SHARP GP2L26

GP2L09/GP2L24/GP2L26
GP2L09/GP2L24
GP2L26
Subminiature, High Sensitivity
Photointerrupter
■ Features
■ Applications
1. Compact and thin
GP2L09: Compact DIP, long lead type
GP2L24: Compact DIP type
GP2L26: Flat lead type
2. Optimum detection distance: 0.6 to 0.8mm
3. High sensitivity
( IC: MIN. 0.5mA at I F = 4mA )
4. Visible light cut-off type
1. Cassette tape recorders, VCRs
2. Floppy disk drives
3. Various microcomputerized control equipment
2
4 - (0.6)
4 - 0.5 +- 0.2
0.1
1
❈ 4.0 ± 0.2
3.0 +- 0.2
0.1
12.5 ± 1.0 1.7 ± 0.15
4.0 +- 0.2
0.1
( 0.4 ) Detector center
C0.7
1.75
2
∗Tolerance :± 0.15mm
∗( ) : Reference dimensions
∗The dimensions indicated by ❈ refer
to those measured from the lead base.
❈ 4.0 ± 0.2
+
3.0 - 0.2
0.1
4.0 +- 0.2
0.1
4 - 0.4 +- 0.2
0.1
4 - 0.2+- 0.3
0
4 - 0.15 +- 0.2
0.1
(4.0)
(4.0)
θ
θ : 0 to 20˚
± 15˚
± 15˚
C0.7
4
3
θ
θ : 0 to 20˚
Internal connection diagram
(Common to 3 models )
( 0.4 ) Detector center
( 0.2 ) Emitter center
GP2L26
1.75
+
1.75
3
3.5 - 1.0
0
1
4
1.7
C0.7
∗Tolerance:± 0.15mm
∗( ): Reference dimensions
∗The dimensions indicated by ❈ refer
to those measured from the lead base.
( 0.2 ) Emitter center
3
GP2L24
0.75
4
( Unit : mm )
0.8
( 0.2 ) Emitter center
GP2L09
( 0.4 ) Detector center
■ Outline Dimensions
4
3
1
2
∗Tolerance :± 0.15mm
∗( ): Reference dimensions
1
2
0.4 +- 0.2
0.1
+ 0.2
0.1
3.0 -
13.0 ± 1.0
± 30 ˚
1.7
0.75
4.0 +- 0.2
0.1
0.15 -
+ 0.2
0.1
± 20˚
1
2
3
4
Anode
Emitter
Collector
Cathode
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP2L09/GP2L24/GP2L26
■ Absolute Maximum Ratings
( Ta = 25˚C )
Parameter
Forward current
Reverse voltage
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector power dissipation
Total power dissipation
Operating temperature
Storage temperature
∗1
Soldering temperature
Input
Output
Symbol
IF
VR
P
V CEO
V ECO
IC
PC
P tot
T opr
T stg
T sol
Rating
50
6
75
35
6
50
75
100
- 25 to + 85
- 40 to + 100
260
Unit
mA
V
mW
V
V
mA
mW
mW
˚C
˚C
˚C
∗1 Within 5 seconds ( Soldering areas for each model are shown below. )
GP2L26
Soldering area
The hatched area more
than 2.0mm away from
the both edge of package
as shown in the drawing
below.
GP2L09, GP2L24
Soldering area
The hatched area more than 1mm∗2
away from the lower edge of
package as shown in the drawing
below.
1mm∗2
∗2 GP2L09: 4mm
2.0mm
2.0mm
■ Electro-optical Characteristics
Input
Output
Transfercharacteristics
Parameter
Forward voltage
Reverse current
Collector dark current
∗3
Collector current
Response time
∗4
Rise time
Fall time
Leak current
( Ta = 25˚C )
Symbol
IF
IR
I CEO
IC
tr
tf
I LEAK
Conditions
I F = 20mA
V R = 6V
V CE = 10V, I F = 0
V CE = 2V, I F = 4mA
V CE = 2V, I C = 10mA
R L = 100Ω , d = 1mm
I F = 4mA, V CE = 5V
MIN.
0.5
-
TYP.
MAX.
1.2
1.4
10
1x 10 - 6
3.0
15.0
80
400
70
400
5.0
∗3 The condition and arrangement of the reflective object are shown in the right drawing.
∗4 Without reflective object
The ranking of collector current shall be
classified into the following 6 ranks.
(GP2L09, GP2L24, GP2L26)
Rank
A
B
C
A or B
B or C
A, B or C
∗5
Collector current I C ( mA )
0.5 to 1.9
1.45 to 5.4
4.0 to 15.0
0.5 to 5.4
1.45 to 15.0
0.5 to 15.0
∗5 GP2L24 and GP2L26 don't
have A rank.
Test Condition for Collector Current
Al evaporation
1mm-thick glass
Unit
V
µA
A
mA
µs
µs
µA
GP2L09/GP2L24/GP2L26
Fig. 2 Power Dissipation vs.
Ambient Temperature
60
120
50
100
P tot
Power dissipation P ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs.
Ambient Temperature
40
30
20
10
C
60
40
20
0
- 25
0
25
50
Ambient temperature T a
75 85
( ˚C )
0
- 25
100
Fig. 3 Peak Forward Current vs.
Duty Ratio
0
25
50
75 85
Ambient temperature T a ( ˚C )
100
Fig. 4 Forward Current vs.
Forward Voltage
500
Pulse width <=100 µ s
T a = 25˚C
2000
T a = 75˚C
50˚C
200
1000
Forward current I F ( mA )
Peak forward current I FM ( mA )
P, P
80
75
500
200
100
100
25˚C
0˚C
- 25˚C
50
20
10
5
50
2
20
10 - 3 2
5 10 - 2 2
5
10 - 1 2
5
1
0
1
0.5
Duty ratio
2.5
3.0
Fig. 6 Collector Current vs.
Collector-emitter Voltage
Fig. 5 Collector Current vs.
Forward Current
16
25
V CE= 2V
T a = 25˚C
T a = 25˚C
14
Collector current I C ( mA )
20
Collector current I C ( mA )
1.0
1.5
2.0
Forward voltage V F ( V )
15
10
Pc ( MAX. )
12
IF= 15mA
10
10mA
8
7mA
6
4
4mA
5
2
2mA
0
0
0
2.5
5.0
7.5
10.0
12.5
Forward current I F ( mA )
15.0
0
2
4
6
8
10
Collector-emitter voltage V CE ( V )
12
GP2L09/GP2L24/GP2L26
Fig. 7 Relative Collector Current vs.
Ambient Temperature
Fig. 8 Collector Dark Current vs.
Ambient Temperature
150
125
-4
10
-5
10
-6
100
10
-7
75
10
-8
50
10
-9
25
V CE= 10V
5
Collector dark current I CEO ( A )
Relative collector current ( % )
10
5
IF= 4mA
V CE= 5V
5
5
5
5
10
- 10
10
- 11
5
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
- 25
Fig. 9-a Response Time vs.
Load Resistance
V CE= 2V
IC= 10mA
T a = 25˚C
tr
100
tf
200
50
20
td
10
ts
5
2
1
V CE= 2V
IC= 10mA
T a = 25˚C
500
200
100
1000
Response time ( µ s )
Response time ( µ s )
500
25
50
75
Ambient temperature T a ( ˚C )
Fig. 9-b Response Time vs.
Load Resistance
(GP2L24/GP2L26)
( GP2L09)
1000
0
tr
100
tf
50
20
10
td
5
ts
2
1
0.5
0.2
0.1
10
20
50
100
Load resistance R
L
200
(Ω)
500
1000
1
10
100
1000
Load resistance R L ( Ω )
1000
Fig.10 Relative Collector Current vs.
Distance between Sensor and
Al Evaporation Glass
Test Circuit for Response Time
100
VCC
Input R D
RL
Output
Input
Output
10%
90%
td
tr
ts
tf
Relative collector current ( % )
IF= 4mA
80
V CE= 2V
T a = 25˚C
60
40
20
0
0
3
1
2
4
5
Distance between sensor and Al evaporation glass d ( mm )
GP2L09/GP2L24/GP2L26
Fig.11 Relative Collector Current vs.
Card Moving Distance ( 1 )
Fig.12 Relative Collector Current vs.
Card Moving Distance ( 2 )
100
100
IF= 4mA
V CE= 2V
d= 1mm
T a = 25˚C
80
Relative collector current ( % )
Relative collector current ( % )
IF= 4mA
V CE= 2V
60
40
20
0
d= 1mm
T a = 25˚C
80
60
40
20
0
- 1
1
3
5
0
2
4
Card moving distance L ( mm )
6
7
- 2 - 1
0
1
2
3
4
Card moving distance L ( mm )
Test Condition for Distance & Detecting
Position Characteristics
5
6
Fig.13 Frequency Response (GP2L09 )
(EX.: GP2L24 )
Correspond to Fig.10
Test condition
IF = 4mA
VCE = 2V
d = 1mm
Test condition
IF = 4mA
VCE = 2V
d = 1mm
OMS card
OMS card
Black
d
White
L= 0
d
- 20
10 2 2
L= 0
+
5
Voltage gain Av ( dB )
0
-5
100Ω
10Ω
10Ω
5 10 4 2
Frequency f ( Hz )
5
10 5 2
Fig.15 Spectral Sensitivity ( Detecting Side )
100
T a = 25˚C
80
60
40
20
- 15
- 20
102
5 10 3 2
-
Relative sensitivity ( % )
IF= 10mA
V CE= 2V
T a = 25˚C
R L= 1kΩ
R L= 1kΩ 100Ω
- 10
Lmm
Fig.14 Frequency Response (GP2L24 / GP2L26 )
- 10
Black
-5
- 15
Lmm
+
0
Correspond to Fig.12
Voltage gain Av ( dB )
GP2L24
Correspond to Fig.11
White
V CE = 2V
I C = 10mA
T a = 25˚C
d
Al evaporation
103
104
105
Frequency f ( kHz )
106
0
600
700
800
900
1000
Wavelength λ ( nm )
1100
1200
GP2L09/GP2L24/GP2L26
■ Precautions for Use
( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F between Vcc and GND near the device.
( 2 ) In this product, the PWB is fixed with a resin cover, and cleaning solvent may remain inside
the case; therefore, dip cleaning or ultrasonic cleaning are prohibited.
( 3 ) Remove dust or stains, using an air blower or a soft cloth moistened in cleaning solvent.
However, do not perform the above cleaning using a soft cloth with cleaning solvent in the
marking portion.
In this case, use only the following type of cleaning solvent used for wiping off:
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol, Freon TE, Freon TF, Diflon solvent S3-E
When the cleaning solvents except for specified materials are used, please consult us.
( 4 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .