PC354NT PC354NT Mini-flat Package, AC Input Type Photocoupler ■ Features ■ Outline Dimensions 354 1 Primary side mark 2 0.4 ± 0.1 3.6 ± 0.3 1 C0.4 Input side 6˚ “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” 2 5.3 ± 0.3 1 Anode/ Cathode 2 Anode/ Cathode 3 Emitter 4 Collector 0.2 ± 0.05 3 4.4 ± 0.2 4 ■ Applications 1. Hybrid substrates that require high density mounting. 2. Programmable controllers Internal connection diagram 4 3 2.54 ± 0.25 0.1 ± 0.1 2.6 ± 0.2 1. AC inputs 2. Opaque type, mini-flat package PC354NT ( 1-channel ) 3. Subminiature type ( The volume is smaller than that of our conventional DIP type by as far as 30 %. ) 4. Isolation voltage between input and output PC354NT •••Viso : 3 750V rms ( Unit : mm ) 0.5 +- 0.4 0.2 7.0 +- 0.2 0.7 PC354NT ■ Absolute Maximum Ratings Symbol IF I FM P V CEO V ECO IC PC P tot V iso T opr T stg T sol Rating ± 50 ±1 70 35 6 50 150 170 3 750 - 30 to + 100 - 40 to + 125 260 Unit mA A mW V V mA mW mW V rms ˚C ˚C ˚C Soldering area 0.2mm or more Parameter Forward current Input *1 Peak forward current Power dissipation Collector-emitter voltage Emitter-collector voltage Output Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25˚C ) *1 Pulse width <=100 µ s, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 senconds ( CTR ) Classification of current transfer ratio Model No. PC354N1T PC354NT Rank mark A A or No mark CTR ( % ) 50 to 150 20 to 400 ❈ Conditions : I F = ± 1mA, V CE = 5V, Ta = 25˚C ■ Electro-optical Characteristics Input Output Transfercharacteristics Parameter Forward voltage Terminal capacitance Collector dark current Collector-emitter breakdown voltage Emitter-collector breakdown voltage Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Rise time Response time Fall time ( Ta = 25˚C ) Symbol VF Ct I CEO BV CEO BV ECO CTR VCE ( sat ) R ISO Cf tr tf Conditions I F = ± 20mA V = 0, f = 1kHz V CE = 20V, I F = 0 I C = 0.1mA, I F = 0 I E = 10 µ A, I F = 0 I F = ± 1mA, V CE = 5V I F = ± 20mA, I C = 1mA DC500V, 40 to 60% RH V = 0, f = 1MHz V CE = 2V, I C = 2mA R L = 100Ω MIN. 35 6 20 5 x 1010 - TYP. 1.2 30 0.1 1011 0.6 4 3 MAX. 1.4 250 10 - 7 400 0.2 1.0 18 18 Unit V pF A V V % V Ω pF µs µs PC354NT Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Diode Power Dissipation vs. Ambient Temperature 70 Diode power dissipation P ( mW ) 50 Forward current I F ( mA ) 60 40 30 20 100 80 70 60 40 20 10 0 - 30 0 25 50 75 100 0 - 30 125 0 Fig. 3 Collector Power Dissipation vs. Ambient Temperature Total power dissipation P tot ( mW ) Collector power dissipation P C ( mW ) 300 150 100 50 0 - 30 0 25 50 75 100 250 200 170 150 100 50 0 - 30 125 0 Fig. 5 Peak Forward Current vs. Duty Ratio 10000 500 200 100 50 50˚C 100 25˚C 0˚C 50 - 25˚C 20 10 5 2 20 10 5 100 T a = 75˚C 200 Forward current I F ( mA ) ( mA ) FM Peak forward current I 500 50 Fig. 6 Forward Current vs. Forward Voltage Pulse width <=100 µ s T a = 25˚C 5000 25 Ambient temperature T a ( ˚C) Ambient temperature T a ( ˚C) 1000 100 Fig. 4 Total Power Dissipation vs. Ambient Temperature 200 2000 50 55 Ambient temperature T a ( ˚C) Ambient temperature T a ( ˚C) 1 5 10 -3 2 5 10 -2 2 Duty ratio 5 10 -1 2 5 1 0 0.5 1.0 1.5 2.0 Forward voltage V 2.5 F ( V) 3.0 3.5 PC354NT Fig. 7 Current Transfer Ratio vs. Forward Current Fig. 8 Collector Current vs. Collectoremitter Voltage 50 500 Ta = 25˚C T a = 25˚C Collector current I C ( mA ) Current transfer ratio CTR ( % ) V CE = 5V 400 300 200 40 I F = 30mA P C ( MAX. ) 20mA 30 10mA 20 5mA 100 10 0 0 1mA 0.1 1 10 0 100 Forward current I F ( mA ) 3 4 5 6 7 8 9 10 Fig.10 Collector-emitter Saturation Voltage vs. Ambient Temperature 0.16 I F = 5mA V CE = 5V I F = 20mA 0.14 Collector-emitter saturation voltage V CE(sat) ( V ) Relative current transfer ratio ( % ) 2 Collector-emitter voltage V CE ( V ) Fig. 9 Relative Current Transfer Ratio vs. Ambient Temperature 150 1 100 50 I C = 1mA 0.12 0.10 0.08 0.06 0.04 0.02 0 - 30 0 20 40 Ambient temperature T 60 a 80 ( ˚C ) V CE = 20V Response time ( µ s ) ( A) CEO Collector dark current I 10 -7 5 5 10 -8 5 10 80 100 tr 50 tf 20 10 5 2 5 1 - 10 0.5 5 10 60 V CE = 2V 200 I C = 2mA T = 25˚C 100 a -9 10 40 500 5 -6 20 Fig.12 Response Time vs. Load Resistance -5 10 0 Ambient temperature T a ( ˚C ) Fig.11 Collector Dark Current vs. Ambient Temperature 10 0 - 30 100 td ts 0.2 0.1 - 11 - 30 0 20 40 60 Ambient temperature T a ( ˚C) 80 100 0.01 0.1 1 Load resistance RL ( k Ω ) 10 50 PC354NT Fig.13 Collector-emitter Saturation Voltage vs. Forward Current Test Circuit For Response Time 5.6 VCC Input Input RD RL Output Output 10% 90% td ts tr tf Collector-emitter saturation voltage V CE(sat ) ( V) T a = 25˚C I C = 0.5mA 4.2 1mA 3mA 5mA 7mA 2.8 1.4 0 0 1 2 3 4 5 6 Forward current I 7 F 8 9 10 ( mA ) ■ Temperature Profile of Soldering Reflow 30 seconds 230˚C ( 2 ) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of above (1). 200˚C 180˚C 1 minute 25˚C 2 minutes 1.5 minutes ( 1 ) One time soldering reflow is recommended within the condition of temperature and time profile shown below. 1 minute ● Please refer to the chapter “ Precautions for Use ” .