GP2L09/GP2L24/GP2L26 GP2L09/GP2L24 GP2L26 Subminiature, High Sensitivity Photointerrupter ■ Features ■ Applications 1. Compact and thin GP2L09: Compact DIP, long lead type GP2L24: Compact DIP type GP2L26: Flat lead type 2. Optimum detection distance: 0.6 to 0.8mm 3. High sensitivity ( IC: MIN. 0.5mA at I F = 4mA ) 4. Visible light cut-off type 1. Cassette tape recorders, VCRs 2. Floppy disk drives 3. Various microcomputerized control equipment 2 4 - (0.6) 4 - 0.5 +- 0.2 0.1 1 ❈ 4.0 ± 0.2 3.0 +- 0.2 0.1 12.5 ± 1.0 1.7 ± 0.15 4.0 +- 0.2 0.1 ( 0.4 ) Detector center C0.7 1.75 2 ∗Tolerance :± 0.15mm ∗( ) : Reference dimensions ∗The dimensions indicated by ❈ refer to those measured from the lead base. ❈ 4.0 ± 0.2 + 3.0 - 0.2 0.1 4.0 +- 0.2 0.1 4 - 0.4 +- 0.2 0.1 4 - 0.2+- 0.3 0 4 - 0.15 +- 0.2 0.1 (4.0) (4.0) θ θ : 0 to 20˚ ± 15˚ ± 15˚ C0.7 4 3 θ θ : 0 to 20˚ Internal connection diagram (Common to 3 models ) ( 0.4 ) Detector center ( 0.2 ) Emitter center GP2L26 1.75 + 1.75 3 3.5 - 1.0 0 1 4 1.7 C0.7 ∗Tolerance:± 0.15mm ∗( ): Reference dimensions ∗The dimensions indicated by ❈ refer to those measured from the lead base. ( 0.2 ) Emitter center 3 GP2L24 0.75 4 ( Unit : mm ) 0.8 ( 0.2 ) Emitter center GP2L09 ( 0.4 ) Detector center ■ Outline Dimensions 4 3 1 2 ∗Tolerance :± 0.15mm ∗( ): Reference dimensions 1 2 0.4 +- 0.2 0.1 + 0.2 0.1 3.0 - 13.0 ± 1.0 ± 30 ˚ 1.7 0.75 4.0 +- 0.2 0.1 0.15 - + 0.2 0.1 ± 20˚ 1 2 3 4 Anode Emitter Collector Cathode “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP2L09/GP2L24/GP2L26 ■ Absolute Maximum Ratings ( Ta = 25˚C ) Parameter Forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation Operating temperature Storage temperature ∗1 Soldering temperature Input Output Symbol IF VR P V CEO V ECO IC PC P tot T opr T stg T sol Rating 50 6 75 35 6 50 75 100 - 25 to + 85 - 40 to + 100 260 Unit mA V mW V V mA mW mW ˚C ˚C ˚C ∗1 Within 5 seconds ( Soldering areas for each model are shown below. ) GP2L26 Soldering area The hatched area more than 2.0mm away from the both edge of package as shown in the drawing below. GP2L09, GP2L24 Soldering area The hatched area more than 1mm∗2 away from the lower edge of package as shown in the drawing below. 1mm∗2 ∗2 GP2L09: 4mm 2.0mm 2.0mm ■ Electro-optical Characteristics Input Output Transfercharacteristics Parameter Forward voltage Reverse current Collector dark current ∗3 Collector current Response time ∗4 Rise time Fall time Leak current ( Ta = 25˚C ) Symbol IF IR I CEO IC tr tf I LEAK Conditions I F = 20mA V R = 6V V CE = 10V, I F = 0 V CE = 2V, I F = 4mA V CE = 2V, I C = 10mA R L = 100Ω , d = 1mm I F = 4mA, V CE = 5V MIN. 0.5 - TYP. MAX. 1.2 1.4 10 1x 10 - 6 3.0 15.0 80 400 70 400 5.0 ∗3 The condition and arrangement of the reflective object are shown in the right drawing. ∗4 Without reflective object The ranking of collector current shall be classified into the following 6 ranks. (GP2L09, GP2L24, GP2L26) Rank A B C A or B B or C A, B or C ∗5 Collector current I C ( mA ) 0.5 to 1.9 1.45 to 5.4 4.0 to 15.0 0.5 to 5.4 1.45 to 15.0 0.5 to 15.0 ∗5 GP2L24 and GP2L26 don't have A rank. Test Condition for Collector Current Al evaporation 1mm-thick glass Unit V µA A mA µs µs µA GP2L09/GP2L24/GP2L26 Fig. 2 Power Dissipation vs. Ambient Temperature 60 120 50 100 P tot Power dissipation P ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 40 30 20 10 C 60 40 20 0 - 25 0 25 50 Ambient temperature T a 75 85 ( ˚C ) 0 - 25 100 Fig. 3 Peak Forward Current vs. Duty Ratio 0 25 50 75 85 Ambient temperature T a ( ˚C ) 100 Fig. 4 Forward Current vs. Forward Voltage 500 Pulse width <=100 µ s T a = 25˚C 2000 T a = 75˚C 50˚C 200 1000 Forward current I F ( mA ) Peak forward current I FM ( mA ) P, P 80 75 500 200 100 100 25˚C 0˚C - 25˚C 50 20 10 5 50 2 20 10 - 3 2 5 10 - 2 2 5 10 - 1 2 5 1 0 1 0.5 Duty ratio 2.5 3.0 Fig. 6 Collector Current vs. Collector-emitter Voltage Fig. 5 Collector Current vs. Forward Current 16 25 V CE= 2V T a = 25˚C T a = 25˚C 14 Collector current I C ( mA ) 20 Collector current I C ( mA ) 1.0 1.5 2.0 Forward voltage V F ( V ) 15 10 Pc ( MAX. ) 12 IF= 15mA 10 10mA 8 7mA 6 4 4mA 5 2 2mA 0 0 0 2.5 5.0 7.5 10.0 12.5 Forward current I F ( mA ) 15.0 0 2 4 6 8 10 Collector-emitter voltage V CE ( V ) 12 GP2L09/GP2L24/GP2L26 Fig. 7 Relative Collector Current vs. Ambient Temperature Fig. 8 Collector Dark Current vs. Ambient Temperature 150 125 -4 10 -5 10 -6 100 10 -7 75 10 -8 50 10 -9 25 V CE= 10V 5 Collector dark current I CEO ( A ) Relative collector current ( % ) 10 5 IF= 4mA V CE= 5V 5 5 5 5 10 - 10 10 - 11 5 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 - 25 Fig. 9-a Response Time vs. Load Resistance V CE= 2V IC= 10mA T a = 25˚C tr 100 tf 200 50 20 td 10 ts 5 2 1 V CE= 2V IC= 10mA T a = 25˚C 500 200 100 1000 Response time ( µ s ) Response time ( µ s ) 500 25 50 75 Ambient temperature T a ( ˚C ) Fig. 9-b Response Time vs. Load Resistance (GP2L24/GP2L26) ( GP2L09) 1000 0 tr 100 tf 50 20 10 td 5 ts 2 1 0.5 0.2 0.1 10 20 50 100 Load resistance R L 200 (Ω) 500 1000 1 10 100 1000 Load resistance R L ( Ω ) 1000 Fig.10 Relative Collector Current vs. Distance between Sensor and Al Evaporation Glass Test Circuit for Response Time 100 VCC Input R D RL Output Input Output 10% 90% td tr ts tf Relative collector current ( % ) IF= 4mA 80 V CE= 2V T a = 25˚C 60 40 20 0 0 3 1 2 4 5 Distance between sensor and Al evaporation glass d ( mm ) GP2L09/GP2L24/GP2L26 Fig.11 Relative Collector Current vs. Card Moving Distance ( 1 ) Fig.12 Relative Collector Current vs. Card Moving Distance ( 2 ) 100 100 IF= 4mA V CE= 2V d= 1mm T a = 25˚C 80 Relative collector current ( % ) Relative collector current ( % ) IF= 4mA V CE= 2V 60 40 20 0 d= 1mm T a = 25˚C 80 60 40 20 0 - 1 1 3 5 0 2 4 Card moving distance L ( mm ) 6 7 - 2 - 1 0 1 2 3 4 Card moving distance L ( mm ) Test Condition for Distance & Detecting Position Characteristics 5 6 Fig.13 Frequency Response (GP2L09 ) (EX.: GP2L24 ) Correspond to Fig.10 Test condition IF = 4mA VCE = 2V d = 1mm Test condition IF = 4mA VCE = 2V d = 1mm OMS card OMS card Black d White L= 0 d - 20 10 2 2 L= 0 + 5 Voltage gain Av ( dB ) 0 -5 100Ω 10Ω 10Ω 5 10 4 2 Frequency f ( Hz ) 5 10 5 2 Fig.15 Spectral Sensitivity ( Detecting Side ) 100 T a = 25˚C 80 60 40 20 - 15 - 20 102 5 10 3 2 - Relative sensitivity ( % ) IF= 10mA V CE= 2V T a = 25˚C R L= 1kΩ R L= 1kΩ 100Ω - 10 Lmm Fig.14 Frequency Response (GP2L24 / GP2L26 ) - 10 Black -5 - 15 Lmm + 0 Correspond to Fig.12 Voltage gain Av ( dB ) GP2L24 Correspond to Fig.11 White V CE = 2V I C = 10mA T a = 25˚C d Al evaporation 103 104 105 Frequency f ( kHz ) 106 0 600 700 800 900 1000 Wavelength λ ( nm ) 1100 1200 GP2L09/GP2L24/GP2L26 ■ Precautions for Use ( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F between Vcc and GND near the device. ( 2 ) In this product, the PWB is fixed with a resin cover, and cleaning solvent may remain inside the case; therefore, dip cleaning or ultrasonic cleaning are prohibited. ( 3 ) Remove dust or stains, using an air blower or a soft cloth moistened in cleaning solvent. However, do not perform the above cleaning using a soft cloth with cleaning solvent in the marking portion. In this case, use only the following type of cleaning solvent used for wiping off: Ethyl alcohol, Methyl alcohol, Isopropyl alcohol, Freon TE, Freon TF, Diflon solvent S3-E When the cleaning solvents except for specified materials are used, please consult us. ( 4 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .