SN8P2501A 8-Bit Micro-Controller SN8P2501A USER’S MANUAL Preliminary Specification Version 0.2 SONiX 8-Bit Micro-Controller SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part. SONiX TECHNOLOGY CO., LTD Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller AMENDENT HISTORY Version Date Description VER 0.1 Jan. 2004 Preliminary Version 0.1 first issue VER 0.2 Jan. 2004 Preliminary Version 0.2. Add SSOP 16 pin package information. SONiX TECHNOLOGY CO., LTD Page 1 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Table of Content AMENDENT HISTORY ................................................................................................................. 1 1 1.1 1.2 1.3 1.4 2 PRODUCT OVERVIEW ..................................................................................................... 6 SYSTEM BLOCK DIAGRAM.............................................................................................. 7 PIN ASSIGNMENT............................................................................................................. 8 PIN DESCRIPTIONS ......................................................................................................... 8 PIN CIRCUIT DIAGRAMS.................................................................................................. 9 CENTRAL PROCESSOR UNIT (CPU) ............................................................................ 10 2.1 MEMORY MAP ................................................................................................................ 10 2.1.1 PROGRAM MEMORY (ROM)................................................................................... 10 2.1.2 DATA MEMORY (RAM) ............................................................................................ 17 2.1.3 CODE OPTION TABLE............................................................................................. 18 2.1.4 SYSTEM REGISTER ................................................................................................ 19 2.2 ACCUMULATOR.............................................................................................................. 22 2.3 PROGRAM FLAG ............................................................................................................ 23 2.3.1 RESET FLAG............................................................................................................ 23 2.3.2 CARRY FLAG ........................................................................................................... 23 2.3.3 DECIMAL CARRY FLAG .......................................................................................... 23 2.3.4 ZERO FLAG.............................................................................................................. 23 2.4 PROGRAM COUNTER .................................................................................................... 24 2.4.1 ONE ADDRESS SKIPPING ...................................................................................... 24 2.4.2 MULTI-ADDRESS JUMPING.................................................................................... 25 2.5 ADDRESSING MODE...................................................................................................... 26 2.5.1 IMMEDIATE ADDRESSING MODE.......................................................................... 26 2.5.2 ........................................................................................................................................ 26 2.5.3 DIRECTLY ADDRESSING MODE ............................................................................ 26 2.5.4 ........................................................................................................................................ 26 2.5.5 INDIRECTLY ADDRESSING MODE ........................................................................ 26 2.6 STACK OPERATIONS..................................................................................................... 27 2.6.1 OVERVIEW............................................................................................................... 27 2.6.2 STACK REGISTERS ................................................................................................ 28 2.6.3 STACK OPERATION EXAMPLE .............................................................................. 29 SONiX TECHNOLOGY CO., LTD Page 2 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 3 3.1 3.2 3.3 4 RESET ............................................................................................................................. 30 OVERVIEW...................................................................................................................... 30 EXTERNAL RESET DESCRIPTION ................................................................................ 31 LOW VOLTAGE DETECTOR (LVD) DESCRIPTION....................................................... 32 OSCILLATOR AND SYSTEM CLOCK............................................................................ 33 4.1 OVERVIEW...................................................................................................................... 33 4.2 CLOCK BLOCK DIAGRAM .............................................................................................. 33 4.3 OSCM REGISTER DESCRIPTION.................................................................................. 34 4.4 EXTERNAL SYSTEM OSCILLATOR CIRCUITS ............................................................. 35 4.4.1 OSCILLATOR FREQUENCY MEASUREMENT ....................................................... 36 4.4.2 INTERNAL LOW-SPEED RC OSCILLATOR ............................................................ 37 5 SYSTEM OPERATION MODE ........................................................................................ 38 5.1 OVERVIEW...................................................................................................................... 38 5.2 NORMAL MODE .............................................................................................................. 38 5.3 SLOW MODE ................................................................................................................... 38 5.4 GREEN MODE................................................................................................................. 38 5.5 POWER DOWN MODE.................................................................................................... 38 5.6 SYSTEM MODE CONTROL ............................................................................................ 39 5.6.1 SYSTEM MODE SWITCHING .................................................................................. 40 5.7 WAKEUP.......................................................................................................................... 42 5.7.1 OVERVIEW............................................................................................................... 42 5.7.2 5.7.3 6 6.1 6.2 6.3 6.4 WAKEUP TIME ......................................................................................................... 42 P1W WAKEUP CONTROL REGISTER .................................................................... 42 INTERRUPT..................................................................................................................... 43 OVERVIEW...................................................................................................................... 43 INTEN INTERRUPT ENABLE REGISTER....................................................................... 43 INTRQ INTERRUPT REQUEST REGISTER ................................................................... 44 INTERRUPT OPERATION DESCRIPTION ..................................................................... 44 SONiX TECHNOLOGY CO., LTD Page 3 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 7 7.1 7.2 7.3 7.4 8 GIE GLOBAL INTERRUPT OPERATION ................................................................. 44 INT0 (P0.0) INTERRUPT OPERATION .................................................................... 45 T0 INTERRUPT OPERATION .................................................................................. 46 TC0 INTERRUPT OPERATION................................................................................ 47 MULTI-INTERRUPT OPERATION............................................................................ 48 I/O PORT ......................................................................................................................... 49 I/O PORT MODE.............................................................................................................. 49 I/O PULL UP REGISTER ................................................................................................. 50 I/O OPEN-DRAIN REGISTER.......................................................................................... 50 I/O PORT DATA REGISTER............................................................................................ 51 TIMERS............................................................................................................................ 52 8.1 WATCHDOG TIMER........................................................................................................ 52 8.2 TIMER 0 (T0) ................................................................................................................... 53 8.2.1 OVERVIEW............................................................................................................... 53 8.2.2 T0M MODE REGISTER............................................................................................ 53 8.2.3 T0C COUNTING REGISTER .................................................................................... 54 8.3 TIMER/COUNTER 0 (TC0) .............................................................................................. 55 8.3.1 OVERVIEW............................................................................................................... 55 8.3.2 TC0M MODE REGISTER ......................................................................................... 56 8.3.3 TC0C COUNTING REGISTER ................................................................................. 57 8.4 BUZZER OUTPUT ........................................................................................................... 58 8.4.1 TC0OUT FREQUENCY TABLE ................................................................................ 59 8.5 PWM FUNCTION DESCRIPTION.................................................................................... 61 8.5.1 OVERVIEW............................................................................................................... 61 8.5.2 9 10 PWM PROGRAM DESCRIPTION ............................................................................ 62 INSTRUCTION SET TABLE ............................................................................................ 63 10.1 ELECTRICAL CHARACTERISTIC........................................................................... 64 ABSOLUTE MAXIMUM RATING ..................................................................................... 64 SONiX TECHNOLOGY CO., LTD Page 4 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 10.2 ELECTRICAL CHARACTERISTIC................................................................................... 64 11 11.1 11.2 11.3 PACKAGE INFORMATION ...................................................................................... 65 P-DIP 14 PIN.................................................................................................................... 65 SOP 14 PIN...................................................................................................................... 66 SSOP 16 PIN ................................................................................................................... 67 SONiX TECHNOLOGY CO., LTD Page 5 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 1 PRODUCT OVERVIEW FEATURES ♦ Memory configuration OTP ROM size: 1K * 16 bits. RAM size: 48 * 8 bits. ♦ Four levels stack buffer. ♦ I/O pin configuration Input only: P1.1. Bi-directional: P0, P1, P2, P5. Wakeup: P0, P1. Pull-up resisters: P0, P1, P2, P5. External interrupt: P0. One pin with open-drain: P1.0. ♦ 3 interrupt sources Two internal interrupts: T0, TC0. One external interrupts: INT0. ♦ Powerful instructions One clock per machine cycle Most of instructions are one cycle only. All ROM area JMP instruction. All ROM area lookup table function (MOVC) ♦ ♦ ♦ ♦ ♦ One channel PWM output. (PWM0) One channel Buzzer output. (BZ0) Two 8-bit timer counters. (T0, TC0). One RTC timer. (T0) On chip watchdog timer. ♦ Three system clocks External high clock: RC type up to 10 MHz External high clock: Crystal type up to 16 MHz Internal low clock: RC type 16KHz(3V), 32KHz(5V) Internal high clock: 16MHz RC type. ♦ Four operating modes Normal mode: Both high and low clock active Slow mode: Low clock only Sleep mode: Both high and low clock stop Green mode: Periodical wakeup by T0 Timer ♦ Package (Chip form support) PDIP 14 pins SOP 14 pins SSOP 16 pins FEATURES TABLE Timer CHIP ROM RAM Stack RTC I/O Green PWM Wakeup Package Mode Buzzer Pin No. 5 DIP14/SOP14/SSOP16 V V T0 TC0 V V V 12 - 14 V - 6 DIP18/SOP18/SSOP20 V - 15 V V 7 DIP18/SOP18/SSOP20 SN8P2501A 1K*16 SN8P1602B 1K*16 48 4 48 4 V - SN8P2602A 1K*16 48 4 V SONiX TECHNOLOGY CO., LTD Page 6 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 1.1 SYSTEM BLOCK DIAGRAM SN8P2501A PC R O M IR FLAGS H-OSC Internal Low RC Internal High RC TIMING GENERATOR ALU RAM ACC POR Watch Dog PWM PWM & BUZZER SYSTEM REGISTER INTERRUPT CONTROL TIMER & COUNTER PORT 0 PORT 1 SONiX TECHNOLOGY CO., LTD PORT 5 PORT 2 Page 7 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 1.2 PIN ASSIGNMENT SN8P2501AP (P-DIP 14 pins) SN8P2501AS (SOP 14 pins) SN8P2501AX (SSOP 16 pins) P2.2 P2.1 P2.0 VDD XIN/P1.3 XOUT/P1.2 VPP/RST/P1.1 1 U 14 2 13 3 12 4 11 5 10 6 9 7 8 SN8P2501AP SN8P2501AS P2.3 P2.4 P2.5 VSS P0.0/INT0 P1.0 P5.4/PWM0/BZ0 P2.2 P2.1 P2.0 VDD VDD XIN/P1.3 XOUT/P1.2 VPP/RST/P1.1 1 U 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 SN8P2501AX P2.3 P2.4 P2.5 VSS VSS P0.0/INT0 P1.0 P5.4/PWM0/BZ0 1.3 PIN DESCRIPTIONS SN8P2501A PAD NAME TYPE DESCRIPTION VDD, VSS P Power supply input pins. Place the 0.1µF bypass capacitor between the VDD and VSS pin. P1.1: Input only pin (Schmitt trigger) if disable external reset function. P1.1 without build-in pull-up resister P1.1/RST/VPP I, P RST: System reset input pin. Schmitt trigger structure, low active, normal stay to “high”. VPP: OTP programming pin. P1.3: I/O pin (Schmitt trigger) if high clock select internal high RC oscillator / Built-in pull-up P1.3/XIN I/O resister. XIN: Oscillator input pin if high clock select external oscillator (crystal or RC type). P1.2: I/O pin (Schmitt trigger) if high clock select internal high RC oscillator or external RC P1.2/XOUT I/O type oscillator / Built-in pull-up resister. XOUT: Oscillator output pin if high clock select external crystal type oscillator. P0.0: I/O pin (Schmitt trigger) and shared with INT0 trigger pin (Schmitt trigger) / Built-in P0.0/INT0 I/O pull-up resister. TC0 event counter clock input pin. P1.0 I/O Port 1.0 bi-direction pin (Schmitt trigger) / Built-in pull-up resister / Open-Drain pin. Port 5.4 bi-direction pin (Schmitt trigger) / Built-in pull-up resister. P5.4/BZ0/PWM0 I/O TC0 ÷ 2 signal output pin for buzzer and PWM output pin. P2.0~P2.5 I/O Port 2.0~Port 2.5 bi-direction pins (Schmitt trigger) / Built-in pull-up resisters. SONiX TECHNOLOGY CO., LTD Page 8 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 1.4 PIN CIRCUIT DIAGRAMS Port 0, 2, 5 structure: Pull-Up PnM PnM, PnUR Pin PnM Output Latch Int. bus Port 1.0 structure: Pull-Up PnM PnM, PnUR Pin PnM Output Latch Int. bus Open-Drain P1OC Port 1.2 and Port 1.3 structure: Pull-Up PnM PnM, PnUR Pin PnM Oscillator Code Option Output Latch Int. bus Int. Osc. Port 1.1 structure: Int. bus Pin Int. Rst Ext. Rst Code Option SONiX TECHNOLOGY CO., LTD Page 9 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2 CENTRAL PROCESSOR UNIT (CPU) 2.1 MEMORY MAP 2.1.1 PROGRAM MEMORY (ROM) 1K words ROM 0000H 0001H 0002H 0003H 0004H 0005H 0006H 0007H 0008H 0009H . . 000FH 0010H 0011H . . . . . 03FBH 03FCH 03FDH 03FEH 03FFH SONiX TECHNOLOGY CO., LTD ROM Reset vector General purpose area User reset vector Jump to user start address Jump to user start address Jump to user start address Reserved Interrupt vector User interrupt vector User program General purpose area End of user program Reserved Page 10 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller USER RESET VECTOR ADDRESS (0000H) A one-word vector address area is used to execute system reset. After power on reset or watchdog timer overflow reset, then the chip will restart the program from address 0000h and all system registers will be set as default values. The following example shows the way to define the reset vector in the program memory. Programming Tip: Defining Reset Vector CHIP SN8P2501A ORG JMP . 0 START ORG 10H START: ; 0000H ; Jump to user program address. ; 0004H ~ 0007H are reserved ; 0010H, The head of user program. ; User program . . . . ENDP ; End of program INTERRUPT VECTOR ADDRESS (0008H) A 1-word vector address area is used to execute interrupt request. If any interrupt service executes, the program counter (PC) value is stored in stack buffer and jump to 0008h of program memory to execute the vectored interrupt. Users have to define the interrupt vector. The following example shows the way to define the interrupt vector in the program memory. Programming Tip: Defining Interrupt Vector (Example 1) CHIP SN8P2501A .DATA ACCBUF PFLAGBUF .CODE ORG JMP . 0 START ; 0000H ; Jump to user program address. ; 0004H ~ 0007H are reserved ORG B0XCH B0MOV B0MOV . . B0MOV B0MOV B0XCH RETI 8 A, ACCBUF A, PFLAG PFLAGBUF, A ; Interrupt service routine ; B0XCH doesn’t change C, Z flag A, PFLAGBUF PFLAG, A A, ACCBUF START: . . JMP ; Save PFLAG register in a buffer ; Restore PFLAG register from buffer ; B0XCH doesn’t change C, Z flag ; End of interrupt service routine ; The head of user program. ; User program START ENDP SONiX TECHNOLOGY CO., LTD ; End of user program ; End of program Page 11 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Programming Tip: Defining Interrupt Vector (Example 2) CHIP SN8P2501A .DATA ACCBUF PFLAGBUF .CODE ORG JMP . 0 START ORG JMP 08 MY_IRQ ORG 10H START: . . . JMP ; 0008H, Jump to interrupt service routine address ; 0010H, The head of user program. ; User program START MY_IRQ: B0XCH B0MOV B0MOV . . B0MOV B0MOV B0XCH RETI ; 0000H ; Jump to user program address. ; 0001H ~ 0007H are reserved A, ACCBUF A, PFLAG PFLAGBUF, A A, PFLAGBUF PFLAG, A A, ACCBUF ENDP ; End of user program ;The head of interrupt service routine ; B0XCH doesn’t change C, Z flag ; Save PFLAG register in a buffer ; Restore PFLAG register from buffer ; B0XCH doesn’t change C, Z flag ; End of interrupt service routine ; End of program Remark: It is easy to understand the rules of SONIX program from demo programs given above. These points are as following: 1. The address 0000H is a “JMP” instruction to make the program starts from the beginning. 2. The 0004H~0007H are reserved. Users is NOT allow to use 0004H~0007H addresses. We strongly suggest users DO NOT take this value into the Check Sum. For detailed information, please check the following Checksum Calculation section. SONiX TECHNOLOGY CO., LTD Page 12 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller CHECKSUM CALCULATION The ROM addresses 0004H~0007H and last address are reserved area. User should avoid these addresses (0004H~0007H and last address) when calculate the Checksum value. Example: The demo program shows user’s code MOV B0MOV MOV B0MOV CLR CLR how to avoid 0004H~0007H when calculated Checksum from 00H to the end of A,#END_USER_CODE$L END_ADDR1,A ;save low end address to end_addr1 A,#END_USER_CODE$M END_ADDR2,A ;save middle end address to end_addr2 Y ;set Y to 00H Z ;set Z to 00H @@: CALL MOVC B0BSET ADD MOV ADC JMP YZ_CHECK FC DATA1,A A,R DATA2,A END_CHECK INCMS JMP JMP Z @B Y_ADD_1 MOV CMPRS JMP MOV CMPRS JMP JMP A,END_ADDR1 A,Z AAA A,END_ADDR2 A,Y AAA CHECKSUM_END MOV CMPRS RET MOV CMPRS RET INCMS INCMS INCMS INCMS RET A,#04H A,Z ;call function of check yz value ; ;clear C flag ;add A to Data1 ;add R to Data2 ;check if the YZ address = the end of code AAA: ;Z=Z+1 ;if Z!= 00H calculate to next address ;if Z=00H increase Y END_CHECK: YZ_CHECK: A,#00H A,Y Z Z Z Z ;check if Z = low end address ;if Not jump to checksum calculate ;if Yes, check if Y = middle end address ;if Not jump to checksum calculate ;if Yes checksum calculated is done. ;check if YZ=0004H ;check if Z=04H ;if Not return to checksum calculate ;if Yes, check if Y=00H ;if Not return to checksum calculate ;if Yes, increase 4 to Z ;set YZ=0008H then return Y_ADD_1: INCMS NOP JMP Y ;increase Y @B ;jump to checksum calculate CHECKSUM_END: ………. ………. END_USER_CODE: SONiX TECHNOLOGY CO., LTD ;Label of program end Page 13 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller GENERAL PURPOSE PROGRAM MEMORY AREA The ROM location 0009H~03FBH are used as general-purpose memory. The area is to store both instruction’s op-code and look-up table data. The SN8P2501A includes jump table function by using program counter (PC) and look-up table function by using ROM code registers (R, Y, Z). LOOK-UP TABLE DESCRIPTION In the ROM’s data lookup function, Y register is pointed to the bit 8~bit 15 and Z register to the bit 0~bit 7 data of ROM address. After MOVC instruction executed, the low-byte data will be stored in ACC and high-byte data stored in R register. Example: To look up the ROM data located “TABLE1”. @@: TABLE1: B0MOV B0MOV MOVC Y, #TABLE1$M Z, #TABLE1$L INCMS JMP INCMS NOP Z @F Y MOVC . DW DW DW . 0035H 5105H 2012H ; To set lookup table1’s middle address ; To set lookup table1’s low address. ; To lookup data, R = 00H, ACC = 35H ; ; Increment the index address for next address ; Z+1 ; Not overflow ; Z overflow (FFH 00), Y=Y+1 ; ; ; To lookup data, R = 51H, ACC = 05H. ; ; To define a word (16 bits) data. ;“ ;“ CAUSION: The Y register will not increase automatically when Z register crosses boundary from 0xFF to 0x00. Therefore, user must take care such situation to avoid loop-up table errors. If Z register overflows, Y register must be added one. The following INC_YZ macro shows a simple method to process Y and Z registers automatically. Example: INC_YZ Macro INC_YZ MACRO INCMS JMP INCMS NOP Z @F ; Z+1 ; Not overflow Y ; Y+1 ; Not overflow @@: ENDM SONiX TECHNOLOGY CO., LTD Page 14 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller The other example of loop-up table is to add Y or Z index register by accumulator. Please be careful if “carry” happen. Example: Increase Y and Z register by B0ADD/ADD instruction B0MOV B0MOV Y, #TABLE1$M Z, #TABLE1$L ; To set lookup table’s middle address. ; To set lookup table’s low address. B0MOV B0ADD A, BUF Z, A ; Z = Z + BUF. B0BTS1 JMP INCMS NOP FC GETDATA Y ; Check the carry flag. ; FC = 0 ; FC = 1. Y+1. . 0035H 5105H 2012H ; ; To lookup data. If BUF = 0, data is 0x0035 ; If BUF = 1, data is 0x5105 ; If BUF = 2, data is 0x2012 . . ; ; To define a word (16 bits) data. ;“ ;“ GETDATA: MOVC TABLE1: . DW DW DW SONiX TECHNOLOGY CO., LTD Page 15 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller JUMP TABLE DESCRIPTION The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. It is easy to make a multi-jump program depends on the value of the accumulator (A). Example : ORG 0X0100 ; The jump table is from the head of the ROM boundary B0ADD JMP JMP JMP JMP PCL, A A0POINT A1POINT A2POINT A3POINT ; PCL = PCL + ACC, the PCH can’t be changed. ; ACC = 0, jump to A0POINT ; ACC = 1, jump to A1POINT ; ACC = 2, jump to A2POINT ; ACC = 3, jump to A3POINT SONIX provides a macro for safe jump table function. This macro will check the ROM boundary and move the jump table to the right position automatically. The side effect of this macro maybe wastes some ROM size. @JMP_A MACRO IF JMP ORG ENDIF ADD ENDM VAL (($+1) !& 0XFF00) !!= (($+(VAL)) !& 0XFF00) ($ | 0XFF) ($ | 0XFF) PCL, A Note: “VAL” is the number of the jump table listing number. Example: “@JMP_A” application in SONIX macro file called “MACRO3.H”. B0MOV @JMP_A JMP JMP JMP JMP JMP A, BUF0 5 A0POINT A1POINT A2POINT A3POINT A4POINT ; “BUF0” is from 0 to 4. ; The number of the jump table listing is five. ; If ACC = 0, jump to A0POINT ; ACC = 1, jump to A1POINT ; ACC = 2, jump to A2POINT ; ACC = 3, jump to A3POINT ; ACC = 4, jump to A4POINT If the jump table position is from 00FDH to 0101H, the “@JMP_A” macro will make the jump table to start from 0100h. SONiX TECHNOLOGY CO., LTD Page 16 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.1.2 DATA MEMORY (RAM) 48 X 8-bit RAM BANK 0 Address 000h “ “ “ “ “ 02Fh 080h “ “ “ “ “ 0FFh SONiX TECHNOLOGY CO., LTD RAM location General purpose area 80h~FFh of Bank 0 store system registers (128 bytes). System register End of bank 0 area Page 17 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.1.3 CODE OPTION TABLE Code Option Content RC 32K X’tal High_Clk 12M X’tal 4M X’tal IHRC_16M IHRC_RTC Always_On Watch_Dog Enable Disable Fosc/1 Fcpu 16M_IHRC Reset_Pin Security Low Power Noise_Filter Fosc/2 Fosc/4 Fosc/8 Fosc/16 Fosc/32 Fosc/64 -2MHz -1MHz Normal +1MHz +2MHz Reset P11 Enable Disable Enable Disable Enable Disable Function Description Low cost RC for external high clock oscillator and XOUT becomes to general purpose I/O (P1.2). Low frequency, power saving crystal (e.g. 32.768KHz) for external high clock oscillator. High speed crystal /resonator (e.g. 12MHz) for external high clock oscillator. Standard crystal /resonator (e.g. 4M) for external high clock oscillator. Internal high RC 16MHz and external oscillator pins as general purpose I/O (XIN to P1.3, XOUT to P1.2). Internal high RC 16MHz with RTC function and external oscillator pins connect with 32.768KHz crystal to generating real time clock. Watchdog timer always on even in power down and green mode. Enable watchdog timer. Watchdog timer stops in power down mode and green mode. Disable Watchdog function. Instruction cycle is oscillator clock. Notice: In Fosc/1, Low Power must be disabled Instruction cycle is 2 oscillator clocks. Notice: In Fosc/2 Low Power must be disabled Instruction cycle is 4 oscillator clocks. Instruction cycle is 8 oscillator clocks. Instruction cycle is 16 oscillator clocks. Instruction cycle is 32 oscillator clocks. Instruction cycle is 64 oscillator clocks. Internal high RC 16MHz typical frequency - 2MHz. Internal high RC 16MHz typical frequency -1MHz. Internal high RC 16MHz typical frequency. Internal high RC 16MHz typical frequency + 1MHz. Internal high RC 16MHz typical frequency + 2MHz. Enable External reset pin. Enable P1.1 input only without pull-up resister. Enable ROM code Security function. Disable ROM code Security function. Enable Low Power function to save Operating current. Normal. Enable Noise Filter and the Fcpu is Fosc/4~Fosc/64. Disable Noise Filter and the Fcpu is Fosc/1~Fosc/64. Notice: If users define watchdog as “Always_On”, assembler will Enable “Watch_Dog” automatically. Enable “Low Power” option will reduce operating current except in “High_Clk = 32K X’tal” and slow mode. Enable “Low Power” will limit the Fcpu = Fosc/4 ~ Fosc/64. Enable “Noise_Filter” will limit the Fcpu = Fosc/4 ~ Fosc/64. Fcpu code option is only available for High Clock. SONiX TECHNOLOGY CO., LTD Page 18 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.1.4 SYSTEM REGISTER BYTES of SYSTEM REGISTER SN8P2501A 0 1 8 9 A B C D E F 2 3 4 5 6 7 8 9 A B C D E F - - R Z Y - PFLAG - OPTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PEDGE - - - - - - - - P0M - - - - - - P1W P1M P2M - - P5M - - INTRQ INTEN OSCM - WDTR TC0R PCL PCH P0 P1 P2 - - P5 - - T0M T0C TC0M TC0C - - - STKP P0UR P1UR P2UR - - P5UR - @YZ - P1OC - - - - - - - - - - - - - - STK3L STK3H STK2L STK2H STK1L STK1H STK0L STK0H Description PFLAG = P1W = PEDGE = PnM = P1OC = INTRQ = OSCM = T0M = TC0M = TC0R = STKP = @YZ = ROM page and special flag register. Port 1 wakeup register. P0.0 edge direction register. Port n input/output mode register. Port 1 open-drain control register. Interrupt request register. Oscillator mode register. T0 mode register. TC0 mode register. TC0 auto-reload data buffer. Stack pointer buffer. RAM YZ indirect addressing index pointer. SONiX TECHNOLOGY CO., LTD R= Y, Z = OPTION = Pn = PnUR = INTEN = PCH, PCL = T0C = TC0C = WDTR = STK0~STK3 = Page 19 Working register and ROM look-up data buffer. Working, @YZ and ROM addressing register. RTC period selection register. Port n data buffer. Port n pull-up resister control register. Interrupt enable register. Program counter. TC0 counting register. TC0 counting register. Watchdog timer clear register. Stack 0 ~ stack 3 buffer. Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller BITS of SYSTEM REGISTER SN8P2501A system register table Address 082H 083H 084H 086H 088H 0B8H 0BFH 0C0H 0C1H 0C2H 0C5H 0C8H 0C9H 0CAH 0CCH 0CDH 0CEH 0CFH 0D0H 0D1H 0D2H 0D5H 0D8H 0D9H 0DAH 0DBH 0DFH 0E0H 0E1H 0E2H 0E5H 0E7H 0E9H 0F8H 0F9H 0FAH 0FBH 0FCH 0FDH 0FEH 0FFH Bit7 RBIT7 ZBIT7 YBIT7 NT0 0 WDTR7 TC0R7 PC7 T0ENB T0C7 TC0ENB TC0C7 GIE @YZ7 S3PC7 S2PC7 S1PC7 S0PC7 - Bit6 RBIT6 ZBIT6 YBIT6 NPD 0 WDTR6 TC0R6 PC6 T0rate2 T0C6 TC0rate2 TC0C6 @YZ6 S3PC6 S2PC6 S1PC6 S0PC6 - Bit5 RBIT5 ZBIT5 YBIT5 P25M TC0IRQ TC0IEN 0 WDTR5 TC0R5 PC5 P25 T0rate1 T0C5 TC0rate1 TC0C5 P25R @YZ5 S3PC5 S2PC5 S1PC5 S0PC5 - Bit4 RBIT4 ZBIT4 YBIT4 P00G1 P24M P54M T0IRQ T0IEN CPUM1 WDTR4 TC0R4 PC4 P24 P54 T0rate0 T0C4 TC0rate0 TC0C4 P24R P54R @YZ4 S3PC4 S2PC4 S1PC4 S0PC4 - Bit3 RBIT3 ZBIT3 YBIT3 RTC1 P00G0 P13W P13M P23M CPUM0 WDTR3 TC0R3 PC3 P13 P23 T0C3 TC0CKS TC0C3 P13R P23R @YZ3 S3PC3 S2PC3 S1PC3 S0PC3 - Bit2 RBIT2 ZBIT2 YBIT2 C RTC0 P12W P12M P22M CLKMD WDTR2 TC0R2 PC2 P12 P22 T0C2 ALOAD0 TC0C2 STKPB2 P12R P22R @YZ2 S3PC2 S2PC2 S1PC2 S0PC2 - Bit1 RBIT1 ZBIT1 YBIT1 DC P11W P21M STPHX WDTR1 TC0R1 PC1 PC9 P11 P21 T0C1 TC0OUT TC0C1 STKPB1 P21R @YZ1 S3PC1 S3PC9 S2PC1 S2PC9 S1PC1 S1PC9 S0PC1 S0PC9 Bit0 RBIT0 ZBIT0 YBIT0 Z P00M P10W P10M P20M P00IRQ P00IEN 0 WDTR0 TC0R0 PC0 PC8 P00 P10 P20 T0TB T0C0 PWM0OUT TC0C0 STKPB0 P00R P10R P20R @YZ0 P10OC S3PC0 S3PC8 S2PC0 S2PC8 S1PC0 S1PC8 S0PC0 S0PC8 R/W R/W R/W R/W R/W R/W R/W R/W W R/W R/W R/W R/W R/W R/W W W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W W W W W R/W W R/W R/W R/W R/W R/W R/W R/W R/W Remarks R Z Y PFLAG OPTION P0M PEDGE P1W wakeup register P1M I/O direction P2M I/O direction P5M I/O direction INTRQ INTEN OSCM WDTR TC0R PCL PCH P0 data buffer P1 data buffer P2 data buffer P5 data buffer T0M T0C TC0M TC0C STKP stack pointer P0 pull-up register P1 pull-up register P2 pull-up register P5 pull-up register @YZ index pointer P1OCopen-drain STK3L STK3H STK2L STK2H STK1L STK1H STK0L STK0H Note a): To avoid system error, please be sure to put all the “0” and “1” as it indicates in the above table b). All of register names had been declared in SN8ASM assembler. c). One-bit name had been declared in SN8ASM assembler with “F” prefix code. d). “b0bset”, “b0bclr”, ”bset”, ”bclr” instructions are only available to the “R/W” registers. e). For detail description, please refer to the “System Register Quick Reference Table” SONiX TECHNOLOGY CO., LTD Page 20 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Y, Z REGISTERS The Y and Z registers are the 8-bit buffers. There are three major functions of these registers. can be used as general working registers can be used as RAM data pointers with @YZ register can be used as ROM data pointer with the MOVC instruction for look-up table 084H Y Read/Write After reset Bit 7 YBIT7 R/W 0 Bit 6 YBIT6 R/W 0 Bit 5 YBIT5 R/W 0 Bit 4 YBIT4 R/W 0 Bit 3 YBIT3 R/W 0 Bit 2 YBIT2 R/W 0 Bit 1 YBIT1 R/W 0 Bit 0 YBIT0 R/W 0 083H Z Read/Write After reset Bit 7 ZBIT7 R/W 0 Bit 6 ZBIT6 R/W 0 Bit 5 ZBIT5 R/W 0 Bit 4 ZBIT4 R/W 0 Bit 3 ZBIT3 R/W 0 Bit 2 ZBIT2 R/W 0 Bit 1 ZBIT1 R/W 0 Bit 0 ZBIT0 R/W 0 Example: uses YZ register as the data pointer to access data in the RAM address 025H of bank0. B0MOV B0MOV B0MOV Y, #00H Z, #25H A, @YZ ; To set RAM bank 0 for Y register ; To set location 25H for Z register ; To read a data into ACC Example: uses the YZ register as data pointer to clear the RAM data B0MOV B0MOV Y, #0 Z, #07FH ; Y = 0, bank 0 ; Y = 7FH, the last address of the data memory area CLR @YZ ; Clear @YZ to be zero DECMS JMP Z CLR_YZ_BUF ; Z – 1, if Z= 0, finish the routine ; Not zero CLR @YZ CLR_YZ_BUF: END_CLR: ; End of clear general purpose data memory area of bank 0 . R REGISTERS R register is an 8-bit buffer. There are two major functions of the register. can be used as working register for store high-byte data of look-up table (MOVC instruction executed, the high-byte data of specified ROM address will be stored in R register and the low-byte data will be stored in ACC). 082H R Read/Write After reset Bit 7 RBIT7 R/W 0 Bit 6 RBIT6 R/W 0 Bit 5 RBIT5 R/W 0 Bit 4 RBIT4 R/W 0 Bit 3 RBIT3 R/W 0 Bit 2 RBIT2 R/W 0 Bit 1 RBIT1 R/W 0 Bit 0 RBIT0 R/W 0 Note: Please refer to the “LOOK-UP TABLE DESCRIPTION” about R register look-up table application. SONiX TECHNOLOGY CO., LTD Page 21 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.2 ACCUMULATOR The ACC is an 8-bit data register responsible for transferring or manipulating data between ALU and data memory. If the result of operating is zero (Z) or there is carry (C or DC) occurrence, then these flags will be set to PFLAG register. ACC is not in data memory (RAM), so ACC can’t be access by “B0MOV” instruction during the instant addressing mode. Example: Read and write ACC value. ; Read ACC data and store in BUF data memory MOV BUF, A ; Write a immediate data into ACC MOV A, #0FH ; Write ACC data from BUF data memory MOV A, BUF The system doesn’t store ACC and PFLAG value when interrupt executed. ACC and PFLAG data must be saved to other data memories. Example: Protect ACC and working registers. ACCBUF PFLAGBUF EQU EQU 00H 01H ; ACCBUF is ACC data buffer. ; PFLAGBUF is PFLAG data buffer. B0XCH B0MOV B0MOV . . B0MOV B0MOV B0XCH A, ACCBUF A,PFLAG PFLAGBUF,A ; Store ACC value. A,PFLAGBUF PFLAG,A A, ACCBUF ; Re-load PFLAG value. INT_SERVICE: RETI ; Store PFLAG value. ; Re-load ACC value. ; Exit interrupt service vector Note: To save and re-load ACC data, users must use “B0XCH” instruction, or else the PFLAG Register might be modified by ACC operation. SONiX TECHNOLOGY CO., LTD Page 22 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.3 PROGRAM FLAG The PFLAG includes carry flag (C), decimal carry flag (DC) and zero flag (Z). If the result of operating is zero or there is carry, borrow occurrence, then these flags will be set to PFLAG register. 086H PFLAG Read/Write After reset Bit 7 NT0 R/W - Bit 6 NPD R/W - Bit 5 - Bit 4 - Bit 3 - Bit 2 C R/W 0 Bit 1 DC R/W 0 Bit 0 Z R/W 0 2.3.1 RESET FLAG NT0 NPD Reset Status 0 0 Watch-dog time out 0 1 Reserved 1 0 Reset by LVD 1 1 Reset by external Reset Pin 2.3.2 CARRY FLAG C = 1: When executed arithmetic addition with overflow or executed arithmetic subtraction without borrow or executed rotation instruction with logic “1” shifting out. C = 0: When executed arithmetic addition without overflow or executed arithmetic subtraction with borrow or executed rotation instruction with logic “0” 2.3.3 DECIMAL CARRY FLAG DC = 1: If executed arithmetic addition with overflow of low nibble or executed arithmetic subtraction without borrow of low nibble. DC = 0: If executed arithmetic addition without overflow of low nibble or executed arithmetic subtraction with borrow of low nibble. 2.3.4 ZERO FLAG Z = 1: When the content of ACC or target memory is zero after executing instructions involving a zero flag. Z = 0: When the content of ACC or target memory is not zero after executing instructions involving a zero flag. SONiX TECHNOLOGY CO., LTD Page 23 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.4 PROGRAM COUNTER The program counter (PC) is a 10-bit binary counter separated into the high-byte 2 and the low-byte 8 bits. This counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program counter is automatically incremented with each instruction during program execution. Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction is executed, the destination address will be inserted to bit 0 ~ bit 9. PC After reset Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 PC9 - - - - - - 0 Bit 8 PC8 Bit 7 PC7 Bit 6 PC6 Bit 5 PC5 Bit 4 PC4 Bit 3 PC3 Bit 2 PC2 Bit 1 PC1 Bit 0 PC0 0 0 0 0 0 0 0 0 0 PCH PCL 2.4.1 ONE ADDRESS SKIPPING There are nine instructions (CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1) with one address skipping function. If the result of these instructions is true, the PC will add 2 steps to skip next instruction. If the condition of bit test instruction is true, the PC will add 2 steps to skip next instruction. FC C0STEP ; To skip, if Carry_flag = 1 ; Else jump to C0STEP. C0STEP: B0BTS1 JMP . NOP A, BUF0 FZ C1STEP ; Move BUF0 value to ACC. ; To skip, if Zero flag = 0. ; Else jump to C1STEP. C1STEP: B0MOV B0BTS0 JMP . NOP If the ACC is equal to the immediate data or memory, the PC will add 2 steps to skip next instruction. C0STEP: CMPRS JMP . NOP A, #12H C0STEP ; To skip, if ACC = 12H. ; Else jump to C0STEP. If the destination increased by 1, which results overflow of 0xFF to 0x00, the PC will add 2 steps to skip next instruction. INCS instruction: C0STEP: INCS JMP … NOP BUF0 C0STEP SONiX TECHNOLOGY CO., LTD ; Jump to C0STEP if ACC is not zero. Page 24 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller INCMS instruction: C0STEP: INCMS JMP … NOP BUF0 C0STEP ; Jump to C0STEP if BUF0 is not zero. If the destination decreased by 1, which results underflow of 0x00 to 0xFF, the PC will add 2 steps to skip next instruction. DECS instruction: C0STEP: DECS JMP … NOP BUF0 C0STEP ; Jump to C0STEP if ACC is not zero. DECMS JMP … NOP BUF0 C0STEP ; Jump to C0STEP if BUF0 is not zero. DECMS instruction: C0STEP: 2.4.2 MULTI-ADDRESS JUMPING Users can jump around the multi-address by either JMP instruction or ADD M, An instruction (M = PCL) to activate multi-address jumping function. If carry flag occurs after execution of ADD PCL, A, the carry flag will not affect PCH register. Example: If PC = 0323H (PCH = 03H、PCL = 23H) ; PC = 0323H ; PC = 0328H MOV B0MOV . . . MOV B0MOV A, #28H PCL, A . . . A, #00H PCL, A ; Jump to address 0328H ; Jump to address 0300H Example: If PC = 0323H (PCH = 03H、PCL = 23H) ; PC = 0323H B0ADD JMP JMP JMP JMP . PCL, A A0POINT A1POINT A2POINT A3POINT . SONiX TECHNOLOGY CO., LTD ; PCL = PCL + ACC, the PCH cannot be changed. ; If ACC = 0, jump to A0POINT ; ACC = 1, jump to A1POINT ; ACC = 2, jump to A2POINT ; ACC = 3, jump to A3POINT ; Page 25 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.5 ADDRESSING MODE 2.5.1 IMMEDIATE ADDRESSING MODE The immediate addressing mode uses an immediate data to set up the location (“ MOV A, # I ”, “ B0MOV ACC or specific RAM. M, # I “) in Example: Immediate addressing mode MOV A, #12H ; To set an immediate data 12H into ACC 2.5.2 2.5.3 DIRECTLY ADDRESSING MODE The directly addressing mode moves the content of RAM location in or out of ACC.(“ MOV A,12H ”, “ MOV 12H, A ”). Example: Directly addressing mode B0MOV A, 12H ; To get a content of location 12H of bank 0 and save in ACC 2.5.4 2.5.5 INDIRECTLY ADDRESSING MODE The indirectly addressing mode is to access the memory by the data pointer registers (Y/Z). Example: Indirectly addressing mode with @YZ register CLR B0MOV B0MOV Y Z, #12H A, @YZ SONiX TECHNOLOGY CO., LTD ; To clear Y register to access RAM bank 0. ; To set an immediate data 12H into Z register. ; Use data pointer @YZ reads a data from RAM location ; 012H into ACC. Page 26 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.6 STACK OPERATIONS 2.6.1 OVERVIEW The stack buffer of SN8P Series MCU has 4-level. These buffers are designed to push and pop up program counter’s (PC) data when interrupt service routine is executed. The STKP register is a pointer designed to point active level in order to push or pop up data from stack buffer. The STKnH and STKnL are the stack buffers to store program counter (PC) data. RET / CALL / RETI interrupt PCH PCL STK3H STK3L STK2H STK2L STKP = 3 STKP + 1 STKP -1 STKP = 2 STKP STKP STK1H STK1L STK0H STK0L STKP = 1 STKP = 0 SONiX TECHNOLOGY CO., LTD Page 27 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.6.2 STACK REGISTERS The stack pointer (STKP) is a 3-bit register to store the address used to access the stack buffer, 10-bit data memory (STKnH and STKnL) set aside for temporary storage of stack addresses. The two stack operations are writing to the top of the stack (push) and reading from the top of stack (pop). Push operation decrements the STKP and the pop operation increments each time. That makes the STKP always point to the top address of stack buffer and write the last program counter value (PC) into the stack buffer. The program counter (PC) value is stored in the stack buffer before a CALL instruction executed or during interrupt service routine. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer (STKnH and STKnL) are located in the system register area bank 0. 0DFH STKP Read/Write After reset Bit 7 GIE R/W 0 Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 STKPB2 R/W 1 Bit 1 STKPB1 R/W 1 Bit 0 STKPB0 R/W 1 STKPBn: Stack pointer (n = 0 ~ 2) GIE: Global interrupt control bit. 0 = disable, 1 = enable. Please refer to the interrupt chapter. Example: Stack pointer (STKP) reset, we strongly recommended to clear the stack pointers in the beginning of the program. MOV B0MOV A, #00000111B STKP, A 0F0H~0FFH Bit 7 Bit 6 STKnH Read/Write After reset STKn = <STKnH , STKnL> (n = 3 ~ 0) Bit 5 - Bit 4 - 0F0H~0FFH Bit 7 Bit 6 Bit 5 Bit 4 SnPC7 SnPC6 SnPC5 SnPC4 STKnL Read/Write R/W R/W R/W R/W After reset 0 0 0 0 For SN8P2501A : STKn = <STKnH , STKnL> (n = 3 ~ 0) SONiX TECHNOLOGY CO., LTD Page 28 Bit 3 - Bit 2 - Bit 1 SnPC9 R/W 0 Bit 0 SnPC8 R/W 0 Bit 3 SnPC3 R/W 0 Bit 2 SnPC2 R/W 0 Bit 1 SnPC1 R/W 0 Bit 0 SnPC0 R/W 0 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 2.6.3 STACK OPERATION EXAMPLE The two kinds of Stack-Save operations refer to the stack pointer (STKP) and write the content of program counter (PC) to the stack buffer are CALL instruction and interrupt service. Under each condition, the STKP decreases and points to the next available stack location. The stack buffer stores the program counter about the op-code address. The Stack-Save operation is as the following table. Stack Level 0 1 2 3 4 >4 STKPB2 1 1 1 1 0 0 STKP Register STKPB1 STKPB0 1 1 0 0 1 1 1 0 1 0 1 0 Stack Buffer High Byte Low Byte Free STK0H STK1H STK2H STK3H - Free STK0L STK1L STK2L STK3L - Description Stack Over, error There are Stack-Restore operations correspond to each push operation to restore the program counter (PC). The RETI instruction uses for interrupt service routine. The RET instruction is for CALL instruction. When a pop operation occurs, the STKP is incremented and points to the next free stack location. The stack buffer restores the last program counter (PC) to the program counter registers. The Stack-Restore operation is as the following table. Stack Level 4 3 2 1 0 STKPB2 0 1 1 1 1 STKP Register STKPB1 STKPB0 1 0 0 1 1 SONiX TECHNOLOGY CO., LTD 1 0 1 0 1 Stack Buffer High Byte Low Byte STK3H STK2H STK1H STK0H Free Page 29 STK3L STK2L STK1L STK0L Free Description - Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 3 RESET 3.1 OVERVIEW This MCU provides two system resets. One is external reset and the other is internal low voltage detector (LVD). The external reset is a simple RC circuit connecting to the reset pin. The low voltage detector (LVD) is built-in internal circuit. When one of the reset is triggered then will reset MCU and system registers become initial value. The timing diagram is as the following. VDD LVD Detect Level External Reset External Reset Detect Level LVD End of LVD Reset Internal Reset Signal End of External Reset Power on reset timing diagram SONiX TECHNOLOGY CO., LTD Page 30 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 3.2 EXTERNAL RESET DESCRIPTION The external reset is a low level active device. The reset pin receives the low voltage and resets the system. When the voltage detects high level, it stops resetting the system. Users can use an external reset circuit to control system operation. VDD External Reset Internal Reset Signal External Reset Detect Level System Reset End of External Reset Users must make sure the VDD is stable earlier than external reset. Otherwise, the power on reset maybe fail. The external reset circuit is a simple RC circuit as the following figure. R VDD 20K ohm RST C 0.1uF MCU VSS VCC GND SONiX TECHNOLOGY CO., LTD Page 31 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Under different environment, by placing a diode in between VCC and reset pin will help the Brownout reset. R DIODE VDD 20K ohm RST C 0.1uF MCU VSS VCC GND 3.3 LOW VOLTAGE DETECTOR (LVD) DESCRIPTION The LVD is a low voltage detector. It detects VDD level and reset the system as the VDD lower than the detected voltage. The detect level is 1.8V. If the VDD lower than 1.8V, the system resets. VDD LVD Detect Level LVD System Reset SONiX TECHNOLOGY CO., LTD End of LVD Reset Page 32 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 4 OSCILLATOR AND SYSTEM CLOCK 4.1 OVERVIEW The SN8P2501A is a dual clock micro-controller system. There are high-speed clock and low-speed clock. The high-speed clock is generated from the external oscillator circuit or on-chip 16MHz high-speed RC oscillator circuit (IHRC 16MHz). The low-speed clock is generated from on-chip low-speed RC oscillator circuit (ILRC 16KHz @3V, 32KHz @5V). Both the high-speed clock and the low-speed clock can be system clock (Fosc). The system clock is divided by 4 to be the instruction cycle (Fcpu). Normal Mode (High Clock): Fcpu = Fosc / N, N = 1 ~ 64, Select N by Fcpu code option Slow Mode (Low Clock): Fcpu = Fosc/4 4.2 CLOCK BLOCK DIAGRAM STPHX HOSC IHOSC. CPUM0 STPHX XIN XOUT HOSC HOSC Noise Filter Code Option ÷ 1 ~ 64 EHOSC. CLKMD CPUM0 Fhosc Flosc Fcpu CPUM0 ILOSC. ÷4 CPUM0 HOSC: High_Clk code option EHOSC: External high-speed clock IHRC: Internal high-speed RC clock ILRC: Internal low-speed RC clock SONiX TECHNOLOGY CO., LTD Page 33 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 4.3 OSCM REGISTER DESCRIPTION The OSCM register is an oscillator control register. It controls oscillator status, system mode. 0CAH OSCM Read/Write After reset Bit 7 0 - Bit 6 0 - Bit 5 0 - Bit 4 CPUM1 R/W 0 Bit 3 CPUM0 R/W 0 Bit 2 CLKMD R/W 0 Bit 1 STPHX R/W 0 Bit 0 0 - STPHX: External high-speed oscillator control bit. 0 = free run, 1 = stop. This bit only controls external high-speed oscillator. If STPHX=1, the internal low-speed RC oscillator is still running. CLKMD: System high/Low clock mode: bit 0 = normal (dual) mode, 1 = slow mode. CPUM1, CPUM0: CPU operating mode control bit: 00 = normal 01 = sleep (power down) mode 10 = green mode 11 = reserved. Example: Stop high-speed oscillator B0BSET FSTPHX ; To stop external high-speed oscillator only. Example: When entering the Power Down mode, both high-speed oscillator and internal low-speed oscillator will be stopped. B0BSET FCPUM0 SONiX TECHNOLOGY CO., LTD ; To stop external high-speed oscillator and internal low-speed ; oscillator called power down mode (sleep mode). Page 34 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 4.4 EXTERNAL SYSTEM OSCILLATOR CIRCUITS VDD 20PF XIN CRYSTAL 20PF MCU XOUT VSS Crystal/Ceramic Oscillator VDD R XIN XOUT C MCU VSS RC Oscillator VDD External Clock Input XIN XOUT MCU VSS External clock input Note1: The external oscillator circuit must be directly from Vss pin of micro-controller. SONiX TECHNOLOGY CO., LTD Page 35 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 4.4.1 OSCILLATOR FREQUENCY MEASUREMENT Under design period, the users can measure Fosc by software instruction cycle (Fcpu). This way is useful in RC mode. Example: Fcpu instruction cycle of external oscillator B0BSET P1M.0 ; Set P1.0 to be output mode for outputting Fcpu toggle signal. B0BSET B0BCLR JMP P1.0 P1.0 @B ; Output Fcpu toggle signal in low-speed clock mode. ; Measure the Fcpu frequency by oscilloscope. @@: Note: Do not measure the RC frequency directly from XIN; the probe impendence will affect the RC value. SONiX TECHNOLOGY CO., LTD Page 36 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 4.4.2 INTERNAL LOW-SPEED RC OSCILLATOR The internal low-speed oscillator is built in the micro-controller. The low-speed clock source is a RC type oscillator circuit. Example: Stop internal low-speed oscillator B0BSET FCPUM0 ; To stop external high-speed oscillator and internal low-speed ; oscillator called power down mode (sleep mode). Note: The internal low-speed clock can’t be turned off individually. It is controlled by CPUM0 bit of OSCM register. The low-speed oscillator uses RC type oscillator circuit. The frequency is affected by the voltage and temperature of the system. In common condition, the frequency of the RC oscillator is about 16KHz at 3V and 32KHz at 5V. The relation between the RC frequency and voltage is as the following figure. Internal RC vs. VDD 40 38.678 35.343 Fintrc (KHz) 35 32.008 30 28.673 25.338 25 22.003 20 18.668 15.333 15 11.998 10 8.663 7.329 5 0 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 VDD (Volts) Example: Measure the internal RC frequency by instruction cycle (Fcpu). The internal RC frequency is the Fcpu multiplied by 4. We can get the Fosc frequency of internal RC from the Fcpu frequency. B0BSET P1M.0 ; Set P1.0 to be output mode for outputting Fcpu toggle signal. B0BSET FCLKMD ; Switch the system clock to internal low-speed clock mode. B0BSET B0BCLR JMP P1.0 P1.0 @B ; Output Fcpu toggle signal in low-speed clock mode. ; Measure the Fcpu frequency by oscilloscope. @@: SONiX TECHNOLOGY CO., LTD Page 37 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 5 SYSTEM OPERATION MODE 5.1 OVERVIEW The chip is featured with low power consumption by switching around four different modes as following. High-speed mode Low-speed mode Power-down mode (Sleep mode) Green mode 5.2 NORMAL MODE In normal mode, the system clock source is high clock (external or internal 16MHz RC oscillator). After power on reset, watchdog reset, LVD reset or wakeup from power down mode, the system works under normal mode. From normal mode, the system can get into power down mode, slow mode and green mode. 5.3 SLOW MODE In slow mode, the system clock source is internal low-speed RC clock. To set CLKMD =1, the system switches into slow mode. In slow mode, the system functions similar to the normal mode except using the internal low RC clock. The system in slow mode can switch back to high-speed normal mode. On the other hand, it can be easily switch to power down mode and green mode for less power consumption. 5.4 GREEN MODE The green mode provides a time-variable wakeup function. Users can decide wakeup time by setting T0 timer. There are two paths into green mode. One is from normal mode and the other is from slow mode. The system can be waked up to last system mode by T0 timer timeout or P0, P1 level change trigger signal. 5.5 POWER DOWN MODE The power down mode is also called sleep mode. The MCU stops working as sleeping status. To set CUPM0 = 1, the system gets into power down mode. The external high-speed and low-speed oscillators are turned off. The system can be waked up by P0, P1 level change trigger signal. SONiX TECHNOLOGY CO., LTD Page 38 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 5.6 SYSTEM MODE CONTROL Power Down Mode (Sleep Mode) P0, P1 wake-up function active. External reset circuit active. CPUM1, CPUM0 = 01 CLKMD = 1 Normal Mode Slow Mode CLKMD = 0 CPUM1, CPUM0 = 10 P0, P1 wake-up function active. P0, P1 wake-up function active. TC0 time out. TC0 time out. External reset circuit active. Green Mode External reset circuit active. System Mode Switching Diagram Operating mode description MODE NORMAL SLOW GREEN EHOSC IHRC ILRC EHOSC with RTC IHRC with RTC ILRC with RTC CPU instruction Running Running Running Running Running Running Executing By STPHX By STPHX Running By STPHX By STPHX Running Executing By STPHX By STPHX Running Running Stop Stop Stop POWER DOWN (SLEEP) Stop Stop Stop Stop Stop Stop Stop T0 timer *Active *Active *Active Inactive TC0 timer *Active *Active Inactive Inactive Watchdog timer Internal interrupt External interrupt Wakeup source REMARK * Active by program * Active by program By watchdog By watchdog By watchdog By watchdog code option code option code option code option All active All active T0 All inactive All active All active All active All inactive P0, P1, T0 Reset P0, P1, Reset SONiX TECHNOLOGY CO., LTD Page 39 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 5.6.1 SYSTEM MODE SWITCHING Switch normal/slow mode to power down (sleep) mode. B0BSET FCPUM0 ; Set CPUM0 = 1. During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode. Switch normal mode to slow mode. B0BSET B0BSET FCLKMD FSTPHX ;To set CLKMD = 1, Change the system into slow mode ;To stop external high-speed oscillator for power saving. Switch slow mode to normal mode (The external high-speed oscillator is still running) B0BCLR FCLKMD ;To set CLKMD = 0 Switch slow mode to normal mode (The external high-speed oscillator stops) If external high clock stop and program want to switch back normal mode. It is necessary to delay at least 10mS for external clock stable. @@: B0BCLR FSTPHX ; Turn on the external high-speed oscillator. B0MOV DECMS JMP Z, #27 Z @B ; If VDD = 5V, internal RC=32KHz (typical) will delay ; 0.125ms X 81 = 10.125ms for external clock stable B0BCLR FCLKMD ; ; Change the system back to the normal mode Switch normal/slow mode to green mode. B0BSET FCPUM1 ; Set CPUM1 = 1. During the green mode without T0 wake-up function, only the wakeup pin wakeup the system back to the last mode. SONiX TECHNOLOGY CO., LTD Page 40 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Switch normal/slow mode to green mode and enable T0 wake-up function. ; Set T0 timer wakeup function. B0BCLR B0BCLR MOV B0MOV MOV B0MOV B0BCLR B0BCLR B0BSET ; Go into green mode B0BCLR B0BSET FT0IEN FT0ENB A,#20H T0M,A A,#74H T0C,A FT0IEN FT0IRQ FT0ENB ; To disable T0 interrupt service ; To disable T0 timer ; ; To set T0 clock = Fcpu / 64 FCPUM0 FCPUM1 ;To set CPUMx = 10 ; To set T0C initial value = 74H (To set T0 interval = 10 ms) ; To disable T0 interrupt service ; To clear T0 interrupt request ; To enable T0 timer During the green mode with T0 wake-up function, the wakeup pin and T0 wakeup the system back to the last mode. T0 wake-up period is controlled by program. Switch normal/slow mode to green mode and enable T0 wake-up function with RTC. ; Set T0 timer wakeup function with 0.5 sec RTC. B0BCLR FRTC1 B0BCLR FRTC0 B0BSET B0BSET ; Go into green mode B0BCLR B0BSET ; Set RTC timer period to 0.5 sec. FT0ENB FT0TB ; To enable T0 timer ; To enable RTC function FCPUM0 FCPUM1 ;To set CPUMx = 10 During the green mode with T0 RTC wake-up function, the wakeup pin and T0 wakeup the system back to the last mode. The T0 wake-up period is controlled by OPTION register. 088H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 OPTION - - - - RTC1 RTC0 - - Read/Write - - - - R/W R/W - - After reset - - - - 0 0 - - RTC1, RTC0: 00 = 0.5 sec. 01 = 1 sec. 10 = 2 sec. 11 = 4 sec. SONiX TECHNOLOGY CO., LTD Page 41 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 5.7 WAKEUP 5.7.1 OVERVIEW The high clock (external or internal 16MHz RC oscillator) needs a delay time from stopping to operating. The delay is necessary for oscillator to be stabilized The delay time for high clock oscillator restart is sometimes called wakeup time. Following are two conditions require wakeup time, one is switching power down mode to normal mode, and the other is switching slow mode to normal mode. For the first condition, MCU provides 2048 oscillator clocks as the wakeup time. The second condition, users need to take the wakeup time into consideration, which involved stabilizing period for start up the external high-speed oscillator. Under power down mode (sleep mode) or green mode, P0 and P1 with wakeup function are able to wake the system up. Port 0 wakeup function always enables, but the Port 1 is controlled by the P1W register. The wakeup signal is level change trigger. 5.7.2 WAKEUP TIME When the system is in power down mode (sleep mode), the high clock oscillator stops. When waked up from power down mode, MCU waits for 2048 external high-speed oscillator clocks as the wakeup time to stable the oscillator circuit. After the wakeup time, the system goes into the normal mode. The value of the wakeup time is as the following. The Wakeup time = 1/Fosc * 2048 (sec) + X’tal settling time The X’tal settling time is depended on the X’tal type. Typically, it is about 2~4mS in 4MHz Crystal oscillator 5.7.3 P1W WAKEUP CONTROL REGISTER Under power down mode (sleep mode) or green mode, P0 and P1 with wakeup function are able to wakeup the system Port 0 wakeup function is always available, but the Port 1 is controlled by the P1W register. The wakeup signal is level change trigger. 0C0H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P1W - - - - P13W P12W P11W P10W Read/Write - - - - W W W W After reset - - - - 0 0 0 0 P10W~P13W: Port 1 wakeup function control bits. 0 = Disable; 1 = Enable wakeup function. SONiX TECHNOLOGY CO., LTD Page 42 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6 INTERRUPT 6.1 OVERVIEW This MCU provides three interrupt sources, including two internal interrupt (T0/TC0) and one external interrupt (INT0). The external interrupt can wakeup the chip while the system is switched from power down mode to high-speed normal mode. Once interrupt service is executed, the GIE bit in STKP register will clear to “0” for stopping other interrupt request. On the contrast, when interrupt service exits, the GIE bit will set to “1” to accept the next interrupts’ request. All of the interrupt request signals are stored in INTRQ register. INTEN Interrupt enable register T0IRQ T0 time out INTRQ 3-bit Latchs TC0 time out INT0 trigger Interrupt vector address (0008H) Interrupt enable gating TC0IRQ P00IRQ Global interrupt request signal Note: The GIE bit must enable during all interrupt operation. 6.2 INTEN INTERRUPT ENABLE REGISTER INTEN is the interrupt request control register including one internal interrupts, one external interrupts enable control bits. One of the register to be set “1” is to enable the interrupt request function. Once of the interrupt occur, the stack is incremented and program jump to ORG 8 to execute interrupt service routines. The program exits the interrupt service routine when the returning interrupt service routine instruction (RETI) is executed. 0C9H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INTEN - - TC0IEN T0IEN - - - P00IEN Read/Write - - R/W R/W - - - R/W After reset - - 0 0 - - - 0 P00IEN : External P0.0 interrupt control bit. 0 = disable, 1 = enable. T0IEN : T0 Timer interrupt control bit 0 = disable, 1 = enable. TC0IEN : TC0 Timer interrupt control bit 0 = disable, 1 = enable. SONiX TECHNOLOGY CO., LTD Page 43 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.3 INTRQ INTERRUPT REQUEST REGISTER INTRQ is the interrupt request flag register. The register includes all interrupt request indication flags. Each one of the interrupt requests occurs, the bit of the INTRQ register would be set “1”. The INTRQ value needs to be clear by programming after detecting the flag. In the interrupt vector of program, users know the any interrupt requests occurring by the register and do the routine corresponding of the interrupt request. 0C8H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INTRQ - - TC0IRQ T0IRQ - - - P00IRQ Read/Write - - R/W R/W - - - R/W After reset - - 0 0 - - - 0 P00IRQ : External P0.0 interrupt request bit. 0 = non-request, 1 = request. T0IRQ : T0 timer interrupt request controls bit 0 = non request, 1 = request. TC0IRQ : TC0 timer interrupt request controls bit 0 = non request, 1 = request. 6.4 INTERRUPT OPERATION DESCRIPTION 6.4.1 GIE GLOBAL INTERRUPT OPERATION GIE is the global interrupt control bit. All interrupts start work after the GIE = 1. It is necessary for interrupt service request. One of the interrupt requests occurs, and the program counter (PC) points to the interrupt vector (ORG 8) and the stack add 1 level. 0DFH STKP Read/Write After reset Bit 7 GIE R/W 0 Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 STKPB2 R/W 1 Bit 1 STKPB1 R/W 1 Bit 0 STKPB0 R/W 1 GIE: Global interrupt control bit. 0 = disable, 1 = enable. Example: Set global interrupt control bit (GIE). B0BSET FGIE ; Enable GIE Note: The GIE bit must enable during all interrupt operation. SONiX TECHNOLOGY CO., LTD Page 44 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.4.2 INT0 (P0.0) INTERRUPT OPERATION The interrupt trigger direction is control by PEDGE register. 0BFH PEDGE Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 P00G1 R/W 1 Bit 3 P00G0 R/W 0 Bit 2 - Bit 1 - Bit 0 - P00G[1:0]: P0.0 interrupt trigger edge control bits. 00 = reserved 01 = rising edge 10 = falling edge 11 = rising/falling bi-direction (Level change trigger). Example: INT0 interrupt request setup. B0BSET B0BCLR B0BSET FP00IEN FP00IRQ FGIE ; Enable INT0 interrupt service ; Clear INT0 interrupt request flag ; Enable GIE Example: INT0 interrupt service routine. ACCBUF PFLAGBUF EQU EQU 00H 01H ; ACCBUF is ACC data buffer. ; PFLAGBUF is PFLAG data buffer. ORG JMP 8 INT_SERVICE ; Interrupt vector B0XCH B0MOV B0MOV A, ACCBUF A,PFLAG PFLAGBUF,A ; Store ACC value. ; Store PFLAG value. B0BTS1 JMP FP00IRQ EXIT_INT ; Check P00IRQ ; P00IRQ = 0, exit interrupt vector B0BCLR . . FP00IRQ . . ; Reset P00IRQ ; INT0 interrupt service routine B0MOV B0MOV B0XCH A,PFLAGBUF PFLAG,A A, ACCBUF ; Re-load PFLAG value. INT_SERVICE: EXIT_INT: RETI ; Re-load ACC value. ; Exit interrupt vector When the INT0 trigger occurs, the P00IRQ will be set to “1” no matter the P00IEN is enable or disable. If the P00IEN = 1 and the trigger event P00IRQ is also set to be “1”. As the result, the system will execute the interrupt vector (ORG 8). If the P00IEN = 0 and the trigger event P00IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even when the P00IRQ is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation. SONiX TECHNOLOGY CO., LTD Page 45 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.4.3 T0 INTERRUPT OPERATION When the T0C counter occurs overflow, the T0IRQ will be set to “1” however the T0IEN is enable or disable. If the T0IEN = 1, the trigger event will make the T0IRQ to be “1” and the system enter interrupt vector. If the T0IEN = 0, the trigger event will make the T0IRQ to be “1” but the system will not enter interrupt vector. Users need to care for the operation under multi-interrupt situation. Example: T0 interrupt request setup. B0BCLR B0BCLR MOV B0MOV MOV B0MOV FT0IEN FT0ENB A, #20H T0M, A A, #74H T0C, A ; Disable T0 interrupt service ; Disable T0 timer ; ; Set T0 clock = Fcpu / 64 ; Set T0C initial value = 74H ; Set T0 interval = 10 ms B0BSET B0BCLR B0BSET FT0IEN FT0IRQ FT0ENB ; Enable T0 interrupt service ; Clear T0 interrupt request flag ; Enable T0 timer B0BSET FGIE ; Enable GIE Example: T0 interrupt service routine. ACCBUF PFLAGBUF EQU EQU 00H 01H ; ACCBUF is ACC data buffer. ; PFLAGBUF is PFLAG data buffer. ORG JMP 8 INT_SERVICE ; Interrupt vector B0XCH B0MOV B0MOV A, ACCBUF A,PFLAG PFLAGBUF,A ; Store ACC value. ; Store PFLAG value. B0BTS1 JMP FT0IRQ EXIT_INT ; Check T0IRQ ; T0IRQ = 0, exit interrupt vector B0BCLR MOV B0MOV . . FT0IRQ A, #74H T0C, A . . ; Reset T0IRQ B0MOV B0MOV B0XCH A,PFLAGBUF PFLAG,A A, ACCBUF INT_SERVICE: ; Reset T0C. ; T0 interrupt service routine EXIT_INT: RETI ; Re-load PFLAG value. ; Re-load ACC value. ; Exit interrupt vector When the T0C counter overflows, the T0IRQ will be set to “1” no matter the T0IEN is enable or disable. If the T0IEN and the trigger event T0IRQ is set to be “1”. As the result, the system will execute the interrupt vector. If the T0IEN = 0, the trigger event T0IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even when the T0IEN is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation. SONiX TECHNOLOGY CO., LTD Page 46 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.4.4 TC0 INTERRUPT OPERATION Example: TC0 interrupt request setup. B0BCLR B0BCLR MOV B0MOV MOV B0MOV FTC0IEN FTC0ENB A, #20H TC0M, A A, #74H TC0C, A ; Disable TC0 interrupt service ; Disable TC0 timer ; ; Set TC0 clock = Fcpu / 64 ; Set TC0C initial value = 74H ; Set TC0 interval = 10 ms B0BSET B0BCLR B0BSET FTC0IEN FTC0IRQ FTC0ENB ; Enable TC0 interrupt service ; Clear TC0 interrupt request flag ; Enable TC0 timer B0BSET FGIE ; Enable GIE Example: TC0 interrupt service routine. ACCBUF PFLAGBUF EQU EQU 00H 01H ; ACCBUF is ACC data buffer. ; PFLAGBUF is PFLAG data buffer. ORG JMP 8 INT_SERVICE ; Interrupt vector B0XCH B0MOV B0MOV A, ACCBUF A,PFLAG PFLAGBUF,A ; Store ACC value. ; Store PFLAG value. B0BTS1 JMP FTC0IRQ EXIT_INT ; Check TC0IRQ ; TC0IRQ = 0, exit interrupt vector B0BCLR MOV B0MOV . . FTC0IRQ A, #74H TC0C, A . . ; Reset TC0IRQ B0MOV B0MOV B0XCH A,PFLAGBUF PFLAG,A A, ACCBUF INT_SERVICE: ; Reset TC0C. ; TC0 interrupt service routine EXIT_INT: RETI ; Re-load PFLAG value. ; Re-load ACC value. ; Exit interrupt vector When the TC0C counter overflows, the TC0IRQ will be set to “1” no matter the TC0IEN is enable or disable. If the TC0IEN and the trigger event TC0IRQ is set to be “1”. As the result, the system will execute the interrupt vector. If the TC0IEN = 0, the trigger event TC0IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even when the TC0IEN is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation. SONiX TECHNOLOGY CO., LTD Page 47 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 6.4.5 MULTI-INTERRUPT OPERATION Under certain condition, the software designer uses more than one interrupt requests. Processing multi-interrupt request requires setting the priority of the interrupt requests. The IRQ flags of interrupts are controlled by the interrupt event. Nevertheless, the IRQ flag “1” doesn’t mean the system will execute the interrupt vector. In addition, which means the IRQ flags can be set “1” by the events without enable the interrupt. Once the event occurs, the IRQ will be logic “1”. The IRQ and its trigger event relationship is as the below table. Interrupt Name P00IRQ T0IRQ TC0IRQ Trigger Event Description P0.0 trigger controlled by PEDGE T0C overflow TC0C overflow For multi-interrupt conditions, two things need to be taking care of. One is to set the priority for these interrupt requests. Two is using IEN and IRQ flags to decide which interrupt to be executed. Users have to check interrupt control bit and interrupt request flag in interrupt routine. Example: Check the interrupt request under multi-interrupt operation ACCBUF PFLAGBUF EQU EQU 00H 01H ; ACCBUF is ACC data buffer. ; PFLAGBUF is PFLAG data buffer. ORG 8 ; Interrupt vector B0XCH B0MOV B0MOV A, ACCBUF A,PFLAG PFLAGBUF,A ; Store ACC value. B0BTS1 JMP B0BTS0 JMP FP00IEN INTTC0CHK FP00IRQ INTP00 B0BTS1 JMP B0BTS0 JMP FT0IEN INT_EXIT FT0IRQ INTT0 B0BTS1 JMP B0BTS0 JMP FTC0IEN INT_EXIT FTC0IRQ INTTC0 B0MOV B0MOV B0XCH A,PFLAGBUF PFLAG,A A, ACCBUF INTP00CHK: INTTC0CHK: INTTC0CHK: ; Store PFLAG value. ; Check INT0 interrupt request ; Check P00IEN ; Jump check to next interrupt ; Check P00IRQ ; Jump to INT0 interrupt service routine ; Check TC0 interrupt request ; Check T0IEN ; Jump to exit of IRQ ; Check T0IRQ ; Jump to T0 interrupt service routine ; Check TC0 interrupt request ; Check TC0IEN ; Jump to exit of IRQ ; Check TC0IRQ ; Jump to TC0 interrupt service routine INT_EXIT: RETI SONiX TECHNOLOGY CO., LTD ; Re-load PFLAG value. ; Re-load ACC value. ; Exit interrupt vector Page 48 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 7 I/O PORT 7.1 I/O PORT MODE The port direction is programmed by PnM register. All I/O ports can select input or output direction. 0B8H P0M Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 - Bit 1 - Bit 0 P00M R/W 0 0C1H P1M Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 P13M R/W 0 Bit 2 P12M R/W 0 Bit 1 - Bit 0 P10M R/W 0 P1.1 is input only pin, and the P1M.1 keeps “1”. 0C2H P2M Read/Write After reset Bit 7 - Bit 6 - Bit 5 P25M R/W 0 Bit 4 P24M R/W 0 Bit 3 P23M R/W 0 Bit 2 P22M R/W 0 Bit 1 P21M R/W 0 Bit 0 P20M R/W 0 0C5H P5M Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 P54M R/W 0 Bit 3 - Bit 2 - Bit 1 - Bit 0 - When PnM=0, the Pn is input mode PnM=1, the Pn is output mode Users can program them by bit control instructions (B0BSET, B0BCLR). Example: I/O mode selecting CLR CLR CLR CLR P0M P1M P2M P5M ; Set all ports to be input mode. MOV B0MOV B0MOV B0MOV B0MOV A, #0FFH P0M, A P1M, A P2M, A P5M, A ; Set all ports to be output mode. B0BCLR P1M.2 ; Set P1.2 to be input mode. B0BSET P1M.2 ; Set P1.2 to be output mode. SONiX TECHNOLOGY CO., LTD Page 49 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 7.2 I/O PULL UP REGISTER 0E0H P0UR Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 - Bit 1 - Bit 0 P00R W 0 0E1H P1UR Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 P13R W 0 Bit 2 P12R W 0 Bit 1 - Bit 0 P10R W 0 P1.1 is input only pin and without pull-up resister. The P1UR.1 keeps “1”. 0E2H P2UR Read/Write After reset Bit 7 - Bit 6 - Bit 5 P25R W 0 Bit 4 P24R W 0 Bit 3 P23R W 0 Bit 2 P22R W 0 Bit 1 P21R W 0 Bit 0 P20R W 0 0E5H P5UR Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 P54R W 0 Bit 3 - Bit 2 - Bit 1 - Bit 0 - Bit 1 - Bit 0 P10OC W 0 Example: I/O Pull up Register MOV B0MOV B0MOV B0MOV B0MOV A, #0FFH P0UR, A P1UR, A P2UR, A P5UR, A ; Enable Port0, 1, 2, 5 Pull-up register, ; 7.3 I/O OPEN-DRAIN REGISTER Port1 0E9H P1OC Read/Write After reset Bit 0 Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 - P10OC: P10 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode SONiX TECHNOLOGY CO., LTD Page 50 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 7.4 I/O PORT DATA REGISTER 0D0H P0 Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 - Bit 2 - Bit 1 - Bit 0 P00 R/W 0 0D1H P1 Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 - Bit 3 P13 R/W 0 Bit 2 P12 R/W 0 Bit 1 P11 R 0 Bit 0 P10 R/W 0 The P11 keeps “1” when external reset enable by code option. 0D2H P2 Read/Write After reset Bit 7 - Bit 6 - Bit 5 P25 R/W 0 Bit 4 P24 R/W 0 Bit 3 P23 R/W 0 Bit 2 P22 R/W 0 Bit 1 P21 R/W 0 Bit 0 P20 R/W 0 0D5H P5 Read/Write After reset Bit 7 - Bit 6 - Bit 5 - Bit 4 P54 R/W 0 Bit 3 - Bit 2 - Bit 1 - Bit 0 - Example: Read data from input port. B0MOV A, P0 B0MOV A, P1 B0MOV A, P2 B0MOV A, P5 Example: Write data to output port. MOV A, #0FFH B0MOV P0, A B0MOV P1, A B0MOV P2, A B0MOV P5, A Example: Write one bit data to output port. B0BSET P1.3 B0BSET P2.5 B0BCLR B0BCLR P1.3 P2.5 SONiX TECHNOLOGY CO., LTD ; Read data from Port 0 ; Read data from Port 1 ; Read data from Port 2 ; Read data from Port 5 ; Write data FFH to all Port. ; Set P1.3 and P2.5 to be “1”. ; Set P1.3 and P2.5 to be “0”. Page 51 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8 TIMERS 8.1 WATCHDOG TIMER The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program goes into the unknown status by noise interference, WDT overflow signal raises and resets MCU. Watchdog clock controlled by code option and the clock source is internal low-speed oscillator (ILRC, 16K @3V, 32K @5V). Watchdog overflow time is about 0.5 sec @3V, 0.25 sec @5V. If watchdog is “Always_On” mode, it keeps running event under power down mode or green mode. For S8KD ICE simulation, clear watchdog timer using “@RST_WDT” macro is necessary. Or the S8KD watchdog would be error. Please use "@RST_WDT" macro to clear the watchdog timer successfully both in S8KD ICE emulation and real chip. Watchdog clear is controlled by WDTR register. Moving 0x5A data into WDTR is to reset watchdog timer. 0CCH WDTR Read/Write After reset Bit 7 WDTR7 W 0 Bit 6 WDTR6 W 0 Bit 5 WDTR5 W 0 Bit 4 WDTR4 W 0 Bit 3 WDTR3 W 0 Bit 2 WDTR2 W 0 Bit 1 WDTR1 W 0 Bit 0 WDTR0 W 0 Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top of the main routine of the program. Main: MOV B0MOV . CALL CALL . . . JMP A,#5AH WDTR,A . SUB1 SUB2 . . . MAIN ; Clear the watchdog timer. Example: Clear watchdog timer by @RST_WDT macro. Main: @RST_WDT . CALL CALL . . . JMP ; Clear the watchdog timer. . SUB1 SUB2 . . . MAIN SONiX TECHNOLOGY CO., LTD Page 52 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.2 TIMER 0 (T0) 8.2.1 OVERVIEW The T0 is an 8-bit binary up timer and event counter. If T0 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger T0 interrupt to request interrupt service. The main purposes of the T0 timer is as following. 8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock frequency. RTC timer: Generates interrupts at real time intervals based on the selected clock source. RTC function is only available in High_Clk code option = "IHRC_RTC". Green mode wakeup function: T0ENB = 1, T0 time out to make system return to last mode in green mode. T0rate Internal data bus T0enb T0TB pre_load T0C 8-bit binary counter Fcpu T0 Time out T0enb RTC RTC1, RTC0 period control 8.2.2 T0M MODE REGISTER 0D8H T0M Read/Write After reset Bit 7 T0ENB R/W 0 Bit 6 T0rate2 R/W 0 Bit 5 T0rate1 R/W 0 Bit 4 T0rate0 R/W 0 Bit 3 - Bit 2 - Bit 1 - Bit 0 T0TB R/W 0 T0ENB: T0 counter control bit. 0 = disable, 1 = enable. T0RATE2~T0RATE0: T0 internal clock select bits. 000 = fcpu/256, 001 = fcpu/128, … , 110 = fcpu/4, 111 = fcpu/2. T0TB: RTC clock source control bit. 0 = disable (from Fcpu). 1 = enable (from RTC). SONiX TECHNOLOGY CO., LTD Page 53 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.2.3 T0C COUNTING REGISTER T0C is an 8-bit counter register for T0 interval time control. 0D9H T0C Read/Write After reset Bit 7 T0C7 R/W 0 Bit 6 T0C6 R/W 0 Bit 5 T0C5 R/W 0 Bit 4 T0C4 R/W 0 Bit 3 T0C3 R/W 0 Bit 2 T0C2 R/W 0 Bit 1 T0C1 R/W 0 Bit 0 T0C0 R/W 0 The basic timer table interval time of T0 T0RATE T0CLOCK 000 001 010 011 100 101 110 111 fcpu/256 fcpu/128 fcpu/64 fcpu/32 fcpu/16 fcpu/8 fcpu/4 fcpu/2 High speed mode (Fcpu = 3.58MHz / 4) Max overflow interval One step = max/256 73.2 ms 286us 36.6 ms 143us 18.3 ms 71.5us 9.15 ms 35.8us 4.57 ms 17.9us 2.28 ms 8.94us 1.14 ms 4.47us 0.57 ms 2.23us Low speed mode (Fcpu = 32768Hz / 4) Max overflow interval One step = max/256 8000 ms 31.25 ms 4000 ms 15.63 ms 2000 ms 7.8 ms 1000 ms 3.9 ms 500 ms 1.95 ms 250 ms 0.98 ms 125 ms 0.49 ms 62.5 ms 0.24 ms The equation of T0C initial value is as following. T0C initial value = 256 - (T0 interrupt interval time * input clock) Example: To set 10ms interval time for T0 interrupt at 3.58MHz high-speed mode. T0C value (74H) = 256 (10ms * fcpu/64). Let Fcpu = Fosc / 4 T0C initial value = 256 - (T0 interrupt interval time * input clock) = 256 - (10ms * 3.58 * 106 / 4 / 64) = 256 - (10-2 * 3.58 * 106 / 4 / 64) = 116 = 74H SONiX TECHNOLOGY CO., LTD Page 54 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.3 TIMER/COUNTER 0 (TC0) 8.3.1 OVERVIEW The TC0 is an 8-bit binary up timer and event counter, using TC0M register to select TC0C’s clock source from Fcpu or from external INT0 pin (falling edge trigger) for counting a precision time. If TC0 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger TC0 interrupt to request interrupt service. The main purposes of the TC0 timer is as following. 8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock frequency. External event counter: Counts system “events” based on falling edge detection of external clock signals at the INT0 input pin. Buzzer output PWM output Aload0 TC0R reload data buffer Internal P5.4 I/O circuit Buzzer Auto. reload Compare S TC0cks TC0enb P5.4 ÷2 R TC0rate TC0out PWM PWM0OUT load Fcpu TC0C 8-bit binary counter INT0 (schmitter trigger) TC0 Time out CPUM1,0 SONiX TECHNOLOGY CO., LTD Page 55 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.3.2 TC0M MODE REGISTER 0DAH TC0M Read/Write After reset Bit 7 TC0ENB R/W 0 Bit 6 TC0rate2 R/W 0 Bit 5 TC0rate1 R/W 0 Bit 4 TC0rate0 R/W 0 Bit 3 TC0CKS R/W 0 Bit 2 ALOAD0 R/W 0 Bit 1 TC0OUT R/W 0 Bit 0 PWM0OUT R/W 0 TC0ENB: TC0 counter control bit. 0 = disable, 1 = enable. TC0RATE2~TC0RATE0: TC0 internal clock select bits. 000 = fcpu/256, 001 = fcpu/128, … , 110 = fcpu/4, 111 = fcpu/2. TC0CKS: TC0 clock source select bit. 0 = Fcpu, 1 = External clock comes from INT0/P0.0 pin. ALOAD0: Auto-reload control bit. 0 = disable. 1 = enable. TC0OUT: TC0 time out toggle signal output control bit. Only valid when PWM0OUT = 0. 0 = Disable, P5.4 is I/O function. 1 = Enable, P5.4 is output TC0OUT signal. PWM0OUT: PWM output control bit. 0 = disable. 1 = enable. PWM duty selection table. (Only valid when PWM0OUT = 1) Max PWM ALOAD0 TC0OUT TC0 Overflow boundary PWM duty range Frequency Note (Fcpu = 4M) 0 0 FFh to 00h 0/256 ~ 255/256 7.8125K Overflow per 256 count 0 1 3Fh to 40h 0/64 ~ 63/64 31.25K Overflow per 64 count 1 0 1Fh to 20h 0/32 ~ 31/32 62.5K Overflow per 32 count 1 1 0Fh to 10h 0/16 ~ 15/16 125K Overflow per 16 count Note: When TC0CKS=1, TC0 became an external event counter. No more P0.0 interrupt request will be raised. (P0.0IRQ will be always 0) SONiX TECHNOLOGY CO., LTD Page 56 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.3.3 TC0C COUNTING REGISTER TC0C is an 8-bit counter register for TC0 interval time control. 0DBH TC0C Read/Write After reset Bit 7 TC0C7 R/W 0 Bit 6 TC0C6 R/W 0 Bit 5 TC0C5 R/W 0 Bit 4 TC0C4 R/W 0 Bit 3 TC0C3 R/W 0 Bit 2 TC0C2 R/W 0 Bit 1 TC0C1 R/W 0 Bit 0 TC0C0 R/W 0 The basic timer table interval time of TC0 TC0RATE TC0CLOCK 000 001 010 011 100 101 110 111 fcpu/256 fcpu/128 fcpu/64 fcpu/32 fcpu/16 fcpu/8 fcpu/4 fcpu/2 High speed mode (Fcpu = 3.58MHz / 4) Max overflow interval One step = max/256 73.2 ms 286us 36.6 ms 143us 18.3 ms 71.5us 9.15 ms 35.8us 4.57 ms 17.9us 2.28 ms 8.94us 1.14 ms 4.47us 0.57 ms 2.23us Low speed mode (Fcpu = 32768Hz / 4) Max overflow interval One step = max/256 8000 ms 31.25 ms 4000 ms 15.63 ms 2000 ms 7.8 ms 1000 ms 3.9 ms 500 ms 1.95 ms 250 ms 0.98 ms 125 ms 0.49 ms 62.5 ms 0.24 ms The equation of TC0C initial value is as following. TC0C initial value = 256 - (TC0 interrupt interval time * input clock) Example: To set 10ms interval time for TC0 interrupt at 3.58MHz high-speed mode. TC0C value (74H) = 256 - (10ms * fcpu/64). Let Fcpu = Fosc / 4 TC0C initial value = 256 - (TC0 interrupt interval time * input clock) = 256 - (10ms * 3.58 * 106 / 4 / 64) = 256 - (10-2 * 3.58 * 106 / 4 / 64) = 116 = 74H SONiX TECHNOLOGY CO., LTD Page 57 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.4 BUZZER OUTPUT Buzzer output (TC0OUT) is from TC0 timer/counter frequency output function. By setting the TC0 clock frequency, the clock signal is output to P5.4 and the P5.4 general purpose I/O function is auto-disable. The TC0 output signal divides by 2. The TC0 clock has many combinations and easily to make difference frequency. The TC0OUT frequency waveform is as following. TC0 Clock TC0OUT Pulse Example: Setup TC0OUT output from TC0 to TC0OUT (P5.4). The external high-speed clock is 4MHz. The TC0OUT frequency is 0.5KHz. Because the TC0OUT signal is divided by 2, set the TC0 clock to 1KHz. The TC0 clock source is from external oscillator clock. T0C rate is Fcpu/4. The TC0RATE2~TC0RATE1 = 110. TC0C = TC0R = 131. MOV B0MOV A,#01100000B TC0M,A MOV B0MOV B0MOV A,#131 TC0C,A TC0R,A ; Set the auto-reload reference value B0BSET B0BSET B0BSET FTC0OUT FALOAD0 FTC0ENB ; Enable TC0 output to P5.4 and disable P5.4 I/O function ; Enable TC0 auto-reload function ; Enable TC0 timer SONiX TECHNOLOGY CO., LTD ; Set the TC0 rate to Fcpu/4 Page 58 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.4.1 TC0OUT FREQUENCY TABLE Fosc = 4MHz, TC0 Rate = Fcpu/8 TC0R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 TC0OUT (KHz) 0.2441 0.2451 0.2461 0.2470 0.2480 0.2490 0.2500 0.2510 0.2520 0.2530 0.2541 0.2551 0.2561 0.2572 0.2583 0.2593 0.2604 0.2615 0.2626 0.2637 0.2648 0.2660 0.2671 0.2682 0.2694 0.2706 0.2717 0.2729 0.2741 0.2753 0.2765 0.2778 0.2790 0.2803 0.2815 0.2828 0.2841 0.2854 0.2867 0.2880 0.2894 0.2907 0.2921 0.2934 0.2948 0.2962 0.2976 0.2990 0.3005 0.3019 0.3034 0.3049 0.3064 0.3079 0.3094 0.3109 TC0R 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 TC0OUT (KHz) 0.3125 0.3141 0.3157 0.3173 0.3189 0.3205 0.3222 0.3238 0.3255 0.3272 0.3289 0.3307 0.3324 0.3342 0.3360 0.3378 0.3397 0.3415 0.3434 0.3453 0.3472 0.3492 0.3511 0.3531 0.3551 0.3571 0.3592 0.3613 0.3634 0.3655 0.3676 0.3698 0.3720 0.3743 0.3765 0.3788 0.3811 0.3834 0.3858 0.3882 0.3906 0.3931 0.3956 0.3981 0.4006 0.4032 0.4058 0.4085 0.4112 0.4139 0.4167 0.4195 0.4223 0.4252 0.4281 0.4310 SONiX TECHNOLOGY CO., LTD TC0R 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 TC0OUT (KHz) 0.4340 0.4371 0.4401 0.4433 0.4464 0.4496 0.4529 0.4562 0.4596 0.4630 0.4664 0.4699 0.4735 0.4771 0.4808 0.4845 0.4883 0.4921 0.4960 0.5000 0.5040 0.5081 0.5123 0.5165 0.5208 0.5252 0.5297 0.5342 0.5388 0.5435 0.5482 0.5531 0.5580 0.5631 0.5682 0.5734 0.5787 0.5841 0.5896 0.5952 0.6010 0.6068 0.6127 0.6188 0.6250 0.6313 0.6378 0.6443 0.6510 0.6579 0.6649 0.6720 0.6793 0.6868 0.6944 0.7022 Page 59 TC0R 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 TC0OUT (KHz) 0.7102 0.7184 0.7267 0.7353 0.7440 0.7530 0.7622 0.7716 0.7813 0.7911 0.8013 0.8117 0.8224 0.8333 0.8446 0.8562 0.8681 0.8803 0.8929 0.9058 0.9191 0.9328 0.9470 0.9615 0.9766 0.9921 1.0081 1.0246 1.0417 1.0593 1.0776 1.0965 1.1161 1.1364 1.1574 1.1792 1.2019 1.2255 1.2500 1.2755 1.3021 1.3298 1.3587 1.3889 1.4205 1.4535 1.4881 1.5244 1.5625 1.6026 1.6447 1.6892 1.7361 1.7857 1.8382 1.8939 TC0R 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 TC0OUT (KHz) 1.9531 2.0161 2.0833 2.1552 2.2321 2.3148 2.4038 2.5000 2.6042 2.7174 2.8409 2.9762 3.1250 3.2895 3.4722 3.6765 3.9063 4.1667 4.4643 4.8077 5.2083 5.6818 6.2500 6.9444 7.8125 8.9286 10.4167 12.5000 15.6250 20.8333 31.2500 62.5000 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller Fosc = 16MHz, TC0 Rate = Fcpu/8 TC0R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 TC0OUT (KHz) 0.9766 0.9804 0.9843 0.9881 0.9921 0.9960 1.0000 1.0040 1.0081 1.0121 1.0163 1.0204 1.0246 1.0288 1.0331 1.0373 1.0417 1.0460 1.0504 1.0549 1.0593 1.0638 1.0684 1.0730 1.0776 1.0823 1.0870 1.0917 1.0965 1.1013 1.1062 1.1111 1.1161 1.1211 1.1261 1.1312 1.1364 1.1416 1.1468 1.1521 1.1574 1.1628 1.1682 1.1737 1.1792 1.1848 1.1905 1.1962 1.2019 1.2077 1.2136 1.2195 1.2255 1.2315 1.2376 1.2438 TC0R 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 TC0OUT (KHz) 1.2500 1.2563 1.2626 1.2690 1.2755 1.2821 1.2887 1.2953 1.3021 1.3089 1.3158 1.3228 1.3298 1.3369 1.3441 1.3514 1.3587 1.3661 1.3736 1.3812 1.3889 1.3966 1.4045 1.4124 1.4205 1.4286 1.4368 1.4451 1.4535 1.4620 1.4706 1.4793 1.4881 1.4970 1.5060 1.5152 1.5244 1.5337 1.5432 1.5528 1.5625 1.5723 1.5823 1.5924 1.6026 1.6129 1.6234 1.6340 1.6447 1.6556 1.6667 1.6779 1.6892 1.7007 1.7123 1.7241 SONiX TECHNOLOGY CO., LTD TC0R 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 TC0OUT (KHz) 1.7361 1.7483 1.7606 1.7730 1.7857 1.7986 1.8116 1.8248 1.8382 1.8519 1.8657 1.8797 1.8939 1.9084 1.9231 1.9380 1.9531 1.9685 1.9841 2.0000 2.0161 2.0325 2.0492 2.0661 2.0833 2.1008 2.1186 2.1368 2.1552 2.1739 2.1930 2.2124 2.2321 2.2523 2.2727 2.2936 2.3148 2.3364 2.3585 2.3810 2.4038 2.4272 2.4510 2.4752 2.5000 2.5253 2.5510 2.5773 2.6042 2.6316 2.6596 2.6882 2.7174 2.7473 2.7778 2.8090 Page 60 TC0R 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 TC0OUT (KHz) 2.8409 2.8736 2.9070 2.9412 2.9762 3.0120 3.0488 3.0864 3.1250 3.1646 3.2051 3.2468 3.2895 3.3333 3.3784 3.4247 3.4722 3.5211 3.5714 3.6232 3.6765 3.7313 3.7879 3.8462 3.9063 3.9683 4.0323 4.0984 4.1667 4.2373 4.3103 4.3860 4.4643 4.5455 4.6296 4.7170 4.8077 4.9020 5.0000 5.1020 5.2083 5.3191 5.4348 5.5556 5.6818 5.8140 5.9524 6.0976 6.2500 6.4103 6.5789 6.7568 6.9444 7.1429 7.3529 7.5758 TC0R 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 TC0OUT (KHz) 7.8125 8.0645 8.3333 8.6207 8.9286 9.2593 9.6154 10.0000 10.4167 10.8696 11.3636 11.9048 12.5000 13.1579 13.8889 14.7059 15.6250 16.6667 17.8571 19.2308 20.8333 22.7273 25.0000 27.7778 31.2500 35.7143 41.6667 50.0000 62.5000 83.3333 125.0000 250.0000 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.5 PWM FUNCTION DESCRIPTION 8.5.1 OVERVIEW PWM function is generated by TC0 timer counter and output the PWM signal to PWM0OUT pin (P5.4). The 8-bit counter counts modulus 256, 64, 32, 16 controlled by ALOAD0, TC0OUT bits. The value of the 8-bit counter is compared to the contents of the reference register (TC0R). When the reference register value (TC0R) is equal to the counter value (TC0C), the PWM output goes low. When the counter reaches zero, the PWM output is forced high. The low-to-high ratio (duty) of the PWM0 output is TC0R/256, 64, 32, 16. PWM output can be held at low level by continuously loading the reference register with 00H. Under PWM operating, to change the PWM’s duty cycle is to modify the TC0R. ALOAD0 TC0OUT PWM duty range 0 0 1 1 0 1 0 1 TC0C valid value TC0R valid bits value 0/256~255/256 0/64~63/64 0/32~31/32 0/16~15/16 0x00~0xFF 0x00~0x3F 0x00~0x1F 0x00~0x0F 0x00~0xFF 0x00~0x3F 0x00~0x1F 0x00~0x0F MAX. PWM Frequency (Fcpu = 4MHz) 7.8125K 31.25K 62.5K 125K Remark Overflow per 256 count Overflow per 64 count Overflow per 32 count Overflow per 16 count The Output duty of PWM with different TC0R. Duty range is from 0/256~255/256. 0 1 ..... 128 ..... 254 255 0 1 ..... 128 ..... 254 255 TC0/TC1 Clock TC0R/TC1R = 00H Low High TC0R/TC1R = 01H Low High TC0R/TC1R = 80H Low High TC0R/TC1R = FFH Low SONiX TECHNOLOGY CO., LTD Page 61 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 8.5.2 PWM PROGRAM DESCRIPTION Example: Setup PWM0 output from TC0 to PWM0OUT (P5.4). The external high-speed oscillator clock is 4MHz. Fcpu = Fosc/4. The duty of PWM is 30/256. The PWM frequency is about 1KHz. The PWM clock source is from external oscillator clock. TC0 rate is Fcpu/4. The TC0RATE2~TC0RATE1 = 110. TC0C = TC0R = 30. MOV B0MOV A,#01100000B TC0M,A MOV B0MOV B0MOV A,#30 TC0C,A TC0R,A ; Set the PWM duty to 30/256 B0BCLR B0BCLR B0BSET B0BSET FTC0OUT FALOAD0 FPWM0OUT FTC0ENB ; Set duty range as 0/256~255/256. ; Set the TC0 rate to Fcpu/4 ; Enable PWM0 output to P5.4 and disable P5.4 I/O function ; Enable TC0 timer Note: The TC0R is write-only registers. Don’t process them using INCMS, DECMS instructions. Example: Modify TC0R registers’ value. MOV B0MOV A, #30H TC0R, A ; Input a number using B0MOV instruction. INCMS B0MOV B0MOV BUF0 A, BUF0 TC0R, BUF0 ; Get the new TC0R value from the BUF0 buffer defined by ; programming. Note: That is better to set the TC0C and TC0R value together when PWM0 duty modified. It protects the PWM0 signal no glitch as PWM0 duty changing. Note: The PWM can work with interrupt request. SONiX TECHNOLOGY CO., LTD Page 62 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 9 Field M O V E A R I T H M E T I C L O G I C P R O C E S S B R A N C H INSTRUCTION SET TABLE Mnemonic MOV A,M MOV M,A B0MOV A,M B0MOV M,A MOV A,I B0MOV M,I XCH A,M B0XCH A,M MOVC Description A←M M←A A ← M (bank 0) M (bank 0) ← A A←I M ← I, (M = only for Working registers R, Y, Z , RBANK & PFLAG) A ←→M A ←→M (bank 0) R, A ← ROM [Y,Z] C - DC - Z √ √ - Cycle 1 1 1 1 1 1 1+N 1+N 2 ADC ADC ADD ADD B0ADD ADD SBC SBC SUB SUB SUB DAA A,M M,A A,M M,A M,A A,I A,M M,A A,M M,A A,I A ← A + M + C, if occur carry, then C=1, else C=0 M ← A + M + C, if occur carry, then C=1, else C=0 A ← A + M, if occur carry, then C=1, else C=0 M ← A + M, if occur carry, then C=1, else C=0 M (bank 0) ← M (bank 0) + A, if occur carry, then C=1, else C=0 A ← A + I, if occur carry, then C=1, else C=0 A ← A - M - /C, if occur borrow, then C=0, else C=1 M ← A - M - /C, if occur borrow, then C=0, else C=1 A ← A - M, if occur borrow, then C=0, else C=1 M ← A - M, if occur borrow, then C=0, else C=1 A ← A - I, if occur borrow, then C=0, else C=1 To adjust ACC’s data format from HEX to DEC. √ √ √ √ √ √ √ √ √ √ √ - √ √ √ √ √ √ √ √ √ √ √ - 1 1+N 1 1+N 1+N 1 1 1+N 1 1+N 1 1 AND AND AND OR OR OR XOR XOR XOR A,M M,A A,I A,M M,A A,I A,M M,A A,I A ← A and M M ← A and M A ← A and I A ← A or M M ← A or M A ← A or I A ← A xor M M ← A xor M A ← A xor I √ √ √ √ √ √ √ √ √ √ √ √ - - 1 1+N 1 1 1+N 1 1 1+N 1 SWAP SWAPM RRC RRCM RLC RLCM CLR BCLR BSET B0BCLR B0BSET M M M M M M M M.b M.b M.b M.b A (b3~b0, b7~b4) ←M(b7~b4, b3~b0) M(b3~b0, b7~b4) ← M(b7~b4, b3~b0) A ← RRC M M ← RRC M A ← RLC M M ← RLC M M←0 M.b ← 0 M.b ← 1 M(bank 0).b ← 0 M(bank 0).b ← 1 √ √ √ √ - - √ √ √ √ √ √ √ √ √ - CMPRS CMPRS INCS INCMS DECS DECMS BTS0 BTS1 B0BTS0 B0BTS1 JMP CALL A,I A,M M M M M M.b M.b M.b M.b d d ZF,C ← A - I, If A = I, then skip next instruction ZF,C ← A – M, If A = M, then skip next instruction A ← M + 1, If A = 0, then skip next instruction M ← M + 1, If M = 0, then skip next instruction A ← M - 1, If A = 0, then skip next instruction M ← M - 1, If M = 0, then skip next instruction If M.b = 0, then skip next instruction If M.b = 1, then skip next instruction If M(bank 0).b = 0, then skip next instruction If M(bank 0).b = 1, then skip next instruction PC15/14 ← RomPages1/0, PC13~PC0 ← d Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d √ √ - - √ √ - 1+S 1+S 1+ S 1+N+S 1+ S 1+N+S 1+S 1+S 1+S 1+S 2 2 - - 2 2 2 1 M RET PC ← Stack I RETI PC ← Stack, and to enable global interrupt S RETLW PC ← Stack, and to load a value by PC+A C NOP No operation Note: “M” is register and memory. “S” is instruction cycle of next instruction. If “M” is system registers then “N” = 0, otherwise “N” = 1. SONiX TECHNOLOGY CO., LTD Page 63 1 1+N 1 1+N 1 1+N 1 1 1 1 1 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 10 ELECTRICAL CHARACTERISTIC 10.1 ABSOLUTE MAXIMUM RATING Supply voltage (Vdd)………………………………………………………………………………………………… - 0.3V ~ 6.0V Input in voltage (Vin)…………………………………………………………………………………… Vss – 0.2V ~ Vdd + 0.2V Operating ambient temperature (Topr)………………………………………………………………………… -20°C ~ + 70°C Storage ambient temperature (Tstor) ………………………………………………………………………… –30°C ~ + 125°C Power consumption(Pc)…………………………………………………………………………………………………… 500mW 10.2 ELECTRICAL CHARACTERISTIC (All of voltages refer to Vss, Vdd = 5.0V, fosc = 3.579545 MHz, ambient temperature is 25°C unless otherwise note.) PARAMETER SYM. DESCRIPTION Operating voltage Vdd OTP programming voltage RAM Data Retention voltage Internal POR Vpp Vdr Vpor ViL1 ViL2 ViL3 ViL4 ViH1 ViH2 Input Low Voltage Input High Voltage Reset pin leakage current I/O port pull-up resistor I/O port input leakage current All Port source current sink current INTn trigger pulse width ViH3 ViH4 Ilekg Rup Ilekg IoH IoL Tint0 Idd1 Idd2 Supply Current Idd3 Idd4 LVD detect level VLVD MIN. TYP. MAX. 2.4 Vss Vss Vss Vss 0.7Vdd 0.8Vdd 5.0 6.0 12.5 1.5 0.05 - 5.5 0.3Vdd 0.2Vdd 0.2Vdd 0.3Vdd Vdd Vdd Reset pin ; Xin ( in RC mode ) 0.9Vdd Xin ( in X’tal mode ) 0.7Vdd Vin = Vdd Vin = Vss , Vdd = 5V Pull-up resistor disable, Vin = Vdd Vop = Vdd – 0.5V Vop = Vss + 0.5V INT0 interrupt request pulse width 2/fcpu Vdd= 5V 4Mhz Run Mode, no loading Vdd= 3V 4Mhz (Low Power Disable) Vdd= 3V 32768Hz Vdd= 5V Internal RC mode (16KHz) Vdd= 3V Vdd= 5V Sleep Mode Vdd= 3V Vdd= 5V Green Mode High Clock Vdd= 3V Vdd= 5V Green Mode Low Clock Vdd= 3V Low voltage detect level - 100 15 15 2.5 1 Vdd Vdd 1 1 - cycle mA mA 25 - uA 25 5 0.50 0.30 0.50 0.15 15 3 1.8 - uA uA uA uA mA mA uA uA V Normal mode, Vpp = Vdd Programming mode, Vpp = 12.5V OTP programming voltage Vdd rise rate to ensure internal power-on reset All input pins except those specified below Input with Schmitt trigger buffer Reset pin ; Xin ( in RC mode ) Xin ( in X’tal mode ) All input pins except those specified below Input with Schmitt trigger buffer SONiX TECHNOLOGY CO., LTD Page 64 - UNIT V V V V/ms V V V V V V V V uA KΩ uA mA Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 11 PACKAGE INFORMATION 11.1 P-DIP 14 PIN SYMBOLS MIN NOR MAX MIN (inch) A A1 A2 D E E1 L 0.015 0.125 0.735 MAX (mm) 0.210 0.135 0.775 0.381 3.175 18.669 0.245 0.115 0.130 0.075 0.300 0.250 0.130 0.255 0.150 eB 0.335 0.355 θ° 0° 7° SONiX TECHNOLOGY CO., LTD NOR 5.334 3.429 19.685 6.223 2.921 3.302 1.905 7.62 6.35 3.302 0.375 8.509 9.017 9.525 15° 0° 7° 15° Page 65 6.477 3.810 Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 11.2 SOP 14 PIN SYMBOLS A A1 B C D E e H L θ° MIN NOR MAX MIN (inch) 0.058 0.004 0.013 0.0075 0.336 0.150 0.228 0.015 0° SONiX TECHNOLOGY CO., LTD 0.064 0.016 0.008 0.341 0.154 0.050 0.236 0.025 - NOR MAX (mm) 0.068 0.010 0.020 0.0098 0.344 0.157 0.244 0.050 8° Page 66 1.4732 0.1016 0.3302 0.1905 8.5344 3.81 5.7912 0.381 0° 1.6256 0.4064 0.2032 8.6614 3.9116 1.27 5.9944 0.635 - 1.7272 0.254 0.508 0.2490 8.7376 3.9878 6.1976 1.27 8° Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller 11.3 SSOP 16 PIN SYMBOLS A A1 A2 b b1 c c1 D E1 E L e θ° MIN NOR MAX MIN (inch) 0.053 0.004 0.008 0.008 0.007 0.007 0.189 0.150 0.228 0.016 0° 0.025 BASIC - SONiX TECHNOLOGY CO., LTD NOR MAX (mm) 0.069 0.010 0.059 0.012 0.011 0.010 0.009 0.197 0.157 0.244 0.050 1.3462 0.1016 0.2032 0.2032 0.1778 0.1778 4.8006 3.81 5.7912 0.4064 8° 0° Page 67 0.635 BASIC - 1.7526 0.254 1.4986 0.3048 0.2794 0.254 0.2286 5.0038 3.9878 6.1976 1.27 8° Preliminary Version 0.2 SN8P2501A 8-Bit Micro-Controller SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part. Main Office: Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C. Tel: 886-3-551 0520 Fax: 886-3-551 0523 Taipei Office: Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C. Tel: 886-2-2759 1980 Fax: 886-2-2759 8180 Hong Kong Office: Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon. Tel: 852-2723 8086 Fax: 852-2723 9179 Technical Support by Email: [email protected] SONiX TECHNOLOGY CO., LTD Page 68 Preliminary Version 0.2