SONIX SN8P1602A

SN8P1602B
8-Bit Micro-Controller
SN8P1602B
USER’S MANUAL
General Release Specification
SONiX 8-Bit Micro-Controller
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not
assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product
could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or
unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against
all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of
the part.
SONiX TECHNOLOGY CO., LTD
Version 1.1
SN8P1602B
8-Bit Micro-Controller
AMENDENT HISTORY
Version
Date
Description
VER 1.0
Sep. 2003
V1.0 First Issue
VER 1.1
Sep. 2003
1. Remove approval sheet
2. Remove PCB layout notice section.
3. Modify the description of code option notice.
4. Add the description of PEDGE register.
5. Modify the description of INTRQ register.
6. Change operating voltage range from “2.2V ~ 5.5V” to “2.4V ~ 5.5V” at
Fosc=3.579545 MHz, ambient temperature = 25°C.
SONiX TECHNOLOGY CO., LTD
Version 1.1
SN8P1602B
8-Bit Micro-Controller
Table of Content
AMENDENT HISTORY ............................................................................................................................... 2
1
PRODUCT OVERVIEW................................................................................................................. 8
GENERAL DESCRIPTION........................................................................................................................... 8
UPGRADE FROM SN8P1602/SN8P1603/SN8P1602A............................................................................... 8
FEATURES .................................................................................................................................................... 9
SELECTION TABLE..................................................................................................................................... 9
SYSTEM BLOCK DIAGRAM.................................................................................................................... 10
PIN ASSIGNMENT ..................................................................................................................................... 11
PIN DESCRIPTIONS .................................................................................................................................. 12
PIN CIRCUIT DIAGRAMS ........................................................................................................................ 12
2
CODE OPTION TABLE ............................................................................................................... 13
SN8P1602B .................................................................................................................................................. 13
3
ADDRESS SPACES ....................................................................................................................... 14
PROGRAM MEMORY (ROM)................................................................................................................... 14
OVERVIEW .............................................................................................................................................. 14
USER RESET VECTOR ADDRESS (0000H) ........................................................................................... 15
INTERRUPT VECTOR ADDRESS (0008H) ............................................................................................ 15
CHECKSUM CALCULATION ................................................................................................................. 17
GENERAL PURPOSE PROGRAM MEMORY AREA.............................................................................. 18
LOOK-UP TABLE DESCRIPTION.......................................................................................................... 18
JUMP TABLE DESCRIPTION................................................................................................................. 20
DATA MEMORY (RAM) ........................................................................................................................... 22
OVERVIEW .............................................................................................................................................. 22
WORKING REGISTERS............................................................................................................................. 23
Y, Z REGISTERS ...................................................................................................................................... 23
SONiX TECHNOLOGY CO., LTD
Page 3
Version 1.1
SN8P1602B
8-Bit Micro-Controller
R REGISTERS........................................................................................................................................... 24
PROGRAM FLAG ....................................................................................................................................... 25
RESET/WAKEUP FLAG .......................................................................................................................... 25
CARRY FLAG ........................................................................................................................................... 25
DECIMAL CARRY FLAG......................................................................................................................... 25
ZERO FLAG ............................................................................................................................................. 25
ACCUMULATOR ....................................................................................................................................... 26
STACK OPERATIONS ............................................................................................................................... 27
OVERVIEW .............................................................................................................................................. 27
STACK REGISTERS ................................................................................................................................. 28
STACK OPERATION EXAMPLE............................................................................................................. 29
PROGRAM COUNTER............................................................................................................................... 29
ONE ADDRESS SKIPPING ..................................................................................................................... 30
MULTI-ADDRESS JUMPING ................................................................................................................. 31
4
ADDRESSING MODE................................................................................................................... 32
OVERVIEW................................................................................................................................................. 32
IMMEDIATE ADDRESSING MODE....................................................................................................... 32
DIRECTLY ADDRESSING MODE .......................................................................................................... 32
INDIRECTLY ADDRESSING MODE ...................................................................................................... 32
5
SYSTEM REGISTER .................................................................................................................... 33
OVERVIEW................................................................................................................................................. 33
SYSTEM REGISTER ARRANGEMENT (BANK 0)................................................................................. 33
BYTES of SYSTEM REGISTER ................................................................................................................ 33
BITS of SYSTEM REGISTER.................................................................................................................... 34
6
POWER ON RESET ...................................................................................................................... 35
OVERVIEW................................................................................................................................................. 35
EXTERNAL RESET DESCRIPTION......................................................................................................... 36
LOW VOLTAGE DETECTOR (LVD) DESCRIPTION ............................................................................ 37
SONiX TECHNOLOGY CO., LTD
Page 4
Version 1.1
SN8P1602B
8-Bit Micro-Controller
7
OSCILLATORS ............................................................................................................................. 38
OVERVIEW................................................................................................................................................. 38
CLOCK BLOCK DIAGRAM .................................................................................................................... 38
OSCM REGISTER DESCRIPTION.......................................................................................................... 39
EXTERNAL HIGH-SPEED OSCILLATOR .............................................................................................. 40
OSCILLATOR MODE CODE OPTION ................................................................................................... 40
OSCILLATOR DEVIDE BY 2 CODE OPTION ....................................................................................... 40
OSCILLATOR SAFE GUARD CODE OPTION....................................................................................... 40
SYSTEM OSCILLATOR CIRCUITS ......................................................................................................... 41
External RC Oscillator Frequency Measurement .................................................................................... 42
INTERNAL LOW-SPEED OSCILLATOR ................................................................................................ 43
SYSTEM MODE DESCRIPTION............................................................................................................... 44
OVERVIEW .............................................................................................................................................. 44
NORMAL MODE...................................................................................................................................... 44
SLOW MODE ........................................................................................................................................... 44
GREEN MODE......................................................................................................................................... 44
POWER DOWN MODE ........................................................................................................................... 44
SYSTEM MODE CONTROL...................................................................................................................... 45
SYSTEM MODE SWITCHING ................................................................................................................. 46
WAKEUP TIME .......................................................................................................................................... 47
OVERVIEW .............................................................................................................................................. 47
HARDWARE WAKEUP............................................................................................................................ 47
EXTERNAL WAKEUP TRIGGER CONTROL ......................................................................................... 48
8
TIMERS .......................................................................................................................................... 49
WATCHDOG TIMER (WDT)..................................................................................................................... 49
TIMER0 (TC0) ............................................................................................................................................. 50
OVERVIEW .............................................................................................................................................. 50
TC0M MODE REGISTER ........................................................................................................................ 51
TC0C COUNTING REGISTER ................................................................................................................ 52
TC0 TIMER OPERATION SEQUENCE .................................................................................................. 53
SONiX TECHNOLOGY CO., LTD
Page 5
Version 1.1
SN8P1602B
8-Bit Micro-Controller
9
INTERRUPT................................................................................................................................... 54
OVERVIEW................................................................................................................................................. 54
INTEN INTERRUPT ENABLE REGISTER .............................................................................................. 55
INTRQ INTERRUPT REQUEST REGISTER............................................................................................ 55
INTERRUPT OPERATION DESCRIPTION.............................................................................................. 56
GIE GLOBAL INTERRUPT OPERATION............................................................................................... 56
INT0 (P0.0) INTERRUPT OPERATION .................................................................................................. 57
TC0 INTERRUPT OPERATION .............................................................................................................. 58
MULTI-INTERRUPT OPERATION ......................................................................................................... 59
10
I/O PORT ............................................................................................................................ 60
OVERVIEW................................................................................................................................................. 60
I/O PORT FUNCTION TABLE................................................................................................................... 61
I/O PORT MODE......................................................................................................................................... 61
I/O PULL UP REGISTER............................................................................................................................ 62
I/O PORT DATA REGISTER ..................................................................................................................... 62
11
CODING ISSUE ................................................................................................................. 63
TEMPLATE CODE ..................................................................................................................................... 63
PROGRAM CHECK LIST .......................................................................................................................... 67
12
13
INSTRUCTION SET TABLE........................................................................................... 68
ELECTRICAL CHARACTERISTIC .............................................................................. 69
ABSOLUTE MAXIMUM RATING............................................................................................................ 69
SONiX TECHNOLOGY CO., LTD
Page 6
Version 1.1
SN8P1602B
8-Bit Micro-Controller
STANDARD ELECTRICAL CHARACTERISTIC.................................................................................... 69
CHARACTERISTIC GRAPHS ................................................................................................................... 70
14
PACKAGE INFORMATION ........................................................................................... 73
P-DIP 18 PIN................................................................................................................................................ 73
SOP 18 PIN................................................................................................................................................... 74
SSOP 20 PIN ................................................................................................................................................ 75
SONiX TECHNOLOGY CO., LTD
Page 7
Version 1.1
SN8P1602B
8-Bit Micro-Controller
1 PRODUCT OVERVIEW
GENERAL DESCRIPTION
The SN8P1602B is an 8-bit micro-controller utilized CMOS technology and featured with low power consumption and
high performance by its unique electronic structure.
SN8P1602B is designed with the excellent IC structure including the program memory up to 1K-word OTP ROM, data
memory of 48-bytes RAM, one 8-bit timer (TC0), a watchdog timer, two interrupt sources (TC0, INT0), and 4-level
stack buffers. Besides, user can choose desired oscillator configuration for the controller. There are four external
oscillator configurations to select for generating system clock, including High/Low speed crystal, ceramic resonator or
cost-saving RC. SN8P1602B also includes an internal RC oscillator for slow mode controlled by programming.
UPGRADE FROM SN8P1602/SN8P1603/SN8P1602A
Item
Standby Current at 3V
SN8P1602B
<1uA
SN8P1602A
3 ~ 4uA
SN8P1602
3 ~ 4uA
SN8P1603
70uA
Pull-up resistor
Yes
Yes
-
-
Power On Reset / Brown Out Reset
Excellent
Excellent
-
Good
High Clock
High Clock
Internal RC
Internal RC
High Clock
High Clock
Watchdog Clock Source Fixed
at Internal RC and Internal RC
Clock Always Enable
Yes
Yes
-
-
Green Mode
Yes
Yes
-
-
Falling
Falling
Watchdog Clock Source
P0.0 Interrupt Edge
Falling/Rising/Both Falling/Rising/Both
Port 1 Wakeup
Level Change
Level Change
Low Level
Low Level
TC0 Event Counter
Yes
Yes
-
-
External Reset
Recommend Value
20K / 0.1uF
20K / 0.33uF
20K / 0.1uF
20K / 0.1uF
Power On Delay at 4Mhz
~ 200ms
~ 200ms
~ 70ms
~ 70ms
Low Power code option
Yes
Yes
-
-
LVD
1.8V
Always ON
1.8V
Always ON
2.4V
ON/OFF
2.4V
Always ON
SONiX TECHNOLOGY CO., LTD
Page 8
Version 1.1
SN8P1602B
8-Bit Micro-Controller
FEATURES
♦
Memory configuration
OTP ROM size: 1K * 16-bit.
RAM size: 48 * 8-bit.
♦
Two interrupt sources
One internal interrupt: TC0.
One external interrupt: INT0.
♦
I/O pin configuration
Input only: P0
Bi-directional: P1, P2,
Wakeup: P0, P1
Pull-up resistors: P0, P1, P2
External interrupt: P0
♦
Four levels stack buffer.
♦
Dual clock system offers four operating modes
External high clock: RC type up to 10 MHz
External high clock: Crystal type up to 16 MHz
Internal low clock: RC type 16KHz(3V), 32KHz(5V)
Normal mode: Both high and low clock active
Slow mode: Low clock only
Sleep mode: Both high and low clock stop
Green mode: Periodical wakeup by timer.
Package
♦
♦
On chip watchdog timer.
One 8-bit timer counters.
♦
57 powerful instructions
Four clocks per instruction cycle
All of instructions are one word length.
Most of instructions are one cycle only.
Maximum instruction cycle is two.
All ROM area JMP instruction.
All ROM area lookup table function (MOVC)
♦
P-DIP18, SOP18, SSOP20.
SELECTION TABLE
CHIP
SN8P1602B
ROM RAM Stack
1K*16
48
4
Timer
I/O
TC0
TC1
V
-
14
Green
PWM
Wakeup
Package
Mode Buzzer Pin no.
V
-
6
DIP18/SOP18
/SSOP20
SONiX TECHNOLOGY CO., LTD
Page 9
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SYSTEM BLOCK DIAGRAM
SN8P1602B
PC
H-OSC
IR
Internal
RC
POR
ROM
FLAGS
TIMING GENERATOR
ALU
Watch
Dog
RAM
ACC
SYSTEM REGISTER
INTERRUPT
CONTROL
TIMER & COUNTER
PORT 0
PORT 1
SONiX TECHNOLOGY CO., LTD
PORT 2
Page 10
Version 1.1
SN8P1602B
8-Bit Micro-Controller
PIN ASSIGNMENT
OTP Type:
SN8P1602BP (P-DIP 18 pins)
SN8P1602BS (SOP 18 pins)
P1.2
P1.3
INT0/P0.0
RST/VPP
VSS
P2.0
P2.1
P2.2
P2.3
1
U
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SN8P1602BP
SN8P1602BS
P1.1
P1.0
XIN
XOUT/P1.4
VDD
P2.7
P2.6
P2.5
P2.4
P1.2
P1.3
INT0/P0.0
RST/VPP
VSS
VSS
P2.0
P2.1
P2.2
P2.3
1
U
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
SN8P1602BX
P1.1
P1.0
XIN
XOUT/P1.4
VDD
VDD
P2.7
P2.6
P2.5
P2.4
SN8P1602BX (SSOP 20 pins)
SONiX TECHNOLOGY CO., LTD
Page 11
Version 1.1
SN8P1602B
8-Bit Micro-Controller
PIN DESCRIPTIONS
SN8P1602B
PAD NAME
VDD, VSS
RST/VPP
XIN
XOUT/P1.4
P0.0 / INT0
P1.0 ~ P1.4
P2.0 ~ P2.7
TYPE
DESCRIPTION
P Power supply input pins. Place the 0.1µF bypass capacitor between the VDD and VSS pin.
RST: System reset input pin. Schmitt trigger structure, low active, normal stay to
I, P “high”.
VPP: OTP programming pin.
I
External oscillator input pin. RC mode input pin.
I/O External oscillator output pin. In RC mode is P1.4 I/O.
I
Port 0.0 and shared with INT0 trigger pin (Schmitt trigger) / Built-in pull-up resistors.
I/O Port 1.0~Port 1.4 bi-direction pins / Built-in pull-up resistors.
I/O Port 2.0~Port 2.7 bi-direction pins / Built-in pull-up resistors.
PIN CIRCUIT DIAGRAMS
SN8P1602B
Port1~Port2 structure
Port0 structure
PUR
PUR
PnM, PUR
PUR
Pin
PnM
Pin
Int. bus
Latch
PnM
Note: All of the latch output circuits are push-pull structures.
SONiX TECHNOLOGY CO., LTD
Page 12
Version 1.1
SN8P1602B
8-Bit Micro-Controller
2 CODE OPTION TABLE
SN8P1602B
Code Option
High_Clk
High_Clk / 2
Content
RC
32K X’tal
12M X’tal
4M X’tal
Enable
Disable
Enable
OSG
Watch_Dog
Low Power
Noise Filter
Security
INT_16K_RC
Disable
Enable
Disable
Enable
Disable
Enable
Disable
Enable
Disable
Always_ON
By_CPUM
Function Description
Low cost RC for external high clock oscillator
Low frequency, power saving crystal (e.g. 32.768K) for external high
clock oscillator
High speed crystal /resonator (e.g. 12M) for external high clock oscillator
Standard crystal /resonator (e.g. 3.58M) for external high clock oscillator
External high clock divided by two, Fosc = high clock / 2
Fosc = high clock
Enable Oscillator Safe Guard function to enhance noise immunity
performance.
Disable Oscillator Safe Guard function
Enable Watch Dog function
Disable Watch Dog function
Enable Low Power function to save Operating current
Disable Low Power function
Enable Noise Filter function to enhance noise immunity performance
Disable Noise Filter function
Enable ROM code Security function
Disable ROM code Security function
Force Watch Dog Timer clock source come from INT 16K RC.
Also INT 16K RC never stop both in power down and green mode that
means Watch Dog Timer will always enable both in power down and
green mode.
Enable or Disable internal 16K(at 3V) RC clock by CPUM register
Table 2-1 SN8P1602B Code Option Table
This table is for design guidance, not tested or guaranteed. Some values presented are outside specified operating
range. This is for information only and devices are guaranteed to operate properly only within the specified range.
Code Option
Lowest Operation Voltage
Enable
Disable
4 MHz
16 MHz
-
Noise Filter/Low Power/OSG
2.2V
2.8V
Noise Filter
Low Power/OSG
2.2V
3.5V
Low Power
Noise Filter/OSG
2.2V
3.8V
OSG
Noise Filter/Low Power
2.2V
2.9V
Table 2-2 SN8P1602B Minimum Working Voltage vs. Code Option and clock frequency
Notice:
Under high noisy environment, enable “Noise Filter”, “OSG” and disable “Low Power” is strongly
recommended.
The side effect is to increase the minimum working voltage if enables “Noise Filter”/“OSG”/ “Low Power”
code option. (Please refer to Characteristic Graphs)
Enable “Low Power” option will reduce operating current during the normal operating mode.
If users select “32K X’tal” in “High_Clk” option, assembler will force “OSG” to be enabled.
If users select “RC” in “High_Clk” option, assembler will force “High_Clk / 2” to be enabled.
SONiX TECHNOLOGY CO., LTD
Page 13
Version 1.1
SN8P1602B
8-Bit Micro-Controller
3 ADDRESS SPACES
PROGRAM MEMORY (ROM)
OVERVIEW
The SN8P1602B provides the program memory up to 1024 * 16-bit to be addressed and is able to fetch instructions
through 10-bit wide PC (Program Counter). It can look up ROM data by using ROM code registers (R, Y, Z).
1-word reset vector addresses
1-word interrupt vector addresses
1K words general purpose area
5-word reserved area
All of the program memory is partitioned into three coding areas. The first area is located from 00H to 03H(The Reset
vector area), the second area is a reserved area 04H ~07H, the 3rd area is for the interrupt vector and the user code
area from 0008H to 03FEH/0FFEH. The address 08H is the interrupt enter address point.
0000H
0001H
0002H
0003H
0004H
0005H
0006H
0007H
0008H
0009H
.
.
000FH
0010H
0011H
.
.
03FEH
03FFH
SONiX TECHNOLOGY CO., LTD
ROM
Reset vector
General purpose area
User reset vector
Jump to user start address
Jump to user start address
Jump to user start address
Reserved
Interrupt vector
User interrupt vector
User program
General purpose area
End of user program
Reserved
Page 14
Version 1.1
SN8P1602B
8-Bit Micro-Controller
USER RESET VECTOR ADDRESS (0000H)
A 1-word vector address area is used to execute system reset. After power on reset or watchdog timer overflow reset,
then the chip will restart the program from address 0000h and all system registers will be set as default values. The
following example shows the way to define the reset vector in the program memory.
Programming Tip: Defining Reset Vector
CHIP SN8P1602B
ORG
JMP
.
0
START
ORG
10H
START:
; 0000H
; Jump to user program address.
; 0004H ~ 0007H are reserved
; 0010H, The head of user program.
; User program
.
.
.
.
ENDP
; End of program
INTERRUPT VECTOR ADDRESS (0008H)
A 1-word vector address area is used to execute interrupt request. If any interrupt service executes, the program
counter (PC) value is stored in stack buffer and jump to 0008h of program memory to execute the vectored interrupt.
Users have to define the interrupt vector. The following example shows the way to define the interrupt vector in the
program memory.
Programming Tip: Defining Interrupt Vector (Example 1)
CHIP SN8P1602B
.DATA
.CODE
PFLAGBUF
ORG
JMP
.
0
START
; 0000H
; Jump to user program address.
; 0004H ~ 0007H are reserved
ORG
B0XCH
B0MOV
B0MOV
.
.
B0MOV
B0MOV
B0XCH
RETI
8
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Interrupt service routine
; B0XCH doesn’t change C, Z flag
A, PFLAGBUF
PFLAG, A
A, ACCBUF
START:
.
.
JMP
; Save PFLAG register in a buffer
; Restore PFLAG register from buffer
; B0XCH doesn’t change C, Z flag
; End of interrupt service routine
; The head of user program.
; User program
START
ENDP
SONiX TECHNOLOGY CO., LTD
; End of user program
; End of program
Page 15
Version 1.1
SN8P1602B
8-Bit Micro-Controller
Programming Tip: Defining Interrupt Vector (Example 2)
CHIP SN8P1602B
.DATA
.CODE
PFLAGBUF
ORG
JMP
.
0
START
ORG
JMP
08
MY_IRQ
ORG
10H
START:
.
.
.
JMP
; 0008H, Jump to interrupt service routine address
; 0010H, The head of user program.
; User program
START
MY_IRQ:
B0XCH
B0MOV
B0MOV
.
.
B0MOV
B0MOV
B0XCH
RETI
; 0000H
; Jump to user program address.
; 0001H ~ 0007H are reserved
A, ACCBUF
A, PFLAG
PFLAGBUF, A
A, PFLAGBUF
PFLAG, A
A, ACCBUF
ENDP
; End of user program
;The head of interrupt service routine
; B0XCH doesn’t change C, Z flag
; Save PFLAG register in a buffer
; Restore PFLAG register from buffer
; B0XCH doesn’t change C, Z flag
; End of interrupt service routine
; End of program
Remark: It is easy to understand the rules of SONIX program from demo programs given above. These
points are as following:
1. The address 0000H is a “JMP” instruction to make the program starts from the beginning.
2. The 0004H~0007H are reserved. Users is NOT allow to use 0004H~0007H addresses. The default
value might change from time to time during various production progress. We strongly suggest
users DO NOT take this value into the Check Sum. For detailed information, please check the
following Checksum Calculation section
SONiX TECHNOLOGY CO., LTD
Page 16
Version 1.1
SN8P1602B
8-Bit Micro-Controller
CHECKSUM CALCULATION
The ROM addresses 0004H~0007H and last address are reserved area. User should avoid these addresses
(0004H~0007H and last address) when calculate the Checksum value.
Example:
The demo program shows
user’s code
MOV
B0MOV
MOV
B0MOV
CLR
CLR
how to avoid 0004H~0007H when calculated Checksum from 00H to the end of
A,#END_USER_CODE$L
END_ADDR1,A
;save low end address to end_addr1
A,#END_USER_CODE$M
END_ADDR2,A
;save middle end address to end_addr2
Y
;set Y to 00H
Z
;set Z to 00H
@@:
CALL
MOVC
B0BSET
ADD
MOV
ADC
JMP
YZ_CHECK
FC
DATA1,A
A,R
DATA2,A
END_CHECK
INCMS
JMP
JMP
Z
@B
Y_ADD_1
MOV
CMPRS
JMP
MOV
CMPRS
JMP
JMP
A,END_ADDR1
A,Z
AAA
A,END_ADDR2
A,Y
AAA
CHECKSUM_END
MOV
CMPRS
RET
MOV
CMPRS
RET
INCMS
INCMS
INCMS
INCMS
RET
A,#04H
A,Z
;call function of check yz value
;
;clear C flag
;add A to Data1
;add R to Data2
;check if the YZ address = the end of code
AAA:
;Z=Z+1
;if Z!= 00H calculate to next address
;if Z=00H increase Y
END_CHECK:
YZ_CHECK:
A,#00H
A,Y
Z
Z
Z
Z
;check if Z = low end address
;if Not jump to checksum calculate
;if Yes, check if Y = middle end address
;if Not jump to checksum calculate
;if Yes checksum calculated is done.
;check if YZ=0004H
;check if Z=04H
;if Not return to checksum calculate
;if Yes, check if Y=00H
;if Not return to checksum calculate
;if Yes, increase 4 to Z
;set YZ=0008H then return
Y_ADD_1:
INCMS
NOP
JMP
Y
;increase Y
@B
;jump to checksum calculate
CHECKSUM_END:
……….
……….
END_USER_CODE:
SONiX TECHNOLOGY CO., LTD
;Label of program end
Page 17
Version 1.1
SN8P1602B
8-Bit Micro-Controller
GENERAL PURPOSE PROGRAM MEMORY AREA
The ROM location 0009H~03FEH are used as general-purpose memory. The area is to store both instruction’s
op-code and look-up table data. The SN8P1602B includes jump table function by using program counter (PC) and
look-up table function by using ROM code registers (R, Y, Z).
The boundary of program memory is separated by the high-byte program counter (PCH) every 100H. In jump table
function and look-up table function, the program counter can’t leap over the boundary by program counter
automatically. Users need to modify the PCH value to “PCH+1” when the PCL overflows (from 0FFH to 000H).
LOOK-UP TABLE DESCRIPTION
In the ROM’s data lookup function, Y register is pointed to the bit 8~bit 15 and Z register to the bit 0~bit 7 data of ROM
address. After MOVC instruction is executed, the low-byte data will be stored in ACC and high-byte data stored in R
register.
Example: To look up the ROM data located “TABLE1”.
@@:
TABLE1:
B0MOV
B0MOV
MOVC
Y, #TABLE1$M
Z, #TABLE1$L
INCMS
JMP
INCMS
NOP
Z
@F
Y
MOVC
.
DW
DW
DW
.
0035H
5105H
2012H
; To set lookup table1’s middle address
; To set lookup table1’s low address.
; To lookup data, R = 00H, ACC = 35H
;
; Increment the index address for next address
; Z+1
; Not overflow
; Z overflow (FFH
00),
Y=Y+1
;
;
; To lookup data, R = 51H, ACC = 05H.
;
; To define a word (16 bits) data.
;“
;“
CAUSION: The Y register will not increase automatically when Z register crosses boundary from 0xFF to
0x00. Therefore, user must take care such situation to avoid loop-up table errors. If Z register
overflows, Y register must be added one. The following INC_YZ macro shows a simple method to process
Y and Z registers automatically.
Note: Because the program counter (PC) is only 12-bit, the X register is useless in the application. Users
can omit “B0MOV X, #TABLE1$H”. SONiX ICE supports larger program memory addressing capability.
Please be sure that X register is “0” to avoid unpredicted error in loop-up table operation.
Example: INC_YZ Macro
INC_YZ
MACRO
INCMS
JMP
INCMS
NOP
Z
@F
; Z+1
; Not overflow
Y
; Y+1
; Not overflow
@@:
ENDM
SONiX TECHNOLOGY CO., LTD
Page 18
Version 1.1
SN8P1602B
8-Bit Micro-Controller
The other example of loop-up table is to add Y or Z index register by accumulator. Please be careful if “carry” happen.
Example: Increase Y and Z register by B0ADD/ADD instruction
B0MOV
B0MOV
Y, #TABLE1$M
Z, #TABLE1$L
; To set lookup table’s middle address.
; To set lookup table’s low address.
B0MOV
B0ADD
A, BUF
Z, A
; Z = Z + BUF.
B0BTS1
JMP
INCMS
NOP
FC
GETDATA
Y
; Check the carry flag.
; FC = 0
; FC = 1. Y+1.
.
0035H
5105H
2012H
;
; To lookup data. If BUF = 0, data is 0x0035
; If BUF = 1, data is 0x5105
; If BUF = 2, data is 0x2012
.
.
;
; To define a word (16 bits) data.
;“
;“
GETDATA:
MOVC
TABLE1:
.
DW
DW
DW
SONiX TECHNOLOGY CO., LTD
Page 19
Version 1.1
SN8P1602B
8-Bit Micro-Controller
JUMP TABLE DESCRIPTION
The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC
value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. It is
easy to make a multi-jump program depends on the value of the accumulator (A).
When carry flag occurs after executing of “ADD PCL, A”, it will not affect PCH register. Users have to check if the jump
table crosses over the ROM page boundary or the listing file generated by SONIX assembly software. We suggest
users to place the jump table at the beginning of the program memory page (xx00H) to avoid errors to occur when
editing the program.
Example :
ORG
0X0100
; The jump table is from the head of the ROM boundary
B0ADD
JMP
JMP
JMP
JMP
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
; PCL = PCL + ACC, the PCH can’t be changed.
; ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
In following example, the jump table starts at 0x00FD. When execute B0ADD PCL, A. If ACC = 0 or 1, the jump
table points to the right address. If the ACC is larger then 1 will cause error because PCH doesn't increase one
automatically. We can see the PCL = 0 when ACC = 2 but the PCH still keep in 0. The program counter (PC) will
enter the wrong address 0x0000 and the system will be in a unexpected operation mode. It
is important to check whether the jump table crosses over the boundary (xxFFH to xx00H). A good coding
style is to put the jump table at the start of ROM boundary (e.g. 0100H).
Example (Incorrect): If the “jump table” crosses over ROM boundary, the program will cause the
errors to occur.
ROM Address
.
.
.
0X00FD
0X00FE
0X00FF
0X0100
0X0101
.
.
.
.
.
B0ADD
JMP
JMP
JMP
JMP
.
.
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
; PCL = PCL + ACC, the PCH can’t be changed.
; ACC = 0
; ACC = 1
; ACC = 2
jump table cross boundary here
; ACC = 3
SONIX provides a macro for safe jump table function. This macro will check the ROM boundary and move the jump
table to the right position automatically. The side effect of this macro maybe wastes some ROM size.
@JMP_A
MACRO
IF
JMP
ORG
ENDIF
ADD
ENDM
VAL
(($+1) !& 0XFF00) !!= (($+(VAL)) !& 0XFF00)
($ | 0XFF)
($ | 0XFF)
PCL, A
Note: “VAL” is the number of the jump table listing number.
SONiX TECHNOLOGY CO., LTD
Page 20
Version 1.1
SN8P1602B
8-Bit Micro-Controller
Example: “@JMP_A” application in SONIX macro file called “MACRO3.H”.
B0MOV
@JMP_A
JMP
JMP
JMP
JMP
JMP
A, BUF0
5
A0POINT
A1POINT
A2POINT
A3POINT
A4POINT
; “BUF0” is from 0 to 4.
; The number of the jump table listing is five.
; If ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
; ACC = 4, jump to A4POINT
If the jump table position is from 00FDH to 0101H, the “@JMP_A” macro will make the jump table to start from 0100h.
SONiX TECHNOLOGY CO., LTD
Page 21
Version 1.1
SN8P1602B
8-Bit Micro-Controller
DATA MEMORY (RAM)
OVERVIEW
The SN8P1602B has internally built-in data memory up to 48 bytes for storing the general-purpose data.
48 * 8-bit RAM
The memory is separated into bank 0. The bank 0 uses the first 48 bytes as general-purpose area, and the remaining
128 bytes area as system register.
SN8P1602B
000h
“
“
“
“
“
02Fh
BANK 0
080h
“
“
“
“
“
0FFh
RAM location
000h~02FH/07FH of Bank 0 store
general-purpose data (48 bytes
/128bytes).
General purpose area
080h~0FFh of Bank 0 store system
registers (128 bytes).
System register
End of bank 0 area
SONiX TECHNOLOGY CO., LTD
Page 22
Version 1.1
SN8P1602B
8-Bit Micro-Controller
WORKING REGISTERS
These Y,Z registers can be used as the general-purpose working buffer or access ROM’s and RAM’s data. For
instance, all of the ROM table can be looked-up by Y and Z registers. The data of RAM memory can be indirectly
accessed with Y and Z registers.
Y, Z REGISTERS
The Y and Z registers are the 8-bit buffers. There are three major functions of these registers.
can be used as general working registers
can be used as RAM data pointers with @YZ register
can be used as ROM data pointer with the MOVC instruction for look-up table
084H
Y
Read/Write
After reset
Bit 7
YBIT7
R/W
0
Bit 6
YBIT6
R/W
0
Bit 5
YBIT5
R/W
0
Bit 4
YBIT4
R/W
0
Bit 3
YBIT3
R/W
0
Bit 2
YBIT2
R/W
0
Bit 1
YBIT1
R/W
0
Bit 0
YBIT0
R/W
0
083H
Z
Read/Write
After reset
Bit 7
ZBIT7
R/W
0
Bit 6
ZBIT6
R/W
0
Bit 5
ZBIT5
R/W
0
Bit 4
ZBIT4
R/W
0
Bit 3
ZBIT3
R/W
0
Bit 2
ZBIT2
R/W
0
Bit 1
ZBIT1
R/W
0
Bit 0
ZBIT0
R/W
0
Example: uses YZ register as the data pointer to access data in the RAM address 025H of bank0.
B0MOV
B0MOV
B0MOV
Y, #00H
Z, #25H
A, @YZ
; To set RAM bank 0 for Y register
; To set location 25H for Z register
; To read a data into ACC
Example: uses the YZ register as data pointer to clear the RAM data
B0MOV
B0MOV
Y, #0
Z, #07FH
; Y = 0, bank 0
; Y = 7FH, the last address of the data memory area
CLR
@YZ
; Clear @YZ to be zero
DECMS
JMP
Z
CLR_YZ_BUF
; Z – 1, if Z= 0, finish the routine
; Not zero
CLR
@YZ
CLR_YZ_BUF:
END_CLR:
; End of clear general purpose data memory area of bank 0
.
SONiX TECHNOLOGY CO., LTD
Page 23
Version 1.1
SN8P1602B
8-Bit Micro-Controller
R REGISTERS
R register is an 8-bit buffer. There are two major functions of the register.
can be used as working register
for store high-byte data of look-up table
(MOVC instruction executed, the high-byte data of specified ROM address will be stored in R register and the
low-byte data will be stored in ACC).
082H
R
Read/Write
After reset
Bit 7
RBIT7
R/W
0
Bit 6
RBIT6
R/W
0
Bit 5
RBIT5
R/W
0
Bit 4
RBIT4
R/W
0
Bit 3
RBIT3
R/W
0
Bit 2
RBIT2
R/W
0
Bit 1
RBIT1
R/W
0
Bit 0
RBIT0
R/W
0
Note: Please refer to the “LOOK-UP TABLE DESCRIPTION” about R register look-up table application.
SONiX TECHNOLOGY CO., LTD
Page 24
Version 1.1
SN8P1602B
8-Bit Micro-Controller
PROGRAM FLAG
The PFLAG includes carry flag (C), decimal carry flag (DC) and zero flag (Z). If the result of operating is zero or there is
carry, borrow occurrence, then these flags will be set to PFLAG register.
086H
PFLAG
Read/Write
After reset
Bit 7
NT0
R/W
-
Bit 6
NPD
R/W
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
C
R/W
0
Bit 1
DC
R/W
0
Bit 0
Z
R/W
0
RESET/WAKEUP FLAG
NT0
NPD
0
0
0
1
1
1
0
1
Description
During the sleep mode, the device wakes up by the watch dog.
Such function only valid when users set “INT_16K_RC” code option as “Always_On”
Watchdog timer overflow in normal/slow/green mode.
During the sleep mode, the device wakes up by the reset pin.
External reset or LVD reset active
Note: Watchdog timer can also be used as a fixed-period timer if the watchdog reset function has been disabled.
CARRY FLAG
C = 1: When executed arithmetic addition with overflow or executed arithmetic subtraction without borrow or executed
rotation instruction with logic “1” shifting out.
C = 0: When executed arithmetic addition without overflow or executed arithmetic subtraction with borrow or executed
rotation instruction with logic “0” shifting out.
DECIMAL CARRY FLAG
DC = 1: If executed arithmetic addition with overflow of low nibble or executed arithmetic subtraction without borrow of
low nibble.
DC = 0: If executed arithmetic addition without overflow of low nibble or executed arithmetic subtraction with borrow of
low nibble.
ZERO FLAG
Z = 1: When the content of ACC or target memory is zero after executing instructions involving a zero flag.
Z = 0: When the content of ACC or target memory is not zero after executing instructions involving a zero flag.
SONiX TECHNOLOGY CO., LTD
Page 25
Version 1.1
SN8P1602B
8-Bit Micro-Controller
ACCUMULATOR
The ACC is an 8-bit data register responsible for transferring or manipulating data between ALU and data memory. If
the result of operating is zero (Z) or there is carry (C or DC) occurrence, then these flags will be set to PFLAG register.
ACC is not in data memory (RAM), so ACC can’t be access by “B0MOV” instruction during the instant addressing
mode.
Example: Read and write ACC value.
; Read ACC data and store in BUF data memory
MOV
BUF, A
; Write a immediate data into ACC
MOV
A, #0FH
; Write ACC data from BUF data memory
MOV
A, BUF
The system doesn’t store ACC and PFLAG value when interrupt executed. ACC and PFLAG data must be saved to
other data memories.
Example: Protect ACC and working registers.
ACCBUF
PFLAGBUF
EQU
EQU
00H
01H
; ACCBUF is ACC data buffer.
; PFLAGBUF is PFLAG data buffer.
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF,A
; Store ACC value
; Store PFLAG value
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG,A
A, ACCBUF
INT_SERVICE:
RETI
; Re-load PFLAG value
; Re-load ACC by B0XCH command, and which will not
affect the PFLAG again.
; Exit interrupt service vector
Note: To save and re-load ACC data, users must use “B0XCH” instruction, or else the PFLAG Register
might be modified by ACC operation.
SONiX TECHNOLOGY CO., LTD
Page 26
Version 1.1
SN8P1602B
8-Bit Micro-Controller
STACK OPERATIONS
OVERVIEW
The stack buffer of SN8P1602B has 4-level. These buffers are designed to push and pop up program counter’s (PC)
data when interrupt service routine is executed. The STKP register is a pointer designed to point active level in order to
push or pop up data from stack buffer. The STKnH and STKnL are the stack buffers to store program counter (PC)
data.
RET /
CALL /
RETI
interrupt
PCH
PCL
STK3H
STK3L
STK2H
STK2L
STKP = 3
STKP + 1
STKP -1
STKP = 2
STKP
STKP
STK1H
STK1L
STK0H
STK0L
STKP = 1
STKP = 0
SONiX TECHNOLOGY CO., LTD
Page 27
Version 1.1
SN8P1602B
8-Bit Micro-Controller
STACK REGISTERS
The stack pointer (STKP) is a 3-bit register to store the address used to access the stack buffer, 10-bit data memory
(STKnH and STKnL) set aside for temporary storage of stack addresses.
The two stack operations are writing to the top of the stack (push) and reading from the top of stack (pop). Push
operation decrements the STKP and the pop operation increments each time. That makes the STKP always point to
the top address of stack buffer and write the last program counter value (PC) into the stack buffer.
The program counter (PC) value is stored in the stack buffer before a CALL instruction executed or during interrupt
service routine. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer
(STKnH and STKnL) are located in the system register area bank 0.
SN8P1602B
0DFH
Bit 7
GIE
STKP
Read/Write
R/W
After reset
0
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
STKPB2
R/W
1
Bit 1
STKPB1
R/W
1
Bit 0
STKPB0
R/W
1
STKPBn: Stack pointer (n = 0 ~ 2)
GIE: Global interrupt control bit. 0 = disable, 1 = enable. Please refer to the interrupt chapter.
Example: Stack pointer (STKP) reset, we strongly recommended to clear the stack pointers in the
beginning of the program.
MOV
B0MOV
A, #00000111B
STKP, A
SN8P1602B
0F0H~0FFH
Bit 7
Bit 6
STKnH
Read/Write
After reset
STKn = <STKnH , STKnL> (n = 3 ~ 0)
Bit 5
-
Bit 4
-
SN8P1602B
0F0H~0FFH
Bit 7
Bit 6
Bit 5
Bit 4
SnPC7
SnPC6
SnPC5
SnPC4
STKnL
Read/Write
R/W
R/W
R/W
R/W
After reset
0
0
0
0
For SN8P1602B : STKn = <STKnH , STKnL> (n = 3 ~ 0)
SONiX TECHNOLOGY CO., LTD
Page 28
Bit 3
-
Bit 2
-
Bit 1
SnPC9
R/W
0
Bit 0
SnPC8
R/W
0
Bit 3
SnPC3
R/W
0
Bit 2
SnPC2
R/W
0
Bit 1
SnPC1
R/W
0
Bit 0
SnPC0
R/W
0
Version 1.1
SN8P1602B
8-Bit Micro-Controller
STACK OPERATION EXAMPLE
The two kinds of Stack-Save operations refer to the stack pointer (STKP) and write the content of program counter (PC)
to the stack buffer are CALL instruction and interrupt service. Under each condition, the STKP decreases and points to
the next available stack location. The stack buffer stores the program counter about the op-code address. The
Stack-Save operation is as the following table.
SN8P1602B
Stack Level
0
1
2
3
4
>4
STKPB2
STKP Register
STKPB1
STKPB0
1
1
1
1
0
0
1
1
0
0
1
1
Stack Buffer
High Byte Low Byte
1
0
1
0
1
0
Free
STK0H
STK1H
STK2H
STK3H
-
Description
Stack Over, error
Free
STK0L
STK1L
STK2L
STK3L
-
There are Stack-Restore operations correspond to each push operation to restore the program counter (PC). The RETI
instruction uses for interrupt service routine. The RET instruction is for CALL instruction. When a pop operation occurs,
the STKP is incremented and points to the next free stack location. The stack buffer restores the last program counter
(PC) to the program counter registers. The Stack-Restore operation is as the following table.
SN8P1602B
Stack Level
4
3
2
1
0
STKPB2
STKP Register
STKPB1
STKPB0
0
1
1
1
1
1
0
0
1
1
Stack Buffer
High Byte Low Byte
1
0
1
0
1
STK3H
STK2H
STK1H
STK0H
Free
Description
-
STK3L
STK2L
STK1L
STK0L
Free
PROGRAM COUNTER
The program counter (PC) is a 10-bit binary counter separated into the high-byte 2 and the low-byte 8 bits. This
counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program
counter is automatically incremented with each instruction during program execution.
Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction
is executed, the destination address will be inserted to bit 0 ~ bit 9.
SN8P1602B
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9
PC9
PC
After
0
reset
PCH
SONiX TECHNOLOGY CO., LTD
Bit 8
PC8
Bit 7
PC7
Bit 6
PC6
Bit 5
PC5
Bit 4
PC4
Bit 3
PC3
Bit 2
PC2
Bit 1
PC1
Bit 0
PC0
0
0
0
0
0
0
0
0
0
PCL
Page 29
Version 1.1
SN8P1602B
8-Bit Micro-Controller
ONE ADDRESS SKIPPING
There are nine instructions (CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1) with one
address skipping function. If the result of these instructions is true, the PC will add 2 steps to skip next instruction.
If the condition of bit test instruction is true, the PC will add 2 steps to skip next instruction.
FC
C0STEP
; To skip, if Carry_flag = 1
; Else jump to C0STEP.
C0STEP:
B0BTS1
JMP
.
NOP
A, BUF0
FZ
C1STEP
; Move BUF0 value to ACC.
; To skip, if Zero flag = 0.
; Else jump to C1STEP.
C1STEP:
B0MOV
B0BTS0
JMP
.
NOP
If the ACC is equal to the immediate data or memory, the PC will add 2 steps to skip next instruction.
C0STEP:
CMPRS
JMP
.
NOP
A, #12H
C0STEP
; To skip, if ACC = 12H.
; Else jump to C0STEP.
If the destination increased by 1, which results overflow of 0xFF to 0x00, the PC will add 2 steps to skip next
instruction.
INCS instruction:
C0STEP:
INCS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if ACC is not zero.
INCMS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if BUF0 is not zero.
INCMS instruction:
C0STEP:
If the destination decreased by 1, which results underflow of 0x00 to 0xFF, the PC will add 2 steps to skip next
instruction.
DECS instruction:
C0STEP:
DECS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if ACC is not zero.
DECMS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if BUF0 is not zero.
DECMS instruction:
C0STEP:
SONiX TECHNOLOGY CO., LTD
Page 30
Version 1.1
SN8P1602B
8-Bit Micro-Controller
MULTI-ADDRESS JUMPING
Users can jump around the multi-address by either JMP instruction or ADD M, An instruction (M = PCL) to activate
multi-address jumping function. If carry flag occurs after execution of ADD PCL, A, the carry flag will not affect PCH
register.
Example: If PC = 0323H (PCH = 03H、PCL = 23H)
; PC = 0323H
; PC = 0328H
MOV
B0MOV
.
.
.
MOV
B0MOV
A, #28H
PCL, A
.
.
.
A, #00H
PCL, A
; Jump to address 0328H
; Jump to address 0300H
Example: If PC = 0323H (PCH = 03H、PCL = 23H)
; PC = 0323H
B0ADD
JMP
JMP
JMP
JMP
.
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
.
SONiX TECHNOLOGY CO., LTD
; PCL = PCL + ACC, the PCH cannot be changed.
; If ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
;
Page 31
Version 1.1
SN8P1602B
8-Bit Micro-Controller
4 ADDRESSING MODE
OVERVIEW
The SN8P1602B provides three addressing modes to access RAM data, including immediate addressing mode,
directly addressing mode and indirectly address mode.
IMMEDIATE ADDRESSING MODE
The immediate addressing mode uses an immediate data to set up the location (“ MOV A, # I ”, “ B0MOV
ACC or specific RAM.
M, # I “) in
Immediate addressing mode
MOV
A, #12H
; To set an immediate data 12H into ACC
DIRECTLY ADDRESSING MODE
The directly addressing mode moves the content of RAM location in or out of ACC.(“ MOV A,12H ”, “ MOV 12H,
A ”).
Directly addressing mode
B0MOV
A, 12H
; To get a content of location 12H of bank 0 and save in ACC
INDIRECTLY ADDRESSING MODE
The indirectly addressing mode is to access the memory by the data pointer registers (Y/Z).
Example: Indirectly addressing mode with @YZ register
CLR
B0MOV
B0MOV
Y
Z, #12H
A, @YZ
SONiX TECHNOLOGY CO., LTD
; To clear Y register to access RAM bank 0.
; To set an immediate data 12H into Z register.
; Use data pointer @YZ reads a data from RAM location
; 012H into ACC.
Page 32
Version 1.1
SN8P1602B
8-Bit Micro-Controller
5 SYSTEM REGISTER
OVERVIEW
The RAM area located in 80H~FFH bank 0 is system register area. The main purpose of system registers is to control
peripheral hardware of the chip. Using system registers can control I/O ports, timers and counters by programming.
The memory map provides an easy and quick reference source for writing application program. These system registers
accessing is controlled by the selected memory bank (RBANK = 0) or the bank 0 read/write instruction (B0MOV,
B0BSET, B0BCLR…).
SYSTEM REGISTER ARRANGEMENT (BANK 0)
BYTES of SYSTEM REGISTER
SN8P1602B
0
1
8
9
A
B
C
D
E
F
2
3
4
5
6
7
PFLAG RPAGE
8
9
A
B
C
D
E
F
-
-
R
Z
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PUR
PEDGE
P1W
P1M
P2M
-
-
-
-
-
P0
P1
P2
-
-
-
-
-
-
-
-
-
-
-
-
@YZ
-
-
-
-
-
-
-
-
INTRQ INTEN
OSCM
-
-
-
PCL
PCH
T0M
-
TC0M
TC0C
-
-
-
STKP
-
-
-
-
-
-
-
-
STK3L STK3H STK2L STK2H STK1L STK1H STK0L STK0H
Description
PFLAG =
P1W =
PnM =
INTRQ =
OSCM =
TCnM =
T0M.1=
STKP =
@YZ =
ROM page and special flag register.
Port 1 wakeup register.
Port n input/output mode register.
Interrupt request register.
Oscillator mode register.
Timer n mode register.
TC0GN, TC0 green mode wakeup flag.
Stack pointer buffer.
RAM YZ indirect addressing index pointer.
SONiX TECHNOLOGY CO., LTD
R=
Y, Z =
Pn =
INTEN =
PCH, PCL =
TCnC =
Working register and ROM look-up data buffer.
Working, @YZ and ROM addressing register.
Port n data buffer.
Interrupt enable register.
Program counter.
Timer n counting register.
STK0~STK3 = Stack 0 ~ stack 3 buffer.
Page 33
Version 1.1
SN8P1602B
8-Bit Micro-Controller
BITS of SYSTEM REGISTER
SN8P1602B system register table
Address
082H
083H
084H
086H
0BEH
0BFH
0C0H
0C1H
0C2H
0C8H
0C9H
0CAH
0CEH
0CFH
0D0H
0D1H
0D2H
0D8H
0DAH
0DBH
0DFH
0E7H
0F8H
0F9H
0FAH
0FBH
0FCH
0FDH
0FEH
0FFH
Bit7
RBIT7
ZBIT7
YBIT7
NT0
PEDGEN
0
0
P27M
0
0
WTCKS
PC7
P27
TC0ENB
TC0C7
GIE
@YZ7
S3PC7
S2PC7
S1PC7
S0PC7
-
Bit6
RBIT6
ZBIT6
YBIT6
NPD
0
0
P26M
0
0
WDRST
PC6
P26
TC0rate2
TC0C6
@YZ6
S3PC6
S2PC6
S1PC6
S0PC6
-
Bit5
RBIT5
ZBIT5
YBIT5
0
0
P25M
TC0IRQ
TC0IEN
0
PC5
P25
TC0rate1
TC0C5
@YZ5
S3PC5
S2PC5
S1PC5
S0PC5
-
Bit4
RBIT4
ZBIT4
YBIT4
P00G1
P14W
P14M
P24M
0
0
CPUM1
PC4
P14
P24
TC0rate0
TC0C4
@YZ4
S3PC4
S2PC4
S1PC4
S0PC4
-
Bit3
RBIT3
ZBIT3
YBIT3
P00G0
P13W
P13M
P23M
0
0
CPUM0
PC3
P13
P23
TC0CKS
TC0C3
@YZ3
S3PC3
S2PC3
S1PC3
S0PC3
-
Bit2
RBIT2
ZBIT2
YBIT2
C
PUR2
P12W
P12M
P22M
0
0
CLKMD
PC2
P12
P22
0
TC0C2
STKPB2
@YZ2
S3PC2
S2PC2
S1PC2
S0PC2
-
Bit1
RBIT1
ZBIT1
YBIT1
DC
PUR1
P11W
P11M
P21M
0
0
STPHX
PC1
PC9
P11
P21
TC0GN
0
TC0C1
STKPB1
@YZ1
S3PC1
S3PC9
S2PC1
S2PC9
S1PC1
S1PC9
S0PC1
S0PC9
Bit0
RBIT0
ZBIT0
YBIT0
Z
PUR0
P10W
P10M
P20M
P00IRQ
P00IEN
0
PC0
PC8
P00
P10
P20
0
TC0C0
STKPB0
@YZ0
S3PC0
S3PC8
S2PC0
S2PC8
S1PC0
S1PC8
S0PC0
S0PC8
R/W
R/W
R/W
R/W
R/W
W
W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Remarks
R
Z
Y
PFLAG
PUR
PEDGE
P1W wakeup register
P1M I/O direction
P2M I/O direction
INTRQ
INTEN
OSCM
PCL
PCH
P0 data buffer
P1 data buffer
P2 data buffer
T0M
TC0M
TC0C
STKP stack pointer
@YZ index pointer
STK3L
STK3H
STK2L
STK2H
STK1L
STK1H
STK0L
STK0H
Note
a): To avoid system error, please be sure to put all the “0” as it indicates in the above table
b). All of register names had been declared in SN8ASM assembler.
c). One-bit name had been declared in SN8ASM assembler with “F” prefix code.
d). “b0bset”, “b0bclr”, ”bset”, ”bclr” instructions are only available to the “R/W” registers.
e). For detail description, please refer to the “System Register Quick Reference Table”
SONiX TECHNOLOGY CO., LTD
Page 34
Version 1.1
SN8P1602B
8-Bit Micro-Controller
6 POWER ON RESET
OVERVIEW
SN8P1602B provides two system resets. One is external reset and the other is internal low voltage detector (LVD). The
external reset is a simple RC circuit connecting to the reset pin. The low voltage detector (LVD) is built in internal circuit.
When one of the reset devices occurs, the system will reset and the system registers become initial value. The timing
diagram is as the following.
VDD
LVD Detect Level
External Reset
External Reset Detect Level
LVD
End of LVD Reset
Internal Reset Signal
End of External Reset
SN8P1602B power on reset timing diagram
SONiX TECHNOLOGY CO., LTD
Page 35
Version 1.1
SN8P1602B
8-Bit Micro-Controller
EXTERNAL RESET DESCRIPTION
The external reset is a low level active device. The reset pin receives the low voltage and resets the system. When the
voltage detects high level, it stops resetting the system. Users can use an external reset circuit to control system
operation.
VDD
External Reset
External Reset Detect Level
Internal Reset Signal
System Reset
End of External Reset
Users must make sure the VDD is stable earlier than external reset. Otherwise, the power on reset maybe fail.
The external reset circuit is a simple RC circuit as the following figure.
R
VDD
20K ohm
RST
C
0.1uF
MCU
VSS
VCC
GND
SONiX TECHNOLOGY CO., LTD
Page 36
Version 1.1
SN8P1602B
8-Bit Micro-Controller
Under different environment, by placing a diode in between VCC and reset pin will help the Brownout reset.
R
DIODE
VDD
20K ohm
RST
C
0.1uF
MCU
VSS
VCC
GND
LOW VOLTAGE DETECTOR (LVD) DESCRIPTION
The LVD is a low voltage detector. It detects VDD level and reset the system as the VDD lower than the detected
voltage. The detect level is 1.8V. If the VDD lower than 1.8V, the system resets.
VDD
LVD Detect Level
LVD
System Reset
SONiX TECHNOLOGY CO., LTD
End of LVD Reset
Page 37
Version 1.1
SN8P1602B
8-Bit Micro-Controller
7 OSCILLATORS
OVERVIEW
The SN8P1602B is a dual clock micro-controller system. There are external high-speed clock and internal low-speed
clock. The high-speed clock is generated from the external oscillator circuit. The low-speed clock is generated from
on-chip RC oscillator circuit.
Both the external high-speed clock and the internal low-speed clock can be system clock (Fosc). The system clock is
divided by 4 to be the instruction cycle (Fcpu).
Fcpu = Fosc / 4
CLOCK BLOCK DIAGRAM
HXRC(1:0) is code option
•00= RC
•01 =32 Khz Oscillator
•10 = High Speed Oscillator (>10Mhz)
•11 = Standard Oscillator (4Mhz)
STPHX
Divided by 2
1 : Disable
HXRC
CLKMD
fosc/4
CPUM0
0 : Enable
XIN
HXOSC.
fh
XOUT
OSG
Divided by 2
Divided by 4
fcpu
OSG : Oscillator Safe Guard
CPUM0
LXOSC.
1 : Disable -- System Default
fl
0 : Enable
CPUM0
HXOSC: External high-speed clock
LXOSC: Internal low-speed clock
OSG: Oscillator safe guard
SONiX TECHNOLOGY CO., LTD
Page 38
Version 1.1
SN8P1602B
8-Bit Micro-Controller
OSCM REGISTER DESCRIPTION
The OSCM register is an oscillator control register. It controls oscillator status, system mode, watchdog timer clock
rate.
0CAH
OSCM
Read/Write
After reset
Bit 7
WTCKS
R/W
0
Bit 6
WDRST
R/W
0
Bit 5
0
-
Bit 4
CPUM1
R/W
0
Bit 3
CPUM0
R/W
0
Bit 2
CLKMD
R/W
0
Bit 1
STPHX
R/W
0
Bit 0
0
-
STPHX: External high-speed oscillator control bit. 0 = free run, 1 = stop. This bit only controls external high-speed
oscillator. If STPHX=1, the internal low-speed RC oscillator is still running.
CLKMD: System high/Low clock mode: bit 0 = normal (dual) mode, 1 = slow mode.
CPUM1, CPUM0: CPU operating mode control bit:
00 = normal
01 = sleep (power down) mode
10 = green mode
11 = reserved.
WDRST: Watchdog timer reset bit
0 = Non-reset
1 = clear the watchdog timer’s counter.
Please refer to the “watchdog timer chapter” for detailed information.
WTCKS: Watchdog clock source
0 = Fcpu
1 = internal RC low clock
SONiX TECHNOLOGY CO., LTD
Page 39
Version 1.1
SN8P1602B
8-Bit Micro-Controller
EXTERNAL HIGH-SPEED OSCILLATOR
SN8P1602B can be operated in four different oscillator modes. There are external RC oscillator modes, high
crystal/resonator mode (12M code option), standard crystal/resonator mode (4M code option) and low crystal mode
(32K code option). For different application, the users can select one of suitable oscillator mode by programming code
option to generate system high-speed clock source after reset.
Example: Stop external high-speed oscillator
B0BSET
FSTPHX
; To stop external high-speed oscillator only.
Example: When entering the Power Down mode, both external high-speed oscillator and internal
low-speed oscillator will be stopped.
B0BSET
FCPUM0
; To stop external high-speed oscillator and internal low-speed
; oscillator called power down mode (sleep mode).
OSCILLATOR MODE CODE OPTION
SN8P1602B has four oscillator modes for different applications. These modes are 4M, 12M, 32K and RC. The main
purpose is to support different oscillator types and frequencies. MCU needs more current when operating at
High-speed mode than the low-speed mode. For crystals, there are three steps to select. If the oscillator is RC type, to
select “RC” and the system will divide the frequency by 2 automatically. User can select oscillator mode from code
option table before compiling. Following is the code option table.
Code Option
00
01
10
11
Oscillator Mode
RC mode
32K
12M
4M
Remark
Output the Fcpu square wave from Xout pin.
32768Hz
12MHz ~ 16MHz
3.58MHz
OSCILLATOR DEVIDE BY 2 CODE OPTION
SN8P1602B has a code option to divide external clock by 2,called “High_Clk / 2”. If “High_Clk / 2” is enabled, the
external clock frequency is divided by 8 for the Fcpu. Fcpu is equal to Fosc/8. If “High_Clk / 2” is disabled, the Fcpu is
equal to Fosc/4.
Note: In RC mode, “High_Clk / 2” is always enabled.
OSCILLATOR SAFE GUARD CODE OPTION
SN8P1602B builds in an oscillator safe guard (OSG) to make oscillator more stable. It is a low-pass filter circuit and
stops high frequency noise into system from external oscillator circuit. This function makes system to work better under
AC noisy conditions.
SONiX TECHNOLOGY CO., LTD
Page 40
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SYSTEM OSCILLATOR CIRCUITS
VDD
20PF
XIN
CRYSTAL
20PF
MCU
XOUT
VSS
Crystal/Ceramic Oscillator
VDD
R
XIN
XOUT
C
MCU
VSS
RC Oscillator
VDD
External Clock Input
XIN
XOUT
MCU
VSS
External clock input
Note1: The external oscillator circuit must be directly from Vss pin of micro-controller.
Note2: The input source of XIN pin received from external oscillator circuit, the code option can be either
be RC type oscillator or crystal type oscillator.
Note3: In RC type oscillator code option situation, the external clock frequency is automatically divided
by 2.
SONiX TECHNOLOGY CO., LTD
Page 41
Version 1.1
SN8P1602B
8-Bit Micro-Controller
External RC Oscillator Frequency Measurement
There are two ways to get the Fosc frequency of external RC oscillator. One way is to measure the XOUT output
waveform. Moreover, the other way is to measure the external RC frequency by software instruction cycle (Fcpu).
Example: Fcpu instruction cycle of external oscillator
B0BSET
P1M.0
; Set P1.0 to be output mode for outputting Fcpu toggle signal.
B0BSET
B0BCLR
JMP
P1.0
P1.0
@B
; Output Fcpu toggle signal in low-speed clock mode.
; Measure the Fcpu frequency by oscilloscope.
@@:
Note: Do not measure the RC frequency directly from XIN, the probe impendence will affect the RC
value.
SONiX TECHNOLOGY CO., LTD
Page 42
Version 1.1
SN8P1602B
8-Bit Micro-Controller
INTERNAL LOW-SPEED OSCILLATOR
The internal low-speed oscillator is built in the micro-controller. The low-speed clock source is a RC type oscillator
circuit.
Example: Stop internal low-speed oscillator
B0BSET
FCPUM0
; To stop external high-speed oscillator and internal low-speed
; oscillator called power down mode (sleep mode).
Note: The internal low-speed clock can’t be turned off individually. It is controlled by CPUM0 bit of OSCM
register.
The low-speed oscillator uses RC type oscillator circuit. The frequency is affected by the voltage and temperature of
the system. In common condition, the frequency of the RC oscillator is about 16KHz at 3V and 32KHz at 5V. The
relation between the RC frequency and voltage is as the following figure.
Internal RC vs. VDD
40
38.678
35.343
Fintrc (KHz)
35
32.008
30
28.673
25.338
25
22.003
20
18.668
15.333
15
11.998
10
8.663
7.329
5
0
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
VDD (Volts)
Example: Measure the internal RC frequency by instruction cycle (Fcpu). The internal RC frequency is the
Fcpu multiplied by 4. We can get the Fosc frequency of internal RC from the Fcpu frequency.
B0BSET
P1M.0
; Set P1.0 to be output mode for outputting Fcpu toggle signal.
B0BSET
FCLKMD
; Switch the system clock to internal low-speed clock mode.
B0BSET
B0BCLR
JMP
P1.0
P1.0
@B
; Output Fcpu toggle signal in low-speed clock mode.
; Measure the Fcpu frequency by oscilloscope.
@@:
SONiX TECHNOLOGY CO., LTD
Page 43
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SYSTEM MODE DESCRIPTION
OVERVIEW
The chip is featured with low power consumption by switching around four different modes as following.
High-speed mode
Low-speed mode
Power-down mode (Sleep mode)
Green mode
NORMAL MODE
In normal mode, the system clock source is external high-speed clock. After power on, the system works under normal
mode. The instruction cycle is fosc/4. When the external high-speed oscillator is 3.58MHz, the instruction cycle is
3.58MHz/4 = 895KHz. From normal mode, the system can get into power down mode, slow mode and green mode.
SLOW MODE
In slow mode, the system clock source is internal low-speed RC clock. To set CLKMD =1, the system switches into
slow mode. In slow mode, the system functions similar to the normal mode except using the internal RC clock. The
system in slow mode can switch back to high-speed normal mode. On the other hand, it can be easily switch to power
down mode and green mode for less power consumption.
GREEN MODE
The green mode provides a time-variable wakeup function. Users can decide wakeup time by setting TC0 timer. There
are two paths into green mode. One is from normal mode and the other is from slow mode. In normal mode, the TC0
timer overflow time is very short. In slow mode, the overflow time is longer. Users can select appropriate situation for
their applications. Under green mode, the power consumption is around 5uA in 3V condition. The system can be
waked up to last system mode by TC0 timer timeout and P0 trigger signal.
POWER DOWN MODE
The power down mode is also called sleep mode. The MCU stops working as sleeping status. To set CUPM0 = 1, the
system gets into power down mode. The external high-speed and low-speed oscillators are turned off. The system can
be waked up by P0, P1 trigger signal.
SONiX TECHNOLOGY CO., LTD
Page 44
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SYSTEM MODE CONTROL
Power Down Mode
(Sleep Mode)
P0, P1 wake-up function active.
External reset circuit active.
CPUM1, CPUM0 = 01
CLKMD = 1
Normal Mode
Slow Mode
CLKMD = 0
CPUM1, CPUM0 = 10
P0, P1 wake-up function active.
P0, P1 wake-up function active.
TC0 time out.
TC0 time out.
External reset circuit active.
Green Mode
External reset circuit active.
SN8P1602B Type
Operating mode description
MODE
NORMAL
SLOW
GREEN
HX osc.
LX osc.
CPU instruction
Running
Running
Executing
By STPHX
Running
Executing
By STPHX
Running
Stop
POWER
DOWN
(SLEEP)
Stop
Stop
Stop
TC0 timer
*Active
*Active
*Active
Inactive
Watchdog timer
Active
Active
By
INT_16K_RC
By
INT_16K_RC
All active
All active
TC0
All inactive
All active
All active
All active
All inactive
-
-
P0, P1, TC0
Reset
P0, P1, Reset
Internal
interrupt
External
interrupt
Wakeup source
SONiX TECHNOLOGY CO., LTD
Page 45
REMARK
* Active by
program
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SYSTEM MODE SWITCHING
Switch normal/slow mode to power down (sleep) mode.
CPUM0 = 1
B0BSET
FCPUM0
; Set CPUM0 = 1.
During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode.
Switch normal mode to slow mode.
B0BSET
B0BSET
FCLKMD
FSTPHX
;To set CLKMD = 1, Change the system into slow mode
;To stop external high-speed oscillator for power saving.
Switch slow mode to normal mode (The external high-speed oscillator is still running)
B0BCLR
FCLKMD
;To set CLKMD = 0
Switch slow mode to normal mode (The external high-speed oscillator stops)
If external high clock stop and program want to switch back normal mode. It is necessary to delay at least 10mS for
external clock stable.
@@:
B0BCLR
FSTPHX
; Turn on the external high-speed oscillator.
B0MOV
DECMS
JMP
Z, #27
Z
@B
; If VDD = 5V, internal RC=32KHz (typical) will delay
; 0.125ms X 81 = 10.125ms for external clock stable
B0BCLR
FCLKMD
;
; Change the system back to the normal mode
Example: Go into Green mode and enable TC0 wakeup function.
; Set TC0 timer wakeup function.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
B0BCLR
B0BCLR
B0BSET
B0BSET
; Go into green mode
B0BCLR
B0BSET
FTC0IEN
FTC0ENB
A,#20H
TC0M,A
A,#74H
TC0C,A
FTC0IEN
FTC0IRQ
FTC0ENB
FTC0GN
FCPUM0
FCPUM1
; To disable TC0 interrupt service
; To disable TC0 timer
;
; To set TC0 clock = Fcpu / 64
; To set TC0C initial value = 74H (To set TC0 interval = 10
ms)
; To disable TC0 interrupt service
; To clear TC0 interrupt request
; To enable TC0 timer
; To enable TC0 wakeup function
;To set CPUMx = 10
Note: If TC0ENB = 0 or TC0GN = 0, TC0 will not be able to wakeup from green mode to normal/slow mode
function.
SONiX TECHNOLOGY CO., LTD
Page 46
Version 1.1
SN8P1602B
8-Bit Micro-Controller
WAKEUP TIME
OVERVIEW
The external high-speed oscillator needs a delay time from stopping to operating. The delay is necessary for oscillator
to be stabilized.. The delay time for external high-speed oscillator restart is sometimes called wakeup time.
Following are two conditions require wakeup time, one is switching power down mode to normal mode, and the other is
switching slow mode to normal mode. For the first condition, SN8P1602B provides 2048 oscillator clocks as the
wakeup time. The second condition, users need to take the wakeup time into consideration, which involved stabilizing
period for start up the external high-speed oscillator.
HARDWARE WAKEUP
When the system is in power down mode (sleep mode), the external high-speed oscillator stops. When waked up from
power down mode, MCU waits for 2048 external high-speed oscillator clocks as the wakeup time to stable the oscillator
circuit. After the wakeup time, the system goes into the normal mode. The value of the wakeup time is as the following.
The Wakeup time = 1/Fosc * 2048 (sec) + X’tal settling time
The X’tal settling time is depended on the X’tal type. Typically, it is about 2~4mS.
Example: In power down mode (sleep mode), the system is waked up by P0 or P1 trigger signal. After the
wakeup time, the system goes into normal mode. The wakeup time of P0, P1 wakeup function is as the
following.
The wakeup time = 1/Fosc * 2048 = 0.57 ms
(Fosc = 3.58MHz)
The total wakeup time = 0.57ms + X’tal settling time
Under power down mode (sleep mode), only the I/O ports with wakeup function are able to wake the system up to
normal mode. The Port 0 and Port 1 have wakeup function. Port 0 wakeup function always enables, but the Port 1 is
controlled by the P1W register.
SN8P1602B
0C0H
Bit 7
0
P1W
Read/Write
After reset
-
Bit 6
0
-
Bit 5
0
-
Bit 4
P14W
R/W
0
Bit 3
P13W
R/W
0
Bit 2
P12W
R/W
0
Bit 1
P11W
R/W
0
Bit 0
P10W
R/W
0
P10W~P14W: Port 1 wakeup function control bits. 0 = none wakeup function, 1 = Enable each pin of Port 1 wakeup
function.
SONiX TECHNOLOGY CO., LTD
Page 47
Version 1.1
SN8P1602B
8-Bit Micro-Controller
EXTERNAL WAKEUP TRIGGER CONTROL
In the SN8P1602B, the wakeup trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH
PEDGE
Bit 7
PEDGEN
R/W
Bit 6
-
Bit 5
-
Bit 4
P00G1
R/W
Bit 3
P00G0
R/W
Bit 2
-
Bit7
PEDGEN: Interrupt and wakeup trigger edge control bit.
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger.
Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits.
Port 1: Level change (falling or rising edge) wakeup trigger.
Bit[4:3]
P00G[1:0]: Port 0.0 edge select bits.
00 = reserved,
01 = rising edge,
10 = falling edge,
11 = rising/falling bi-direction.
SONiX TECHNOLOGY CO., LTD
Page 48
Bit 1
-
Bit 0
-
Version 1.1
SN8P1602B
8-Bit Micro-Controller
8 TIMERS
WATCHDOG TIMER (WDT)
The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program goes into
the unknown status by noise interference, WDT overflow signal raises and resets MCU. The instruction that clears the
watchdog timer (“ B0BSET FWDRST “) should be executed within a certain period. If an instruction that clears the
watchdog timer is not executed within the period and the watchdog timer overflows, reset signal is generated and
system is restarted.
0CAH
OSCM
Read/Write
After reset
Bit 7
WTCKS
R/W
0
Bit 6
WDRST
R/W
0
Bit 5
0
-
Bit 4
CPUM1
R/W
0
Bit 3
CPUM0
R/W
0
Bit 2
CLKMD
R/W
0
Bit 1
STPHX
R/W
0
Bit 0
0
-
WDRST: Watchdog timer reset bit. 0 = Non reset, 1 = clear the watchdog timer counter.
WTCKS: Watchdog clock source select bit 0 = Fcpu, 1 = internal RC low clock.
Watchdog timer overflow table.
WTCKS
CLKMD
Code Option
Watchdog Timer Overflow Time
0
0
0
1
-
0
0
1
-
4M_X’tal / 12M_X’tal / RC
32K_X’tal
Enable Int_16K_RC
1 / ( Fcpu ÷ 214 ÷ 16 ) = 293 ms, Fosc=3.58MHz
1 / ( Fcpu ÷ 28 ÷ 16 ) = 500 ms, Fosc=32768Hz
1 / ( Fcpu ÷ 214 ÷ 16 ) = 65.5s, Fosc=16KHz@3V
1 / ( 16K ÷ 512 ÷ 16 ) ~ 0.5s @3V
1 / ( 16K ÷ 512 ÷ 16 ) ~ 0.5s @3V
Note: The watchdog timer can be enabled or disabled by the code option. If disabled, the watchdog
timer can also be served as fixed-period timer by checking the NT0 flag.
Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top
of the main routine of the program.
Main:
B0BSET
.
CALL
CALL
.
.
.
JMP
FWDRST
.
SUB1
SUB2
.
.
.
MAIN
SONiX TECHNOLOGY CO., LTD
; Clear the watchdog timer counter.
Page 49
Version 1.1
SN8P1602B
8-Bit Micro-Controller
TIMER0 (TC0)
OVERVIEW
The TC0 is an 8-bit binary up timer and event counter, using TC0M register to select TC0C’s clock source from GTMR
or from external INT0 pin ( falling edge trigger) for counting a precision time. If TC0 timer occurs an overflow (from FFH
to 00H), it will continue counting and issue a time-out signal to trigger TC0 interrupt to request interrupt service.
÷ 2(8-TC0Rate)
TC0cks
TC0enb
Internal data bus
pre_load
Fcpu
TC0C
8-bit b inary counter
INT0
(schmitter t rigger)
TC0 Time out
CPUM1,0
The main purposes of the TC0 timer is as following.
8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock
frequency.
External event counter: Counts system “events” based on falling edge detection of external clock signals at
the INT0 input pin.
SONiX TECHNOLOGY CO., LTD
Page 50
Version 1.1
SN8P1602B
8-Bit Micro-Controller
TC0M MODE REGISTER
The TC0M is an 8-bit read/write timer mode register. By loading different value into the TC0M register, users can
modify the timer period as program executing.
Eight rates for TC0 timer can be selected by TC0RATE0 ~ TC0RATE2 bits. The range is from fcpu/2 to fcpu/256. The
TC0M initial value is zero and the rate is fcpu/256. The bit7 of TC0M called TC0ENB is the control bit to start TC0 timer.
The combination of these bits is to determine the TC0 timer clock frequency and the intervals.
0DAH
TC0M
Read/Write
After reset
Bit 7
TC0ENB
R/W
0
Bit 6
TC0rate2
R/W
0
Bit 5
TC0rate1
R/W
0
Bit 4
TC0rate0
R/W
0
Bit 3
TC0CKS
R/W
0
Bit 2
0
-
Bit 1
0
-
Bit 0
0
-
TC0ENB: TC0 counter enable bit. “0” = disable, “1” = enable.
TC0RATE2~TC0RATE0: TC0 internal clock select bits. 000 = fcpu/256, 001 = fcpu/128, … , 110 = fcpu/4, 111 =
fcpu/2.
TC0CKS: TC0 clock source select bit. 0 = Fcpu, 1 = External clock comes from INT0/P0.0 pin.
Note1: The ICE S8KC does not support the PWM0OUT and TC0OUT Function. The PWM0OUT and
TC0OUT must use the S8KD ICE (or later) to verify the function.
Note2: When TC0CKS=1, TC0 became an external event counter. No more P0.0 interrupt request will be
raised. (P0.0IRQ will be always 0)
SONiX TECHNOLOGY CO., LTD
Page 51
Version 1.1
SN8P1602B
8-Bit Micro-Controller
TC0C COUNTING REGISTER
TC0C is an 8-bit counter register for the timer (TC0). TC0C must be reset whenever the TC0ENB is set to “1” to start
the timer. TC0C is incremented each time a clock pulse of the frequency determined by TC0RATE0 ~ TC0RATE2.
When TC0C has incremented to “0FFH”, it counts to “00H” an overflow generated. Under TC0 interrupt service request
(TC0IEN) enable condition, the TC0 interrupt request flag will be set to “1” and the system executes the interrupt
service routine. The TC0C has no auto reload function. After TC0C overflow, the TC0C is continuing counting. Users
need to redefine the TC0C value to get an accurate time.
0DBH
TC0C
Read/Write
After reset
Bit 7
TC0C7
R/W
0
Bit 6
TC0C6
R/W
0
Bit 5
TC0C5
R/W
0
Bit 4
TC0C4
R/W
0
Bit 3
TC0C3
R/W
0
Bit 2
TC0C2
R/W
0
Bit 1
TC0C1
R/W
0
Bit 0
TC0C0
R/W
0
The basic timer table interval time of TC0
TC0RATE TC0CLOCK
000
001
010
011
100
101
110
111
fcpu/256
fcpu/128
fcpu/64
fcpu/32
fcpu/16
fcpu/8
fcpu/4
fcpu/2
High speed mode (Fcpu = 3.58MHz / 4)
Max overflow interval One step = max/256
73.2 ms
286us
36.6 ms
143us
18.3 ms
71.5us
9.15 ms
35.8us
4.57 ms
17.9us
2.28 ms
8.94us
1.14 ms
4.47us
0.57 ms
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval One step = max/256
8000 ms
31.25 ms
4000 ms
15.63 ms
2000 ms
7.8 ms
1000 ms
3.9 ms
500 ms
1.95 ms
250 ms
0.98 ms
125 ms
0.49 ms
62.5 ms
0.24 ms
The equation of TC0C initial value is as following.
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
Example: To set 10ms interval time for TC0 interrupt at 3.58MHz high-speed mode. TC0C value (74H) =
256 - (10ms * fcpu/64)
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (10ms * 3.58 * 106 / 4 / 64)
= 256 - (10-2 * 3.58 * 106 / 4 / 64)
= 116
= 74H
SONiX TECHNOLOGY CO., LTD
Page 52
Version 1.1
SN8P1602B
8-Bit Micro-Controller
TC0 TIMER OPERATION SEQUENCE
The TC0 timer’s sequence of operation may be as following.
Set the TC0C initial value to setup the interval time.
Set the TC0ENB to be “1” to enable TC0 timer.
TC0C is incremented by one after each clock pulse corresponding to TC0M selection.
TC0C overflow if TC0C from FFH to 00H.
When TC0C overflow occur, the TC0IRQ flag is set to be “1” by hardware.
Execute the interrupt service routine.
Users reset the TC0C value and resume the TC0 timer operation.
Example: Setup the TC0M and TC0C.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC0IEN
FTC0ENB
A,#20H
TC0M,A
A,#74H
TC0C,A
; To disable TC0 interrupt service
; To disable TC0 timer
;
; To set TC0 clock = Fcpu / 64
; To set TC0C initial value = 74H
;(To set TC0 interval = 10 ms)
B0BSET
B0BCLR
B0BSET
FTC0IEN
FTC0IRQ
FTC0ENB
; To enable TC0 interrupt service
; To clear TC0 interrupt request
; To enable TC0 timer
Example: TC0 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; B0xch instruction do not change C,Z flag
B0BTS1
JMP
FTC0IRQ
EXIT_INT
; Check TC0IRQ
; TC0IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
JMP
FTC0IRQ
A,#74H
TC0C,A
.
.
EXIT_INT
; Reset TC0IRQ
; Reload TC0C
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; TC0 interrupt service routine
; End of TC0 interrupt service routine and exit interrupt
vector
EXIT_INT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore ACC value.
; Exit interrupt vector
Page 53
Version 1.1
SN8P1602B
8-Bit Micro-Controller
9 INTERRUPT
OVERVIEW
The SN8P1602B provides 2 interrupt sources, including 1 internal interrupt (TC0) and 1 external interrupt (INT0). The
external interrupt can wakeup the chip while the system is switched from power down mode to high-speed normal
mode. Once interrupt service is executed, the GIE bit in STKP register will clear to “0” for stopping other interrupt
request. On the contrast, when interrupt service exits, the GIE bit will set to “1” to accept the next interrupts’ request. All
of the interrupt request signals are stored in INTRQ register.
SN8P1602B
The interrupt trigger edge :
INT0 = falling edge
TC0 time out
INT0 trigger
INTEN Interrupt enable register
TC0IRQ
INTRQ
2-bit
Latchs
P00IRQ
Interrupt
enable
gating
Interrupt vector address (0008H)
Global interrupt request signal
Note: The GIE bit must enable during all interrupt operation.
SONiX TECHNOLOGY CO., LTD
Page 54
Version 1.1
SN8P1602B
8-Bit Micro-Controller
INTEN INTERRUPT ENABLE REGISTER
INTEN is the interrupt request control register including one internal interrupts, one external interrupts enable control
bits. One of the register to be set “1” is to enable the interrupt request function. Once of the interrupt occur, the stack is
incremented and program jump to ORG 8 to execute interrupt service routines. The program exits the interrupt service
routine when the returning interrupt service routine instruction (RETI) is executed.
SN8P1602B
0C9H
Bit 7
0
INTEN
Read/Write
After reset
-
Bit 6
0
-
Bit 5
TC0IEN
R/W
0
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
0
-
Bit 0
P00IEN
R/W
0
P00IEN : External P0.0 interrupt control bit. 0 = disable, 1 = enable.
TC0IEN : Timer 0 interrupt control bit 0 = disable, 1 = enable.
INTRQ INTERRUPT REQUEST REGISTER
INTRQ is the interrupt request flag register. The register includes all interrupt request indication flags. Each one of the
interrupt requests occurs, the bit of the INTRQ register would be set “1”. The INTRQ value needs to be clear by
programming after detecting the flag. In the interrupt vector of program, users know the any interrupt requests
occurring by the register and do the routine corresponding of the interrupt request.
SN8P1602B
0C8H
Bit 7
0
INTRQ
Read/Write
After reset
-
Bit 6
0
-
Bit 5
TC0IRQ
R/W
0
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
0
-
Bit 0
P00IRQ
R/W
0
P00IRQ : External P0.0 interrupt request bit. 0 = non-request, 1 = request.
TC0IRQ : TC0 timer interrupt request controls bit 0 = non request, 1 = request.
When interrupt occurs, the related request bit of INTRQ register will be set to “1” no matter the related enable bit of
INTEN register is enabled or disabled. If the related bit of INTEN = 1 and the related bit of INTRQ is also set to be “1”.
As the result, the system will execute the interrupt vector (ORG 8). If the related bit of INTEN = 0, moreover, the
system won’t execute interrupt vector even when the related bit of INTRQ is set to be “1”. Users need to be cautious
with the operation under multi-interrupt situation.
SONiX TECHNOLOGY CO., LTD
Page 55
Version 1.1
SN8P1602B
8-Bit Micro-Controller
INTERRUPT OPERATION DESCRIPTION
GIE GLOBAL INTERRUPT OPERATION
GIE is the global interrupt control bit. All interrupts start work after the GIE = 1. It is necessary for interrupt service
request. One of the interrupt requests occurs, and the program counter (PC) points to the interrupt vector (ORG 8) and
the stack add 1 level.
SN8P1602B
0DFH
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
GIE
STKPB2
STKPB1
STKPB0
STKP
Read/Write
R/W
R/W
R/W
R/W
After reset
0
1
1
1
GIE: Global interrupt control bit. 0 = disable, 1 = enable.
Example: Set global interrupt control bit (GIE).
B0BSET
FGIE
; Enable GIE
Note: The GIE bit must enable during all interrupt operation.
SONiX TECHNOLOGY CO., LTD
Page 56
Version 1.1
SN8P1602B
8-Bit Micro-Controller
INT0 (P0.0) INTERRUPT OPERATION
The P0.0 interrupt trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH
PEDGE
Bit 7
PEDGEN
R/W
Bit 6
-
Bit 5
-
Bit 4
P00G1
R/W
Bit 3
P00G0
R/W
Bit 2
-
Bit7
PEDGEN: Interrupt and wakeup trigger edge control bit.
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger.
Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits.
Port 1: Level change (falling or rising edge) wakeup trigger.
Bit[4:3]
P00G[1:0]: Port 0.0 edge select bits.
00 = reserved,
01 = rising edge,
10 = falling edge,
11 = rising/falling bi-direction.
Bit 1
-
Bit 0
-
Example: INT0 interrupt request setup.
B0BSET
B0BCLR
B0BSET
FP00IEN
FP00IRQ
FGIE
; Enable INT0 interrupt service
; Clear INT0 interrupt request flag
; Enable GIE
Example: INT0 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FP00IRQ
EXIT_INT
; Check P00IRQ
; P00IRQ = 0, exit interrupt vector
B0BCLR
.
.
FP00IRQ
.
.
; Reset P00IRQ
; INT0 interrupt service routine
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
EXIT_INT:
RETI
; Restore ACC value.
; Exit interrupt vector
When the INT0 trigger occurs, the P00IRQ will be set to “1” no matter the P00IEN is enable or disable. If the P00IEN =
1 and the trigger event P00IRQ is also set to be “1”. As the result, the system will execute the interrupt vector (ORG
8). If the P00IEN = 0 and the trigger event P00IRQ is still set to be “1”. Moreover, the system won’t execute interrupt
vector even when the P00IRQ is set to be “1”. Users need to be cautious with the operation under multi-interrupt
situation.
SONiX TECHNOLOGY CO., LTD
Page 57
Version 1.1
SN8P1602B
8-Bit Micro-Controller
TC0 INTERRUPT OPERATION
Example: TC0 interrupt request setup.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC0IEN
FTC0ENB
A, #20H
TC0M, A
A, #74H
TC0C, A
; Disable TC0 interrupt service
; Disable TC0 timer
;
; Set TC0 clock = Fcpu / 64
; Set TC0C initial value = 74H
; Set TC0 interval = 10 ms
B0BSET
B0BCLR
B0BSET
FTC0IEN
FTC0IRQ
FTC0ENB
; Enable TC0 interrupt service
; Clear TC0 interrupt request flag
; Enable TC0 timer
B0BSET
FGIE
; Enable GIE
Example: TC0 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC0IRQ
EXIT_INT
; Check TC0IRQ
; TC0IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
FTC0IRQ
A, #74H
TC0C, A
.
.
; Reset TC0IRQ
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; Reset TC0C.
; TC0 interrupt service routine
EXIT_INT:
RETI
; Restore ACC value.
; Exit interrupt vector
When the TC0C counter overflows, the TC0IRQ will be set to “1” no matter the TC0IEN is enable or disable. If the
TC0IEN and the trigger event TC0IRQ is set to be “1”. As the result, the system will execute the interrupt vector. If the
TC0IEN = 0, the trigger event TC0IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even
when the TC0IEN is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation.
SONiX TECHNOLOGY CO., LTD
Page 58
Version 1.1
SN8P1602B
8-Bit Micro-Controller
MULTI-INTERRUPT OPERATION
Under certain condition, the software designer uses more than one interrupt requests. Processing multi-interrupt
request requires setting the priority of the interrupt requests. The IRQ flags of interrupts are controlled by the interrupt
event. Nevertheless, the IRQ flag “1” doesn’t mean the system will execute the interrupt vector. And which means the
IRQ flags can be set “1” by the events without enable the interrupt. Once the event occurs, the IRQ will be logic “1”.
The IRQ and its trigger event relationship is as the below table.
Interrupt Name
P00IRQ
TC0IRQ
Trigger Event Description
P0.0 trigger controlled by PEDGE
TC0C overflow
For multi-interrupt conditions, two things need to be taking care of. One is to set the priority for these interrupt requests.
Two is using IEN and IRQ flags to decide which interrupt to be executed. Users have to check interrupt control bit and
interrupt request flag in interrupt routine.
Example: Check the interrupt request under multi-interrupt operation
ORG
8
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF,A
; Store ACC value.
; Store PFLAG value
B0BTS1
JMP
B0BTS0
JMP
FP00IEN
INTTC0CHK
FP00IRQ
INTP00
B0BTS1
JMP
B0BTS0
JMP
FTC0IEN
INT_EXIT
FTC0IRQ
INTTC0
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG,A
A, ACCBUF
INTP00CHK:
INTTC0CHK:
; Check INT0 interrupt request
; Check P00IEN
; Jump check to next interrupt
; Check P00IRQ
; Jump to INT0 interrupt service routine
; Check TC0 interrupt request
; Check TC0IEN
; Jump to exit of IRQ
; Check TC0IRQ
; Jump to TC0 interrupt service routine
INT_EXIT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore PFLAG value
; Restore ACC value.
; Exit interrupt vector
Page 59
Version 1.1
SN8P1602B
8-Bit Micro-Controller
10 I/O PORT
OVERVIEW
The SN8P1602B provides 3 ports for users’ application, consisting one input only port (P0) and two I/O ports (P1, P2,).
Each port consists input pull-up resistors. The direction of I/O port can be selected by PnM register. When the system
resets, these ports will then be set as input port without pull up resistors.
The pull-up resistor can be set up by PUR register.
SN8P1602B
Port1~Port2 structure
Port0 structure
PUR
PUR
PnM, PUR
PUR
Pin
PnM
Pin
Int. bus
Latch
PnM
Note: All of the latch output circuits are push-pull structures.
.
SONiX TECHNOLOGY CO., LTD
Page 60
Version 1.1
SN8P1602B
8-Bit Micro-Controller
I/O PORT FUNCTION TABLE
SN8P1602B
Port/Pin
I/O
P0.0
I
P1.0~P1.4
I/O
P2.0~P2.7
I/O
Function Description
General-purpose input function
External interrupt (INT0)
Wakeup from power down mode
General-purpose input/output function
Wakeup from power down mode
General-purpose input/output function
Remark
See <P00G1,P00G0>
See <P00G1,P00G0>
Level Change
Note: The P1.4 enables when the external oscillator is RC type.
I/O PORT MODE
The port direction is programmed by PnM register. Port 0 is always input mode. Port 1 and Port 2 can select input or
output direction.
SN8P1602B
0C1H
Bit 7
0
P1M
Read/Write
After reset
-
Bit 6
0
-
Bit 5
0
-
Bit 4
P14M
R/W
0
Bit 3
P13M
R/W
0
Bit 2
P12M
R/W
0
Bit 1
P11M
R/W
0
Bit 0
P10M
R/W
0
SN8P1602B
0C2H
Bit 7
P27M
P2M
Read/Write
R/W
After reset
0
Bit 6
P26M
R/W
0
Bit 5
P25M
R/W
0
Bit 4
P24M
R/W
0
Bit 3
P23M
R/W
0
Bit 2
P22M
R/W
0
Bit 1
P21M
R/W
0
Bit 0
P20M
R/W
0
When PnM=0, the Pn is input mode
PnM=1, the Pn is output mode
Users can program them by bit control instructions (B0BSET, B0BCLR).
Example: I/O mode selecting
CLR
CLR
P1M
P2M
; Set all ports to be input mode.
MOV
B0MOV
B0MOV
A, #0FFH
P1M, A
P2M, A
; Set all ports to be output mode.
B0BCLR
P1M.2
; Set P1.2 to be input mode.
B0BSET
P1M.2
; Set P1.2 to be output mode.
SONiX TECHNOLOGY CO., LTD
Page 61
Version 1.1
SN8P1602B
8-Bit Micro-Controller
I/O PULL UP REGISTER
SN8P1602B
0BEH
Bit 7
PUR
Read/Write
After reset
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
PUR2
W
0
Bit 1
PUR1
W
0
Bit 0
PUR0
W
0
Example: I/O Pull up Register
CLR
PUR
; Disable all ports Pull-up register.
MOV
B0MOV
A, #07H
PUR, A
; Enable Port0, 1, 2 Pull-up register,
;
I/O PORT DATA REGISTER
SN8P1602B
0D0H
Bit 7
P0
Read/Write
After reset
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
-
Bit 1
-
Bit 0
P00
R
0
SN8P1602B
0D1H
Bit 7
P1
Read/Write
After reset
-
Bit 6
-
Bit 5
-
Bit 4
P14
R/W
0
Bit 3
P13
R/W
0
Bit 2
P12
R/W
0
Bit 1
P11
R/W
0
Bit 0
P10
R/W
0
SN8P1602B
0D2H
Bit 7
P27
P2
Read/Write
R/W
After reset
0
Bit 6
P26
R/W
0
Bit 5
P25
R/W
0
Bit 4
P24
R/W
0
Bit 3
P23
R/W
0
Bit 2
P22
R/W
0
Bit 1
P21
R/W
0
Bit 0
P20
R/W
0
Example: Read data from input port.
B0MOV
A, P0
B0MOV
A, P1
B0MOV
A, P2
Example: Write data to output port.
MOV
A, #55H
B0MOV
P1, A
B0MOV
P2, A
Example: Write one bit data to output port.
B0BSET
P1.3
B0BSET
P2.5
B0BCLR
B0BCLR
Example: Port bit test.
B0BTS1
B0BTS0
; Read data from Port 0
; Read data from Port 1
; Read data from Port 2
; Write data 55H to Port 1 and Port 2
; Set P1.3 and P2.5 to be “1”.
P1.3
P2.5
; Set P1.3 and P2.5 to be “0”.
P0.0
P1.2
; Bit test 1 for P0.0
; Bit test 0 for P1.2
SONiX TECHNOLOGY CO., LTD
Page 62
Version 1.1
SN8P1602B
8-Bit Micro-Controller
11 CODING ISSUE
TEMPLATE CODE
;*******************************************************************************
; FILENAME : TEMPLATE.ASM
; AUTHOR
: SONiX
; PURPOSE
: Template Code for SN8X16XX
; REVISION : 09/01/2002 V1.0
First issue
;*******************************************************************************
;* (c) Copyright 2002, SONiX TECHNOLOGY CO., LTD.
;*******************************************************************************
CHIP
SN8P1602B
; Select the CHIP
;------------------------------------------------------------------------------;
Include Files
;------------------------------------------------------------------------------.nolist
; do not list the macro file
INCLUDESTD
INCLUDESTD
INCLUDESTD
MACRO1.H
MACRO2.H
MACRO3.H
.list
; Enable the listing function
;------------------------------------------------------------------------------;
Constants Definition
;------------------------------------------------------------------------------;
ONE
EQU
1
;------------------------------------------------------------------------------;
Variables Definition
;------------------------------------------------------------------------------.DATA
org
0h
;Data section start from RAM address 0
Wk00
DS
1
;Temporary buffer for main loop
Iwk00
DS
1
;Temporary buffer for ISR
AccBuf
DS
1
;Accumulator buffer
PflagBuf
DS
1
;PFLAG buffer
;------------------------------------------------------------------------------;
Bit Variables Definition
;------------------------------------------------------------------------------Wk00B0
Iwk00B1
EQU
EQU
Wk00.0
Iwk00.1
SONiX TECHNOLOGY CO., LTD
;Bit 0 of Wk00
;Bit 1 of Iwk00
Page 63
Version 1.1
SN8P1602B
8-Bit Micro-Controller
;------------------------------------------------------------------------------;
Code section
;------------------------------------------------------------------------------.CODE
ORG
jmp
0
Reset
ORG
jmp
8
Isr
;Code section start
;Reset vector
;Address 4 to 7 are reserved
;Interrupt vector
ORG
10h
;------------------------------------------------------------------------------; Program reset section
;------------------------------------------------------------------------------Reset:
mov
A,#07Fh
;Initial stack pointer and
b0mov
STKP,A
;disable global interrupt
b0mov
PFLAG,#00h
;pflag = x,x,x,x,x,c,dc,z
mov
A,#40h
;Clear watchdog timer and initial system mode
b0mov
OSCM,A
call
call
b0bset
ClrRAM
SysInit
FGIE
;Clear RAM
;System initial
;Enable global interrupt
;------------------------------------------------------------------------------; Main routine
;------------------------------------------------------------------------------Main:
b0bset
FWDRST
;Clear watchdog timer
call
MnApp
jmp
Main
;------------------------------------------------------------------------------; Main application
;------------------------------------------------------------------------------MnApp:
; Put your main program here
ret
;----------------------------------; Jump table routine
;----------------------------------ORG
0x0100
;The jump table should start from the head
;of boundary.
b0mov
A,Wk00
and
A,#3
ADD
PCL,A
jmp
JmpSub0
jmp
JmpSub1
jmp
JmpSub2
;-----------------------------------
SONiX TECHNOLOGY CO., LTD
Page 64
Version 1.1
SN8P1602B
8-Bit Micro-Controller
JmpSub0:
; Subroutine 1
jmp
JmpExit
JmpSub1:
; Subroutine 2
jmp
JmpExit
JmpSub2:
; Subroutine 3
jmp
JmpExit
JmpExit:
ret
;Return Main
;------------------------------------------------------------------------------; Isr (Interrupt Service Routine)
; Arguments :
; Returns
:
; Reg Change:
;------------------------------------------------------------------------------Isr:
;----------------------------------; Save ACC
;----------------------------------b0xch
A,AccBuf
b0mov
b0mov
A,PFLAG
PflagBuf,A
;B0xch instruction do not change C,Z flag
;----------------------------------; Interrupt service routine
;----------------------------------b0bts0
jmp
b0bts0
jmp
FP00IRQ
INT0isr
FTC0IRQ
TC0isr
;----------------------------------; Exit interrupt service routine
;----------------------------------IsrExit:
b0mov
b0mov
b0xch
A, PflagBuf
PFLAG, A
A,AccBuf
reti
SONiX TECHNOLOGY CO., LTD
;Restore the PFlag
;Restore the Reg. A
;B0xch instruction do not change C,Z flag
;Exit the interrupt routine
Page 65
Version 1.1
SN8P1602B
8-Bit Micro-Controller
;------------------------------------------------------------------------------; INT0 interrupt service routine
;------------------------------------------------------------------------------INT0isr:
b0bclr
FP00IRQ
;Process P0.0 external interrupt here
jmp
IsrExit
;------------------------------------------------------------------------------; TC0 interrupt service routine
;------------------------------------------------------------------------------TC0isr:
b0bclr
FTC0IRQ
;Process TC0 interrupt here
jmp
IsrExit
;------------------------------------------------------------------------------; SysInit
; System initial to define Register, RAM, I/O, Timer......
;------------------------------------------------------------------------------SysInit:
ret
;------------------------------------------------------------------------------; ClrRAM
; Use index @YZ to clear RAM (00h~2Fh)
;------------------------------------------------------------------------------ClrRAM:
clr
b0mov
ClrRAM10:
clr
decms
jmp
clr
Y
Z,#0x2f
;
;Set @YZ address from 2fh
@YZ
Z
ClrRAM10
@YZ
;Clear @YZ content
;z = z – 1 , skip next if z=0
;Clear address $00
ret
;------------------------------------------------------------------------------ENDP
SONiX TECHNOLOGY CO., LTD
Page 66
Version 1.1
SN8P1602B
8-Bit Micro-Controller
PROGRAM CHECK LIST
Item
Undefined Bits
Interrupt
Non-Used I/O
Sleep Mode
Stack Buffer
Description
All bits those are marked as “0” (undefined bits) in system registers should be set “0” to avoid
unpredicted system errors.
Do not enable interrupt before initializing RAM.
Non-used I/O ports should be set as output low mode or pull-up at input mode to save
current consumption.
Enable on-chip pull-up resistors of port 0 and port 1 to avoid unpredicted wakeup.
Be careful of function call and interrupt service routine operation. Don’t let stack buffer
overflow or underflow.
1. Write 0x7F into STKP register to initial stack pointer and disable global interrupt
System Initial
2. Clear all RAM.
3. Initialize all system register even unused registers.
1. Enable OSG and High_Clk / 2 code option together
2. Enable noise filter code option in SN8P1602B.
3. Enable the watchdog option to protect system crash.
Noisy Immunity
4. Non-used I/O ports should be set as output low mode
5. Constantly refresh important system registers and variables in RAM to avoid system
crash by a high electrical fast transient noise.
6. Disable Low Power Function
SONiX TECHNOLOGY CO., LTD
Page 67
Version 1.1
SN8P1602B
8-Bit Micro-Controller
12 INSTRUCTION SET TABLE
Field
M
O
V
E
A
R
I
T
H
M
E
T
I
C
L
O
G
I
C
P
R
O
C
E
S
S
B
R
A
N
C
H
M
I
S
C
Mnemonic
MOV
A,M
MOV
M,A
B0MOV
A,M
B0MOV
M,A
MOV
A,I
B0MOV
M,I
XCH
A,M
B0XCH
A,M
MOVC
Description
A←M
M←A
A ← M (bank 0)
M (bank 0) ← A
A←I
M ← I, (M = only for Working registers R, Y, Z , RBANK & PFLAG)
A ←→M
A ←→M (bank 0)
R, A ← ROM [Y,Z]
C
-
DC
-
Z
√
√
-
Cycle
1
1
1
1
1
1
1
1
2
ADC
ADC
ADD
ADD
B0ADD
ADD
SBC
SBC
SUB
SUB
SUB
DAA
A,M
M,A
A,M
M,A
M,A
A,I
A,M
M,A
A,M
M,A
A,I
A ← A + M + C, if occur carry, then C=1, else C=0
M ← A + M + C, if occur carry, then C=1, else C=0
A ← A + M, if occur carry, then C=1, else C=0
M ← A + M, if occur carry, then C=1, else C=0
M (bank 0) ← M (bank 0) + A, if occur carry, then C=1, else C=0
A ← A + I, if occur carry, then C=1, else C=0
A ← A - M - /C, if occur borrow, then C=0, else C=1
M ← A - M - /C, if occur borrow, then C=0, else C=1
A ← A - M, if occur borrow, then C=0, else C=1
M ← A - M, if occur borrow, then C=0, else C=1
A ← A - I, if occur borrow, then C=0, else C=1
To adjust ACC’s data format from HEX to DEC.
√
√
√
√
√
√
√
√
√
√
√
-
√
√
√
√
√
√
√
√
√
√
√
-
1
1
1
1
1
1
1
1
1
1
1
1
AND
AND
AND
OR
OR
OR
XOR
XOR
XOR
A,M
M,A
A,I
A,M
M,A
A,I
A,M
M,A
A,I
A ← A and M
M ← A and M
A ← A and I
A ← A or M
M ← A or M
A ← A or I
A ← A xor M
M ← A xor M
A ← A xor I
√
√
√
√
√
√
√
√
√
√
√
√
-
-
1
1
1
1
1
1
1
1
1
SWAP
SWAPM
RRC
RRCM
RLC
RLCM
CLR
BCLR
BSET
B0BCLR
B0BSET
M
M
M
M
M
M
M
M.b
M.b
M.b
M.b
A (b3~b0, b7~b4) ←M(b7~b4, b3~b0)
M(b3~b0, b7~b4) ← M(b7~b4, b3~b0)
A ← RRC M
M ← RRC M
A ← RLC M
M ← RLC M
M←0
M.b ← 0
M.b ← 1
M(bank 0).b ← 0
M(bank 0).b ← 1
√
√
√
√
-
-
√
√
√
√
√
√
√
√
√
-
CMPRS
CMPRS
INCS
INCMS
DECS
DECMS
BTS0
BTS1
B0BTS0
B0BTS1
JMP
CALL
A,I
A,M
M
M
M
M
M.b
M.b
M.b
M.b
d
d
ZF,C ← A - I, If A = I, then skip next instruction
ZF,C ← A – M, If A = M, then skip next instruction
A ← M + 1, If A = 0, then skip next instruction
M ← M + 1, If M = 0, then skip next instruction
A ← M - 1, If A = 0, then skip next instruction
M ← M - 1, If M = 0, then skip next instruction
If M.b = 0, then skip next instruction
If M.b = 1, then skip next instruction
If M(bank 0).b = 0, then skip next instruction
If M(bank 0).b = 1, then skip next instruction
PC15/14 ← RomPages1/0, PC13~PC0 ← d
Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d
√
√
-
-
√
√
-
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
2
2
PC ← Stack
PC ← Stack, and to enable global interrupt
PC ← Stack, and to load a value by PC+A
No operation
-
-
-
2
2
2
1
RET
RETI
RETLW
NOP
1
1
1
1
1
1
1
1
1
1
1
Note: Any instruction that read/write from OSCM, will add an extra cycle.
SONiX TECHNOLOGY CO., LTD
Page 68
Version 1.1
SN8P1602B
8-Bit Micro-Controller
13 ELECTRICAL CHARACTERISTIC
ABSOLUTE MAXIMUM RATING
(All of the voltages referenced to Vss)
Supply voltage (Vdd)………………………………………………………………………………………………… - 0.3V ~ 6.0V
Input in voltage (Vin)……………………………………………………………………………………..Vss - 0.2V ~ Vdd + 0.2V
Operating ambient temperature (Top)…………………………………………………………………………..-20°C ~ + 70°C
Storage ambient temperature (Tstor)……………………………………………………………………………-30°C ~ + 125°C
Power consumption (Pc)……………………………………………………………………………………………………500 mW
STANDARD ELECTRICAL CHARACTERISTIC
SN8P1602B
(All of voltages referenced to Vss, Vdd = 5.0V, Fosc = 3.579545 MHz, ambient temperature is 25°C unless otherwise notice.)
PARAMETER
SYM.
Operating voltage
Vdd
RAM Data Retention voltage
Reset pin leakage current
I/O port input leakage current
Port1 output source current
sink current
Port2 output source current
sink current
INTn trigger pulse width
Vdr
ViL1
ViL2
ViL3
ViL4
ViH1
ViH2
ViH3
ViH4
Ilekg
Ilekg
IoH
IoL
IoH
IoL
Tint0
Oscillator Frequency
Fhosc
Input Low Voltage
Input High Voltage
Idd1
Idd2
Supply Current
Idd3
Idd4
Idd5
LVD Detect Voltage
Vdet
DESCRIPTION
Normal mode (OSG, Low Power Disable)
Normal mode (OSG Enable, Low Power Disable)
Normal mode (OSG Disable, Low Power Enable)
Normal mode (OSG, Low Power Enable)
Programming mode, Vpp = 12.5V
MIN.
2.4
2.4
2.9
2.9
4.5
All input pins except those specified below
Vss
Input with Schmitt trigger buffer - Port0
Vss
Reset pin ; Xin ( in RC mode )
Vss
Xin ( in X’tal mode )
Vss
All input pins except those specified below
0.7Vdd
Input with Schmitt trigger buffer –Port0
0.8Vdd
Reset pin ; Xin ( in RC mode )
0.9Vdd
Xin ( in X’tal mode )
0.7Vdd
Vin = Vdd
Pull-up resistor disable, Vin = Vdd
Vop = Vdd – 0.5V
Vop = Vss + 0.5V
Vop = Vdd – 0.5V
Vop = Vss + 0.5V
INT0 ~ INT2 interrupt request pulse width
2/fcpu
Crystal type or ceramic resonator
32768
VDD = 3V, RC type for external mode
VDD = 5V, RC type for external mode
Vdd= 5V 4Mhz
Run Mode
Vdd= 3V 4Mhz
(Low Power Disable)
Vdd= 3V 32768Hz
Vdd= 5V 4Mhz
Run Mode
(Low Power Enable) Vdd= 3V 4Mhz
Vdd= 5V 32KHz Int. RC
Slow mode
(Stop High Clock)
Vdd= 3V 16KHz Int. RC
Vdd= 5V
Sleep mode
Vdd= 3V
Vdd= 5V 32KHz Int. RC
Green Mode
(Stop High Clock)
Vdd= 3V 16KHz Int. RC
Low voltage detect level
-
TYP.
5.0
5.0
5.0
5.0
5.0
1.5
12
15
12
15
4M
6M
10M
3
1
50
2
0.8
25
7
1
0.6
15
3
1.8
MAX.
5.5
5.5
5.5
5.5
5.5
0.3Vdd
0.2Vdd
0.3Vdd
0.3Vdd
Vdd
Vdd
Vdd
Vdd
1
2
16M
8
2
100
5
2
50
20
2
1
30
10
-
UNIT
V
V
V
V
V
V
V
V
V
V
V
V
V
V
uA
uA
mA
mA
cycle
Hz
mA
mA
uA
mA
mA
uA
uA
uA
uA
uA
V
Note: Date in Typical (TYP.) column is base on characterization results at 25℃. This data is design for
guidance only and is not tested.
SONiX TECHNOLOGY CO., LTD
Page 69
Version 1.1
SN8P1602B
8-Bit Micro-Controller
CHARACTERISTIC GRAPHS
The Graphs in this section are for design guidance, not tested or guaranteed. In some graphs, the data presented are
outside specified operating range. This is for information only and devices are guaranteed to operate properly only
within the specified range.
SN8P1602B
VDD
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
2
Working area
4
8
12
Fosc
20 MHz
16
VDD
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
2
Figure 13-1Working Voltage vs. Frequency
(OSG, Low Power, Noise Filter Disable)
VDD
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
2
8
12
Fosc
20 MHz
16
4
8
12
Fosc
20 MHz
16
Figure 13-2 Working Voltage vs. Frequency
(Noise Filter Enable, OSG, Low Power Disable)
Working area
4
Working area
Figure 13-3 Working Voltage vs. Frequency
(Low Power Enable, OSG, Noise Filter Disable)
VDD
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
2
Working area
4
8
12
Fosc
20 MHz
16
Figure 13-4 Working Voltage vs. Frequency
(OSG Enable, Noise filter, Low Power Disable)
uA
2.0
uA
30
25
1.5
20
1.0
15
10
0.5
5
VDD
0.0
2.0
2.5
3.0
3.5
4.0
4.5
VDD
0
5.0
2.0
Figure 13-5 Typical Stop Mode current (Idd4) vs. VDD
2.5
3.0
3.5
4.0
4.5
5.0
Figure 13-6 Typical Slow Mode current (Idd3) vs. VDD
(Stop High Clock)
SONiX TECHNOLOGY CO., LTD
Page 70
Version 1.1
SN8P1602B
8-Bit Micro-Controller
mA
mA
10
10
8
8
5V
5V
6
6
4
4
3V
2
3V
2
0
2
6
10
14
18
0
Fosc
MHz
2
6
10
14
Fosc
MHz
18
Figure 13-7 Typical Run Mode current (Idd1) vs. Fosc Figure 13-8 Typical Run Mode current (Idd2) vs. Fosc
(Low Power Disable)
(Low Power Enable)
mA
uA
16
4.0
14
5V
12
3.0
10
8
2.0
6
3V
4
1.0
2
0.0
2
6
10
14
18
VDD
0
Fosc
MHz
2.0
Figure 13-9 Typical Green Mode current vs. Fosc
(Without Stopping High clock)
2.5
3.0
3.5
4.0
4.5
5.0
Figure 13-10 Typical Green Mode current vs. VDD
(Stop High clock)
mA
mA
-14
16
-12
14
-10
12
10
-8
8
-6
6
-4
4
-2
2
VDD
0
2.0
2.5
3.0
3.5
4.0
4.5
2.0
5.0
Figure 13-11 Typical IOH vs. VDD
SONiX TECHNOLOGY CO., LTD
VDD
0
2.5
3.0
3.5
4.0
4.5
5.0
Figure 13-12 Typical IOL vs. VDD
Page 71
Version 1.1
SN8P1602B
8-Bit Micro-Controller
Fosc
KHz
30
25
20
15
10
5
VDD
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Figure 13-13 Typical Slow Mode Frequency vs. VDD
SONiX TECHNOLOGY CO., LTD
Page 72
Version 1.1
SN8P1602B
8-Bit Micro-Controller
14 PACKAGE INFORMATION
P-DIP 18 PIN
SYMBOLS
A
A1
A2
D
E
E1
L
eB
θ°
MIN
NOR
MAX
MIN
(inch)
0.015
0.125
0.880
0.245
0.115
0.335
0°
SONiX TECHNOLOGY CO., LTD
0.130
0.900
0.300
0.250
0.130
0.355
7°
NOR
MAX
(mm)
0.210
0.135
0.920
0.381
3.175
22.352
0.255
0.150
0.375
15°
6.223
2.921
8.509
0°
Page 73
3.302
22.860
7.620
6.350
3.302
9.017
7°
5.334
3.429
23.368
6.477
3.810
9.525
15°
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SOP 18 PIN
SYMBOLS
A
A1
D
E
H
L
θ°
MIN
NOR
MAX
MIN
(inch)
0.093
0.004
0.447
0.291
0.394
0.016
0°
SONiX TECHNOLOGY CO., LTD
0.099
0.008
0.455
0.295
0.407
0.033
4°
NOR
MAX
(mm)
0.104
0.012
0.463
0.299
0.419
0.050
8°
Page 74
2.362
0.102
11.354
7.391
10.008
0.406
0°
2.502
0.203
11.557
7.493
10.325
0.838
4°
2.642
0.305
11.760
7.595
10.643
1.270
8°
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SSOP 20 PIN
SYMBOLS
A
A1
A2
b
c
D
E
E1
[e]
h
L
L1
ZD
Y
θ°
MIN
NOR
MAX
MIN
(inch)
0.053
0.004
0.008
0.007
0.337
0.228
0.150
0.010
0.016
0.039
0°
SONiX TECHNOLOGY CO., LTD
0.063
0.006
0.010
0.008
0.341
0.236
0.154
0.025
0.017
0.025
0.041
0.059
-
NOR
MAX
(mm)
0.069
0.010
0.059
0.012
0.010
0.344
0.244
0.157
1.350
0.100
0.200
0.180
8.560
5.800
3.800
0.020
0.050
0.043
0.250
0.400
1.000
0.004
8°
0°
Page 75
1.600
0.150
0.254
0.203
8.660
6.000
3.900
0.635
0.420
0.635
1.050
1.500
-
1.750
0.250
1.500
0.300
0.250
8.740
6.200
4.000
0.500
1.270
1.100
0.100
8°
Version 1.1
SN8P1602B
8-Bit Micro-Controller
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or
design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed,
intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a
situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such
unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries,
affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use
even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.
Main Office:
Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C.
Tel: 886-3-551 0520
Fax: 886-3-551 0523
Taipei Office:
Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.
Tel: 886-2-2759 1980
Fax: 886-2-2759 8180
Hong Kong Office:
Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon.
Tel: 852-2723 8086
Fax: 852-2723 9179
Technical Support by Email:
[email protected]
SONiX TECHNOLOGY CO., LTD
Page 76
Version 1.1