GL382 GL382 IrDA-Based SIR System-Conforming Infrared Emitting Diode ■ Features ■ Outline Dimensions 1. Compact 3 φ resin mold package 2. Peak emitting wavelength conforming to SIR system based on IrDA ( λ p=880 nm [I F=50mA] ) (Unit : mm) φ 3.8 0.6 5.3 ± 0.2 3. Narrow beam angle (Half intensity angle : TYP. ± 17˚ ) 1 14.2 ± 1.0 0.8 MAX. φ 3.0 ± 0.15 2 4. High speed response (Cut-off frequency fc : TYP.12MHz) ■ Applications 1. Portable information terminal equipment 0.5 MIN. 0.15 2 - 0.5 +- 0.1 2. Personal computers 3. Printers 1 Anode 2 Cathode (2.54) Symbol Rating IF 60 I FM 0.5 VR 4 T opr - 25 to + 85 T stg - 40 to + 85 T sol 260 Unit mA A V ˚C ˚C ˚C 1 2 0.15 2 - 0.5 +- 0.1 Parameter Forward current *1 Peak forward current Reverse voltage Operating temperature Storage temperature *2 Soldering temperature (Ta=25˚C) 3.6 ■ Absolute Maximum Ratings * Tolerance : ± 0.2mm *1 Pulse width <= 100µ s, Duty ratio=0.01 *2 For 3 seconds at the position of 2.6 mm from the resin edge ■ Electro-optical Characteristics Parameter Forward voltage Peak forward voltage Reverse voltage *3 Radiant intensity Peak emission wavelength Half intensity wavelength Response frequency Half intensity angle *3 (Ta=25 ˚C) Symbol VF V FM IR IE λP ∆λ fC ∆θ Conditions I F = 50mA IFM = 0.5A V R = 3V I F = 50mA I F = 50mA I F = 50mA IF =50mA+10mAp-p I F = 20mA MIN. 6 - TYP. 1.5 2.2 18 880 40 12 ± 17 MAX. 1.7 3.8 10 - I E : Value obtained by converting the value in power of radiant fluxes emitted at the solid angle of 0.01 sr (steradian) in the direction of mechanical axis of the lens portion into 1 sr or all those emitted from the light emitting diode. “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” Unit V V µA mW/sr nm nm MHz ˚ GL382 Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Peak Forward Current vs. Duty Ratio 120 5 000 (mA) FM Peak forward current I 80 Forward current I F (mA) 100 60 40 20 0 - 25 Pulse width <=100µ s Ta= 25˚C 0 25 50 75 85 100 1 000 500 100 50 10 10 - 4 125 10 - 3 Ambient temperature Ta (˚C) 10 - 2 10 - 1 1 Duty ratio Fig. 4 Peak Emission Wavelength vs. Ambient Temperature Fig. 3 Spectral Distribution 100 910 Peak emission wavelength λ p (nm) Relative radiant intensity (%) IF=const 50 0 750 850 800 900 900 890 880 870 860 - 25 950 Wavelength λ (nm) 0 25 50 75 85 Ambient temperature Ta (˚C) Fig. 5 Forward Current vs. Forward Voltage Fig. 6 Relative Radiant Flux vs. Ambient Temperature 10 1 000 IF = const Relative radiant flux Forward current I F (mA) 5 100 25˚C 0˚C Ta = 75˚C 50˚C - 25˚C 10 2 1 0.5 0.2 1 0 0.5 1 1.5 2 2.5 Forward voltage VF (V) 3 3.5 0.1 - 25 0 25 50 Ambient temperature Ta (˚C) 75 85 GL382 Fig. 7 Radiant Intensity vs. Forward Current Fig. 8 Radiation Diagram - 20˚ Ta= 25˚C Pulse width 100 µ s Duty ratio=0.01 : DC 100 : Pulse 0˚ 10˚ - 30˚ - 40˚ - 50˚ 1 - 60˚ 0.1 30˚ 40˚ 50 50˚ 60˚ - 70˚ 70˚ - 80˚ 80˚ - 90˚ 1 20˚ 100 10 0.01 0.1 - 10˚ Relative radiant intensity (%) Radiant intensity I E ( mW/sr ) 1 000 10 Forward current I 100 F 1 000 (mA) ● Please refer to the chapter "Precautions for Use". (Page 78 to 93) 90˚ 0 Angular displacement θ