VISHAY MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 Vishay Semiconductors Optocoupler, Phototransistor Output, With Base Connection Features • • • • Interfaces with common logic families Input-output coupling capacitance < 0.5 pF Industry Standard Dual-in line 6-pin package 5300 VRMS isolation test voltage Agency Approvals • UL - File No. E52744 System Code H or J • DIN EN 60747-5-2(VDE0884) DIN EN 60747-5-5 pending Available with Option 1 • CSA 93751 • BSI IEC60950 IEC60965 Applications AC mains detection Reed relay driving Switch mode power supply feedback Telephone ring detection Logic ground isolation Logic coupling with high frequency noise rejection For additional design information see Application Note 45 A 1 6 B C 2 5 C NC 3 4 E i179004 These isolation processes and the Vishay ISO9001 quality program results in the highest isolation performance available for a commercial plastic phototransistor optocoupler. The devices are available also in lead formed configuration suitable for surface mounting and are available either on tape and reel, or in standard tube shipping containers. Order Information Part Remarks MCT270 CTR > 50 %, DIP-6 MCT271 CTR 45 - 90 %, DIP-6 Description MCT272 CTR 75 - 150 %, DIP-6 The MCT27x family is an Industry Standard Single Channel Phototransistor Couplers. It includes the MCT270/ 271/ 272/ 273/ 274/ 275/ 276/ 277 couplers. Each optocoupler consists of gallium arsenide infrared LED and a silicon NPN phototransistor. These couplers are Underwriters Laboratories (UL) listed to comply with a 5300 VRMS isolation test voltage. This isolation performance is accomplished through Vishay double molding isolation manufacturing process. Compliance to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending partial discharge isolation specification is available by ordering option 1. MCT273 CTR 125 - 250 %, DIP-6 MCT274 CTR 225 - 400 %, DIP-6 MCT275 CTR 70 - 210 %, DIP-6 MCT276 CTR 15 - 60 %, DIP-6 MCT277 CTR > 100 %, DIP-6 Document Number 83724 Rev. 1.4, 19-Apr-04 MCT270-X009 CTR > 50 %, SMD-6 (option 9) MCT277-X009 CTR > 100 %, SMD-6 (option 9) For additional information on the available options refer to Option Information. www.vishay.com 1 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Symbol Value Reverse voltage Parameter Test condition VR 6.0 V Forward current IF 60 mA IFSM 2.5 A Pdiss 100 mW Symbol Value Unit VCEO 70 V t < 10 µs Surge current Power dissipation Unit Output Parameter Test condition Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector current t < 1.0 ms 7.0 V IC 50 mA IC 100 mA Pdiss 150 mW Symbol Value Unit VISO 5300 VRMS Creepage ≥ 7.0 mm Clearance ≥ 7.0 mm Isolation thickness between emitter and detector ≥ 0.4 mm Comparative tracking index per DIN IEC 112/VDE0303,part 1 175 Power dissipation Coupler Parameter Test condition Isolation test voltage Isolation resistance VIO = 500 V, Tamb = 25 °C RIO 1012 Ω VIO = 500 V, Tamb = 100 °C RIO 11 Ω 10 Storage temperature Tamb - 55 to + 150 °C Operating temperature Tamb - 55 to + 100 °C Tj 100 °C Tsld 260 °C Junction temperature Soldering temperature www.vishay.com 2 max. 10 s dip soldering: distance to seating plane ≥ 1.5mm Document Number 83724 Rev. 1.4, 19-Apr-04 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Parameter Forward voltage Test condition IF = 20 mA Symbol Min Typ. VF Reverse current VR = 3.0 V IR Capacitance VR = 0, f = 1.0 MHz CO Max Unit 1.5 V 10 µA 25 pF Output Symbol Min Collector-emitter breakdown voltage Parameter IC = 10 µA, IF = 0 mA Test condition BVCEO 30 Typ. Max Unit V Emitter-collector breakdown voltage IE = 10 µA, IF = 0 mA BVECO 7.0 V Collector-base breakdown voltage IC = 10 µA, IF = 0 mA BVCBO 70 V Collector-emitter leakage current VCE = 10 V, IF = 0 mA ICEO 50 nA Max Unit Coupler Parameter Resistance, input to output Test condition VIO = 500 VDC Capacitance (input-output) Collector-emitter saturation voltage Symbol Min Typ. RIO 10 0.5 CIO ICE = 2.0 mA, IF = 16 mA Ω 12 pF VCEsat 0.4 V Current Transfer Ratio Parameter DC Current Transfer Ratio Current Transfer Ratio (collector-emitter) Document Number 83724 Rev. 1.4, 19-Apr-04 Test condition VCE = 10 V, IF = 10 mA VCE = 0.4 V, IF = 16 mA Part Symbol Min MCT270 CTRDC 50 Typ. Max Unit MCT271 CTRDC 45 90 % MCT272 CTRDC 75 150 % MCT273 CTRDC 125 250 % MCT274 CTRDC 225 400 % % MCT275 CTRDC 70 210 % MCT276 CTRDC 15 60 % MCT277 CTRDC 100 % MCT271 CTRCE 12.5 % MCT272 CTRCE 12.5 % MCT273 CTRCE 12.5 % MCT274 CTRCE 12.5 % MCT275 CTRCE 12.5 % MCT276 CTRCE 12.5 % MCT277 CTRCE 40 % www.vishay.com 3 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Switching Characteristics Parameter Switching time Test condition IC = 2.0 mA, RL = 100 Ω, VCE = 5.0 V Part Symbol MCT270 ton, toff Min Typ. Max 10 Unit µs MCT271 ton, toff 7.0 µs MCT272 ton, toff 10 µs MCT273 ton, toff 20 µs MCT274 ton, toff 25 µs MCT275 ton, toff 15 µs MCT277 ton, toff 15 µs MCT276 ton, toff 3.5 µs Typical Characteristics (Tamb = 25 °C unless otherwise specified) 1.4 VF - Forward Voltage - V 1.3 NCTR - Normalized CTR 1.5 TA = –55°C 1.2 TA = 25°C 1.1 1.0 0.9 TA = 85°C 0.8 .1 1 10 IF - Forward Current - mA TA=50°C 0.5 NCTR(SAT) NCTR .1 100 i4n25_01 1 10 IF- LED Current - mA 100 i4n25_03 Fig. 1 Forward Voltage vs. Forward Current Fig. 3 Normalized Non-saturated and Saturated CTR vs. LED Current 1.5 1.5 Normalized to: Vce=10 V, IF=10 mA, TA=25°C CTRce(sat) Vce=0.4 V NCTR - Normalized CTR NCTR - Normlized CTR 1.0 0.0 0.7 1.0 TA=25°C 0.5 NCTR(SAT) NCTR Normalized to: Vce=10 V, IF=10 mA, TA=25°C CTRce(sat) Vce=0.4 V 1.0 TA=70°C 0.5 NCTR(SAT) NCTR 0.0 0.0 .1 0 1 10 IF - LED Current - mA 100 i4n25_02 Fig. 2 Normalized Non-Saturated and Saturated CTR vs. LED Current www.vishay.com 4 Normalized to: Vce=10 V, IF=10 mA, TA=25°C CTRce(sat) Vce=0.4 V 1 10 IF - LED Current - mA 100 i4n25_04 Fig. 4 Normalized Non-saturated and saturated CTR vs. LED Current Document Number 83724 Rev. 1.4, 19-Apr-04 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors 1.5 Normalized to: Vce=10 V, IF=10 mA, TA=25°C CTRce(sat) Vce = 0.4 V Normalized to: Vcb=9.3 V, IF=10 mA, TA=25°C NCTRcb - Normalized CTRcb NCTR - Normalized CTR 1.5 1.0 TA=85°C 0.5 NCTR(SAT) NCTR 1.0 0.5 25°C 50°C 70°C 0.0 .1 0.0 .1 1 10 IF - LED Current - mA 100 i4n25_05 10 100 i4n25_08 Fig. 5 Normalized Non-saturated and saturated CTR vs. LED Current Fig. 8 Normalized CTRcb vs. LED Current and Temp. 35 10 Normalized to: IF=10 mA, TA=25°C 25 Normalized Photocurrent 30 Ice - Collector Current - mA 1 IF - LED Current - mA 50°C 20 70°C 15 25°C 85°C 10 5 1 0.1 Nib, TA=–20°C Nib, TA= 25°C Nib, TA= 50°C Nib, TA= 70°C 0 0 10 20 30 40 50 60 0.01 .1 IF - LED Current - mA i4n25_06 Fig. 6 Collector-Emitter Current vs. Temperature and LED Current 10 10 10 10 10 10 100 Fig. 9 Normalized Photocurrent vs. IF and Temp. 5 1.2 70°C 4 NHFE - Normalized HFE Iceo - Collector-Emitter - nA 10 1 IF - LED Current - mA i4n25_09 3 2 Vce = 10 V 1 Typical 0 10 –1 10 –2 –20 0 20 40 60 80 Fig. 7 Collector-Emitter Leakage Current vs.Temp. Document Number 83724 Rev. 1.4, 19-Apr-04 25°C –20°C 0.8 Normalized to: Ib=20 µA, Vce=10 V, TA=25°C 0.6 0.4 100 TA - Ambient Temperature - °C i4n25_07 1.0 1 10 100 Ib - Base Current - µA 1000 i4n25_10 Fig. 10 Normalized Non-saturated HFE vs. Base Current and Temperature www.vishay.com 5 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY NHFE(sat) - Normalized Saturated HFE Vishay Semiconductors 1.5 Normalized to: Vce=10 V, Ib=20 µA T A =25°C 50°C 70°C VCC = 5.0 V 1.0 F=10 KHz, DF=50% 25°C RL VO –20°C 0.5 IF=1 0 mA Vce=0.4 V 0.0 1 10 100 1000 Ib - Base Current - µA i4n25_11 i4n25_14 Fig. 11 Normalized HFE vs. Base Current and Temp. 2.5 IF =10 mA,TA=25°C VCC =5.0 V, Vth=1.5 V 100 tPHL 2.0 10 1.5 tPLH 1 .1 tPHL - Propagation Delay - µs tPLH - Propagation Delay - µs 1000 Fig. 14 Switching Schematic 1.0 1 10 100 RL - Collector Load Resistor - kΩ i4n25_12 Fig. 12 Propagation Delay vs. Collector Load Resistor IF VO tD tR tPLH VTH=1.5 V tPHL tS tF i4n25_13 Fig. 13 Switching Timing www.vishay.com 6 Document Number 83724 Rev. 1.4, 19-Apr-04 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Package Dimensions in Inches (mm) pin one ID 3 2 1 4 5 6 .248 (6.30) .256 (6.50) ISO Method A .335 (8.50) .343 (8.70) .300 (7.62) typ. .048 (0.45) .022 (0.55) .039 (1.00) Min. .130 (3.30) .150 (3.81) 18° 4° typ. .031 (0.80) min. 3°–9° .031 (0.80) .035 (0.90) .018 (0.45) .022 (0.55) .100 (2.54) typ. .010 (.25) typ. .300–.347 (7.62–8.81) .114 (2.90) .130 (3.0) i178004 Package Dimensions in Inches (mm) SMD .343 (8.71) .335 (8.51) Pin one I.D. .030 (.76) .256 (6.50) .248 (6.30) .100 (2.54) R .010 (.25) .070 (1.78) .315 (8.00) min .435 (11.05) .060 (1.52) .050 (1.27) typ. .395 (10.03) .375 (9.63) .300 (7.62) typ. ISO Method A .039 (0.99) min. .052 (1.33) .048 (1.22) .150 (3.81) .130 (3.30) .0098 (.25) .0040 (.10) 3° to 7° 18° 4° .100 (2.54) i178002 Document Number 83724 Rev. 1.4, 19-Apr-04 .040 (1.016) .020 (0.508) .315 (8.00) min. .012 (0.31) .008 (0.20) www.vishay.com 7 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Option 9 .375 (9.53) .395 (10.03) .300 (7.62) ref. .0040 (.102) .0098 (.249) .012 (.30) typ. .020 (.51) .040 (1.02) .315 (8.00) min. www.vishay.com 8 15° max. 18449 Document Number 83724 Rev. 1.4, 19-Apr-04 MCT270/ 1/ 2/ 3/ 4/ 5/ 6/ 7 VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83724 Rev. 1.4, 19-Apr-04 www.vishay.com 9