SHARP GL382

GL382
GL382
IrDA-Based SIR System-Conforming
Infrared Emitting Diode
■ Features
■ Outline Dimensions
1. Compact 3 φ resin mold package
2. Peak emitting wavelength conforming to SIR system based on IrDA
( λ p=880 nm [I F=50mA] )
(Unit : mm)
φ 3.8
0.6
5.3 ± 0.2
3. Narrow beam angle
(Half intensity angle : TYP. ± 17˚ )
1
14.2 ± 1.0
0.8 MAX.
φ 3.0 ± 0.15
2
4. High speed response
(Cut-off frequency fc : TYP.12MHz)
■ Applications
1. Portable information terminal equipment
0.5 MIN.
0.15
2 - 0.5 +- 0.1
2. Personal computers
3. Printers
1 Anode
2 Cathode
(2.54)
Symbol
Rating
IF
60
I FM
0.5
VR
4
T opr - 25 to + 85
T stg
- 40 to + 85
T sol
260
Unit
mA
A
V
˚C
˚C
˚C
1
2
0.15
2 - 0.5 +- 0.1
Parameter
Forward current
*1 Peak forward current
Reverse voltage
Operating temperature
Storage temperature
*2
Soldering temperature
(Ta=25˚C)
3.6
■ Absolute Maximum Ratings
* Tolerance : ± 0.2mm
*1 Pulse width <= 100µ s, Duty ratio=0.01
*2 For 3 seconds at the position of 2.6 mm from the resin edge
■ Electro-optical Characteristics
Parameter
Forward voltage
Peak forward voltage
Reverse voltage
*3
Radiant intensity
Peak emission wavelength
Half intensity wavelength
Response frequency
Half intensity angle
*3
(Ta=25 ˚C)
Symbol
VF
V FM
IR
IE
λP
∆λ
fC
∆θ
Conditions
I F = 50mA
IFM = 0.5A
V R = 3V
I F = 50mA
I F = 50mA
I F = 50mA
IF =50mA+10mAp-p
I F = 20mA
MIN.
6
-
TYP.
1.5
2.2
18
880
40
12
± 17
MAX.
1.7
3.8
10
-
I E : Value obtained by converting the value in power of radiant fluxes emitted at the solid angle of 0.01 sr (steradian) in the direction of mechanical axis of
the lens portion into 1 sr or all those emitted from the light emitting diode.
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
Unit
V
V
µA
mW/sr
nm
nm
MHz
˚
GL382
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Peak Forward Current vs. Duty Ratio
120
5 000
(mA)
FM
Peak forward current I
80
Forward current I
F
(mA)
100
60
40
20
0
- 25
Pulse width
<=100µ s
Ta= 25˚C
0
25
50
75 85
100
1 000
500
100
50
10
10 - 4
125
10 - 3
Ambient temperature Ta (˚C)
10 - 2
10 - 1
1
Duty ratio
Fig. 4 Peak Emission Wavelength vs.
Ambient Temperature
Fig. 3 Spectral Distribution
100
910
Peak emission wavelength λ p (nm)
Relative radiant intensity (%)
IF=const
50
0
750
850
800
900
900
890
880
870
860
- 25
950
Wavelength λ (nm)
0
25
50
75 85
Ambient temperature Ta (˚C)
Fig. 5 Forward Current vs. Forward Voltage
Fig. 6 Relative Radiant Flux vs. Ambient
Temperature
10
1 000
IF = const
Relative radiant flux
Forward current I F (mA)
5
100
25˚C
0˚C
Ta = 75˚C
50˚C
- 25˚C
10
2
1
0.5
0.2
1
0
0.5
1
1.5
2
2.5
Forward voltage VF (V)
3
3.5
0.1
- 25
0
25
50
Ambient temperature Ta (˚C)
75 85
GL382
Fig. 7 Radiant Intensity vs. Forward Current
Fig. 8 Radiation Diagram
- 20˚
Ta= 25˚C
Pulse width 100 µ s
Duty ratio=0.01
: DC
100
: Pulse
0˚
10˚
- 30˚
- 40˚
- 50˚
1
- 60˚
0.1
30˚
40˚
50
50˚
60˚
- 70˚
70˚
- 80˚
80˚
- 90˚
1
20˚
100
10
0.01
0.1
- 10˚
Relative radiant intensity (%)
Radiant intensity I
E
( mW/sr )
1 000
10
Forward current I
100
F
1 000
(mA)
● Please refer to the chapter "Precautions for Use". (Page 78 to 93)
90˚
0
Angular displacement θ