For details, see the function truth table. WE DSF DSF is part of the inputs of graphics command of the MSM54V25632A. If DSF is inactive (Low level), MSM54V25632A operates just like SDRAM. DQM0 - Masks the read data of two clocks later when DQM0 - DQM3 are set "H" at the "H" edge of the clock signal. DQM3 Masks the write data of the same clock when DQM0 - DQM3 are set "H" at the "H" edge of the clock signal. DQi Data inputs/outputs are multiplexed on the same pin. *Notes: 1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CLK, CKE, DQM0, DQM1, DQM2, and DQM3 are invalid. 2. When issuing an active, read or write command, the bank is selected by A9. A9 Active, read or write 0 Bank A 1 Bank B 3. The auto precharge function is enabled or disabled by the A8 input when the read or write command is issued. A8 A9 Operation 0 0 After the end of burst, bank A holds the active status. 1 0 After the end of burst, bank A is precharged automatically. 0 1 After the end of burst, bank B holds the active status. 1 1 After the end of burst, bank B is precharged automatically. 4. When issuing a precharge command, the bank to be precharged is selected by the A8 and A9 inputs. A8 A9 Operation 0 0 Bank A is precharged. 0 1 Bank B is precharged. 1 X Both banks A and B are precharged. 4/66 ¡ Semiconductor MSM54V25632A COMMAND OPERATION Mode Register Set Command (CS, RAS, CAS, WE, DSF = "Low") The MSM54V25632A has the mode register that defines the operation mode "CAS Latency, Burst Length, Burst Sequence". The mode register is composed of ten bits of memories corresponding to address inputs A0 - A8 and BA. The Mode Register Set command should be executed just after the MSM54V25632A is powered on. Before entering this command, all banks must be precharged. Next command can be issued after tRSC. Special Mode Register Set Command (CS, RAS, CAS, WE = "Low", DSF = "High") The MSM54V25632A has the 32-bit color register for block write operation and the 32-bit mask register for write per bit operation. The Special Mode Register Set command performs loading mask register or color register. When A5 is "high", The mask data presented on the DQ0 - DQ31 is latched into the mask register. When A6 is "high", The color data presented on the DQ0 - DQ31 is latched into the color register. The Special Mode Register Set command must be executed before Masked Block Write and Write Per Bit operations. Next command can be issued after tRSC. Auto Refresh Command (CS, RAS, CAS, DSF = "Low", WE, CKE = "High") The Auto Refresh command performs refresh automatically by the address counter. The refresh operation must be performed 1024 times within 16 ms and the next command can be issued after tRC from last Auto Refresh command. Before entering this command, all banks must be precharged. Self Refresh Entry/Exit Command (CS, RAS, CAS, DSF, CKE = "Low", WE = "High") The self refresh operation continues after the Self Refresh Entry command is entered, with CKE level left "low". This operation terminates by making CKE level "high". The self refresh operation is performed automatically by the internal address counter on the MSM54V25632A chip. In self refresh mode, no external refresh control is required. Before entering self refresh mode, all banks must be precharged. Next command can be issued after tRC. Single Bank Precharge Command (CS, RAS, WE, DSF, A8 = "Low", CAS = "High") The Single Bank Precharge command triggers bank precharge operation. Precharge bank is selected by BA. All Banks Precharge Command (CS, RAS, WE, DSF = "Low", CAS, A8 = "High") The All Bank Precharge command triggers precharge of both bank A and bank B. 5/66 ¡ Semiconductor MSM54V25632A Bank Active and Masked Write Disable Command (CS, RAS, DSF = "Low", CAS, WE = "High") The Bank Active command activates the bank selected by BA. The Bank Active command corresponds to conventional DRAM's RAS falling operation. Row addresses "A0 - A8 and BA" are strobed. After this command, the write command and block write command for that bank works as the no write per bit operation. Bank Active and Masked Write Enable Command (CS, RAS = "Low", CAS, WE, DSF = "High") The Bank Active command activates the bank selected by BA. The Bank Active command corresponds to conventional DRAM's RAS falling operation. Row addresses "A0 - A8 and BA" are strobed. After this command, the write command and block write command for that bank works as the write per bit operation. Write Command (CS, CAS, WE, DSF, A8 = "Low", RAS = "High") The Write command is required to begin burst write operation. Then burst access initial bit column address is strobed. Write with Auto Precharge Command (CS, CAS, WE, DSF = "Low", RAS, A8 = "High") The Write with Auto Precharge command is required to begin burst write operation with automatic precharge after the burst write. Any command that interrupts this operation cannot be issued. Masked Block Write Command (CS, CAS, WE, A8 = "Low", RAS, DSF = "High") The Masked Block Write command is required to begin block write operation with column mask. The masked block write operation performs writing in the 8 memory cells selected by column addresses "A3 - A7". In this operation, data in color register is written to memory cells with the column mask functions. At the same time, this command can perform write per bit operation. The block write operation is not bursted. 6/66 ¡ Semiconductor MSM54V25632A Block Write Function Color Register 11001110 I/O Mask 11111010 Column Mask 10010011 Column 7 1 1 0 0 1 * 1 * Column 6 1 1 0 0 1 * 1 * Column 5 * * * * * * * * Column 4 * * * * * * * * Column 3 1 1 0 0 1 * 1 * Column 2 * * * * * * * * Column 1 * * * * * * * * Column 0 1 1 0 0 1 * 1 * DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 8 Column ¥ 8 DQ Note : Location "*" can not be loaded. Remark: 1. This diagram shows only for DQ0 - 7. The other DQ is similar as this. Column Mask DQ0 - 7 : Column Mask for DQ0 - 7 DQ8 - 15 : Column Mask for DQ8 - 15 DQ16 - 23 : Column Mask for DQ16 - 23 DQ24 - 31 : Column Mask for DQ24 - 31 Write per Bit Mask data = Mask Register + DQMi DQMi is prior to data of Mask Register. 7/66 ¡ Semiconductor MSM54V25632A Masked Block Write with Auto Precharge Command (CS, CAS, WE = "Low", RAS, DSF, A8 = "High") The Masked Block Write with Auto Precharge command performs precharging at the bank selected by BA automatically after Masked Block Write. Read Command (CS, CAS, DSF, A8 = "Low", RAS, WE = "High") The Read command is required to begin burst read operation. Then burst access initial bit column address is strobed. Read with Auto Prechaege Command (CS, CAS, DSF = "Low", RAS, WE, A8 = "High") The Read with Auto Precharge command is required to begin burst read operation with auto precharge after the burst read. Any command that interrupts this operation cannot be issued. No Operation Command (CS, DSF = "Low", RAS, CAS, WE = "High") The No Operation command does not trigger any operation. Device Deselect Command (CS = "High") The Device Deselect command disables the RAS, CAS, WE, DSF and Address input. This command does not trigger any operation. Data Write/Output Enable Command (DQMi = "Low") The Data Write/Output Enable command enables DQ0 - DQ31 in read or write. The each DQM0, 1, 2 and 3 corresponds to DQ0 - DQ7, DQ8 - DQ15, DQ16 - DQ23 and DQ24 - DQ31 respectively. Data Mask/Output Disable Command (DQMi = "High") The Data Mask/Output Disable command disables DQ0 - DQ31. In read cycle output buffers are disabled after 2 clocks . In write cycle input buffers are disabled at the same clock. The each DQM0, 1, 2 and 3 corresponds to DQ0 - DQ7, DQ8 - DQ15, DQ16 - DQ23 and DQ24 - DQ31 respectively. Burst Stop Command (CS, WE, DSF = "Low", RAS, CAS = "High") The Burst Stop command stops burst access when the access is in full page. After the Burst Stop command is entered, the output buffer goes into high impedance state. 8/66 ¡ Semiconductor MSM54V25632A TRUTH TABLE Command Truth Table Function CS RAS CAS WE DSF Address A9 A8 A7 - A0 Device Deselect H ¥ ¥ ¥ ¥ ¥ ¥ ¥ No Operation L H H H L ¥ ¥ ¥ Burst Stop in Full Page L H H L L ¥ ¥ ¥ Read L H L H L BA L CA Read with Auto Precharge L H L H L BA H CA Write L H L L L BA L CA Write with Auto Precharge L H L L L BA H CA Masked Block Write L H L L H BA L CA Masked Block Write with Auto L H L L H BA H CA L L H H L BA RA Precharge Bank Activate Bank Activate with WPB Enable L L H H H BA RA Precharge Select Bank L L H L L BA L ¥ Precharge All Banks L L H L L ¥ H ¥ Mode Register Set L L L L L OP. CODE Special Register Set L L L L H OP. CODE DQM Truth Table Function DQMi Data Write/Output Enable L Data Mask/Output Disable H 9/66 ¡ Semiconductor MSM54V25632A Function Truth Table (1/5) Note 1 Current State CS RAS CAS WE DSF Address Idle Row Active (ACT) Action Note H ¥ ¥ ¥ ¥ ¥ NOP or Power Down L H H H ¥ ¥ NOP or Power Down L H H L H ¥ ILLEGAL 2 L H H L L ¥ ILLEGAL 2 L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL 2 L H L L H BA, CA, A8 ILLEGAL 2 L H L L L BA, CA, A8 ILLEGAL 2 L L H H H BA, RA Row Active with WPB L L H H L BA, RA Row Active L L H L H ¥ L L H L L BA, A8 L L L H H ¥ ILLEGAL NOP 3 ILLEGAL L L L H L ¥ L L L L H Op-Code Special Register Write Mode Register Write Auto Refresh/Self refresh 4 L L L L L Op-Code H ¥ ¥ ¥ ¥ ¥ NOP L H H H ¥ ¥ NOP L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 Read L H L L H BA, CA, A8 Block Write L H L L L BA, CA, A8 Write L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ ILLEGAL L L H L L BA, A8 Precharge L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op-Code Special Register Write L L L L L Op-Code ILLEGAL 2 10/66 ¡ Semiconductor MSM54V25632A Function Truth Table (2/5) Note 1 Current State CS RAS CAS WE DSF Address Action Note H ¥ ¥ ¥ ¥ ¥ NOP (Continue Row Active after Burst ends) L H H H ¥ ¥ NOP (Continue Row Active after Burst ends) L H H L H ¥ ILLEGAL L H H L L ¥ 1, 2, 4, 8 Burst Length; ILLEGAL L H L H H ¥ L H L H L BA, CA, A8 L H L L H BA, CA, A8 Term Burst, start Block Write L H L L L BA, CA, A8 Term Burst, start Write L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ L L H L L BA, A8 L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op-Code ILLEGAL L L L L L Op-Code ILLEGAL Write/Block Write H (WT/BW) L ¥ ¥ ¥ ¥ ¥ NOP (Continue Row Active after Burst ends) H H H ¥ ¥ NOP (Continue Row Active after Burst ends) L H H L H ¥ ILLEGAL L H H L L ¥ 1, 2, 4, 8 Burst Length; ILLEGAL Read (RD) Full Page Burst; Burst Stop Æ Bank Active ILLEGAL Term Burst, new Read ILLEGAL Term Burst, execute Row Precharge Full Page Burst; Burst Stop Æ Row Active L H L H H ¥ L H L H L BA, CA, A8 Term Burst, start Read L H L L H BA, CA, A8 Term Burst, new Block Write L H L L L BA, CA, A8 Term Burst, new Write L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ ILLEGAL L L H L L BA, A8 L L L H H ¥ ILLEGAL ILLEGAL Term Burst, execute Row Precharge L L L H L ¥ ILLEGAL L L L L H Op-Code ILLEGAL L L L L L Op-Code ILLEGAL 11/66 ¡ Semiconductor MSM54V25632A Function Truth Table (3/5) Note 1 Current State CS RAS CAS WE DSF Address Read with Auto Precharge (RAP) Write/Block Write with Auto Precharge (WAP/BWAP) Action Note H ¥ ¥ ¥ ¥ ¥ NOP (Continue Burst to End and enter Row Precharge) L H H H ¥ ¥ NOP (Continue Burst to End and enter Row Precharge) L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL L H L L H BA, CA, A8 ILLEGAL L H L L L BA, CA, A8 ILLEGAL L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ ILLEGAL L L H L L BA, A8 ILLEGAL L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op- Code ILLEGAL ILLEGAL 2 L L L L L Op- Code H ¥ ¥ ¥ ¥ ¥ NOP (Continue Burst to End and enter Row Precharge) L H H H ¥ ¥ NOP (Continue Burst to End and enter Row Precharge) L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL L H L L H BA, CA, A8 ILLEGAL L H L L L BA, CA, A8 ILLEGAL L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ ILLEGAL L L H L L BA, A8 ILLEGAL L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op- Code ILLEGAL L L L L L Op- Code ILLEGAL 2 12/66 ¡ Semiconductor MSM54V25632A Function Truth Table (4/5) Note 1 Current State CS RAS CAS WE DSF Address Precharging (PRE) Refreshing (REF) Action Note H ¥ ¥ ¥ ¥ ¥ NOP Æ Idle after tRP L H H H ¥ ¥ NOP Æ Idle after tRP L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL 2 L H L L H BA, CA, A8 ILLEGAL 2 L H L L L BA, CA, A8 ILLEGAL 2 L L H H H BA, RA ILLEGAL 2 L L H H L BA, RA ILLEGAL 2 L L H L H ¥ ILLEGAL L L H L L BA, A8 L L L H H ¥ ILLEGAL ILLEGAL L L L H L ¥ L L L L H Op-Code NOP Æ Idle after tRP 2 3 Special Register Write ILLEGAL L L L L L Op-Code H ¥ ¥ ¥ ¥ ¥ NOP Æ Idle after tRC L H H H ¥ ¥ NOP Æ Idle after tRC L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL L H L L H BA, CA, A8 ILLEGAL L H L L L BA, CA, A8 ILLEGAL L L H H H BA, RA ILLEGAL L L H H L BA, RA ILLEGAL L L H L H ¥ ILLEGAL L L H L L BA, A8 ILLEGAL L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op-Code ILLEGAL L L L L L Op-Code ILLEGAL 13/66 ¡ Semiconductor MSM54V25632A Function Truth Table (5/5) Note 1 Current State CS RAS CAS WE DSF Address Mode Register Access (MRA) Special Mode Register Access (SMRA) H ¥ ¥ ¥ ¥ ¥ NOP L H H H ¥ ¥ NOP L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL L H L L H BA, CA, A8 ILLEGAL L H L L L BA, CA, A8 ILLEGAL L L H H H BA, RA ILLEGAL L L H H L BA, RA ILLEGAL L L H L H ¥ ILLEGAL L L H L L BA, A8 ILLEGAL L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op-Code ILLEGAL ILLEGAL L L L L L Op-Code H ¥ ¥ ¥ ¥ ¥ NOP L H H H ¥ ¥ NOP L H H L H ¥ ILLEGAL L H H L L ¥ ILLEGAL L H L H H ¥ ILLEGAL L H L H L BA, CA, A8 ILLEGAL L H L L H BA, CA, A8 ILLEGAL L H L L L BA, CA, A8 ILLEGAL L L H H H BA, RA ILLEGAL L L H H L BA, RA ILLEGAL L L H L H ¥ ILLEGAL L L H L L BA, A8 ILLEGAL L L L H H ¥ ILLEGAL L L L H L ¥ ILLEGAL L L L L H Op-Code ILLEGAL L L L L L Op-Code ILLEGAL ABBREVIATIONS RA = Row Address CA = Column Address Notes: Action BA = Bank Address AP = Auto Precharge Note NOP = No OPeration command ¥ = High or Low level (Don't care) 1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs. 2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection. 3. NOP to bank precharging or in idle state. Precharges activated bank by BA or A8. 4. Illegal if any bank is not idle. 14/66 ¡ Semiconductor MSM54V25632A Function Truth Table for CKE Current State (n) CKEn-1 CKEn CS RAS CAS WE DSF Address Self Refresh (SREF) Power Down (PD) Action Note H ¥ ¥ ¥ ¥ ¥ ¥ ¥ INVALID 5 L H H ¥ ¥ ¥ ¥ ¥ Exit Self Refresh Æ ABI 5 L H L H H H ¥ ¥ Exit Self Refresh Æ ABI 5 L H L H H L ¥ ¥ ILLEGAL 5 L H L H L ¥ ¥ ¥ ILLEGAL 5 L H L L ¥ ¥ ¥ ¥ ILLEGAL 5 L L ¥ ¥ ¥ ¥ ¥ ¥ NOP (Maintain Self Refresh) 5 H ¥ ¥ ¥ ¥ ¥ ¥ ¥ INVALID 5 L H H ¥ ¥ ¥ ¥ ¥ Exit Power Down Æ ABI 5 L H L H H H ¥ ¥ Exit Power Down Æ ABI 5 L H L H H L ¥ ¥ ILLEGAL 5 L H L H L ¥ ¥ ¥ ILLEGAL 5 L H L L ¥ ¥ ¥ ¥ ILLEGAL 5 L L ¥ ¥ ¥ ¥ ¥ ¥ NOP (Continue power down mode) 5 All Banks Idle H H ¥ ¥ ¥ ¥ ¥ ¥ Refer to Table 6 (ABI) H L H ¥ ¥ ¥ ¥ ¥ Enter Power Down 6 H L L H H H ¥ ¥ Enter Power Down 6 H L L H H L ¥ ¥ ILLEGAL 6 H L L H L ¥ ¥ ¥ ILLEGAL 6 H L L L H L ¥ ¥ ILLEGAL 6 H L L L L H L ¥ Enter Self Refresh 6 H L L L L L ¥ ¥ ILLEGAL 6 6 L L ¥ ¥ ¥ ¥ ¥ ¥ NOP Any State Other H H ¥ ¥ ¥ ¥ ¥ ¥ Refer to Operations in Table than Listed Above H L ¥ ¥ ¥ ¥ ¥ ¥ Begin Clock Suspend Next Cycle L H ¥ ¥ ¥ ¥ ¥ ¥ Enable Clock of Next Cycle L L ¥ ¥ ¥ ¥ ¥ ¥ Continue Clock Suspension Notes: 5. If the minimum set-up time tPDE is satisfied when CKE transitions from "L" to "H", CKE operates asynchronously so that a command can be input in the same internal clock cycle. 6. Power-down and self refresh can be entered only when all the banks are in an idle state. 15/66 ¡ Semiconductor MSM54V25632A Mode Set Address Keys CAS Latency (CL) Operation Code Burst Type (BT) Burst Length (BL) A8 A7 TM A6 A5 A4 CL A3 BT A2 A1 A0 BT = 0 BT = 1 0 0 Mode Setting 0 0 0 Reserved 0 Sequential 0 0 0 1 1 0 1 Reserved 0 0 1 1 1 Interleave 0 0 1 2 2 1 0 Reserved 0 1 0 2 0 1 0 4 4 1 Reserved 0 1 1 3 0 1 1 8 8 1 0 0 Reserved 1 0 0 Reserved Reserved 1 Write Burst Length A9 Length 1 0 1 Reserved 1 0 1 Reserved Reserved 0 Burst 1 1 0 Reserved 1 1 0 Reserved Reserved 1 Single Bit 1 1 1 Reserved 1 1 1 Full Page Reserved Special Mode Set Address Keys A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 LC LM 0 0 0 0 0 Load Color (LC) Note : Load Mask (LM) A6 Function A5 Function 0 Disable 0 Disable 1 Enable 1 Enable If LC and LM are both high (1), data of Mask and Color register will be unknown. POWER ON SEQUENCE 1. With CKE = "H", DQM = "H" and the other inputs in NOP state, turn on the power supply and start the system clock. 2. After the VCC voltage has reached the specified level, pause for 200 ms or more with the input kept in NOP state. 3. Issue the precharge all bank command. 4. Apply an Auto-refresh eight or more times. 5. Enter the mode register setting command. 16/66 ¡ Semiconductor MSM54V25632A Burst Length and Sequence BL = 2 Starting Address Sequential Type Interleave Type 0 0, 1 Not supported 1 1, 0 Not supported Sequential Type Interleave Type 00 0, 1, 2, 3 0, 1, 2, 3 01 1, 2, 3, 0 1, 0, 3, 2 10 2, 3, 0, 1 2, 3, 0, 1 11 3, 0, 1, 2 3, 2, 1, 0 Sequential Type Interleave Type 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 4, 5, 6, 7, 0 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 4, 5, 6, 7, 0, 1 2, 3, 0, 1, 6, 7, 4, 5 011 3, 4, 5, 6, 7, 0, 1, 2 3, 2, 1, 0, 7, 6, 5, 4 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 0, 1, 2, 3, 4 5, 4, 7, 6, 1, 0, 3, 2 110 6, 7, 0, 1, 2, 3, 4 ,5 6, 7, 4, 5, 2, 3, 0, 1 111 7, 0, 1, 2, 3, 4, 5, 6 7, 6, 5, 4, 3, 2, 1, 0 (column address A0, binary) BL = 4 Starting Address (column address A1 - A0, binary) BL = 8 Starting Address (column address A2 - A0, binary) BL = Full : Sequential only 17/66 ¡ Semiconductor MSM54V25632A PRECHARGE Read Interrupted by Precharge CL = 1 CL = 2 or 3 : At the same clock as the last read data. : One clock earlier than the last read data. BL = 4 0 1 2 3 4 5 6 7 8 CLK CL = 1 RD DQ CL = 2 Q1 DQ Q2 Q3 RD DQ CL = 3 PRE Hi-Z Q4 PRE Q1 Q2 Q3 RD Hi-Z Q4 PRE Q1 Q2 Q3 Q4 Hi-Z (tRAS is satisfied) 18/66 ¡ Semiconductor MSM54V25632A AUTO PRECHARGE Read with Auto Precharge BL = 4 0 1 2 3 4 5 6 7 8 CLK CL = 1 RAP DQ CL = 2 Q1 DQ Q2 RAP DQ CL = 3 Auto precharge starts Q3 Hi-Z Q4 Auto precharge starts Q1 Q2 RAP Q3 Hi-Z Q4 Auto precharge starts Q1 Q2 Q3 Q4 Hi-Z (tRAS is satisfied) 19/66 ¡ Semiconductor MSM54V25632A Write with Auto Precharge BL = 4 0 1 2 3 4 5 6 7 8 CLK CL = 1 WAP DQ D1 CL = 2 Auto precharge starts D2 D3 WAP DQ D1 CL = 3 Hi-Z D4 Auto precharge starts D2 D3 Hi-Z D4 WAP DQ D1 Auto precharge starts D2 D3 Hi-Z D4 (tRAS is satisfied) Block Write with Auto Precharge 0 1 2 3 4 5 CLK tBWC CL = 1 DQ CL = 2 DQ CL = 3 DQ BWAP Auto precharge starts DB Hi-Z BWAP Auto precharge starts DB BWAP DB Hi-Z Auto precharge starts Hi-Z (tRAS is satisfied) 20/66 ¡ Semiconductor MSM54V25632A READ/WRITE COMMAND INTERVAL Read to Read Command Interval BL = 4, CL = 2 0 1 2 3 4 5 6 7 8 CLK RD-B RD-A DQ QA1 QB1 QB2 QB3 Hi-Z QB4 1 cycle Write to Write Command Interval BL = 4, CL = 2 0 1 2 3 4 5 6 7 8 CLK DQ WT-A WT-B DA1 DB1 DB2 DB3 DB4 Hi-Z 1 cycle 21/66 ¡ Semiconductor MSM54V25632A Write to Read Command Interval BL = 4 0 1 2 3 4 5 6 7 8 CLK CL = 1 DQ WT-A DA1 RD-B Hi-Z QB1 QB2 QB3 QB4 QB1 QB2 QB3 QB4 QB1 QB2 QB3 1 cycle CL = 2 DQ CL = 3 DQ WT-A DA1 WT-A DA1 RD-B Hi-Z RD-B Hi-Z QB4 22/66 ¡ Semiconductor MSM54V25632A Block Write to Write/Block Write Command Interval 0 1 2 3 4 5 6 7 8 7 8 CLK tBWC DQ BW-A BW-B DA DB CL = 2 Hi-Z tBWC DQ BW-A WT-B DA DB1 BL = 4, CL = 2 DB2 DB3 DB4 Block Write to Read Command Interval 0 1 2 3 4 5 6 CLK tBWC CL = 1 DQ BW-A DA RD-B Hi-Z QB1 QB2 QB3 QB4 QB1 QB2 QB3 QB4 QB1 QB2 QB3 tBWC CL = 2 DQ BW-A DA RD-B Hi-Z tBWC CL = 3 DQ BW-A DA RD-B Hi-Z QB4 23/66 ¡ Semiconductor MSM54V25632A Read to Write/Block Write Command Interval CL = 1, 2, 3 0 1 2 3 4 5 6 7 8 CLK RD-A WT-B DQM DQ Hi-Z DB1 DB2 DB3 DB4 1 cycle BL = 8, CL = 1, 2 0 1 2 3 4 5 6 7 8 9 CLK CL = 1 RD-A WT-B DQM DQ CL = 2 QA1 QA2 QA3 QA4 RD-A DB1 Hi-Z is necessary DB2 DB3 DB2 DB3 WT-B DQM DQ QA1 QA2 QA3 DB1 Hi-Z is necessary 24/66 ¡ Semiconductor MSM54V25632A ex.) CL = 3, BL = 4 0 1 2 3 4 5 6 7 8 CLK RD-A WT-B DQM DQ QA1 DB1 Hi-Z is necessary DB2 DB3 | ex.) CL = 1, BL = 4 0 1 2 3 CLK WT-A DA1 5 6 7 8 9 RD-B DQM DQ 4 DA2 DA3 Hi-Z QB2 QB3 QB4 Note Note : DQM can mask both data-in and data-out in this special case. 25/66 ¡ Semiconductor MSM54V25632A BURST TERMINATION Burst Stop Command in Full Page BL = Full Page, CL = 1, 2, 3 0 1 2 3 4 5 6 7 8 CLK RD BST CL = 1 DQ Q1 CL = 2 DQ Hi-Z Q2 Q3 Q1 Q2 Q3 Q1 Q2 CL = 3 DQ Hi-Z Hi-Z Q3 BL = Full Page, CL = 1, 2, 3 0 1 2 3 4 5 6 7 8 CLK WT CL = 1, 2, 3 DQ D1 BST D2 D3 D4 Hi-Z 26/66 ¡ Semiconductor MSM54V25632A Precharge Termination in READ Cycle BL = X, CL = 1 0 1 2 3 4 5 6 7 8 CLK RD PRE DQ Q1 Q2 Q3 ACT Hi-Z Q4 tRP BL = X, CL = 2 0 1 2 3 4 5 6 7 8 CLK RD PRE DQ Q1 Q2 ACT Q3 Hi-Z Q4 tRP BL = X, CL = 3 0 1 2 3 4 5 6 7 8 CLK RD DQ PRE Q1 Q2 ACT Hi-Z Q3 tRP 27/66 ¡ Semiconductor MSM54V25632A Precharge Termination in WRITE Cycle BL = X, CL = 1, 2 0 1 2 3 4 5 6 7 8 CLK WT DQ PRE D1 D2 D3 D4 ACT Hi-Z D5 tRP Note : D5 data will not be written BL = X, CL = 3 0 1 2 3 4 5 6 7 8 CLK WT DQ D1 PRE D2 D3 D4 D5 ACT Hi-Z tRP Note : D5 data will not be written 28/66 ¡ Semiconductor MSM54V25632A ELECTRICAL CHARACTERISTICS Note : All voltages are referenced to VSS. Absolute Maximum Ratings Parameter Symbol Condition Rating Unit VCC, VCCQ — –1.0 to 4.6 V Voltage on Input Pin Relative to GND VT — –1.0 to VCC + 0.5 £ 4.6 V Short Circuit Output Current IOS — 50 mA Voltage on Power Supply Pin Relative to GND Power Dissipation PD Ta = 25°C 1 W Operating Temperature Topr — 0 to 70 °C Storage Temperature Tstg — –55 to 150 °C Caution: Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Recommended Operating Conditions (Ta = 0°C to 70°C) Symbol Min. Typ. Max. Unit Power Supply Voltage VCC 3.0 3.3 3.6 V Input High Voltage VIH 2.0 — VCC + 0.3 V Input Low Voltage VIL –0.3 — 0.8 V Parameter Capacitance (VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz) Parameter Input Capacitance (A0 - A9) Input Capacitance (CLK, CKE, CS, RAS, CAS, WE, DSF, DQM) Input/Output Capacitance (DQ0 - DQ31) Symbol Min. Max. Unit CI1 — 6 pF CI2 — 6 pF CI/O — 7 pF DC Characteristics 1 Parameter Symbol Test Condition Min. Max. Unit Output High Voltage VOH IOH = –2 mA 2.4 — V Output Low Voltage VOL IOL = 2 mA — 0.4 V –10 10 mA –10 10 mA Input Leakage Current ILI Output Leakage Current ILO 0 V £ VI £ 3.6 V; All other pins not under test = 0 V DOUT is disabled, 0 V £ VO £ 3.6 V 29/66 ¡ Semiconductor MSM54V25632A DC Characteristics 2 Parameter Operating Current Test Condition Symbol ICC1 Burst length = 1, tRAS ≥ tRAS (MIN.), tRP ≥ tRP (MIN.), IO = 0 mA Precharge Standby Current ICC2P CKE £ VIL (MAX.), tCK = 15 ns in Power Down Mode ICC2PS CKE £ VIL (MAX.), tCK = • -10 -12 Max. Max. 175 155 4 4 3 3 60 60 Unit Note mA 1 mA CKE ≥ VIH (MIN.), tCK = 15 ns, Precharge Standby Current ICC2N CS ≥ VIH (MIN.), Input signals are changed one time during 30 ns. in Non Power Down Mode ICC2NS CKE ≥ VIH (MIN.), tCK = •, Input signals are stable. mA 30 30 Active Standby Current ICC3P CKE £ VIL (MAX.), tCK = 15 ns 4 4 in Power Down Mode ICC3PS CKE £ VIL (MAX.), tCK = • 3 3 70 70 mA CKE ≥ VIH (MIN.), tCK = 15 ns, Active Standby Current ICC3N CS ≥ VIH (MIN.), Input signals are changed one time during 30 ns. in Non Power Down Mode ICC3NS Operating Current (Burst Mode) ICC4 CKE ≥ VIH (MIN.), tCK = •, IO = 0 mA Refresh Current ICC5 tRC ≥ tRC (MIN.) Self Refresh Current ICC6 CKE £ 0.2 V Operating Current (Block Write Mode) Notes 1. 2. 3. ICC7 35 35 CAS Latency = 1 130 120 CAS Latency = 2 180 170 CAS Latency = 3 240 230 165 3 240 Input signals are stable. tCK ≥ tCK (MIN.), tCK ≥ tCK (MIN.), IO = 0 mA, CAS cycle = 20 ns mA mA 2 145 mA 3 3 mA 240 mA ICC1 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, ICC1 is measured on condition that addresses are changed only one time during tCK (MIN.). ICC4 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, ICC4 is measured on condition that addresses are changed only one time during tCK (MIN.). ICC5 is measured on condition that addresses are changed only one time during tCK (MIN.). 30/66 ¡ Semiconductor MSM54V25632A AC Characteristics Test conditions • AC measurements assume tT = 1 ns. • Reference level for measuring timing of input signals is 1.4 V. Transition times are measured between VIH and VIL. • If tT is longer than 1 ns, reference level for measuring timing of input signals is VIH (MIN.) and VIL (MAX). • An access time is measured at 1.4 V. tCK tCH 2.8 V CLK 1.4 V VSS tCL tSetup tHold 2.8 V Input 1.4 V VSS tAC tOH Output 1.4 V 1.4 V 31/66 ¡ Semiconductor MSM54V25632A Synchronous Characteristics MSM54V25632A Parameter MSM54V25632A -10 Symbol -12 Unit Note Min. Max. Min. Max. CAS Latency = 3 tCK3 10 (100 MHz) 12 (83 MHz) ns CAS Latency = 2 tCK2 15 (66 MHz) 18 (55 MHz) ns CAS Latency = 1 tCK1 30 (33 MHz) 36 (28 MHz) ns CAS Latency = 3 tAC3 — 9 — 10 ns 1 Access Time from CLK CAS Latency = 2 tAC2 — 13 — 15 ns 1 CAS Latency = 1 tAC1 — 27 — 32 ns 1 tCH 3.5 — 4 — ns CLK Low Level Width tCL 3.5 — 4 — ns Data-out Hold Time tOH 3 — 3 — ns Clock Cycle Time CLK High Level Width Data-out Low-impedance Time Data-out tLZ 0 — 0 — ns CAS Latency = 3 tHZ3 3 8 3 8 ns CAS Latency = 2 tHZ2 3 12 3 12 ns CAS Latency = 1 tHZ1 3 26 3 26 ns Data-in Setup Time tDS 3 — 3.5 — ns Data-in Hold Time tDH 1 — 1.5 — ns Address Setup Time tAS 3 — 3.5 — ns Address Hold Time tAH 1 — 1.5 — ns CKE Setup Time tCKS 3 — 3.5 — ns CKE Hold Time tCKH 1 — 1.5 — ns tCMS 3 — 3.5 — ns tCMH 1 — 1.5 — ns High-impedance Time Command (CS, RAS, CAS, WE, DSF, DQM) Setup Time Command (CS, RAS, CAS, WE, DSF, DQM) Hold Time Note 1. Output load. 1.4 V Z = 50 W 50 W Output 30 pF 32/66 ¡ Semiconductor MSM54V25632A Asynchronous Characteristics MSM54V25632A Parameter MSM54V25632A -10 Symbol Min. -12 Max. Min. Unit Note Max. REF to REF/ACT Command Period tRC 90 — 108 — ns ACT to PRE Command Period tRAS 60 120,000 72 120,000 ns PRE to ACT Command Period tRP 30 — 36 — ns Delay Time ACT to READ/WRITE Command tRCD 30 — 36 — ns ACT (0) to ACT (1) Command Period Data-in to PRE Command Period tRRD 20 — 24 — ns CAS Latency = 3 tDPL3 20 — 24 — ns CAS Latency = 2 tDPL2 20 — 24 — ns CAS Latency = 1 tDPL1 20 — 24 — ns Data-in to ACT (REF) CAS Latency = 3 tDAL3 5 — 5 — CLK Command Period CAS Latency = 2 tDAL2 3 — 3 — CLK (Auto Precharge) CAS Latency = 1 tDAL1 2 — 2 — CLK Block Write Cycle Time tBWC 20 — 24 — ns Block Write Data-in CAS Latency = 3 tBPL3 30 — 36 — ns to PRE Command CAS Latency = 2 tBPL2 30 — 36 — ns Period CAS Latency = 1 tBPL1 30 — 36 — ns Block Write Data-in Active (REF) Command Period (Auto Precharge) CAS Latency = 3 tBAL3 6 — 6 — CLK CAS Latency = 2 tBAL2 4 — 4 — CLK CAS Latency = 1 tBAL1 Mode Register Set Cycle Time CKE Setup Time (Precharge Power Down Exit) Transition Time Refresh Time 2 — 2 — CLK tRSC 20 — 20 — ns tPDE 8 — 10 — ns tT 1 30 1 30 ns tREF — 16 — 16 ms 33/66 ¡ Semiconductor MSM54V25632A |y,|y,z}{~,yz|}{~ |y,z}{~|z{}~,y TIMING WAVEFORM AC Parameters for Read Timing (BL = 2, CL = 2) 0 tCK 1 2 3 4 5 6 7 8 9 10 11 12 13 CLK tCH tCL tCKS tCMS tCMH CKE Auto Precharge Start for Bank B tCKH CS RAS CAS WE z }z DSF A9 (BA) A8 ADD tAS tAH DQM 0-3 DQ tCMS tCMH tAC Hi-Z tRCD tRRD tLZ tAC tHZ tOH tRAS tOH tRP tRC ACT-A RD-A ACT-B RAP-B PRE-A ACT-A 34/66 ¡ Semiconductor MSM54V25632A y,}|{~}|y,z~{z} |y,~{|y,z}~{z AC Parameters for Write Timing (BL = 4, CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE Auto Precharge Start for Bank A tCKS tCMS tCMH Auto Precharge Start for Bank B tCKH CS RAS CAS WE DSF A9 (BA) A8 ADD tAS tAH DQM 0-3 DQ tDS Hi-Z tCMH tCMS tDH tRCD tRRD tDAL tDPL tRP tRC ACT-A WAP-A ACT-B WAP-B ACT-A WAP-A PRE-A ACT-A 35/66 ¡ Semiconductor MSM54V25632A Relationship between Frequency and Latency Rate MSM54V25632A-10 MSM54V25632A-12 Clock Cycle Time [ns] 10 15 30 12 18 36 Frequency [MHz] 100 66 33 83 55 28 CAS Latency 3 2 1 3 2 1 [tRCD] 3 2 1 3 2 1 6 4 2 6 4 2 [tRC] 9 6 3 9 6 3 [tRAS] 6 4 2 6 4 2 [tRRD] 2 2 1 2 2 1 [tRP] 3 2 1 3 2 1 [tDPL] 2 2 1 2 2 1 [tDAL] 5 3 2 5 3 2 RAS Latency (CAS Latency + [tRCD]) 36/66 ¡ Semiconductor MSM54V25632A Power on Sequence and Auto Refresh (Initialization) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CS RAS CAS WE DSF A9 (BA) A8 High level is necessary 8 refresh cycles are necessary |,yz}{~z{}~ |,yz}{~}~{z CKE ADDRESS KEY ADD DQM 0-3 DQ High level is necessary Hi-Z REF REF MRA PRE (All Banks) tRC tRC 37/66 ¡ Semiconductor MSM54V25632A Mode Register Set (BL = 4, CL = 2) 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |y,}z~{}|yz,~{ |,yz}{~,yz|}~{ 1 CLK CKE tRSC (20 ns) H CS RAS CAS WE DSF A9 (BA) A8 ADDRESS KEY ADD DQM 0-3 DQ Hi-Z PRE MRA (All Banks) ACT tRP 38/66 ¡ Semiconductor MSM54V25632A Auto Refresh (CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |y,}z~{}|zy, |y,z}{~}|zy, CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 L DQ Q1 PRE REF tRP REF tRC ACT RD tRC 39/66 |{y,z}z}{~ y,|{,yz}~}z~{ ¡ Semiconductor MSM54V25632A Self Refresh (Entry and Exit) 0 CLK CKE CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 DQ 1 2 3 4 7 8 9 10 11 12 17 18 19 20 21 L PRE SREF entry tRP SREF Exit SREF entry or (ACT) Next clock enable tRC SREF Exit ACT Next clock enable tRC 40/66 ¡ Semiconductor MSM54V25632A Auto Precharge after Read Burst (BL = 4, CL = 3) 0 CKE CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 DQ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |,yz}{~|y,z} |,yz}}~z{|y, CLK 1 H RAa RAa RBb RBa CAa RBa CBa CAb RBb CBb L Hi-Z ACT-A QAa1 QAa2 QAa3 QAa4 QBa1 QBa2 QBa3 QBa4 QAb1 QAb2 QAb3 QAb4 ACT-B RD-A RAP-A QBb1 QBb2 RAP-B AP-A RAP-B AP-B ACT-B 41/66 ¡ Semiconductor MSM54V25632A |y,~{z}y,|~{ |y,~{}z|,y~{ Auto Precharge after Write Burst (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK H CKE CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 L DQ Hi-Z ACT-A RBb RBa CAa RBa CBa CAb RBb DAa1 DAa2 DAa3 DAa4 DBa1 DBa2 DBa3 DBa4 DAb1 DAb2 DAb3 DAb4 ACT-B WT-A WAP-A CBb DBb1 DBb2 DBb3 DBb4 ACT-B WAP-B WAP-B AP-B AP-A 42/66 ¡ Semiconductor MSM54V25632A Full Page READ Cycle (CL = 3) y,{y,z{ |y,~{|y,z}~{ |y,~{|}y,z~{ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 L DQ RBa CAa RBa Hi-Z ACT-A RBb CBa RBb QAa QAa+1 QAa–3 QAa–2 QAa–1 QAa QAa+1 QBa QBa+1 QBa+2 QBa+3 QBa+4 QBa+5 RD-A ACT-B RD-B Burst cannot end in Full Page mode Burst stop Command PRE-B ACT-B tRP 43/66 ¡ Semiconductor MSM54V25632A Full Page WRITE Cycle (CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK H |y,z}{~{z}~ |,yz}{~{}~z CKE CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 L DQ Hi-Z ACT-A RBa CAa RBb RBa CBa RBb DAa DAa+1 DAa+2 DAa+3 DAa–1 DAa DAa+1 DBa DBa+1 DBa+2 DBa+3 DBa+4 WT-A ACT-B Burst cannot end in Full Page mode WT-B PRE-B ACT-B Burst stop Command tRP 44/66 ¡ Semiconductor MSM54V25632A PRE (Precharge) Termination of Burst (BL = 2, 4, 8, Full, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS z{}~,y|{~ }z{~,y|{~ } RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 L DQ RAb CAa RAb RAc CAb DAa1 DAa2 ACT-A QAb1 QAb2 QAb3 WT-A Hi-Z RD-A PRE-A PRE Command Termination tRCD RAc tDPL ACT-A tRP PRE-A PRE Command Termination tRAS ACT-A tRP 45/66 ¡ Semiconductor MSM54V25632A Clock Suspension during Burst Read (using CKE Function) (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CS RAS CAS WE DSF A9 (BA) |y,}z~{}|zy, |y,}z~{}|zy, CKE A8 RAa ADD RAa DQM 0-3 L CAa QAa1 DQ ACT-A RD-A QAa2 QAa3 1-CLOCK 2-CLOCK SUSPENDED SUSPENDED QAa4 3-CLOCK SUSPENDED Hi-Z (turn off) at end of burst 46/66 ¡ Semiconductor MSM54V25632A Clock Suspension during Burst Write (using CKE Function) (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE }|zy,~{~{}z yz,}|{~{,y|~}z CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 CAa L DQ DAa1 ACT-A DAa2 DAa3 DAa4 1-CLOCK 2-CLOCK SUSPENDED SUSPENDED 3-CLOCK SUSPENDED WT-A 47/66 ¡ Semiconductor MSM54V25632A y,||y,}z~{~{ |,y|z{}~,y{~ Power Down Mode and Clock Suspension (BL = 4, CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK tCKS tPDE CKE VALID CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 CAa L DQ QAa1 QAa2 ACT-A QAa3 RD-A PD Entry PD Exit ACTIVE STANDBY QAa4 PRE-A Clock Mask Start Clock Mask End PD PD PRECHARGE STANDBY 48/66 ¡ Semiconductor MSM54V25632A CLOCK Suspend Exit & Power Down Exit , 1) Clock Suspend (= Active Power Down) Exit 2) Power Down (= Precharge Power Down) Exit CLK CLK CKE (CASE 1) CKE Internal CLK tCKS Internal CLK Note 1 Command RD Command 4. ≥ tPDE Note 2 ACT Command (CASE 2) CKE Internal CLK Notes: 1. 2. 3. Note 3 Note 4 < tPDE Note 2 NOP ACT Active power down: one or both bank active state. Precharge power down: both bank precharge state. tPDE: Asynchronous AC parameter. Time for Power Down Exit Setup Time. Only valid at precharge power down exit. tCKS < tPDE, NOP should be issued. And new command can be issued after 1 Clock. 49/66 ¡ Semiconductor MSM54V25632A |y,{~|y,z}{~} |y,~{|y,z}~{}z Byte Read/Write Operation (by DQM) (BL = 4, CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RBa ADD RBa CBa CBb CBc DQM DQM0 DQM1 DQ 0-7 QBa1 QBa2 QBa3 DQ 8 - 15 DBb2 DBb3 QBa2 QBa3 QBa4 ACT-B RD-B Byte of DQ8 - 15 not Read Byte of DQ0 - 7 not Read DBb1 DBb2 QBc2 QBc3 DBb4 Byte of RD-B DQ8 - 15 not Write QBc1 QBc2 QBc3 QBc4 Byte of DQ0 - 7 not Read Byte of DQ0 - 7 not Read Byte of DQ0 - 7 not Write Byte of DQ0 - 7 not Write WT-B 50/66 ¡ Semiconductor MSM54V25632A Burst Read and Single Write (BL = 4, CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H |~y{,}z~},y|z{ |y{~,z}{~z,y}| CS RAS CAS WE DSF A9 (BA) A8 RBa ADD RBa CBb CBa CBc CBd CBe DQM0 DQM1 DQ 0-7 DQ 8 - 15 QBa1 QBa2 QBa3 QBa4 DBb Write Masking DBc ACT-B RD-B Single WT Single WT DBe QBd1 RD Single WT 51/66 ¡ Semiconductor MSM54V25632A Special Mode Register Set (BL = 4, CL = 2) 0 CKE CS RAS CAS WE DSF A9 (BA) A8 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |y,}z|y,}z~{ |y,}z,y|z}~{ CLK 1 H tRSC (20 ns) ADDRESS KEY ADD DQM 0-3 Color or Mask data DQ PRE SMRA (All Banks) Hi-Z ACT is valid tRP Remark Special Register Set command can be input at any state. 52/66 ¡ Semiconductor MSM54V25632A Random Row Write with WPB (BL = 8, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ,yz{y,z |,yz}~{,y|}z |}y,z~{,y|z} CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 RBa CAa RBa RAb CBa RAb CAb L DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DBa1 DBa2 DBa3 DBa4 DBa5 DBa6 DBa7 DBa8 DAb1 DAb2 DAb3 DQ ACT-A WT-A with WPB WPB is enabled. tRCD ACT-B WT-B PRE-A WPB is disabled. tDPL ACT-A tRP WT-A PRE-B WPB is disabled. tDPL 53/66 ¡ Semiconductor MSM54V25632A Block Write (Page at Same Bank) (CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 DQ H |}~zy,{~{|y,z} |,yz{}~~{z},y| CKE RBb RBa RBa RBb CBc CBa CBb CBc CBd I/O Mask I/O Mask I/O Mask I/O Mask I/O Mask CM CM CM CM CM BW-B BW-B BW-B BW-B L = No I/O Mask ACT-B tRCD tBWC tBWC tBWC PRE-B tBPL ACT-B BW-B with WPB WPB is enabled. tRP tRCD 54/66 ¡ Semiconductor MSM54V25632A y,,y{zz{ |y,,y|z}{~}z~{ |y,,y|}z{~{~z} Block Write (Page at Same Bank) Changing Color and Mask Data (CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RBa ADD RBa RBb CBa 20h I/O Mask DQM 0-3 CM DQ ACT-B with WPB BW-B tRCD CBb 40h I/O Mask Mask CM Color CBc CBd I/O Mask I/O Mask CM CM SMRA BW-B SMRA BW-B (Mask data) (Color data) tBWC tRSC (20 ns) tBWC tRSC (20 ns) RBb BW-B tBWC PRE-B tBPL ACT-B tRCD 55/66 ¡ Semiconductor MSM54V25632A Interleaved Block Write (CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK CKE H CS yz,{yz,{ |,yz}{~|},yz{~ ,yz|}~{,yz|}{~ RAS CAS WE DSF A9 (BA) A8 RAa RBa ADD RAa CAa RBa DQM 0-3 RBb CBa CAb CBb CM CM CM RBb L Column Mask CM DQ ACT-A ACT-B PRE-B BW-A tRCD BW-B tRCD BW-A tBWC ACT-B BW-B tBWC tBPL tRP 56/66 ¡ Semiconductor MSM54V25632A |y,|,y}~{z~{ |y,,y|}~z{~{ Random Column Read (Page with Same Bank) (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 RAa CAa CAb CAc RAa CAa ACT-A RD-A L QAa1 QAa2 QAa3 QAa4 QAb1 QAb2 QAc1 QAc2 QAc3 QAc4 DQ ACT-A RD-A RD-A PRE-A RD-A tRP 57/66 ¡ Semiconductor MSM54V25632A Random Column Write (Page with Same Bank) (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK ,yzz{y, ,y|z}z{}~|y, |},yzz{}~|y, CKE H CS RAS CAS WE DSF A9 (BA) A8 RBa ADD RBa DQM 0-3 RBd CBa CBb CBc RBd CBd L DBa1 DBa2 DBa3 DBa4 DBb1 DBb2 DBc1 DBc2 DBc3 DBc4 DQ ACT-B WT-B WT-B DBd1 ACT-B PRE-B WT-B WT-B tRP 58/66 ¡ Semiconductor MSM54V25632A Random Row Read (BL = 8, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CS RAS CAS WE DSF A9 (BA) |}y,zz{~}|y, ,y|}zz}{~|y, CKE H A8 RBa ADD RBa DQM 0-3 RAa CBa RAa RBb CAa RBb CBb L QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QBa8 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 QAa8 DQ ACT-B RD-B tRCD ACT-A CL RD-A PRE-B ACT-B RD-B PRE-A tRP 59/66 ¡ Semiconductor MSM54V25632A Random Row Write (BL = 8, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS CAS WE DSF A9 (BA) }~,y|{z{~ y|{~}z,{~ RAS A8 RAa ADD RAa DQM 0-3 DQ RBa CAa RBa RAb CBa RAb CAb L DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DBa1 DBa2 DBa3 DBa4 DBa5 DBa6 DBa7 DBa8 DAb1 DAb2 DAb3 ACT-A WT-A tRCD ACT-B WT-B tDPL PRE-A ACT-A tRP WT-A PRE-B tDPL 60/66 ¡ Semiconductor MSM54V25632A READ and WRITE (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 z}|y,}~z{|y, |},yz}~|z{,y CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa CAa CAb CAc Write latency = 0 DQM 0-3 Write Masking QAa1 QAa2 QAa3 QAa4 DQ ACT-A RD-A DAb1 DAb2 WT-A DAb4 QAc1 QAc2 Hi-Z RD-A 0-clock latency Hi-Z at the end of Burst function 2-clock latency 61/66 ¡ Semiconductor MSM54V25632A y,|{~zy,|}~{ |y,~{|y,}z~{ Interleaved Column READ Cycle (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa RBa ADD RAa CAa RBa DQM 0-3 CBa CBb CBc CAb L QAa1 QAa2 QAa3 QAa4 QBa1 QBa2 QBb1 QBb2 QBc1 QBc2 QAb1 QAb2 QAb3 QAb4 DQ ACT-A RD-A RD-B RD-B RD-B RD-A PRE-B PRE-A ACT-B tRCD CL tRRD 62/66 ¡ Semiconductor MSM54V25632A Interleaved Column WRITE Cycle (BL = 4, CL = 3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 DQ H |z}y,~{~z{} }~z,y{|z{~} CKE RAa RBa RAa CAa RBa CBa CBb CBc CAb CBd L DAa1 DAa2 DAa3 DAa4 DBa1 DBa2 DBb1 DBb2 DBc1 DBc2 DAb1 DAb2 DBd1 DBd2 DBd3 DBd4 ACT-A WT-A ACT-B tRCD WT-B WT-B WT-B WT-A WT-B PRE-B PRE-A tDPL tDPL tRRD 63/66 ¡ Semiconductor MSM54V25632A Full Page Random Column Read (BL = Full Page, CL = 2) 0 CKE CS RAS CAS WE DSF A9 (BA) A8 ADD DQM 0-3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 y|,z}z}y|,{~ ,yz|},yz|}{~ CLK 1 H RAa RAa L RBa RBa CAa CBa CAb tRCD tRRD tRCD CBb CAc CBc QAa1 QBa1 QAb1 QAb2 QBb1 QBb2 QAc1 QAc2 QAc3 QBc1 QBc2 QBc3 DQ Hi-Z ACT-A ACT-B RD-B RD-A RD-A RD-B RD-A RD-B PRE-B (PRE Termination) 64/66 ¡ Semiconductor MSM54V25632A Full Page Random Column Write (BL = Full Page, CL = 2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 CLK yz,{z |,yz}~z}{ |}}~ CKE H CS RAS CAS WE DSF A9 (BA) A8 RAa ADD RAa DQM 0-3 L RBa RBa CAa CBa CAb tRCD tRRD tRCD CBb CAc CBc DAa1 DBa1 DAb1 DAb2 DBb1 DBb2 DAc1 DAc2 DAc3 DBc1 DBc2 DBc3 DQ ACT-A ACT-B WT-B WT-A WT-B WT-A WT-B PRE-B (PRE Termination) WT-A 65/66 ¡ Semiconductor MSM54V25632A PACKAGE DIMENSIONS (Unit : mm) QFP100-P-1420-0.65-BK4 Mirror finish Package material Lead frame material Pin treatment Solder plate thickness Package weight (g) Epoxy resin 42 alloy Solder plating 5 mm or more 1.54 TYP. Notes for Mounting the Surface Mount Type Package The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki’s responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times). 66/66 E2Y0002-29-11 NOTICE 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date. 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs. 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature. 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range. 5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party’s right which may result from the use thereof. 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems. 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these. 8. No part of the contents cotained herein may be reprinted or reproduced without our prior permission. 9. MS-DOS is a registered trademark of Microsoft Corporation. Copyright 1999 Oki Electric Industry Co., Ltd. Printed in Japan