SONIX SN8P1700A

Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
*-
SN8P1700A Series
USER’S MANUAL
Preliminary
SN8P1702A
SN8P1703A
SONiX 8-Bit Micro-Controller
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not
assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product
could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or
unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against
all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of
the part.
SONiX TECHNOLOGY CO., LTD
Page 1
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
AMENDMENT HISTORY
Version
Date
Description
VER 0.1
Jul. 2003
V1.0 Preliminary Version
VER 0.2
Jul. 2003
Change watchdog overflow table
VER 0.3
Jul. 2003
1. Modify selection table
2. DC current chars. Change
3. Feature change
4. Change SN8P1703 part number to SN8P1703A
5. Code option table has been relocated after pin description section.
6. Modify QTP approval sheet
7. Change Register description.
8. Add LVD typical value=1.8V in Elec. Char.
VER 0.4
Aug. 2003
9. Add “Noise Filter” code option
Sep. 2003
1. Add SN8P1702A SSOP20 for Mask Mass production.
2. Add TC1 Timer in Update table.
3. Modify Chap. 8 table/figure no.
4. Modify TC0/TC1 timer description and table.
5. Modify PWM description and table.
6. Modify electrical characteristic table
VER 0.5
Sep. 2003
1. Modify ADC convert time table
2. Modify the description of PEDGE register.
3. Modify the description of INTRQ register.
3. Remove approval sheet.
4. Separate the pin description section of SN8P1702A and SN8P1703A.
5. Remove PCB layout section
6. Add P-DIP 20 and Sop 20 package information.
7. Add SN8A1702B and SN8A1703A related description.
SONiX TECHNOLOGY CO., LTD
Page 2
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Table of Contents
AMENDMENT HISTORY .............................................................................................................. 2
1
PRODUCT OVERVIEW ..................................................................................................... 8
GENERAL DESCRIPTION ........................................................................................................... 8
FEATURES SELECTION TABLE ................................................................................................. 8
MASK/OTP RELATIVE TABLE .......................................................................................................... 8
ADC GRADE TABLE .................................................................................................................... 8
UPGRADE FROM SN8P1702 (OLD VERSION OTP) ....................................................................... 9
SN8P1702A/SN8P1703A FEATURES ....................................................................................... 10
SYSTEM BLOCK DIAGRAM ...................................................................................................... 11
PIN ASSIGNMENT ..................................................................................................................... 12
SN8P1702A Pin Assignment................................................................................................... 12
SN8P1703A Pin Assignment................................................................................................... 14
PIN DESCRIPTIONS .................................................................................................................. 15
PIN CIRCUIT DIAGRAMS .......................................................................................................... 15
2
3
CODE OPTION TABLE ................................................................................................... 16
ADDRESS SPACES ........................................................................................................ 17
PROGRAM MEMORY (ROM)..................................................................................................... 17
OVERVIEW ............................................................................................................................. 17
USER RESET VECTOR ADDRESS (0000H) ......................................................................... 18
INTERRUPT VECTOR ADDRESS (0008H)............................................................................ 18
CHECKSUM CALCULATION.................................................................................................. 20
GENERAL PURPOSE PROGRAM MEMORY AREA ............................................................. 21
LOOKUP TABLE DESCRIPTION............................................................................................ 21
JUMP TABLE DESCRIPTION................................................................................................. 23
DATA MEMORY (RAM) .............................................................................................................. 25
SONiX TECHNOLOGY CO., LTD
Page 3
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
OVERVIEW ............................................................................................................................. 25
WORKING REGISTERS............................................................................................................. 26
Y, Z REGISTERS .................................................................................................................... 26
R REGISTERS ........................................................................................................................ 27
PROGRAM FLAG ....................................................................................................................... 27
CARRY FLAG ......................................................................................................................... 27
DECIMAL CARRY FLAG......................................................................................................... 27
ZERO FLAG ............................................................................................................................ 27
ACCUMULATOR ........................................................................................................................ 28
STACK OPERATIONS................................................................................................................ 29
OVERVIEW ............................................................................................................................. 29
STACK REGISTERS............................................................................................................... 30
STACK OPERATION EXAMPLE ............................................................................................ 31
PROGRAM COUNTER............................................................................................................... 32
ONE ADDRESS SKIPPING .................................................................................................... 33
MULTI-ADDRESS JUMPING .................................................................................................. 34
4
ADDRESSING MODE...................................................................................................... 35
OVERVIEW................................................................................................................................. 35
IMMEDIATE ADDRESSING MODE ........................................................................................ 35
DIRECTLY ADDRESSING MODE .......................................................................................... 35
INDIRECTLY ADDRESSING MODE....................................................................................... 35
TO ACCESS DATA in RAM BANK 0....................................................................................... 36
5
SYSTEM REGISTER ....................................................................................................... 37
OVERVIEW................................................................................................................................. 37
SYSTEM REGISTER ARRANGEMENT (BANK 0) ..................................................................... 37
BYTES of SYSTEM REGISTER.............................................................................................. 37
BITS of SYSTEM REGISTER ................................................................................................. 38
6
POWER ON RESET ........................................................................................................ 39
SONiX TECHNOLOGY CO., LTD
Page 4
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
OVERVIEW................................................................................................................................. 39
EXTERNAL RESET DESCRIPTION........................................................................................... 40
7
OSCILLATORS................................................................................................................ 42
OVERVIEW................................................................................................................................. 42
CLOCK BLOCK DIAGRAM ..................................................................................................... 42
OSCM REGISTER DESCRIPTION ......................................................................................... 43
EXTERNAL HIGH-SPEED OSCILLATOR............................................................................... 44
OSCILLATOR MODE CODE OPTION .................................................................................... 44
OSCILLATOR DEVIDE BY 2 CODE OPTION......................................................................... 44
OSCILLATOR SAFE GUARD CODE OPTION ....................................................................... 44
SYSTEM OSCILLATOR CIRCUITS ........................................................................................ 45
External RC Oscillator Frequency Measurement .................................................................... 46
INTERNAL LOW-SPEED OSCILLATOR .................................................................................... 47
SYSTEM MODE DESCRIPTION ................................................................................................ 48
OVERVIEW ............................................................................................................................. 48
NORMAL MODE ..................................................................................................................... 48
SLOW MODE .......................................................................................................................... 48
GREEN MODE........................................................................................................................ 48
POWER DOWN MODE........................................................................................................... 48
SYSTEM MODE CONTROL ....................................................................................................... 49
SYSTEM MODE BLOCK DIAGRAM ....................................................................................... 49
SYSTEM MODE SWITCHING ................................................................................................ 50
WAKEUP TIME........................................................................................................................... 51
OVERVIEW ............................................................................................................................. 51
HARDWARE WAKEUP ........................................................................................................... 51
EXTERNAL WAKEUP TRIGGER CONTROL ......................................................................... 52
8
TIMERS COUNTERS....................................................................................................... 53
WATCHDOG TIMER (WDT) ....................................................................................................... 53
T0M REGISTER ............................................................................................................................. 54
TIMER COUNTER 0 (TC0) ......................................................................................................... 55
OVERVIEW ............................................................................................................................. 55
TC0M MODE REGISTER........................................................................................................ 56
SONiX TECHNOLOGY CO., LTD
Page 5
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0C COUNTING REGISTER................................................................................................ 57
TC0 Overflow Time ................................................................................................................. 57
TC0R AUTO-LOAD REGISTER.............................................................................................. 60
TC0 TIMER COUNTER OPERATION SEQUENCE................................................................ 61
TC0 CLOCK FREQUENCY OUTPUT (BUZZER) ................................................................... 63
TC0OUT FREQUENCY TABLE.................................................................................................. 64
TIMER COUNTER 1 (TC1) ......................................................................................................... 66
OVERVIEW ............................................................................................................................. 66
TC1M MODE REGISTER........................................................................................................ 67
TC1C COUNTING REGISTER................................................................................................ 68
TC1 Overflow Time ................................................................................................................. 68
TC1R AUTO-LOAD REGISTER.............................................................................................. 71
TC1 TIMER COUNTER OPERATION SEQUENCE................................................................ 72
TC1 CLOCK FREQUENCY OUTPUT (BUZZER) ................................................................... 74
PWM FUNCTION DESCRIPTION .............................................................................................. 75
OVERVIEW ............................................................................................................................. 75
PWM PROGRAM DESCRIPTION........................................................................................... 78
9
INTERRUPT..................................................................................................................... 79
OVERVIEW................................................................................................................................. 79
INTEN INTERRUPT ENABLE REGISTER ................................................................................. 80
INTRQ INTERRUPT REQUEST REGISTER.............................................................................. 80
INTERRUPT OPERATION DESCRIPTION ................................................................................ 81
GIE GLOBAL INTERRUPT OPERATION ............................................................................... 81
INT0 (P0.0) INTERRUPT OPERATION .................................................................................. 82
TC0 INTERRUPT OPERATION .............................................................................................. 83
TC1 INTERRUPT OPERATION .............................................................................................. 84
MULTI-INTERRUPT OPERATION.......................................................................................... 85
10
I/O PORT............................................................................................................... 87
OVERVIEW................................................................................................................................. 87
I/O PORT FUNCTION TABLE .................................................................................................... 88
PULL-UP RESISTERS................................................................................................................ 89
I/O PORT DATA REGISTER ...................................................................................................... 92
SONiX TECHNOLOGY CO., LTD
Page 6
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
11
4-CHANNEL ANALOG TO DIGITAL CONVERTER............................................. 94
OVERVIEW................................................................................................................................. 94
ADM REGISTER......................................................................................................................... 95
ADR REGISTERS....................................................................................................................... 95
ADB REGISTERS....................................................................................................................... 96
P4CON REGISTERS .................................................................................................................. 97
ADC CONVERTING TIME .......................................................................................................... 98
ADC CIRCUIT............................................................................................................................. 99
12
CODING ISSUE .................................................................................................. 100
TEMPLATE CODE.................................................................................................................... 100
PROGRAM CHECK LIST ......................................................................................................... 104
13
14
INSTRUCTION SET TABLE ............................................................................... 105
ELECTRICAL CHARACTERISTIC ..................................................................... 106
ABSOLUTE MAXIMUM RATING .............................................................................................. 106
STANDARD ELECTRICAL CHARACTERISTIC....................................................................... 106
15
PACKAGE INFORMATION ................................................................................ 107
P-DIP18 PIN ............................................................................................................................. 107
SOP18 PIN ............................................................................................................................... 108
P-DIP 20 PIN ............................................................................................................................ 109
SOP 20 PIN .............................................................................................................................. 110
SSOP20 PIN ............................................................................................................................. 111
SONiX TECHNOLOGY CO., LTD
Page 7
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
1 PRODUCT OVERVIEW
GENERAL DESCRIPTION
The SN8P1702A/SN8P1703A is a series of 8-bit micro-controller. This chip is utilized with CMOS technology
fabrication and featured with low power consumption and high performance by its unique electronic structure.
This chip is designed with the excellent IC structure including the large program memory OTP ROM, the massive data
memory RAM, two 8-bit timer counters (TC0, TC1), a watchdog timer, three interrupt sources (TC0, TC1, INT0), an
4-channel ADC converter with 8-bit/12-bit resolution, two channels high speed PWM output (PWM0, PWM1), two
channels buzzer output (BZ0, BZ1) and 8-level stack buffers.
Besides, the user can choose desired oscillator configurations for the controller. There are four oscillator configurations
to select for generating system clock, including High/Low Speed crystal, ceramic resonator or cost-saving RC. This
series also includes an internal RC oscillator for slow mode controlled by programming.
FEATURES SELECTION TABLE
CHIP
Timer
ROM RAM Stack
I/O AVref ADC
T0 TC0 TC1
SN8P1702A 1K*16 128
8
SN8P1703A 1K*16 128
PWM
Wakeup
Buzzer
Pin no.
Package
-
V
V
12
-
4ch
2
3
DIP18/SOP18/SSOP20
-
V
V
13
V
4ch
2
3
DIP20/SOP20/SSOP20
Table 1-1. Selection Table of SN8P1702A/SN8P1703A
MASK/OTP Relative Table
MASK Part Number Package Form
OTP Chip for Verification
Assembler Declaration
SN8A1702A
DIP18/SOP18 /SSOP20 SN8P1702A
CHIP SN8P1702A
SN8A1702B
DIP18/SOP18 /SSOP20 SN8P1702A
CHIP SN8P1702AOTP
SN8A1703A
DIP20/SOP20 /SSOP20 SN8P1703A
CHIP SN8P1703A
ADC GRADE TABLE
CHIP
SN8P1702A
SN8P1703A
SN8P1702A-12
SN8P1703A-12
PARAMETER
MIN
MAX
UNITS
12
Bits
12
Bits
Differential No linearity (DNL)
16
LSB
Resolution
12
Bits
12
Bits
4
LSB
Resolution
No Mission Code
8
No Mission Code
10
Differential No linearity (DNL)
Table 1-2. ADC Grade Table
SONiX TECHNOLOGY CO., LTD
Page 8
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
UPGRADE FROM SN8P1702 (Old version OTP)
Chip
SN8P1702
Assembly Declaration CHIP SN8P1702
SN8P1702A
SN8P1702A
SN8P1703A
CHIP SN8P1702A
CHIP SN8P1702AOTP
CHIP SN8P1703A
Standby current (3V)
3uA
< 1uA
< 1uA
< 1uA
4MHz Operating (3V)
1.5mA
< 1mA
< 1mA
< 1mA
4MHz Operating (5V)
7mA
< 3mA
< 3mA
< 3mA
Green Mode
-
Yes
Yes
Yes
P0.0 Interrupt Edge
Falling
Falling/Rising/Both
Falling/Rising/Both
Falling/Rising/Both
P1 wake up
Low Level
Level change
Level change
Level change
AVREFH
NO
Only SSOP20
Only SSOP20
Yes
ADC Channel
4
4
4
4
P4CON register
-
-
Yes
Yes
RAM size
64
64
128
128
GPIO
12
12
12
13
TC1 Timer
-
-
Yes
Yes
Fast PWM
-
-
Yes
Yes
Pull-up Resistor
By Port
By Port
By Pin
By Pin
Pull-up Register
@SET_PUR
@SET_PUR
PnUR
PnUR
Yes
Yes
Yes
No
High Clock
High Clock
High Clock
Internal RC
High Clock
Internal RC
-
-
Yes
Yes
~70ms
~200ms
~200ms
~200ms
SN8A1702A
SN8A1702A
SN8A1702B
SN8A1703A
SN8P1702 Pin
Compatible
WDT clock source
Internal RC always ON
and WDT clock source
fixed at internal RC
Power On Delay
at 4MHz/3V
MASK Type
Package
PDIP18/SOP18 PDIP18/SOP18/SSOP20 PDIP18/SOP18/SSOP20 PDIP20/SOP20/SSOP20
Notice: The SN8P1702 is not recommended for the new design.
SONiX TECHNOLOGY CO., LTD
Page 9
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SN8P1702A/SN8P1703A FEATURES
♦
Memory configuration
OTP ROM size: 1K * 16 bits.
RAM size: 128 * 8 bits.
♦
Three interrupt sources
Two internal interrupts: TC0, TC1
One external interrupts: INT0.
♦
I/O pin configuration
Input only: P0
Bi-directional: P1, P4, P5
Wakeup: P0, P1
Pull-up resisters: P0, P1, P4, P5
External interrupt: P0
P4 pins shared with ADC inputs.
♦
An 4-channel 12-bit ADC
♦
♦
Two channel high speed PWM output.
Two channel Buzzer output. (BZ0/BZ1)
♦
Dual clock system offers four operating modes
External high clock: RC type up to 10 MHz
External high clock: Crystal type up to 16 MHz
Internal low clock: RC type 16KHz(3V), 32KHz(5V)
Normal mode: Both high and internal low clock active
Slow mode: Internal low clock only
Green mode: Periodical wake-up by timer
Sleep mode: Both high and internal low clock stop
♦
Package (Chip form support)
SN8P1702A -- PDIP 18 / SOP 18 / SSOP20
SN8P1703A-- PDIP 20 / SOP 20 / SSOP20
♦
♦
♦
Two 8-bit timer counters. (TC0, TC1).
On chip watchdog timer.
Eight levels stack buffer.
♦
59 powerful instructions
Four clocks per instruction cycle
All of instructions are one word length.
Most of instructions are one cycle only.
All ROM area lookup table function (MOVC)
SONiX TECHNOLOGY CO., LTD
Page 10
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SYSTEM BLOCK DIAGRAM
H-OSC
PC
Internal
CLK
OTP
ROM
IR
FLA GS
Low Volt
Detector
Watch-Dog
Timer
TIMING GENERATOR
PWM0/Buzzer0
PWM0
PWM1/Buzzer1
PWM1
ALU
RAM
AIN0~AIN3
ACC
ADC
SYSTEM REGISTER
INTERRUPT
CONTROL
TIM ER & COUNTER
PORT 0
PORT 1
PORT 4
PORT 5
Figure 1-1.Simplified System Block Diagram
SONiX TECHNOLOGY CO., LTD
Page 11
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PIN ASSIGNMENT
Format Description:SN8P170XAY
Y = P > PDIP, S > SOP,X> SSOP
SN8P1702A Pin Assignment
OTP Type:
SN8P1702AS (SOP 18PIN) / SN8P1702AP (PDIP 18PIN)
Pin compatible to the MASK version (SN8A1702AS/SN8A1702AP)
P0.0/INT0
RST
P1.1
P1.0
VSS
P4.3/AIN3
P4.2/AIN2
P4.1/AIN1
P4.0/AIN0
1
U
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SN8P1702AP
SN8P1702AS
SN8P1702AX (SSOP 20PIN)
Pin compatible to the MASK version (SN8A1702AX)
VSS 1
U
20
VSS 2
19
P4.3/AIN2 3
18
P4.2/AIN1 4
17
P4.1/AIN1 5
16
P4.0/AIN0 6
15
AVREFH 7
14
VDD 8
13
P5.3/BZ1/PWM1 9
12
P5.2 10
11
SN8P1702AX
VDD
XIN
XOUT
P5.0
P5.1
P5.2
P5.3/BZ1/PWM1
P5.4/BZ0/PWM0
VDD
P1.0
P1.1
RST
P0.0/INT0
VDD
XIN
XOUT
P5.0
P5.1
P5.4/BZ0/PWM0
OLD Version OTP Type:
SN8P1702S (SOP 18PIN) / SN8P1702P (PDIP 18PIN)
P0.0/INT0
RST
P1.1
P1.0
VSS
P4.3/AIN3
P4.2/AIN2
P4.1/AIN1
P4.0/AIN0
1
U
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SN8P1702P
SN8P1702S
VDD/VPP
XIN
XOUT
P5.0
P5.1
P5.2
P5.3/BZ1/PWM1
P5.4/BZ0/PWM0
VDD
Notice: The SN8P1702 is not recommended for the new design.
SONiX TECHNOLOGY CO., LTD
Page 12
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
MASK Type:
SN8A1702AS (SOP 18PIN) / SN8A1702AP (PDIP 18PIN)
SN8A1702BS (SOP 18PIN) / SN8A1702BP (PDIP 18PIN)
P0.0/INT0
RST
P1.1
P1.0
VSS
P4.3/AIN3
P4.2/AIN2
P4.1/AIN1
P4.0/AIN0
1
U
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SN8A1702AP
SN8A1702AS
SN8A1702BP
SN8A1702BS
VDD
XIN
XOUT
P5.0
P5.1
P5.2
P5.3
P5.4/BZ0/PWM0
VDD
SN8A1702AX (SSOP 20PIN)
VSS 1
U
20
VSS 2
19
P4.3/AIN2 3
18
P4.2/AIN1 4
17
P4.1/AIN1 5
16
P4.0/AIN0 6
15
AVREFH 7
14
VDD 8
13
P5.3 9
12
P5.2 10
11
SN8A1702AX
SN8A1702BX
SONiX TECHNOLOGY CO., LTD
Page 13
P1.0
P1.1
RST
P0.0/INT0
VDD
XIN
XOUT
P5.0
P5.1
P5.4/BZ0/PWM0
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SN8P1703A Pin Assignment
OTP Type:
SN8P1703AS (SOP 20PIN) / SN8P1703AP (PDIP 20PIN) / SN8P1703AX (SSOP 20PIN)
P0.0/INT0 1
U
20
RST 2
19
P1.1 3
18
P1.0 4
17
VSS 5
16
P4.3/AIN3 6
15
P4.2/AIN2 7
14
P4.1/AIN1 8
13
P4.0/AIN0 9
12
AVREFH 10
11
SN8P1703AP
SN8P1703AS
SN8P1703AX
VDD
XIN
XOUT
P5.0
P5.1
P5.2
P5.3/BZ1/PWM1
P5.4/BZ0/PWM0
P5.5
VDD
MASK Type:
SN8A1703AS (SOP 20PIN) / SN8A1703AP (PDIP 20PIN) / SN8A1703AX (SSOP 20PIN)
P0.0/INT0 1
U
20
RST 2
19
P1.1 3
18
P1.0 4
17
VSS 5
16
P4.3/AIN3 6
15
P4.2/AIN2 7
14
P4.1/AIN1 8
13
P4.0/AIN0 9
12
AVREFH 10
11
SN8A1703AP
SN8A1703AS
SN8A1703AX
SONiX TECHNOLOGY CO., LTD
Page 14
VDD
XIN
XOUT
P5.0
P5.1
P5.2
P5.3/BZ1/PWM1
P5.4/BZ0/PWM0
P5.5
VDD
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PIN DESCRIPTIONS
PIN NAME
VDD, VSS
RST
XIN, XOUT
P0.0 / INT0
P1.0 ~ P1.1
P4.0 ~ P4.3
P5.0~P5.2, P5.5
TYPE
P
I
I, O
I
I/O
I/O
I/O
P5.3 / BZ1 / PWM1
I/O
P5.4 / BZ0 / PWM0
I/O
AVREFH
AIN0 ~ AIN3
I
I
DESCRIPTION
Power supply input pins for digital circuit.
System reset input pin. Schmitt trigger structure, active “low”, normal stay to “high”.
External oscillator pins. RC mode from XIN.
Port 0.0 and shared with INT0 trigger pin (Schmitt trigger) / Built-in pull-up resisters.
Port 1.0~Port 1.1 bi-direction pins / Built-in pull-up resisters.
Port 4.0~Port 4.3 bi-direction pins / Built-in pull-up resisters.
Port 5.0~Port 5.2, P5.5 bi-direction pins / Built-in pull-up resisters.
Port 5.3 bi-direction pin, TC1÷2 signal output pin for buzzer or PWM1 output pin.
Built-in pull-up resisters.
Port 5.4 bi-direction pin, TC0÷2 signal output pin for buzzer or PWM0 output pin.
Built-in pull-up resisters.
A/D converter high analog reference voltage.
Analog signal input pins for ADC converter.
Table 1-3.
Pin Description
PIN CIRCUIT DIAGRAMS
Port1, 4, 5 structure
Port0 structure
PUR
PUR
PnM
PnM
Pin
Pin
Latch
Int. bus
Int. bus
PnM
Figure 1-2. Pin Circuit Diagram
Note: All of the latch output circuits are push-pull structures.
SONiX TECHNOLOGY CO., LTD
Page 15
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
2 CODE OPTION TABLE
Code Option
High_Clk
High_Clk / 2
OSG
Watch_Dog
Security
TC0_Counter
TC1_Counter
Noise Filter
Low Power
INT_16K_RC
Content
RC
32K X’tal
12M X’tal
4M X’tal
Enable
Disable
Enable
Disable
Enable
Disable
Enable
Disable
8-bit
6-bit
5-bit
4-bit
8-bit
6-bit
5-bit
4-bit
Enable
Disable
Enable
Disable
Always ON
By_CPUM
Function Description
Low cost RC for external high clock oscillator
Low frequency, power saving crystal (e.g. 32.768K) for external high
clock oscillator
High speed crystal /resonator (e.g. 12M) for external high clock oscillator
Standard crystal /resonator (e.g. 3.58M) for external high clock oscillator
External high clock divided by two, Fosc = high clock / 2
Fosc = high clock
Enable Oscillator Safe Guard function
Disable Oscillator Safe Guard function
Enable Watch Dog function
Disable Watch Dog function
Enable ROM code Security function
Disable ROM code Security function
TC0 as 8-bit counter.
TC0 as 6-bit counter.
TC0 as 5-bit counter.
TC0 as 4-bit counter.
TC1 as 8-bit counter.
TC1 as 6-bit counter.
TC1 as 5-bit counter.
TC1 as 4-bit counter.
Enable Noise Filter function to enhance EMI performance
Disable Noise Filter function
Enable Low Power function to save Operating current
Disable Low Power function
Force Watch Dog Timer clock source come from INT 16K RC.
Also INT 16K RC never stop both in power down and green mode that
means Watch Dog Timer will always enable both in power down and
green mode.
Enable or Disable internal 16K(at 3V) RC clock by CPUM register
Table 2-1. Code Option Table of SN8P1702A/SN8P1703A
Notice:
In high noisy environment, enable “Noise Filter”, “OSG” and disable “Low Power” is strongly
recommended.
The side effect is to increase the lowest valid working voltage level if enable “Noise Filter” or
“OSG” or “Low Power” code option.
Enable “Low Power” option will reduce operating current except in 32K X’tal or slow mode.
If users select “32K X’tal” in “High_Clk” option, assembler will force “OSG” to be enabled.
If users select “RC” in “High_Clk” option, assembler will force “High_Clk / 2” to be enabled.
SONiX TECHNOLOGY CO., LTD
Page 16
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
3 ADDRESS SPACES
PROGRAM MEMORY (ROM)
OVERVIEW
ROM Maps for SN8P1702A/SN8P1703A devices provide 1K x 16-bit program memory. The SN8P1702A/SN8P1703A
program memory is able to fetch instructions through 12-bit wide PC (Program Counter) and can look up ROM data by
using ROM code registers (R, X, Y, Z). In standard configuration, the device’s 1,024 x 16-bit program memory has four
areas:
1-word reset vector addresses
1-word Interrupt vector addresses
5-words reserved area
1K words (SN8P1702)
All of the program memory is partitioned into three coding areas. The first area is located from 00H to 03H(The Reset
vector area), the second area is a reserved area 04H ~07H, the third area is for the interrupt vector and the user code
area from 0008H to 03FEH. The address 08H is the interrupt enter address point.
0000H
0001H
0002H
0003H
0004H
0005H
0006H
0007H
0008H
0009H
.
.
000FH
0010H
0011H
.
.
03FEH
03FFH
ROM
Reset vector
General purpose area
User reset vector
Jump to user start address
Jump to user start address
Jump to user start address
Reserved
Interrupt vector
User interrupt vector
User program
General purpose area
End of user program
Reserved
Figure 3-1. ROM Address Structure
SONiX TECHNOLOGY CO., LTD
Page 17
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
USER RESET VECTOR ADDRESS (0000H)
A 1-word vector address area is used to execute system reset. After power on reset or watchdog timer overflow reset,
then the chip will restart the program from address 0000h and all system registers will be set as default values. The
following example shows the way to define the reset vector in the program memory.
Example: After power on reset, external reset active or reset by watchdog timer overflow.
CHIP SN8P1702A
ORG
JMP
.
0
START
ORG
10H
START:
; 0000H
; Jump to user program address.
; 0001H ~ 0007H are reserved
; 0010H, The head of user program.
; User program
.
.
.
.
ENDP
; End of program
INTERRUPT VECTOR ADDRESS (0008H)
A 1-word vector address area is used to execute interrupt request. If any interrupt service is executed, the program
counter (PC) value is stored in stack buffer and points to 0008h of program memory to execute the vectored interrupt.
Users have to define the interrupt vector. The following example shows the way to define the interrupt vector in the
program memory.
Example 1: This demo program includes interrupt service routine and the user program is behind the
interrupt service routine.
CHIP SN8P1702A
ORG
JMP
.
0
START
; 0000H
; Jump to user program address.
; 0001H ~ 0007H are reserved
ORG
B0XCH
B0MOV
B0MOV
.
.
.
B0MOV
B0MOV
B0XCH
RETI
8
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Interrupt service routine
; B0XCH doesn’t change C, Z flag
A, PFLAGBUF
PFLAG, A
A, ACCBUF
START:
.
.
.
.
JMP
; Save PFLAG register in a buffer
; Restore PFLAG register from buffer
; B0XCH doesn’t change C, Z flag
; End of interrupt service routine
; The head of user program.
; User program
START
ENDP
SONiX TECHNOLOGY CO., LTD
; End of user program
; End of program
Page 18
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example 2: The demo program includes interrupt service routine and the address of interrupt service
routine is in a special address of general-purpose area.
CHIP SN8P1702A
ORG
JMP
.
0
START
ORG
JMP
08
MY_IRQ
ORG
10H
START:
.
.
.
.
JMP
; 0008H, Jump to interrupt service routine address
; 0010H, The head of user program.
; User program
START
MY_IRQ:
B0XCH
B0MOV
B0MOV
.
.
.
B0MOV
B0MOV
B0XCH
RETI
; 0000H
; Jump to user program address.
; 0001H ~ 0007H are reserved
A, ACCBUF
A, PFLAG
PFLAGBUF, A
A, PFLAGBUF
PFLAG, A
A, ACCBUF
ENDP
; End of user program
; The head of interrupt service routine
; B0XCH doesn’t change C, Z flag
; Save PFLAG register in a buffer
; Restore PFLAG register from buffer
; B0XCH doesn’t change C, Z flag
; End of interrupt service routine
; End of program
Remark: It is easy to get the rules of SONIX program from demo programs given above. These points are
as following.
1. The address 0000H is a “JMP” instruction to make the program go to general-purpose ROM area. The
0004H~0007H are reserved. Users have to skip 0004H~0007H addresses. It is very important and
necessary.
2. The interrupt service starts from 0008H. Users can put the whole interrupt service routine from 0008H
(Example1) or to put a “JMP” instruction in 0008H then place the interrupt service routine in other
general-purpose ROM area (Example2) to get more modularized coding style.
SONiX TECHNOLOGY CO., LTD
Page 19
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
CHECKSUM CALCULATION
The ROM addresses 0004H~0007H and last address are reserved area. User should avoid these addresses
(0004H~0007H and last address) when calculate the Checksum value.
Example:
The demo program shows
user’s code
MOV
B0MOV
MOV
B0MOV
CLR
CLR
how to avoid 0004H~0007H when calculated Checksum from 00H to the end of
A,#END_USER_CODE$L
END_ADDR1,A
; save low end address to end_addr1
A,#END_USER_CODE$M
END_ADDR2,A
; Save middle end address to end_addr2
Y
; Set Y to 00H
Z
; Set Z to 00H
@@:
CALL
MOVC
B0BSET
ADD
MOV
ADC
JMP
YZ_CHECK
; Call function of check yz value
;
; Clear C flag
; Add A to Data1
FC
DATA1,A
A,R
DATA2,A
END_CHECK
INCMS
JMP
JMP
Z
@B
Y_ADD_1
MOV
CMPRS
JMP
MOV
CMPRS
JMP
JMP
A,END_ADDR1
A,Z
AAA
A,END_ADDR2
A,Y
AAA
CHECKSUM_END
MOV
CMPRS
RET
MOV
CMPRS
RET
INCMS
INCMS
INCMS
INCMS
RET
A,#04H
A,Z
; Add R to Data2
; Check if the YZ address = the end of code
AAA:
;Z=Z+1
; If Z! = 00H calculate to next address
; If Z=00H increase Y
END_CHECK:
YZ_CHECK:
; Check if Z = low end address
; If Not jump to checksum calculate
; If Yes, check if Y = middle end address
; If Not jump to checksum calculate
; If Yes checksum calculated is done.
;check if YZ=0004H
;check if Z=04H
;if Not return to checksum calculate
A,#00H
A,Y
;if Yes, check if Y=00H
;if Not return to checksum calculate
;if Yes, increase 4 to Z
Z
Z
Z
Z
;set YZ=0008H then return
Y_ADD_1:
INCMS
NOP
JMP
Y
;increase Y
@B
;jump to checksum calculate
CHECKSUM_END:
……….
……….
END_USER_CODE:
SONiX TECHNOLOGY CO., LTD
;Label of program end
Page 20
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
GENERAL PURPOSE PROGRAM MEMORY AREA
The 992-word at ROM locations 0010H~0FEFH are used as general-purpose memory. The area is stored instruction’s
op-code and look-up table data. The SN8P1702A/SN8P1703A includes jump table function by using program counter
(PC) and look-up table function by using ROM code registers (R, X, Y, Z).
The boundary of program memory is separated by the high-byte program counter (PCH) every 100H. In jump table
function and look-up table function, the program counter can’t leap over the boundary by program counter
automatically. Users need to modify the PCH value to “PCH+1” as the PCL overflow (from 0FFH to 000H).
LOOKUP TABLE DESCRIPTION
In the ROM’s data lookup function, the X register is pointed to the highest 8-bit, Y register to the middle 8-bit and Z
register to the lowest 8-bit data of ROM address. After MOVC instruction is executed, the low-byte data of ROM then
will be stored in ACC and high-byte data stored in R register.
Example: To look up the ROM data located “TABLE1”.
@@:
TABLE1:
B0MOV
B0MOV
MOVC
Y, #TABLE1$M
Z, #TABLE1$L
INCMS
JMP
INCMS
NOP
Z
@F
Y
MOVC
.
DW
DW
DW
.
0035H
5105H
2012H
; To set lookup table1’s middle address
; To set lookup table1’s low address.
; To lookup data, R = 00H, ACC = 35H
;
; Increment the index address for next address
; Z+1
; Not overflow
; Z overflow (FFH
00),
Y=Y+1
; Not overflow
;
; To lookup data, R = 51H, ACC = 05H.
;
; To define a word (16 bits) data.
;“
;“
CAUSION: The Y register can't increase automatically if Z register cross boundary from 0xFF to 0x00.
Therefore, user must take care such situation to avoid loop-up table errors. If Z register overflow, Y
register must be added one. The following INC_YZ macro shows a simple method to process Y and Z
registers automatically.
Note: Because the program counter (PC) is only 12-bit, the X register is useless in the application. Users
can omit “B0MOV X, #TABLE1$H”. SONiX ICE support more larger program memory addressing
capability. So make sure X register is “0” to avoid unpredicted error in loop-up table operation.
Example: INC_YZ Macro
INC_YZ
MACRO
INCMS
JMP
INCMS
NOP
Z
@F
; Z+1
; Not overflow
Y
; Y+1
; Not overflow
@@:
ENDM
SONiX TECHNOLOGY CO., LTD
Page 21
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
The other coding style of loop-up table is to add Y or Z index register by accumulator. Be careful if carry happen. Refer
following example for detailed information:
Example: Increase Y and Z register by B0ADD/ADD instruction
B0MOV
B0MOV
Y, #TABLE1$M
Z, #TABLE1$L
; To set lookup table’s middle address.
; To set lookup table’s low address
B0MOV
B0ADD
A, BUF
Z, A
; Z = Z + BUF.
B0BTS1
JMP
INCMS
NOP
FC
GETDATA
Y
; Check the carry flag.
; FC = 0
; FC = 1. Y+1.
.
0035H
5105H
2012H
;
; To lookup data. If BUF = 0, data is 0x0035
; If BUF = 1, data is 0x5105
; If BUF = 2, data is 0x2012
.
.
;
; To define a word (16 bits) data.
;“
;“
GETDATA:
MOVC
TABLE1:
.
DW
DW
DW
SONiX TECHNOLOGY CO., LTD
Page 22
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
JUMP TABLE DESCRIPTION
The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC
value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. The
way is easy to make a multi-stage program.
When carry flag occurs after executing of “ADD PCL, A”, it will not affect PCH register. Users have to check if the jump
table leaps over the ROM page boundary or the listing file generated by SONIX assembly software. If the jump table
leaps over the ROM page boundary (e.g. from xxFFH to xx00H), move the jump table to the top of next program
memory page (xx00H). Here one page mean 256 words.
Example : If PC = 0323H (PCH = 03H、PCL = 23H)
ORG
0X0100
; The jump table is from the head of the ROM boundary
B0ADD
JMP
JMP
JMP
JMP
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
; PCL = PCL + ACC, the PCH can’t be changed.
; ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
In following example, the jump table starts at 0x00FD. When execute B0ADD PCL, A. If ACC = 0 or 1, the jump
table points to the right address. If the ACC is larger then 1 will cause error because PCH doesn't increase one
automatically. We can see the PCL = 0 when ACC = 2 but the PCH still keep in 0. The program counter (PC) will
point to a wrong address 0x0000 and crash system operation. It is important to check whether the jump table
crosses over the boundary (xxFFH to xx00H). A good coding style is to put the jump table at the start of ROM
boundary (e.g. 0100H).
Example: If “jump table” crosses over ROM boundary will cause errors.
ROM Address
.
.
.
0X00FD
0X00FE
0X00FF
0X0100
0X0101
.
.
.
.
.
B0ADD
JMP
JMP
JMP
JMP
.
.
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
; PCL = PCL + ACC, the PCH can’t be changed.
; ACC = 0
; ACC = 1
; ACC = 2
jump table cross boundary here
; ACC = 3
SONIX provides a macro for safe jump table function. This macro will check the ROM boundary and move the jump
table to the right position automatically. The side effect of this macro is maybe wasting some ROM size. Notice the
maximum jump table number for this macro is limited fewer than 254.
@JMP_A
MACRO
IF
JMP
ORG
ENDIF
ADD
ENDM
VAL
(($+1) !& 0XFF00) !!= (($+(VAL)) !& 0XFF00)
($ | 0XFF)
($ | 0XFF)
PCL, A
Note: “VAL” is the number of the jump table listing number.
SONiX TECHNOLOGY CO., LTD
Page 23
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: “@JMP_A” application in SONIX macro file called “MACRO3.H”.
B0MOV
@JMP_A
JMP
JMP
JMP
JMP
JMP
A, BUF0
5
A0POINT
A1POINT
A2POINT
A3POINT
A4POINT
; “BUF0” is from 0 to 4.
; The number of the jump table listing is five.
; If ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
; ACC = 4, jump to A4POINT
If the jump table position is from 00FDH to 0101H, the “@JMP_A” macro will make the jump table to start from 0100h.
SONiX TECHNOLOGY CO., LTD
Page 24
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
DATA MEMORY (RAM)
OVERVIEW
The SN8P1702A/SN8P1703A has internally built-in the data memory up to 256 bytes for storing the general-purpose
data.
128 * 8-bit general purpose area in bank 0
128 * 8-bit system special register area
The memory is separated into bank 0 and bank 1. The user can program RAM bank selection bits of RBANK register to
access all data in any of the two RAM banks. The bank 0, using the first 128-byte location assigned as
general-purpose area, and the remaining 128-byte in bank 0 as system register.
RAM location
BANK 0
000h
“
“
“
“
“
07Fh
080h
“
“
“
“
“
0FFh
000h~07Fh of Bank 0 = To store generalpurpose data (128 bytes).
General purpose area
080h~0FFh of Bank 0 = To store system
registers (128 bytes).
System register
End of bank 0 area
Figure 3-2. RAM Location
Note: The undefined locations of system register area are logic “high” after executing read instruction
“MOV A, M”.
SONiX TECHNOLOGY CO., LTD
Page 25
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
WORKING REGISTERS
The locations 82H to 84H of RAM bank 0 in data memory stores the specially defined registers such as register R, Z, Y,
respectively shown in the following table. These registers can use as the general purpose of working buffer and be
used to access ROM’s and RAM’s data. For instance, all of the ROM’s table can be looked-up with R, Y and Z
registers. The data of RAM memory can be indirectly accessed with Y and Z registers.
RAM
82H
R
R/W
83H
Z
R/W
84H
Y
R/W
Y, Z REGISTERS
The Y and Z registers are the 8-bit buffers. There are three major functions of these registers. First, Y and Z registers
can be used as working registers. Second, these two registers can be used as data pointers for @YZ register. Third,
the registers can be address ROM location in order to look-up ROM data.
Y initial value = 0000 0000
084H
Y
Bit 7
YBIT7
R/W
Bit 6
YBIT6
R/W
Bit 5
YBIT5
R/W
Bit 4
YBIT4
R/W
Bit 3
YBIT3
R/W
Bit 2
YBIT2
R/W
Bit 1
YBIT1
R/W
Bit 0
YBIT0
R/W
Bit 6
ZBIT6
R/W
Bit 5
ZBIT5
R/W
Bit 4
ZBIT4
R/W
Bit 3
ZBIT3
R/W
Bit 2
ZBIT2
R/W
Bit 1
ZBIT1
R/W
Bit 0
ZBIT0
R/W
Z initial value = 0000 0000
083H
Z
Bit 7
ZBIT7
R/W
The @YZ that is data point_1 index buffer located at address E7H in RAM bank 0. It employs Y and Z registers to
addressing RAM location in order to read/write data through ACC. The Lower 4-bit of Y register is pointed to RAM bank
number and Z register is pointed to RAM address number, respectively. The higher 4-bit data of Y register is truncated
in RAM indirectly access mode.
Example: If want to read a data from RAM address 25H of bank 1, it can use indirectly addressing mode to
access data as following.
B0MOV
B0MOV
B0MOV
Y, #01H
Z, #25H
A, @YZ
; To set RAM bank 1 for Y register
; To set location 25H for Z register
; To read a data into ACC
Example: Clear general-purpose data memory area of bank 1 using @YZ register.
MOV
B0MOV
MOV
B0MOV
A, #1
Y, A
A, #07FH
Z, A
CLR
@YZ
; Clear @YZ to be zero
DECMS
JMP
Z
CLR_YZ_BUF
; Y – 1, if Y= 0, finish the routine
; Not zero
CLR
@YZ
; Y = 1, bank 1
; Y = 7FH, the last address of the data memory area
CLR_YZ_BUF:
END_CLR:
; End of clear general purpose data memory area of bank 0
Note: Please consult the “LOOK-UP TABLE DESCRIPTION” about Y, Z register look-up table application.
SONiX TECHNOLOGY CO., LTD
Page 26
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
R REGISTERS
There are two major functions of the R register. First, R register can be used as working registers. Second, the R
registers can be store high-byte data of look-up ROM data. After MOVC instruction executed, the high-byte data of a
ROM address will be stored in R register and the low-byte data stored in ACC.
R initial value = 0000 0000
082H
R
Bit 7
RBIT7
R/W
Bit 6
RBIT6
R/W
Bit 5
RBIT5
R/W
Bit 4
RBIT4
R/W
Bit 3
RBIT3
R/W
Bit 2
RBIT2
R/W
Bit 1
RBIT1
R/W
Bit 0
RBIT0
R/W
Note: Please consult the “LOOK-UP TABLE DESCRIPTION” about R register look-up table application.
PROGRAM FLAG
The PFLAG includes carry flag (C), decimal carry flag (DC) and zero flag (Z). If the result of operating is zero or there is
carry, borrow occurrence, then these flags will be set to PFLAG register.
PFLAG initial value = xxxx x000
086H
PFLAG
Bit 7
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
C
R/W
Bit 1
DC
R/W
Bit 0
Z
R/W
CARRY FLAG
C = 1: If executed arithmetic addition with occurring carry signal or executed arithmetic subtraction without borrowing
signal or executed rotation instruction with shifting out logic “1”.
C = 0: If executed arithmetic addition without occurring carry signal or executed arithmetic subtraction with borrowing
signal or executed rotation instruction with shifting out logic “0”.
DECIMAL CARRY FLAG
DC = 1: If executed arithmetic addition with occurring carry signal from low nibble or executed arithmetic subtraction
without borrow signal from high nibble.
DC = 0: If executed arithmetic addition without occurring carry signal from low nibble or executed arithmetic subtraction
with borrow signal from high nibble.
ZERO FLAG
Z = 1: After operation, the content of ACC is zero.
Z = 0: After operation, the content of ACC is not zero.
SONiX TECHNOLOGY CO., LTD
Page 27
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ACCUMULATOR
The ACC is an 8-bits data register responsible for transferring or manipulating data between ALU and data memory. If
the result of operating is zero (Z) or there is carry (C or DC) occurrence, then these flags will be set to PFLAG register.
ACC is not in data memory (RAM), so ACC can’t be access by “B0MOV” instruction during the instant addressing
mode.
Example: Read and write ACC value.
; Read ACC data and store in BUF data memory
MOV
.
BUF, A
.
; Write a immediate data into ACC
MOV
.
A, #0FH
.
; Write ACC data from BUF data memory
MOV
.
A, BUF
.
The system doesn’t store ACC and PFLAG value as any interrupt service executed. ACC must be exchanged to
another data memory defined by users. Thus, once interrupt occurs, these data must be stored in the data memory
based on the user’s program as follows.
Example: ACC and working registers protection.
ACCBUF
EQU
00H
; ACCBUF is ACC data buffer in bank 0.
B0XCH
A, ACCBUF
; B0XCH doesn’t change C, Z flag
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF,A
; Store ACC value
; Store PFLAG value
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG,A
A, ACCBUF
; Re-load PFLAG value
; Re-load ACC
B0XCH
A, ACCBUF
; Re-load ACC
INT_SERVICE:
.
RETI
; Exit interrupt service vector
Notice: To save and re-load ACC data must be used “B0XCH” instruction, or the PLAGE value maybe
modified by ACC.
SONiX TECHNOLOGY CO., LTD
Page 28
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
STACK OPERATIONS
OVERVIEW
The stack buffer of SN8P1702A/SN8P1703A has 8-level high area and each level is 12-bits length. This buffer is
designed to save and restore program counter’s (PC) data when interrupt service is executed. The STKP register is a
pointer designed to point active level in order to save or restore data from stack buffer for kernel circuit. The STKnH
and STKnL are the 12-bit stack buffers to store program counter (PC) data.
STACK BUFFER
RET /
CALL /
RETI
interrupt
PCH
PCL
STKP = 7
STK0H
STK0L
STKP = 6
STK1H
STK1L
STKP = 5
STK2H
STK2L
STKP = 4
STKP + 1
STKP
STKP
STK3H
STK3L
STKP = 3
STK4H
STK4L
STKP = 2
STK5H
STK5L
STKP = 1
STK6H
STK6L
STKP = 0
STK7H
STK7L
STKP - 1
Figure 3-3 Stack-Save and Stack-Restore Operation
SONiX TECHNOLOGY CO., LTD
Page 29
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
STACK REGISTERS
The stack pointer (STKP) is a 4-bit register to store the address used to access the stack buffer, 12-bits data memory
(STKnH and STKnL) set aside for temporary storage of stack addresses.
The two stack operations are writing to the top of the stack (Stack-Save) and reading (Stack-Restore) from the top of
stack. Stack-Save operation decrements the STKP and the Stack-Restore operation increments one time. That makes
the STKP always points to the top address of stack buffer and writes the last program counter value (PC) into the stack
buffer.
The program counter (PC) value is stored in the stack buffer before a CALL instruction executed or during interrupt
service routine. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer
(STKnH and STKnL) are located in the system register area bank 0.
STKP (stack pointer) initial value = 0xxx 1111
0DFH
STKP
Bit 7
GIE
R/W
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
STKPB3
R/W
Bit 2
STKPB2
R/W
Bit 1
STKPB1
R/W
Bit 0
STKPB0
R/W
STKPBn: Stack pointer. (n = 0 ~ 3)
GIE: Global interrupt control bit. 0 = disable, 1 = enable. More detail information is in interrupt chapter.
Example: Stack pointer (STKP) reset routine.
MOV
B0MOV
A, #00001111B
STKP, A
STKn (stack buffer) initial value = xxxx xxxx xxxx xxxx, STKn = STKnH + STKnL (n = 7 ~ 0)
0F0H~0FFH
STKnH
Bit 7
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
-
Bit 1
SnPC9
R/W
Bit 0
SnPC8
R/W
0F0H~0FFH
STKnL
Bit 7
SnPC7
R/W
Bit 6
SnPC6
R/W
Bit 5
SnPC5
R/W
Bit 4
SnPC4
R/W
Bit 3
SnPC3
R/W
Bit 2
SnPC2
R/W
Bit 1
SnPC1
R/W
Bit 0
SnPC0
R/W
STKnH: Store PCH data as interrupt or call executing. The n expressed 0 ~7.
STKnL: Store PCL data as interrupt or call executing. The n expressed 0 ~7.
SONiX TECHNOLOGY CO., LTD
Page 30
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
STACK OPERATION EXAMPLE
The two kinds of Stack-Save operations to reference the stack pointer (STKP) and write the program counter contents
(PC) into the stack buffer are CALL instruction and interrupt service. Under each condition, the STKP is decremented
and points to the next available stack location. The stack buffer stores the program counter about the op-code address.
The Stack-Save operation is as following table.
Stack Level
0
1
2
3
4
5
6
7
>8
STKPB3
1
1
1
1
1
1
1
1
-
STKP Register
STKPB2
STKPB1
1
1
1
1
0
0
0
0
-
1
1
0
0
1
1
0
0
-
STKPB0
1
0
1
0
1
0
1
0
-
Stack Buffer
High Byte Low Byte
STK0H
STK1H
STK2H
STK3H
STK4H
STK5H
STK6H
STK7H
-
STK0L
STK1L
STK2L
STK3L
STK4L
STK5L
STK6L
STK7L
-
Description
Stack Overflow
Table 3-1. STKP, STKnH and STKnL relative of Stack-Save Operation
The RETI instruction is for interrupt service routine. The RET instruction is for CALL instruction. When a Stack-Restore
operation occurs, the STKP is incremented and points to the next free stack location. The stack buffer restores the last
program counter (PC) to the program counter registers. The Stack-Restore operation is as following table.
Stack Level
7
6
5
4
3
2
1
0
STKPB3
1
1
1
1
1
1
1
1
STKP Register
STKPB2
STKPB1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
STKPB0
0
1
0
1
0
1
0
1
Stack Buffer
High Byte Low Byte
STK7H
STK6H
STK5H
STK4H
STK3H
STK2H
STK1H
STK0H
STK7L
STK6L
STK5L
STK4L
STK3L
STK2L
STK1L
STK0L
Description
-
Table 3-2. STKP, STKnH and STKnL relative of Stack-Restore Operation
SONiX TECHNOLOGY CO., LTD
Page 31
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PROGRAM COUNTER
The program counter (PC) is a 12-bit binary counter separated into the high-byte 4 bits and the low-byte 8 bits. This
counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program
counter is automatically incremented with each instruction during program execution.
Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction
is executed, the destination address will be inserted to bit 0 ~ bit 11.
PC Initial value = xxxx 0000 0000 0000
PC
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9
0
PCH
Bit 8
0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4 Bit 3
0
0
PCL
Bit 2
0
Bit 1
0
Bit 0
0
PCH Initial value = xxxx 0000
0CFH
PCH
Bit 7
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
-
Bit 1
PC9
R/W
Bit 0
PC8
R/W
Bit 5
PC5
R/W
Bit 4
PC4
R/W
Bit 3
PC3
R/W
Bit 2
PC2
R/W
Bit 1
PC1
R/W
Bit 0
PC0
R/W
PCL Initial value = 0000 0000
0CEH
PCL
Bit 7
PC7
R/W
Bit 6
PC6
R/W
SONiX TECHNOLOGY CO., LTD
Page 32
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ONE ADDRESS SKIPPING
There are 9 instructions (CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1) with one address
skipping function. If the result of these instructions is matched, the PC will add 2 steps to skip next instruction.
If the condition of bit test instruction is matched, the PC will add 2 steps to skip next instruction.
FC
C0STEP
; Skip next instruction, if Carry flag = 1
; Else jump to C0STEP.
C0STEP:
B0BTS1
JMP
.
NOP
A, BUF0
FZ
C1STEP
; Move BUF0 value to ACC.
; Skip next instruction, if Zero flag = 0.
; Else jump to C1STEP.
C1STEP:
B0MOV
B0BTS0
JMP
.
NOP
If the ACC is equal to the immediate data or memory, the PC will add 2 steps to skip next instruction.
C0STEP:
CMPRS
JMP
.
NOP
A, #12H
C0STEP
; Skip next instruction, if ACC = 12H.
; Else jump to C0STEP.
If the result after increasing or decreasing by 1 is 0xFF or 0x00, the PC will add 2 steps to skip next instruction.
INCS instruction:
C0STEP:
INCS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if ACC is not zero.
INCMS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if BUF0 is not zero.
DECS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if ACC is not zero.
DECMS
JMP
…
NOP
BUF0
C0STEP
; Jump to C0STEP if BUF0 is not zero.
INCMS instruction:
C0STEP:
DECS instruction:
C0STEP:
DECMS instruction:
C0STEP:
SONiX TECHNOLOGY CO., LTD
Page 33
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
MULTI-ADDRESS JUMPING
Users can jump round multi-address by either JMP instruction or ADD M, A instruction (M = PCL) to activate
multi-address jumping function. If carry signal occurs after execution of ADD PCL, A, the carry signal will not affect
PCH register.
Example: If PC = 0323H (PCH = 03H、PCL = 23H)
; PC = 0323H
; PC = 0328H
MOV
B0MOV
.
.
.
MOV
B0MOV
A, #28H
PCL, A
.
.
.
A, #00H
PCL, A
; Jump to address 0328H
; Jump to address 0300H
Example: If PC = 0323H (PCH = 03H、PCL = 23H)
; PC = 0323H
B0ADD
JMP
JMP
JMP
JMP
.
PCL, A
A0POINT
A1POINT
A2POINT
A3POINT
.
SONiX TECHNOLOGY CO., LTD
; PCL = PCL + ACC, the PCH cannot be changed.
; If ACC = 0, jump to A0POINT
; ACC = 1, jump to A1POINT
; ACC = 2, jump to A2POINT
; ACC = 3, jump to A3POINT
;
Page 34
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
4 ADDRESSING MODE
OVERVIEW
The SN8P1702A/SN8P1703A provides three addressing modes to access RAM data, including immediate addressing
mode, directly addressing mode and indirectly address mode. The main purpose of the three different modes is
described in the following:
IMMEDIATE ADDRESSING MODE
The immediate addressing mode uses an immediate data to set up the location (MOV A, #I,
specific RAM.
B0MOV M,#I) in ACC or
Immediate addressing mode
MOV
A, #12H
; To set an immediate data 12H into ACC
DIRECTLY ADDRESSING MODE
The directly addressing mode uses address number to access memory location (MOV A,12H, MOV 12H,A).
Directly addressing mode
B0MOV
A, 12H
; To get a content of location 12H of bank 0 and save in ACC
INDIRECTLY ADDRESSING MODE
The indirectly addressing mode is to set up an address in data pointer registers (Y/Z) and uses MOV instruction to
read/write data between ACC and @YZ register (MOV A,@YZ, MOV @YZ,A).
Example: Indirectly addressing mode with @YZ register
CLR
B0MOV
B0MOV
Y
Z, #12H
A, @YZ
SONiX TECHNOLOGY CO., LTD
; To clear Y register to access RAM bank 0.
; To set an immediate data 12H into Z register.
; Use data pointer @YZ reads a data from RAM location
; 012H into ACC.
Page 35
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TO ACCESS DATA in RAM BANK 0
In the RAM bank 0, this area memory can be read/written by these three access methods.
Example 1: To use RAM bank0 dedicate instruction (Such as B0xxx instruction).
B0MOV
A, 12H
; To move content from location 12H of RAM bank 0 to ACC
Example 3: To use indirectly addressing mode with @YZ register.
CLR
B0MOV
B0MOV
Y
Z, #12H
A, @YZ
SONiX TECHNOLOGY CO., LTD
; To clear Y register for accessing RAM bank 0.
; To set an immediate data 12H into Z register.
; Use data pointer @YZ reads a data from RAM location
; 012H into ACC.
Page 36
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
5 SYSTEM REGISTER
OVERVIEW
The system special register is located at 80h~FFh. The main purpose of system registers is to control the peripheral
hardware of the chip. Using system registers can control I/O ports, SIO, ADC, PWM, timers and counters by
programming. The Memory map provides an easy and quick reference source for writing application program. To
accessing these system registers is controlled by the select memory bank (RBANK = 0) or the bank 0 read/write
instruction (B0MOV, B0BSET, B0BCLR…).
SYSTEM REGISTER ARRANGEMENT (BANK 0)
BYTES of SYSTEM REGISTER
SN8P1702
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
-
-
R
Z
Y
-
PFLAG
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P4CON
-
-
-
PEDGE
-
ADM
ADB
ADR
-
-
-
-
P1W
P1M
-
-
P4M
P5M
-
-
P0
P1
-
-
P4
P5
-
-
P0UR
P1UR
-
-
P4UR
P5UR
-
@YZ
-
-
-
-
-
-
-
-
STK7
STK7
STK6
STK6
STK5
STK5
STK4
STK4
STK3
STK3
STK2
STK2
STK1
STK1
STK0
STK0
INTRQ INTEN
T0M
-
-
-
-
-
-
OSCM
-
-
TC0R
PCL
PCH
TC0M
TC0C
TC1M
TC0C
TC1R
STKP
Table 5-1. System Register Arrangement
Description
PFLAG =
ADB =
PnM =
INTRQ =
OSCM =
TC0/1M =
TC0/1C =
TC0/1R =
STKP =
@HL =
ROM page and special flag register.
ADC’s data buffer.
Port n input/output mode register.
Interrupts’ request register.
Oscillator mode register.
Timer/Counter 0/1 mode register.
Timer/Counter 0/1 counting register.
Timer/Counter 0/1 auto-reload data buffer.
Stack pointer buffer.
RAM HL indirect addressing index pointer.
R=
Y, Z =
RBANK =
ADM =
ADR =
P1W =
Pn =
PnUR=
INTEN =
PCH, PCL =
STK0~STK7 =
@YZ =
Working register and ROM lookup data buffer.
Working, @YZ and ROM addressing register.
RAM Bank Select register.
ADC’s mode register.
ADC’s resolution selects register.
Port 1 wakeup register.
Port n data buffer.
Pull-up register
Interrupts’ enable register.
Program counter.
Stack 0 ~ stack 7 buffer.
RAM YZ indirect addressing index pointer.
Note:
a). All of register names had been declared in SONiX 8-bit MCU assembler.
b). One-bit name had been declared in SONiX 8-bit MCU assembler with “F” prefix code.
c). It will get logic “H” data, when use instruction to check empty location.
d). The low nibble of ADR register is read only.
e). “b0bset”, “b0bclr”, ”bset”, ”bclr” instructions only support “R/W” registers.
SONiX TECHNOLOGY CO., LTD
Page 37
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
BITS of SYSTEM REGISTER
Address
082H
083H
084H
086H
0AEH
0B1H
0B2H
0B3H
0BFH
0C0H
0C1H
0C4H
0C5H
0C8H
0C9H
0CAH
0CDH
0CEH
0CFH
0D0H
0D1H
0D4H
0D5H
0D8H
0DAH
0DBH
0DCH
0DDH
0DEH
0DFH
0E0H
0E1H
0E4H
0E5H
0E7H
0F0H
0F1H
0F2H
0F3H
“
“
“
0FCH
0FDH
0FEH
0FFH
Bit7
RBIT7
ZBIT7
YBIT7
ADENB
ADB11
PEDGEN
0
0
0
0
0
0
WTCKS
TC0R7
PC7
-
-
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
RBIT6
RBIT5
RBIT4
RBIT3
RBIT2
RBIT1
RBIT0
ZBIT6
ZBIT5
ZBIT4
ZBIT3
ZBIT2
ZBIT1
ZBIT0
YBIT6
YBIT5
YBIT4
YBIT3
YBIT2
YBIT1
YBIT0
C
DC
Z
P4CON3 P4CON2 P4CON1 P4CON0
ADS
EOC
GCHS
CHS1
CHS0
ADB10
ADB9
ADB8
ADB7
ADB6
ADB5
ADB4
ADCKS1 ADLEN
ADB3
ADB2
ADB1
ADB0
P00G1
P00G0
0
0
0
0
0
P11W
P10W
0
0
0
0
0
P11M
P10M
0
0
0
P43M
P42M
P41M
P40M
0
P55M
P54M
P53M
P52M
P51M
P50M
TC1IRQ TC0IRQ
0
0
0
0
P00IRQ
TC1IEN TC0IEN
0
0
0
0
P00IEN
WDRST WDRATE CPUM1 CPUM0 CLKMD STPHX
0
TC0R6
TC0R5
TC0R4
TC0R3
TC0R2
TC0R1
TC0R0
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PC9
PC8
P00
P11
P10
P43
P42
P41
P40
P55
P54
P53
P52
P51
P50
-
-
-
TC1X8
TC0X8
TC0GN
-
TC0ENB TC0rate2 TC0rate1 TC0rate0 TC0CKS ALOAD0 TC0OUT PWM0OUT
TC0C7
TC0C6
TC0C5
TC0C4
TC0C3
TC0C2
TC0C1
TC0C0
TC1ENB TC1rate2 TC1rate1 TC1rate0
0
ALOAD1 TC1OUT PWM1OUT
TC1C7
TC1C6
TC1C5
TC1C4
TC1C3
TC1C2
TC1C1
TC1C0
TC1R7
TC1R6
TC1R5
TC1R4
TC1R3
TC1R2
TC1R1
TC1R0
GIE
STKPB3 STKPB2 STKPB1 STKPB0
P00R
P11R
P10R
P43R
P42R
P41R
P40R
P55R
P54R
P53R
P52R
P51R
P50R
@YZ7
@YZ6
@YZ5
@YZ4
@YZ3
@YZ2
@YZ1
@YZ0
S7PC7
S7PC6
S7PC5
S7PC4
S7PC3
S7PC2
S7PC1
S7PC0
S7PC9
S7PC8
S6PC7
S6PC6
S6PC5
S6PC4
S6PC3
S6PC2
S6PC1
S6PC0
S6PC9
S6PC8
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
S1PC7
S1PC6
S1PC5
S1PC4
S1PC3
S1PC2
S1PC1
S1PC0
S1PC9
S1PC8
S0PC7
S0PC6
S0PC5
S0PC4
S0PC3
S0PC2
S0PC1
S0PC0
S0PC9
S0PC8
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R/W
R/W
W
R/W
R/W
R/W
R/W
R/W
R/W
W
R/W
R/W
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
“
“
“
R/W
R/W
R/W
R/W
Remarks
R
Z
Y
PFLAG
P4CON
ADM mode register
ADB data buffer
ADR register
PEDGE
P1W wakeup register
P1M I/O direction
P4M I/O direction
P5M I/O direction
INTRQ
INTEN
OSCM
TC0R
PCL
PCH
P0 data buffer
P1 data buffer
P4 data buffer
P5 data buffer
T0M
TC0M
TC0C
TC1M
TC1C
TC1R
STKP stack pointer
P0UR
P1UR
P4UR
P5UR
@YZ index pointer
STK7L
STK7H
STK6L
STK6H
“
“
“
STK1L
STK1H
STK0L
STK0H
Table 5-2. Bit System Register Table
Note:
a). To avoid system error, please be sure to put all the “0” as it indicates in the above table
b). All of register name had been declared in SONiX 8-bit MCU assembler.
c). One-bit name had been declared in SONiX 8-bit MCU assembler with “F” prefix code.
d). “b0bset”, “b0bclr”, ”bset”, ”bclr” instructions only support “R/W” registers.
SONiX TECHNOLOGY CO., LTD
Page 38
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
6 POWER ON RESET
OVERVIEW
This series provides two system resets. One is external reset and the other is low voltage detector (LVD). The external
reset is a simple RC circuit connecting to the reset pin. The low voltage detector (LVD) is built in internal circuit. When
one of the reset devices occurs, the system will reset and the system registers become initial value. The timing
diagram is as following.
VDD
LVD Detect Level
External Reset
External Reset Detect Level
LVD
End of LVD Reset
Internal Reset Signal
End of External Reset
Figure 6-1 Power on Reset Timing Diagram
SONiX TECHNOLOGY CO., LTD
Page 39
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
EXTERNAL RESET DESCRIPTION
The external reset is a low level active device. The reset pin receives the low voltage and resets the system. When the
voltage detects high level, it stops resetting the system. Users can use an external reset circuit to control system
operation. It is necessary that the VDD must be stable.
VDD
External Reset
External Reset Detect Level
Internal Reset Signal
System Reset
End of External Reset
Figure 6-2 External Reset Timing Diagram
Users must to be sure the VDD stable earlier than external reset (Figure 5-2) or the external reset will fail. The external
reset circuit is a simple RC circuit as following.
R
VDD
20K ohm
RST
C
0.1uF
MCU
VSS
VCC
GND
Figure 6-3. External Reset Circuit
SONiX TECHNOLOGY CO., LTD
Page 40
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
In worse power, condition as brown out reset. The reset pin may keep high level but the VDD is low voltage. That
makes the system reset fail and chip error. To connect a diode from reset pin to VDD is a good solution. The circuit can
force the capacitor to release electric charge and drop the voltage, and solve the error.
R
DIODE
VDD
20K ohm
RST
C
0.1uF
MCU
VSS
VCC
GND
Figure 6-4. External Reset Circuit with Diode
SONiX TECHNOLOGY CO., LTD
Page 41
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
7 OSCILLATORS
OVERVIEW
The SN8P1702A/SN8P1703A highly performs the dual clock micro-controller system. The dual clocks are high-speed
clock and low-speed clock. The high-speed clock frequency is supplied through the external oscillator circuit. The
low-speed clock frequency is supplied through on-chip RC oscillator circuit.
The external high-speed clock and the internal low-speed clock can be system clock (Fosc). And the system clock is
divided by 4 to be the instruction cycle (Fcpu).
Fcpu = Fosc / 4
The system clock is required by the following peripheral modules:
Timer counter 0 (TC0/TC1)
Watchdog timer
AD converter
PWM output (PWM0/PWM1)
Buzzer output (TC0OUT/TC1OUT)
CLOCK BLOCK DIAGRAM
HXRC(1:0) is code option
•00= RC
•01 =32 Khz Oscillator
•10 = High Speed Oscillator (>10Mhz)
•11 = Standard Oscillator (4Mhz)
STPHX
Divided by 2
1 : Disable
HXRC
CLKMD
fosc/4
CPUM0
0 : Enable
XIN
HXOSC.
fh
XOUT
OSG
Divided by 2
Divided by 4
fcpu
OSG : Oscillator Safe Guard
CPUM0
LXOSC.
1 : Disable -- System Default
fl
0 : Enable
CPUM0
Figure 7-1. Clock Block Diagram
HXOSC: External high-speed clock.
LXOSC: Internal low-speed clock.
OSG: Oscillator safe guard.
SONiX TECHNOLOGY CO., LTD
Page 42
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
OSCM REGISTER DESCRIPTION
The OSCM register is a oscillator control register. It can control oscillator select, system mode, watchdog timer clock
source and rate.
OSCM initial value = 000x 000x
0CAH
OSCM
Bit 7
WTCKS
R/W
Bit 6
WDRST
R/W
Bit 5
Wdrate
R/W
Bit 4
CPUM1
R/W
Bit 3
CPUM0
R/W
Bit 2
CLKMD
R/W
Bit 1
STPHX
R/W
Bit 0
0
-
Bit1
STPHX: External high-speed oscillator control bit.
0 = free run,
1 = stop.
Note: This bit only controls external high-speed oscillator. If STPHX=1, the internal low-speed RC
oscillator is still running.
Bit2
CLKMD: System high/Low speed mode select bit.
0 = normal (dual) mode,
1 = slow mode.
Bit[4:3] CPUM[1:0]: CPU operating mode control bit.
00 = normal,
01 = sleep (power down) mode,
10 = green mode,
11 = reserved.
Bit5
Wdrate: Watchdog timer rate select bit.
0 = Fcpu ÷ 214
1 = Fcpu ÷ 28
(The detail information is in watchdog timer chapter.)
Bit6
WDRST: Watchdog timer reset bit.
0 = Non reset,
1 = clear the watchdog timer’s counter.
(The detail information is in watchdog timer chapter.)
Bit7
WTCKS: Watchdog clock source select bit.
0 = Fcpu,
1 = internal RC low clock.
SONiX TECHNOLOGY CO., LTD
Page 43
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
EXTERNAL HIGH-SPEED OSCILLATOR
This series can be operated in four different oscillator modes. There are external RC oscillator modes, high
crystal/resonator mode (12M code option), standard crystal/resonator mode (4M code option) and low crystal mode
(32K code option). For different application, the users can select one of satiable oscillator mode by programming code
option to generate system high-speed clock source after reset.
Example: Stop external high-speed oscillator.
B0BSET
FSTPHX
; To stop external high-speed oscillator only.
B0BSET
FCPUM0
; To stop external high-speed oscillator and internal low-speed
; oscillator called power down mode (sleep mode).
OSCILLATOR MODE CODE OPTION
This series has four oscillator modes for different applications. These modes are 4M, 12M, 32K and RC. The main
purpose is to support different oscillator types and frequencies. High-speed crystal needs more current but the low one
doesn’t. For crystals, there are three steps to select. If the oscillator is RC type, to select “RC” and the system will
divide the frequency by 2 automatically. User can select oscillator mode from Code Option table before compiling. The
table is as follow.
Code Option
00
01
10
11
Oscillator Mode
RC mode
32K
12M
4M
Remark
Output the Fcpu square wave from Xout pin.
32768Hz
12MHz ~ 16MHz
3.58MHz
OSCILLATOR DEVIDE BY 2 CODE OPTION
This series has an external clock divide by 2 function. It is a code option called “High_Clk / 2”. If “High_Clk / 2” is
enabled, the external clock frequency is divided by 8 for the Fcpu. Fcpu is equal to Fosc/8. If “High_Clk / 2” is disabled,
the external clock frequency is divided by 4 for the Fcpu. The Fcpu is equal to Fosc/4.
Note: In RC mode, “High_Clk / 2” is always enabled.
OSCILLATOR SAFE GUARD CODE OPTION
This series builds in an oscillator safe guard (OSG) to make oscillator more stable. It is a low-pass filter circuit and
stops high frequency noise into system from external oscillator circuit. This function makes system to work better under
AC noisy conditions.
SONiX TECHNOLOGY CO., LTD
Page 44
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SYSTEM OSCILLATOR CIRCUITS
VDD
20PF
XIN
CRYSTAL
XOUT
20PF
MCU
VSS
Figure 7-2. Crystal/Ceramic Oscillator
VDD
R
XIN
XOUT
C
MCU
VSS
Figure 7-3. RC Oscillator
External Clock Input
VDD
XIN
XOUT
MCU
VSS
Figure 7-4. External clock input
Note1: The VDD and VSS of external oscillator circuit must be from the micro-controller. Don’t connect
them from the neighbor power terminal.
Note2: The external clock input mode can select RC type oscillator or crystal type oscillator of the code
option and input the external clock into XIN pin.
Note3: In RC type oscillator code option situation, the external clock’s frequency is divided by 2.
Note4: The power and ground of external oscillator circuit must be connected from the micro-controller’s
VDD and VSS. It is necessary to step up the performance of the whole system.
SONiX TECHNOLOGY CO., LTD
Page 45
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
External RC Oscillator Frequency Measurement
There are two ways to get the Fosc frequency of external RC oscillator. One measures the XOUT output waveform.
Under external RC oscillator mode, the XOUT outputs the square waveform whose frequency is Fcpu. The other
measures the external RC frequency by instruction cycle (Fcpu). The external RC frequency is the Fcpu multiplied by 4.
We can get the Fosc frequency of external RC from the Fcpu frequency. The sub-routine to get Fcpu frequency of
external oscillator is as the following.
Example: Fcpu instruction cycle of external oscillator
B0BSET
P1M.0
; Set P1.0 to be output mode for outputting Fcpu toggle
signal.
B0BSET
B0BCLR
JMP
P1.0
P1.0
@B
; Output Fcpu toggle signal in low-speed clock mode.
; Measure the Fcpu frequency by oscilloscope.
@@:
SONiX TECHNOLOGY CO., LTD
Page 46
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
INTERNAL LOW-SPEED OSCILLATOR
The internal low-speed oscillator is built in the micro-controller. The low-speed clock’s source is a RC type oscillator
circuit. The low-speed clock can supplies clock for system clock, timer counter, watchdog timer, SIO clock source and
so on.
Example: Stop internal low-speed oscillator.
B0BSET
FCPUM0
; To stop external high-speed oscillator and internal low-speed
; oscillator called power down mode (sleep mode).
Note: The internal low-speed clock can’t be turned off individually. It is controlled by CPUM0 bit of OSCM
register.
The low-speed oscillator uses RC type oscillator circuit. The frequency is affected by the voltage and temperature of
the system. In common condition, the frequency of the RC oscillator is about 16KHz at 3V and 32KHz at 5V. The
relative between the RC frequency and voltage is as following.
Internal RC vs. VDD
40
38.678
35.343
Fintrc (KHz)
35
32.008
30
28.673
25.338
25
22.003
20
18.668
15.333
15
11.998
10
8.663
7.329
5
0
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
VDD (Volts)
Figure 7-5. Internal RC vs. VDD Diagram
Example: To measure the internal RC frequency is by instruction cycle (Fcpu). The internal RC frequency is
the Fcpu multiplied by 4. Therefore, we can get the Fosc frequency of internal RC from the Fcpu
frequency.
B0BSET
P1M.0
; Set P1.0 to be output mode for outputting Fcpu toggle signal.
B0BSET
FCLKMD
; Switch the system clock to internal low-speed clock mode.
B0BSET
B0BCLR
JMP
P1.0
P1.0
@B
; Output Fcpu toggle signal in low-speed clock mode.
; Measure the Fcpu frequency by oscilloscope.
@@:
SONiX TECHNOLOGY CO., LTD
Page 47
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SYSTEM MODE DESCRIPTION
OVERVIEW
The chip is featured with low power consumption by switching around three different modes as following.
High-speed mode
Low-speed mode
Power-down mode (Sleep mode)
Green mode
In actual application, the user can adjust the chip’s controller to work in these three modes by using OSCM register. At
the high-speed mode, the instruction cycle (Fcpu) is Fosc/4. At the low-speed mode and 3V, the Fcpu is 16KHz/4.
NORMAL MODE
In normal mode, the system clock source is external high-speed clock. After power on, the system works under normal
mode. The instruction cycle is fosc/4. When the external high-speed oscillator is 3.58MHz, the instruction cycle is
3.58MHz/4 = 895KHz. All software and hardware are executed and working. In normal mode, system can get into
power down mode and slow mode.
SLOW MODE
In slow mode, the system clock source is internal low-speed RC clock. To set CLKMD = 1, the system switch to slow
mode. In slow mode, the system works as normal mode but the slower clock. The system in slow mode can get into
normal mode and power down mode. To set STPHX = 1 to stop the external high-speed oscillator, and then the system
consumes less power.
GREEN MODE
The green mode is a less power consumption mode. Under green mode, there are only TC0 still counting and the other
hardware stopping. The external high-speed oscillator or internal low-speed oscillator is operating. To set CPUM1 = 1
and CPUM0 = 0, the system gets into green mode. To set TC0GN = 1 (bit 1 of T0M) will enable TC0 green mode
wakeup function. The system can be waked up to last system mode by TC0 timer timeout and P0 trigger signal.
The green mode provides a time-variable wakeup function. Users can decide wakeup time by setting TC0 timer. There
are two channels into green mode. One is normal mode and the other is slow mode. In normal mode, the TC0 timer
overflow time is very short. In slow mode, the overflow time is longer. Users can select appropriate situation for their
applications. Under green mode, the power consumption is 5u amp in 3V condition.
POWER DOWN MODE
The power down mode is also called sleep mode. The chip stops working as sleeping status. The power consumption
is very less almost to zero. The power down mode is usually applied to low power consuming system as battery power
productions. To set CUPM0 = 1, the system gets into power down mode. The external high-speed and low-speed
oscillators are turned off. The system can be waked up by P0, P1 trigger signal.
SONiX TECHNOLOGY CO., LTD
Page 48
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SYSTEM MODE CONTROL
SYSTEM MODE BLOCK DIAGRAM
Power Down Mode
(Sleep Mode)
P0, P1 wake-up function active.
External reset circuit active.
CPUM1, CPUM0 = 01
CLKMD = 1
Normal Mode
CLKMD = 0
Slow Mode
P0, P1 wake-up function active.
CPUM1, CPUM0 = 10
P0, P1 wake-up function active.
TC0 time out.
TC0 time out.
External reset circuit active.
Green Mode
External reset circuit active.
Figure 7-6. System Mode Block Diagram
Operating mode description
MODE
NORMAL
SLOW
GREEN
HX osc.
LX osc.
CPU instruction
Running
Running
Executing
By STPHX
Running
Executing
By STPHX
Running
Stop
POWER DOWN
(SLEEP)
Stop
Stop
Stop
TC0 timer
*Active
*Active
*Active
Inactive
Watchdog timer
Internal
interrupt
External
interrupt
Active
Active
All active
All active
TC0
All inactive
All active
All active
All active
All inactive
-
-
P0, P1, TC0
Reset
P0, P1, Reset
Wakeup source
REMARK
* Active by
program
By INT_16K_RC By INT_16K_RC
Table 7-1. Operating Mode Description
SONiX TECHNOLOGY CO., LTD
Page 49
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SYSTEM MODE SWITCHING
Switch normal/slow mode to power down (sleep) mode.
CPUM0 = 1
B0BSET
FCPUM0
; Set CPUM0 = 1.
During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode.
Switch normal mode to slow mode.
B0BSET
B0BSET
FCLKMD
FSTPHX
;To set CLKMD = 1, Change the system into slow mode
;To stop external high-speed oscillator for power saving.
Note: To stop high-speed oscillator is not necessary and user can omit it.
Switch slow mode to normal mode (The external high-speed oscillator is still running)
B0BCLR
FCLKMD
;To set CLKMD = 0
Switch slow mode to normal mode (The external high-speed oscillator stops)
If external high clock stop and program want to switch back normal mode. It is necessary to delay at least 10mS for
external clock stable.
@@:
B0BCLR
FSTPHX
; Turn on the external high-speed oscillator.
B0MOV
DECMS
JMP
Z, #27
Z
@B
; If VDD = 5V, internal RC=32KHz (typical) will delay
; 0.125ms X 81 = 10.125ms for external clock stable
B0BCLR
FCLKMD
;
; Change the system back to the normal mode
Example: Go into Green mode and enable TC0 wakeup function.
; Set TC0 timer wakeup function.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
B0BCLR
B0BCLR
B0BSET
B0BSET
; Go into green mode
B0BCLR
B0BSET
FTC0IEN
FTC0ENB
A,#20H
TC0M,A
A,#74H
TC0C,A
FTC0IEN
FTC0IRQ
FTC0ENB
FTC0GN
FCPUM0
FCPUM1
; To disable TC0 interrupt service
; To disable TC0 timer
;
; To set TC0 clock = Fcpu / 64
; To set TC0C initial value = 74H (To set TC0 interval = 10
ms)
; To disable TC0 interrupt service
; To clear TC0 interrupt request
; To enable TC0 timer
; To enable TC0 wakeup function
;To set CPUMx = 10
Note: If TC0ENB = 0 or TC0GN = 0, TC0 will not wakeup from green mode to normal/slow mode function.
SONiX TECHNOLOGY CO., LTD
Page 50
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
WAKEUP TIME
OVERVIEW
The external high-speed oscillator needs a delay time from stopping to operating. The delay is very necessary and
makes the oscillator to work stably. Some conditions during system operating, the external high-speed oscillator often
runs and stops. Under these conditions, the delay time for external high-speed oscillator restart is called wakeup time.
There are two conditions need wakeup time. One is power down mode to normal mode. The other one is slow mode to
normal mode. For the first case, SN8P1702A/SN8P1703A provides 2048 oscillator clocks to be the wakeup time. But in
the last case, users need to make the wakeup time by themselves.
HARDWARE WAKEUP
When the system is in power down mode (sleep mode), the external high-speed oscillator stops. When waked up from
power down mode, MCU waits for 2048 external high-speed oscillator clocks as the wakeup time to stable the oscillator
circuit. After the wakeup time, the system goes into the normal mode. The value of the wakeup time is as the following.
The Wakeup time = 1/Fosc * 2048 (sec) + X’tal settling time
The x’tal settling time is depended on the x’tal type. Typically, it is about 2~4mS.
Example: In power down mode (sleep mode), the system is waked up by P0 or P1 trigger signal. After the
wakeup time, the system goes into normal mode. The wakeup time of P0, P1 wakeup function is
as the following.
The wakeup time = 1/Fosc * 2048 = 0.57 ms
(Fosc = 3.58MHz)
The total wakeup time = 0.57ms + x’tal settling time
Under power down mode (sleep mode), there are only I/O ports with wakeup function wake the system up to normal
mode. The Port 0 and Port 1 have wakeup function. Port 0 wakeup function always enables, but the Port 1 is controlled
by the P1W register.
P1W initial value = xxxx xx00
0C0H
P1W
Bit[1:0]
Bit 7
0
-
Bit 6
0
-
Bit 5
0
-
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
P11W
W
Bit 0
P10W
W
P11W,P10W:Port 1 wakeup function control bits.
0 = Disable each pin of Port1 wakeup function,
1 = Enable each pin of Port 1 wakeup function
SONiX TECHNOLOGY CO., LTD
Page 51
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
EXTERNAL WAKEUP TRIGGER CONTROL
In the SN8P1702A/SN8P1703A, the wakeup trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH
PEDGE
Bit 7
PEDGEN
R/W
Bit 6
-
Bit 5
-
Bit 4
P00G1
R/W
Bit 3
P00G0
R/W
Bit 2
-
Bit7
PEDGEN: Interrupt and wakeup trigger edge control bit.
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger.
Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits.
Port 1: Level change (falling or rising edge) wakeup trigger.
Bit[4:3]
P00G[1:0]: Port 0.0 edge select bits.
00 = reserved,
01 = rising edge,
10 = falling edge,
11 = rising/falling bi-direction.
SONiX TECHNOLOGY CO., LTD
Page 52
Bit 1
-
Bit 0
-
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
8 TIMERS COUNTERS
WATCHDOG TIMER (WDT)
The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program gets in
the unknown status by noise interference, The WDT’s overflow signal will reset this chip and restart operation. The
instruction that clear the watch-dog timer (B0BSET FWDRST) should be executed at proper points in a program
within a given period. If an instruction that clears the watchdog timer is not executed within the period and the
watchdog timer overflows, reset signal is generated and system is restarted with reset status. In order to generate
different output timings, the user can control watchdog timer by modifying the Wdrate control bits of OSCM register.
The watchdog timer will be disabled at green and power down modes.
OSCM initial value = 0000 000x
0CAH
OSCM
Bit 7
WTCKS
R/W
Bit 6
WDRST
R/W
Bit 5
Wdrate
R/W
Bit 4
CPUM1
R/W
Bit 3
CPUM0
R/W
Bit 2
CLKMD
R/W
Bit 1
STPHX
R/W
Bit 0
-
Bit1
STPHX: External high-speed oscillator control bit.
0 = free run,
1 = stop.
Note: This bit only controls external high-speed oscillator. If STPHX=1, the internal low-speed RC
oscillator is still running.
Bit2
CLKMD: System high/Low speed mode select bit.
0 = normal (dual) mode,
1 = slow mode.
Bit[4:3] CPUM[1:0]: CPU operating mode control bit.
00 = normal,
01 = sleep (power down) mode,
10 = green mode,
11 = reserved.
Bit5
Wdrate: Watchdog timer rate select bit.
0 = Fcpu ÷ 214
1 = Fcpu ÷ 28
Bit6
WDRST: Watchdog timer reset bit.
0 = Non reset,
1 = clear the watchdog timer’s counter.
(The detail information is in watchdog timer chapter.)
Bit7
WTCKS: Watchdog clock source select bit.
0 = Fcpu,
1 = internal RC low clock.
WTCKS
WTRATE
CLKMD
Watchdog Timer Overflow Time
0
0
0
0
1
0
1
0
1
-
0
0
1
1
-
1 / ( Fcpu ÷ 214 ÷ 16 ) = 293 ms, Fosc=3.58MHz
1 / ( Fcpu ÷ 28 ÷ 16 ) = 500 ms, Fosc=32768Hz
1 / ( Fcpu ÷ 214 ÷ 16 ) = 65.5s, Fosc=16KHz@3V
1 / ( Fcpu ÷ 28 ÷ 16 ) = 1s, Fosc=16KHz@3V
1 / ( 16K ÷ 512 ÷ 16 ) ~ 0.5s @3V
Table 8-1. Watchdog timer overflow timetable
SONiX TECHNOLOGY CO., LTD
Page 53
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Note: The watch dog timer can be enabled or disabled by the code option.
Example: An operation of watchdog timer is as following. To clear the watchdog timer’s counter in the top
of the main routine of the program.
Main:
B0BSET
.
CALL
CALL
.
.
.
JMP
FWDRST
.
SUB1
SUB2
.
.
.
MAIN
; Clear the watchdog timer’s counter.
T0M Register
T0M initial value = xxxx 000x
0D8H
T0M
Bit 7
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
TC1X8
R/W
Bit 2
TC0X8
R/W
Bit 1
TC0GN
R/W
Bit3
TC1X8: Multiple TC1 timer speed eight times. Refer TC1M register for detailed information.
0 = Disable
1 = Enable
Bit2
TC0X8: Multiple TC0 timer speed eight times. Refer TC0M register for detailed information.
0 = Disable
1 = Enable
Bit0
TC0GN: Enable TC0 green mode wakeup function
0 = Disable
1 = Enable
SONiX TECHNOLOGY CO., LTD
Page 54
Bit 0
-
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TIMER COUNTER 0 (TC0)
OVERVIEW
The timer counter 0 (TC0) is used to generate an interrupt request when a specified time interval has elapsed. TC0 has
a auto re-loadable counter that consists of two parts: an 8-bit reload register (TC0R) into which you write the counter
reference value, and an 8-bit counter register (TC0C) whose value is automatically incremented by counter logic.
Aload0
TC0R reload
data buffer
Internal P5.4 I/O circuit
Buzzer
Auto. reload
R
S
TC0enb
TC0CKS
P5.4
÷2
Compare
÷2(8-TC0Rate)
TC0out
PWM
PWM0OUT
load
Fcpu
TC0C
8-bit binary counter
INT0
(schmitter trigger)
TC0 Time out
CPUM0
Figure 8-1. TC0 Block Diagram
The main purposes of the TC0 timer counter is as following.
8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock frequency.
Arbitrary frequency output (Buzzer output): Outputs selectable clock frequencies to the BZ0 pin (P5.4).
PWM function: PWM output can be generated by the PWM1OUT bit and output to PWM0OUT pin (P5.4).
SONiX TECHNOLOGY CO., LTD
Page 55
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0M MODE REGISTER
The TC0M is the timer counter mode register, which is an 8-bit read/write register. By loading different value into the
TC0M register, users can modify the timer counter clock frequency dynamically when program executing.
Eight rates for TC0 timer can be selected by TC0RATE0 ~ TC0RATE2 and TC0X8 bits of T0M register. If TC0X8=1 the
TC0 will faster 8 times than TC0X8=0 (Initial value). The bit7 of TC0M named TC0ENB is the control bit to start TC0
timer.
TC0M initial value = 0000 0000
0DAH
TC0M
Bit 7
TC0ENB
R/W
Bit 6
Bit 5
Bit 4
TC0RATE2 TC0RATE1 TC0RATE0
R/W
R/W
R/W
Bit 3
TC0CKS
R/W
Bit 2
ALOAD0
R/W
Bit7
TC0ENB: TC0 counter/BZ0/PWM0OUT enable bit.
0 = disable,
1 = enable.
Bit [6:4]
TC0RATE[2:0]: TC0 clock source selection bits. TC0X8 is bit 2 of T0M register.
TC0RATE [2:0]
000
001
…
110
111
Bit 1
TC0OUT
R/W
Bit 0
PWM0OUT
R/W
TC0 Clock Source
TC0X8 = 0
TC0X8 = 1
Fcpu/256 = Fosc/1024 Fosc/128
Fcpu/128 = Fosc/512 Fosc/64
…
…
Fcpu/4 = Fosc/16
Fosc/2
Fcpu/2 = Fosc/8
Fosc
Note: Fcpu = Fosc / 4
Bit3
TC0CKS: TC0 clock source select bit.
0 = Fcpu,
1 = External clock comes from INT0/P0.0 pin.
Bit2
ALOAD0: TC0 auto-reload function control bit.
0 = none auto-reload,
1 = auto-reload.
Bit1
TC0OUT: TC0 time-out toggle signal output control bit.
0 = to disable TC0 signal output and to enable P5.4’s I/O function,
1 = to enable TC0’s signal output and to disable P5.4’s I/O function. (Auto-disable the PWM0OUT function.)
Bit0
PWM0OUT: TC0’s PWM output control bit.
0 = to disable the PWM output,
1 = to enable the PWM output (The TC0OUT control bit must = 0 )
Note: When TC0CKS=1, TC0 became an external event counter. No more P0.0 interrupt request will be
raised. (P0.0IRQ will be always 0)
SONiX TECHNOLOGY CO., LTD
Page 56
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0C COUNTING REGISTER
TC0C is an 8-bit counter register for the timer counter (TC0). TC0C must be reset whenever the TC0ENB is set “1” to
start the timer counter. TC0C is incremented by one with a clock pulse which the frequency is determined by
TC0RATE0 ~ TC0RATE2. When TC0C has incremented to “0FFH”, it is will be cleared to “00H” in next clock and an
overflow is generated. Under TC0 interrupt service request (TC0IEN) enable condition, the TC0 interrupt request flag
will be set “1” and the system executes the interrupt service routine.
TC0C initial value = xxxx xxxx
0DBH
TC0C
Bit 7
TC0C7
R/W
Bit 6
TC0C6
R/W
Bit 5
TC0C5
R/W
Bit 4
TC0C4
R/W
Bit 3
TC0C3
R/W
Bit 2
TC0C2
R/W
Bit 1
TC0C1
R/W
Bit 0
TC0C0
R/W
TC0 Overflow Time
TC0 rate is determinate by TC0Rate and Code Option TC0_Counter, TC0Rate can set TC0 clock frequency and
TC0_Counter set TC0 became 8-bit, 6-bit, 5-bit or 4-bit counter.
The equation of TC0C initial value is as following.
TC0C initial value = N - (TC0 interrupt interval time * input clock)
Which N is determinate by code option: TC0_Counter
TC0_Counter
N
Max. TC0C value
8-bit
256
255
6-bit
64
63
5-bit
32
31
4-bit
16
15
Note: TheTC0C must small or equal than Max. TC0 value.
Example: To set 10ms interval time for TC0 interrupt at Fosc = 3.58MHz
TC0C value (74H) = 256 - (10ms * fcpu/64) (TC0RATE=010, TC0_Counter=8-bit, TC0X8=0)
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (10ms * 3.58 * 106 / 4 / 64)
= 256 - (0.01 * 3.58 * 106 / 4 / 64)
= 116
= 74H
Example: To set 1.25ms interval time for TC0 interrupt at Fosc = 3.58MHz
TC0C value (74H) = 256 - (10ms * fcpu/64) (TC0RATE=010, TC0_Counter=8-bit, TC0X8=1)
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (1.25ms * 3.58 * 106 / 32)
= 256 - (0.00125 * 3.58 * 106 / 32)
= 116
= 74H
Example: To set 1ms interval time for TC0 interrupt at Fosc = 3.58MHz
TC0C value (32H) = 64 - (1ms * fcpu/64) (TC0RATE=010, TC0_COunter=6-bit, TC0X8=0)
TC0C initial value = 64 - (TC0 interrupt interval time * input clock)
= 64 - (1ms * 3.58 * 106 / 4 / 64)
= 64 - (0.001 * 3.58 * 106 / 4 / 64)
= 64 - 14
= 32H
SONiX TECHNOLOGY CO., LTD
Page 57
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0_Counter=8-bit, TC0X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC0RATE TC0CLOCK
Max overflow interval One step = max/256
000
Fcpu/256
73.2 ms
286us
001
Fcpu/128
36.6 ms
143us
010
Fcpu/64
18.3 ms
71.5us
011
Fcpu/32
9.15 ms
35.8us
100
Fcpu/16
4.57 ms
17.9us
101
Fcpu/8
2.28 ms
8.94us
110
Fcpu/4
1.14 ms
4.47us
111
Fcpu/2
0.57 ms
2.23us
Low speed mode (Fosc = 32768Hz / 4)
Max overflow interval One step = max/256
8000 ms
31.25 ms
4000 ms
15.63 ms
2000 ms
7.8 ms
1000 ms
3.9 ms
500 ms
1.95 ms
250 ms
0.98 ms
125 ms
0.49 ms
62.5 ms
0.24 ms
TC0_Counter=6-bit , TC0X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC0RATE TC0CLOCK
Max overflow interval One step = max/64
000
Fcpu/256
18.3 ms
286us
001
Fcpu/128
9.15 ms
143us
010
Fcpu/64
4.57 ms
71.5us
011
Fcpu/32
2.28 ms
35.8us
100
Fcpu/16
1.14 ms
17.9us
101
Fcpu/8
0.57 ms
8.94us
110
Fcpu/4
0.285 ms
4.47us
111
Fcpu/2
0.143 ms
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/64
2000 ms
31.25 ms
1000 ms
15.63 ms
500 ms
7.8 ms
250 ms
3.9 ms
125 ms
1.95 ms
62.5 ms
0.98 ms
31.25 ms
0.49 ms
15.63 ms
0.24 ms
TC0_Counter=5-bit, TC0X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC0RATE TC0CLOCK
Max overflow interval One step = max/32
000
Fcpu/256
9.15 ms
286us
001
Fcpu/128
4.57 ms
143us
010
Fcpu/64
2.28 ms
71.5us
011
Fcpu/32
1.14 ms
35.8us
100
Fcpu/16
0.57 ms
17.9us
101
Fcpu/8
0.285 ms
8.94us
110
Fcpu/4
0.143 ms
4.47us
111
Fcpu/2
71.25 us
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/32
1000 ms
31.25 ms
500 ms
15.63 ms
250 ms
7.8 ms
125 ms
3.9 ms
62.5 ms
1.95 ms
31.25 ms
0.98 ms
15.63 ms
0.49 ms
7.81 ms
0.24 ms
TC0_Counter=4-bit, TC0X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC0RATE TC0CLOCK
Max overflow interval One step = max/16
000
Fcpu/256
4.57 ms
286us
001
Fcpu/128
2.28 ms
143us
010
Fcpu/64
1.14 ms
71.5us
011
Fcpu/32
0.57 ms
35.8us
100
Fcpu/16
0.285 ms
17.9us
101
Fcpu/8
0.143 ms
8.94us
110
Fcpu/4
71.25 us
4.47us
111
Fcpu/2
35.63 us
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/16
500 ms
31.25 ms
250 ms
15.63 ms
125 ms
7.8 ms
62.5 ms
3.9 ms
31.25 ms
1.95 ms
15.63 ms
0.98 ms
7.81 ms
0.49 ms
3.91 ms
0.24 ms
SONiX TECHNOLOGY CO., LTD
Page 58
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0_Counter=8-bit, TC0X8=1
High speed mode (Fosc = 3.58MHz)
TC0RATE TC0CLOCK
Max overflow interval One step = max/256
000
Fosc/128
9.153 ms
35.754us
001
Fosc/64
4.58 ms
17.877us
010
Fosc/32
2.29 ms
8.939us
011
Fosc/16
1.14 ms
4.470us
100
Fosc/8
0.57 ms
2.235us
101
Fosc/4
0.29 ms
1.117us
110
Fosc/2
0.14 ms
0.587us
111
Fosc
71.5 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval One step = max/256
1000 ms
3.91 ms
500 ms
1.95 ms
250 ms
0.977 ms
125 ms
0.488 ms
62.5 ms
0.244 ms
31.25 ms
0.122 ms
15.63 ms
0.061 ms
7.81ms
0.03 ms
TC0_Counter=6-bit , TC0X8=1
High speed mode (Fosc = 3.58MHz)
TC0RATE TC0CLOCK
Max overflow interval One step = max/64
000
Fosc/128
2.29 ms
35.754us
001
Fosc/64
1.14 ms
17.877us
010
Fosc/32
0.57 ms
8.939us
011
Fosc/16
0.29 ms
4.470us
100
Fosc/8
0.14 ms
2.235us
101
Fosc/4
71.5 us
1.117us
110
Fosc/2
35.75 us
0.587us
111
Fosc
17.875 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/64
250 ms
3.91 ms
125 ms
1.95 ms
62.5 ms
0.977 ms
31.25 ms
0.488 ms
15.63 ms
0.244 ms
7.81ms
0.122 ms
3.905 ms
0.061 ms
1.953 ms
0.03 ms
TC0_Counter=5-bit, TC0X8=1
High speed mode (Fosc = 3.58MHz)
TC0RATE TC0CLOCK
Max overflow interval One step = max/32
000
Fosc/128
1.14 ms
35.754us
001
Fosc/64
0.57 ms
17.877us
010
Fosc/32
0.29 ms
8.939us
011
Fosc/16
0.14 ms
4.470us
100
Fosc/8
71.5 us
2.235us
101
Fosc/4
35.75 us
1.117us
110
Fosc/2
17.875 us
0.587us
111
Fosc
8.936 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/32
125 ms
3.91 ms
62.5 ms
1.95 ms
31.25 ms
0.977 ms
15.63 ms
0.488 ms
7.81ms
0.244 ms
3.905 ms
0.122 ms
1.953 ms
0.061 ms
0.976 ms
0.03 ms
TC0_Counter=4-bit, TC0X8=1
High speed mode (Fosc = 3.58MHz)
TC0RATE TC0CLOCK
Max overflow interval One step = max/16
000
Fosc/128
0.57 ms
35.754us
001
Fosc/64
0.29 ms
17.877us
010
Fosc/32
0.14 ms
8.939us
011
Fosc/16
71.5 us
4.470us
100
Fosc/8
35.75 us
2.235us
101
Fosc/4
17.875 us
1.117us
110
Fosc/2
8.936 us
0.587us
111
Fosc
4.468 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/16
62.5 ms
3.91 ms
31.25 ms
1.95 ms
15.63 ms
0.977 ms
7.81ms
0.488 ms
3.905 ms
0.244 ms
1.953 ms
0.122 ms
0.976 ms
0.061 ms
0.488 ms
0.03 ms
Table 8-2. The Timing Table of Timer Counter TC0
SONiX TECHNOLOGY CO., LTD
Page 59
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0R AUTO-LOAD REGISTER
TC0R is an 8-bit register for the TC0 auto-reload function. TC0R’s value applies to TC0OUT and PWM0OUT functions.
Under TC0OUT application, users must enable and set the TC0R register. The main purpose of TC0R is as following.
Store the auto-reload value and set into TC0C when the TC0C overflow. (ALOAD0 = 1).
Store the duty value of PWM0OUT function.
TC0R initial value = xxxx xxxx
0CDH
TC0R
Bit 7
TC0R7
W
Bit 6
TC0R6
W
Bit 5
TC0R5
W
Bit 4
TC0R4
W
Bit 3
TC0R3
W
Bit 2
TC0R2
W
Bit 1
TC0R1
W
Bit 0
TC0R0
W
The equation of TC0R initial value is like TC0C as following.
TC0R initial value = N - (TC0 interrupt interval time * input clock)
Which N is determinate by code option: TC0_Counter
TC0_Counter
N
Max. TC0R value
8-bit
256
255
6-bit
64
63
5-bit
32
31
4-bit
16
15
Note: TheTC0R must small or equal than Max. TC0R value.
Note: The TC0R is write-only register can’t be process by INCMS, DECMS instructions.
SONiX TECHNOLOGY CO., LTD
Page 60
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0 TIMER COUNTER OPERATION SEQUENCE
The TC0 timer counter’s sequence of operation can be following.
Set the TC0C initial value to setup the interval time.
Set the TC0ENB to be “1” to enable TC0 timer counter.
TC0C is incremented by one with each clock pulse which frequency is corresponding to TC0M selection.
TC0C overflow when TC0C from FFH to 00H.
When TC0C overflow occur, the TC0IRQ flag is set to be “1” by hardware.
Execute the interrupt service routine.
Users reset the TC0C value and resume the TC0 timer operation.
Example: Setup the TC0M and TC0C without auto-reload function. (TC0_Counter=8-bit)
B0BCLR
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC0X8
FTC0IEN
FTC0ENB
A,#20H
TC0M,A
A,#74H
TC0C,A
;
; To disable TC0 interrupt service
; To disable TC0 timer
;
; To set TC0 clock = Fcpu / 64
; To set TC0C initial value = 74H
;(To set TC0 interval = 10 ms)
B0BSET
B0BCLR
B0BSET
FTC0IEN
FTC0IRQ
FTC0ENB
; To enable TC0 interrupt service
; To clear TC0 interrupt request
; To enable TC0 timer
Example: Setup the TC0M and TC0C with auto-reload function. (TC0_Counter=8-bit)
B0BCLR
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
B0MOV
FTC0X8
FTC0IEN
FTC0ENB
A,#20H
TC0M,A
A,#74H
TC0C,A
TC0R,A
; To select TC0=Fcpu/2 as clock source
; To disable TC0 interrupt service
; To disable TC0 timer
;
; To set TC0 clock = Fcpu / 64
; To set TC0C initial value = 74H
; (To set TC0 interval = 10 ms)
; To set TC0R auto-reload register
B0BSET
B0BCLR
B0BSET
B0BSET
FTC0IEN
FTC0IRQ
FTC0ENB
ALOAD0
; To enable TC0 interrupt service
; To clear TC0 interrupt request
; To enable TC0 timer
; To enable TC0 auto-reload function.
SONiX TECHNOLOGY CO., LTD
Page 61
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: TC0 interrupt service routine without auto-reload function. (TC0_Counter=8-bit)
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC0IRQ
EXIT_INT
; Check TC0IRQ
; TC0IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
JMP
FTC0IRQ
A,#74H
TC0C,A
.
.
EXIT_INT
; Reset TC0IRQ
; Reload TC0C
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; TC0 interrupt service routine
; End of TC0 interrupt service routine and exit interrupt
vector
EXIT_INT:
RETI
; Restore ACC value.
; Exit interrupt vector
Example: TC0 interrupt service routine with auto-reload. (TC0_Counter=8-bit)
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC0IRQ
EXIT_INT
; Check TC0IRQ
; TC0IRQ = 0, exit interrupt vector
B0BCLR
.
.
JMP
FTC0IRQ
.
.
EXIT_INT
; Reset TC0IRQ
; TC0 interrupt service routine
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; End of TC0 interrupt service routine and exit interrupt
vector
EXIT_INT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore ACC value.
; Exit interrupt vector
Page 62
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0 CLOCK FREQUENCY OUTPUT (BUZZER)
TC0 timer counter provides a frequency output function. By setting the TC0 clock frequency, the clock signal is output
to P5.4 and the P5.4 general purpose I/O function is auto-disable. The TC0 output signal divides by 2. The TC0 clock
has many combinations and easily to make difference frequency. This function applies as buzzer output to output
multi-frequency.
Figure 8-2. The TC0OUT Pulse Frequency
Example: Setup TC0OUT output from TC0 to TC0OUT (P5.4). The external high-speed clock is 4MHz. The
TC0OUT frequency is 1KHz. Because the TC0OUT signal is divided by 2, set the TC0 clock to
2KHz. The TC0 clock source is from external oscillator clock. TC0 rate is Fcpu/4. The
TC0RATE2~TC0RATE1 = 110, TC0C = TC0R = 131, TC0X8 = 0, TC0_Counter=8-bit
B0BCLR
MOV
B0MOV
FTC0X8
A,#01100000B
TC0M,A
; Set TC0X8 to 0
MOV
B0MOV
B0MOV
A,#131
TC0C,A
TC0R,A
; Set the auto-reload reference value
B0BSET
B0BSET
B0BSET
FTC0OUT
FALOAD0
FTC0ENB
; Enable TC0 output to P5.4 and disable P5.4 I/O function
; Enable TC0 auto-reload function
; Enable TC0 timer
SONiX TECHNOLOGY CO., LTD
; Set the TC0 rate to Fcpu/4
Page 63
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0OUT FREQUENCY TABLE
Fosc = 4MHz, TC0 Rate = Fcpu/8, TC0_Counter=8-bit, TC0X8=0
TC0R
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
TC0OUT
(KHz)
0.2441
0.2451
0.2461
0.2470
0.2480
0.2490
0.2500
0.2510
0.2520
0.2530
0.2541
0.2551
0.2561
0.2572
0.2583
0.2593
0.2604
0.2615
0.2626
0.2637
0.2648
0.2660
0.2671
0.2682
0.2694
0.2706
0.2717
0.2729
0.2741
0.2753
0.2765
0.2778
0.2790
0.2803
0.2815
0.2828
0.2841
0.2854
0.2867
0.2880
0.2894
0.2907
0.2921
0.2934
0.2948
0.2962
0.2976
0.2990
0.3005
0.3019
0.3034
0.3049
0.3064
0.3079
0.3094
0.3109
TC0R
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
TC0OUT
(KHz)
0.3125
0.3141
0.3157
0.3173
0.3189
0.3205
0.3222
0.3238
0.3255
0.3272
0.3289
0.3307
0.3324
0.3342
0.3360
0.3378
0.3397
0.3415
0.3434
0.3453
0.3472
0.3492
0.3511
0.3531
0.3551
0.3571
0.3592
0.3613
0.3634
0.3655
0.3676
0.3698
0.3720
0.3743
0.3765
0.3788
0.3811
0.3834
0.3858
0.3882
0.3906
0.3931
0.3956
0.3981
0.4006
0.4032
0.4058
0.4085
0.4112
0.4139
0.4167
0.4195
0.4223
0.4252
0.4281
0.4310
TC0R
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
TC0OUT
(KHz)
0.4340
0.4371
0.4401
0.4433
0.4464
0.4496
0.4529
0.4562
0.4596
0.4630
0.4664
0.4699
0.4735
0.4771
0.4808
0.4845
0.4883
0.4921
0.4960
0.5000
0.5040
0.5081
0.5123
0.5165
0.5208
0.5252
0.5297
0.5342
0.5388
0.5435
0.5482
0.5531
0.5580
0.5631
0.5682
0.5734
0.5787
0.5841
0.5896
0.5952
0.6010
0.6068
0.6127
0.6188
0.6250
0.6313
0.6378
0.6443
0.6510
0.6579
0.6649
0.6720
0.6793
0.6868
0.6944
0.7022
TC0R
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
TC0OUT
(KHz)
0.7102
0.7184
0.7267
0.7353
0.7440
0.7530
0.7622
0.7716
0.7813
0.7911
0.8013
0.8117
0.8224
0.8333
0.8446
0.8562
0.8681
0.8803
0.8929
0.9058
0.9191
0.9328
0.9470
0.9615
0.9766
0.9921
1.0081
1.0246
1.0417
1.0593
1.0776
1.0965
1.1161
1.1364
1.1574
1.1792
1.2019
1.2255
1.2500
1.2755
1.3021
1.3298
1.3587
1.3889
1.4205
1.4535
1.4881
1.5244
1.5625
1.6026
1.6447
1.6892
1.7361
1.7857
1.8382
1.8939
TC0OUT
(KHz)
1.9531
2.0161
2.0833
2.1552
2.2321
2.3148
2.4038
2.5000
2.6042
2.7174
2.8409
2.9762
3.1250
3.2895
3.4722
3.6765
3.9063
4.1667
4.4643
4.8077
5.2083
5.6818
6.2500
6.9444
7.8125
8.9286
10.4167
12.5000
15.6250
20.8333
31.2500
62.5000
TC0R
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Table 8-3. TC0OUT Frequency Table for Fosc = 4MHz, TC0 Rate = Fcpu/8
SONiX TECHNOLOGY CO., LTD
Page 64
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Fosc = 16MHz, TC0 Rate = Fcpu/8, TC0_Counter=8-bit
TC0R
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
TC0OUT
(KHz)
0.9766
0.9804
0.9843
0.9881
0.9921
0.9960
1.0000
1.0040
1.0081
1.0121
1.0163
1.0204
1.0246
1.0288
1.0331
1.0373
1.0417
1.0460
1.0504
1.0549
1.0593
1.0638
1.0684
1.0730
1.0776
1.0823
1.0870
1.0917
1.0965
1.1013
1.1062
1.1111
1.1161
1.1211
1.1261
1.1312
1.1364
1.1416
1.1468
1.1521
1.1574
1.1628
1.1682
1.1737
1.1792
1.1848
1.1905
1.1962
1.2019
1.2077
1.2136
1.2195
1.2255
1.2315
1.2376
1.2438
TC0R
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
TC0OUT
(KHz)
1.2500
1.2563
1.2626
1.2690
1.2755
1.2821
1.2887
1.2953
1.3021
1.3089
1.3158
1.3228
1.3298
1.3369
1.3441
1.3514
1.3587
1.3661
1.3736
1.3812
1.3889
1.3966
1.4045
1.4124
1.4205
1.4286
1.4368
1.4451
1.4535
1.4620
1.4706
1.4793
1.4881
1.4970
1.5060
1.5152
1.5244
1.5337
1.5432
1.5528
1.5625
1.5723
1.5823
1.5924
1.6026
1.6129
1.6234
1.6340
1.6447
1.6556
1.6667
1.6779
1.6892
1.7007
1.7123
1.7241
TC0R
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
TC0OUT
(KHz)
1.7361
1.7483
1.7606
1.7730
1.7857
1.7986
1.8116
1.8248
1.8382
1.8519
1.8657
1.8797
1.8939
1.9084
1.9231
1.9380
1.9531
1.9685
1.9841
2.0000
2.0161
2.0325
2.0492
2.0661
2.0833
2.1008
2.1186
2.1368
2.1552
2.1739
2.1930
2.2124
2.2321
2.2523
2.2727
2.2936
2.3148
2.3364
2.3585
2.3810
2.4038
2.4272
2.4510
2.4752
2.5000
2.5253
2.5510
2.5773
2.6042
2.6316
2.6596
2.6882
2.7174
2.7473
2.7778
2.8090
TC0R
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
TC0OUT
(KHz)
2.8409
2.8736
2.9070
2.9412
2.9762
3.0120
3.0488
3.0864
3.1250
3.1646
3.2051
3.2468
3.2895
3.3333
3.3784
3.4247
3.4722
3.5211
3.5714
3.6232
3.6765
3.7313
3.7879
3.8462
3.9063
3.9683
4.0323
4.0984
4.1667
4.2373
4.3103
4.3860
4.4643
4.5455
4.6296
4.7170
4.8077
4.9020
5.0000
5.1020
5.2083
5.3191
5.4348
5.5556
5.6818
5.8140
5.9524
6.0976
6.2500
6.4103
6.5789
6.7568
6.9444
7.1429
7.3529
7.5758
TC0OUT
(KHz)
7.8125
8.0645
8.3333
8.6207
8.9286
9.2593
9.6154
10.0000
10.4167
10.8696
11.3636
11.9048
12.5000
13.1579
13.8889
14.7059
15.6250
16.6667
17.8571
19.2308
20.8333
22.7273
25.0000
27.7778
31.2500
35.7143
41.6667
50.0000
62.5000
83.3333
125.0000
250.0000
TC0R
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Table 8-4TC0OUT Frequency Table for Fosc = 16MHz, TC0 Rate = Fcpu/8
SONiX TECHNOLOGY CO., LTD
Page 65
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TIMER COUNTER 1 (TC1)
OVERVIEW
The timer counter 1 (TC1) is used to generate an interrupt request when a specified time interval has elapsed. TC1 has
a auto re-loadable counter that consists of two parts: an 8-bit reload register (TC1R) into which you write the counter
Aload1
TC1R reload
data buffer
Internal P5.3 I/O circuit
Auto. reload
R
Compare
Buzzer
P5.3
÷2
PWM
S
TC1enb
TC1out
PWM1OUT
load
fcpu
TC1C
8-bit binary counter
÷ 2(8-TC1Rate)
TC1 Time out
CPUM0
reference value, and an 8-bit counter register (TC1C) whose value is automatically incremented by counter logic.
Figure 8-3. Timer Counter TC1 Block Diagram
The main purposes of the TC1 timer is as following.
8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock frequency.
Arbitrary frequency output (Buzzer output): Outputs selectable clock frequencies to the BZ1 pin (P5.3).
PWM function: PWM output can be generated by the PWM1OUT bit and output to PWM1OUT pin (P5.3).
SONiX TECHNOLOGY CO., LTD
Page 66
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1M MODE REGISTER
The TC1M is the timer mode register, which is an 8-bit read/write register. By loading different value into the TC1M
register, users can modify the timer counter clock frequency dynamically when program executing.
Eight rates for TC1 timer can be selected by TC1RATE0 ~ TC1RATE2 and TC1X8 bits of T0M register. If TC1X8=1 the
TC1 will faster 8 times than TC1X8=0 (Initial value). The bit7 of TC1M named TC1ENB is the control bit to start TC1
timer.
TC1M initial value = 0000 0000
0DCH
TC1M
Bit 7
TC1ENB
R/W
Bit 6
Bit 5
Bit 4
TC1RATE2 TC1RATE1 TC1RATE0
R/W
R/W
R/W
Bit 3
0
-
Bit 2
ALOAD1
R/W
Bit7
TC1ENB: TC1 counter/BZ1/PWM1OUT enable bit.
0 = disable,
1 = enable.
Bit[6:4]
TC1RATE[2:0]: TC1 clock source selection bits. TC1X8 is bit 3 of T0M register.
Bit 1
TC1OUT
R/W
Bit 0
PWM1OUT
R/W
TC1 Clock Source
TC1X8 = 0
TC1X8 = 1
000
Fcpu/256 = Fosc/1024 Fosc/128
001
Fcpu/128 = Fosc/512 Fosc/64
…
…
…
110
Fcpu/4 = Fosc/16
Fosc/2
111
Fcpu/2 = Fosc/8
Fosc
Note: Fcpu = Fosc / 4
TC1RATE [2:0]
Bit2
ALOAD1: TC1 auto-reload function control bit.
0 = none auto-reload
1 = auto-reload.
Bit1
TC01UT: TC1 time-out toggle signal output control bit.
0 = to disable TC1 signal output and to enable P5.3’s I/O function,
1 = to enable TC1’s signal output and to disable P5.3’s I/O function. (Auto-disable the PWM0OUT function.)
Bit0
PWM1OUT: TC1’s PWM output control bit.
0 = to disable the PWM output,
1 = to enable the PWM output (The TC1OUT control bit must = 0)
Note: TC1 doesn’t support event counter mode because SN8P1702A and SN8P1703A hasn’t P0.1 for TC1
event counter clock input.
Note: Bit3 must set to “0”.
SONiX TECHNOLOGY CO., LTD
Page 67
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1C COUNTING REGISTER
TC1C is an 8-bit counter register for the timer counter (TC1). TC1C must be reset whenever the TC1ENB is set “1” to
start the timer. TC0C is incremented by one with a clock pulse which the frequency is determined by TC0RATE0 ~
TC0RATE2. When TC0C has incremented to “0FFH”, it is will be cleared to “00H” in next clock and an overflow is
generated. Under TC1 interrupt service request (TC1IEN) enable condition, the TC1 interrupt request flag will be set
“1” and the system executes the interrupt service routine.
TC1C initial value = xxxx xxxx
0DDH
TC1C
Bit 7
TC1C7
R/W
Bit 6
TC1C6
R/W
Bit 5
TC1C5
R/W
Bit 4
TC1C4
R/W
Bit 3
TC1C3
R/W
Bit 2
TC1C2
R/W
Bit 1
TC1C1
R/W
Bit 0
TC1C0
R/W
TC1 Overflow Time
TC1 rate is determinate by TC1Rate and Code Option TC1_Counter, TC1Rate can set TC1 clock frequency from Fcpu
and TC1_Counter set TC1 became 8-bit, 6-bit, 5-bit or 4-bit counter.
The equation of TC1C initial value is as following.
TC1C initial value = N - (TC1 interrupt interval time * input clock)
Which N is determinate by code option: TC1_Counter
TC1_Counter
N
Max. TC1C value
8-bit
256
255
6-bit
64
63
5-bit
32
31
4-bit
16
15
Note: TheTC1C must small or equal than Max. TC1 value.
Example: To set 10ms interval time for TC1 interrupt at Fosc = 3.58MHz
TC1C value (74H) = 256 - (10ms * fcpu/64) (TC1RATE=010, TC1_Counter=8-bit, TC1X8=0)
TC1C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (10ms * 3.58 * 106 / 4 / 64)
= 256 - (0.01 * 3.58 * 106 / 4 / 64)
= 116
= 74H
Example: To set 1.25ms interval time for TC1 interrupt at Fosc = 3.58MHz
TC1C value (74H) = 256 - (10ms * fcpu/64) (TC1RATE=010, TC1_Counter=8-bit, TC1X8=1)
TC1C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (1.25ms * 3.58 * 106 / 32)
= 256 - (0.00125 * 3.58 * 106 / 32)
= 116
= 74H
Example: To set 1ms interval time for TC1 interrupt at Fosc = 3.58MHz
TC1C value (32H) = 64 - (1ms * fcpu/64) (TC1RATE=010, TC1_COunter=6-bit, TC1X8=0)
TC1C initial value = 64 - (TC0 interrupt interval time * input clock)
= 64 - (1ms * 3.58 * 106 / 4 / 64)
= 64 - (0.001 * 3.58 * 106 / 4 / 64)
= 64 - 14
= 32H
SONiX TECHNOLOGY CO., LTD
Page 68
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1_Counter=8-bit, TC1X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC1RATE TC1CLOCK
Max overflow interval One step = max/256
000
Fcpu/256
73.2 ms
286us
001
Fcpu/128
36.6 ms
143us
010
Fcpu/64
18.3 ms
71.5us
011
Fcpu/32
9.15 ms
35.8us
100
Fcpu/16
4.57 ms
17.9us
101
Fcpu/8
2.28 ms
8.94us
110
Fcpu/4
1.14 ms
4.47us
111
Fcpu/2
0.57 ms
2.23us
Low speed mode (Fosc = 32768Hz / 4)
Max overflow interval One step = max/256
8000 ms
31.25 ms
4000 ms
15.63 ms
2000 ms
7.8 ms
1000 ms
3.9 ms
500 ms
1.95 ms
250 ms
0.98 ms
125 ms
0.49 ms
62.5 ms
0.24 ms
TC1_Counter=6-bit , TC1X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC1RATE TC1CLOCK
Max overflow interval One step = max/64
000
Fcpu/256
18.3 ms
286us
001
Fcpu/128
9.15 ms
143us
010
Fcpu/64
4.57 ms
71.5us
011
Fcpu/32
2.28 ms
35.8us
100
Fcpu/16
1.14 ms
17.9us
101
Fcpu/8
0.57 ms
8.94us
110
Fcpu/4
0.285 ms
4.47us
111
Fcpu/2
0.143 ms
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/64
2000 ms
31.25 ms
1000 ms
15.63 ms
500 ms
7.8 ms
250 ms
3.9 ms
125 ms
1.95 ms
62.5 ms
0.98 ms
31.25 ms
0.49 ms
15.63 ms
0.24 ms
TC1_Counter=5-bit, TC1X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC1RATE TC1CLOCK
Max overflow interval One step = max/32
000
Fcpu/256
9.15 ms
286us
001
Fcpu/128
4.57 ms
143us
010
Fcpu/64
2.28 ms
71.5us
011
Fcpu/32
1.14 ms
35.8us
100
Fcpu/16
0.57 ms
17.9us
101
Fcpu/8
0.285 ms
8.94us
110
Fcpu/4
0.143 ms
4.47us
111
Fcpu/2
71.25 us
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/32
1000 ms
31.25 ms
500 ms
15.63 ms
250 ms
7.8 ms
125 ms
3.9 ms
62.5 ms
1.95 ms
31.25 ms
0.98 ms
15.63 ms
0.49 ms
7.81 ms
0.24 ms
TC1_Counter=4-bit, TC1X8=0
High speed mode (Fcpu = 3.58MHz / 4)
TC1RATE TC1CLOCK
Max overflow interval One step = max/16
000
Fcpu/256
4.57 ms
286us
001
Fcpu/128
2.28 ms
143us
010
Fcpu/64
1.14 ms
71.5us
011
Fcpu/32
0.57 ms
35.8us
100
Fcpu/16
0.285 ms
17.9us
101
Fcpu/8
0.143 ms
8.94us
110
Fcpu/4
71.25 us
4.47us
111
Fcpu/2
35.63 us
2.23us
Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval
One step = max/16
500 ms
31.25 ms
250 ms
15.63 ms
125 ms
7.8 ms
62.5 ms
3.9 ms
31.25 ms
1.95 ms
15.63 ms
0.98 ms
7.81 ms
0.49 ms
3.91 ms
0.24 ms
SONiX TECHNOLOGY CO., LTD
Page 69
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1_Counter=8-bit, TC1X8=1
High speed mode (Fosc = 3.58MHz)
TC1RATE TC1CLOCK
Max overflow interval One step = max/256
000
Fosc/128
9.153 ms
35.754us
001
Fosc/64
4.58 ms
17.877us
010
Fosc/32
2.29 ms
8.939us
011
Fosc/16
1.14 ms
4.470us
100
Fosc/8
0.57 ms
2.235us
101
Fosc/4
0.29 ms
1.117us
110
Fosc/2
0.14 ms
0.587us
111
Fosc
71.5 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval One step = max/256
1000 ms
3.91 ms
500 ms
1.95 ms
250 ms
0.977 ms
125 ms
0.488 ms
62.5 ms
0.244 ms
31.25 ms
0.122 ms
15.63 ms
0.061 ms
7.81ms
0.03 ms
TC1_Counter=6-bit , TC1X8=1
High speed mode (Fosc = 3.58MHz)
TC1RATE TC1CLOCK
Max overflow interval One step = max/64
000
Fosc/128
2.29 ms
35.754us
001
Fosc/64
1.14 ms
17.877us
010
Fosc/32
0.57 ms
8.939us
011
Fosc/16
0.29 ms
4.470us
100
Fosc/8
0.14 ms
2.235us
101
Fosc/4
71.5 us
1.117us
110
Fosc/2
35.75 us
0.587us
111
Fosc
17.875 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/64
250 ms
3.91 ms
125 ms
1.95 ms
62.5 ms
0.977 ms
31.25 ms
0.488 ms
15.63 ms
0.244 ms
7.81ms
0.122 ms
3.905 ms
0.061 ms
1.953 ms
0.03 ms
TC1_Counter=5-bit, TC1X8=1
High speed mode (Fosc = 3.58MHz)
TC1RATE TC1CLOCK
Max overflow interval One step = max/32
000
Fosc/128
1.14 ms
35.754us
001
Fosc/64
0.57 ms
17.877us
010
Fosc/32
0.29 ms
8.939us
011
Fosc/16
0.14 ms
4.470us
100
Fosc/8
71.5 us
2.235us
101
Fosc/4
35.75 us
1.117us
110
Fosc/2
17.875 us
0.587us
111
Fosc
8.936 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/32
125 ms
3.91 ms
62.5 ms
1.95 ms
31.25 ms
0.977 ms
15.63 ms
0.488 ms
7.81ms
0.244 ms
3.905 ms
0.122 ms
1.953 ms
0.061 ms
0.976 ms
0.03 ms
TC1_Counter=4-bit, TC1X8=1
High speed mode (Fosc = 3.58MHz)
TC1RATE TC1CLOCK
Max overflow interval One step = max/16
000
Fosc/128
0.57 ms
35.754us
001
Fosc/64
0.29 ms
17.877us
010
Fosc/32
0.14 ms
8.939us
011
Fosc/16
71.5 us
4.470us
100
Fosc/8
35.75 us
2.235us
101
Fosc/4
17.875 us
1.117us
110
Fosc/2
8.936 us
0.587us
111
Fosc
4.468 us
0.279us
Low speed mode (Fosc = 32768Hz)
Max overflow interval
One step = max/16
62.5 ms
3.91 ms
31.25 ms
1.95 ms
15.63 ms
0.977 ms
7.81ms
0.488 ms
3.905 ms
0.244 ms
1.953 ms
0.122 ms
0.976 ms
0.061 ms
0.488 ms
0.03 ms
Table 8-5. The Timing Table of Timer Counter TC1
SONiX TECHNOLOGY CO., LTD
Page 70
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1R AUTO-LOAD REGISTER
TC1R is an 8-bit register for the TC1 auto-reload function. TC1R’s value applies to TC1OUT and PWM1OUT functions.
Under TC1OUT application, users must enable and set the TC1R register. The main purpose of TC1R is as following.
Store the auto-reload value and set into TC1C when the TC1C overflow. (ALOAD1 = 1).
Store the duty value of PWM1OUT function.
TC1R initial value = xxxx xxxx
0DEH
TC1R
Bit 7
TC1R7
W
Bit 6
TC1R6
W
Bit 5
TC1R5
W
Bit 4
TC1R4
W
Bit 3
TC1R3
W
Bit 2
TC1R2
W
Bit 1
TC1R1
W
Bit 0
TC1R0
W
The equation of TC1R initial value is like TC1C as following.
TC1R initial value = N - (TC1 interrupt interval time * input clock)
Which N is determinate by code option: TC1_Counter
TC1_Counter
N
Max. TC1R value
8-bit
256
255
6-bit
64
63
5-bit
32
31
4-bit
16
15
Note: TheTC1R must small or equal than Max. TC1R value.
Note: The TC1R is write-only register can’t be process by INCMS, DECMS instructions.
SONiX TECHNOLOGY CO., LTD
Page 71
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1 TIMER COUNTER OPERATION SEQUENCE
The TC1 timer’s sequence of operation can be following.
Set the TC1C initial value to setup the interval time.
Set the TC1ENB to be “1” to enable TC1 timer counter.
TC1C is incremented by one with each clock pulse which frequency is corresponding to TC1M selection.
TC1C overflow if TC1C from FFH to 00H.
When TC1C overflow occur, the TC1IRQ flag is set to be “1” by hardware.
Execute the interrupt service routine.
Users reset the TC1C value and resume the TC1 timer operation.
Example: Setup the TC1M and TC1C without auto-reload function.(TC1_Counter=8-bit, TC1X8=0)
B0BCLR
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC1X8
FTC1IEN
FTC1ENB
A,#20H
TC1M,A
A,#74H
TC1C,A
;
; To disable TC1 interrupt service
; To disable TC1 timer
;
; To set TC1 clock = Fcpu / 64
; To set TC1C initial value = 74H
;(To set TC1 interval = 10 ms)
B0BSET
B0BCLR
B0BSET
FTC1IEN
FTC1IRQ
FTC1ENB
; To enable TC1 interrupt service
; To clear TC1 interrupt request
; To enable TC1 timer
Example: Setup the TC1M and TC1C with auto-reload function. (TC1_Counter=8-bit, TC1X8=0)
B0BCLR
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
B0MOV
FTC1X8
FTC1IEN
FTC1ENB
A,#20H
TC1M,A
A,#74H
TC1C,A
TC1R,A
; To select TC1=Fcpu/2 as clock source
; To disable TC1 interrupt service
; To disable TC1 timer
;
; To set TC1 clock = Fcpu / 64
; To set TC1C initial value = 74H
; (To set TC1 interval = 10 ms)
; To set TC1R auto-reload register
B0BSET
B0BCLR
B0BSET
B0BSET
FTC1IEN
FTC1IRQ
FTC1ENB
ALOAD1
; To enable TC1 interrupt service
; To clear TC1 interrupt request
; To enable TC1 timer
; To enable TC1 auto-reload function.
SONiX TECHNOLOGY CO., LTD
Page 72
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: TC1 interrupt service routine without auto-reload function. (TC1_Counter=8-bit, TC1X8=0)
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC1IRQ
EXIT_INT
; Check TC1IRQ
; TC1IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
JMP
FTC1IRQ
A,#74H
TC1C,A
.
.
EXIT_INT
; Reset TC1IRQ
; Reload TC1C
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; TC1 interrupt service routine
; End of TC1 interrupt service routine and exit interrupt
vector
EXIT_INT:
RETI
; Restore ACC value.
; Exit interrupt vector
Example: TC1 interrupt service routine with auto-reload. (TC1_Counter=8-bit, TC1X8=0)
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC1IRQ
EXIT_INT
; Check TC1IRQ
; TC1IRQ = 0, exit interrupt vector
B0BCLR
.
.
JMP
FTC1IRQ
.
.
EXIT_INT
; Reset TC1IRQ
; TC1 interrupt service routine
.
.
.
.
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; End of TC1 interrupt service routine and exit interrupt
vector
EXIT_INT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore ACC value.
; Exit interrupt vector
Page 73
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1 CLOCK FREQUENCY OUTPUT (BUZZER)
TC1 timer counter provides a frequency output function. By setting the TC1 clock frequency, the clock signal is output
to P5.3 and the P5.3 general purpose I/O function is auto-disable. The TC1 output signal divides by 2. The TC1 clock
has many combinations and easily to make difference frequency. This function applies as buzzer output to output
multi-frequency.
Figure 8-4The TC1OUT Pulse Frequency
Example: Setup TC1OUT output from TC1 to TC1OUT (P5.3). The external high-speed clock is 4MHz. The
TC1OUT frequency is 1KHz. Because the TC1OUT signal is divided by 2, set the TC1 clock to
2KHz. The TC1 clock source is from external oscillator clock. TC1 rate is Fcpu/4. The
TC1RATE2~TC1RATE1 = 110, TC1C = TC1R = 131, TC1_Counter=8-bit, TC1X8=0
B0BCLR
MOV
B0MOV
FTC1X8
A,#01100000B
TC1M,A
; Set TC1X8 to 0
MOV
B0MOV
B0MOV
A,#131
TC1C,A
TC1R,A
; Set the auto-reload reference value
B0BSET
B0BSET
B0BSET
FTC1OUT
FALOAD1
FTC1ENB
; Enable TC1 output to P5.3 and disable P5.3 I/O function
; Enable TC1 auto-reload function
; Enable TC1 timer
SONiX TECHNOLOGY CO., LTD
; Set the TC1 rate to Fcpu/4
Page 74
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PWM FUNCTION DESCRIPTION
OVERVIEW
PWM function is generated by TC0/TC1 timer counter and output the PWM signal to PWM0OUT pin (P5.4)/
PWM1OUT pin (P5.3). When code option TC0/TC1_Counter= 8-bit, the counter counts modulus 256, from 0-255,
inclusive. The value of the 8-bit counter is compared to the contents of the reference register (TC0R/TC1R). When the
reference register value (TC0R/TC1R) is equal to the counter value (TC0C/TC1C), the PWM output goes low. When
the counter reaches zero, the PWM output is forced high. Following table listed the low-to-high ratio (duty) of the
PWM0/PWM1 output.
For example, TC0_Counter=8-bit, all PWM outputs remain inactive during the first 256 input clock signals. Then, when
the counter value (TC0C/TC1C) changes from FFH back to 00H, the PWM output is forced to high level. The pulse
width ratio (duty cycle) is defined by the contents of the reference register (TC0R/TC1R) and is programmed in
increments of 1:256. The 8-bit PWM data register TC0R/TC1R is write-only register. Different code option of
TC0_Counter/TC1_Counter will cause different PWM Duty, so user can generate different PWM output by selection
different TC0_Counter/TC1_Counter.
PWM output can be held at low level by continuously loading the reference register with 00H. Under PWM operating, to
change the PWM’s duty cycle is to modify the TC0R/TC1R.
TC0X8/TC1X8
0
PWM0 Frequency
10-TC0RATE
Fosc/(2
)/N
PWM1 Frequency
Fosc/(210-TC1RATE)/N
Fosc/(27-TC0RATE) /N
Fosc/(27-TC1RATE) /N
1
The value of N depend on code option TC0_Counter/TC1_Counter
TC0_Counter/TC1_Counter
8-bit
6-bit
5-bit
4-bit
N
256
64
32
16
PWM Duty Cycle
0/256 ~ 255/256
0/64 ~ 63/64
0/32 ~ 31/32
0/16 ~ 15/16
Table 8-6. The PWM Frequency Calculation Formula
TC0X8
TC1X8
0
0
0
0
1
1
1
1
TC0_Counter
TC1_Counter
8-bit
6-bit
5-bit
4-bit
8-bit
6-bit
5-bit
4-bit
TC0 Overflow
boundary
TC1 Overflow
boundary
FFh to 00h
3Fh to 40h
1Fh to 20h
0Fh to 10h
FFh to 00h
3Fh to 40h
1Fh to 20h
0Fh to 10h
PWM Duty Cycle
Max PWM Frequency
(Fosc = 4MHz)
Note
0/256 ~ 255/256
0/64 ~ 63/64
0/32 ~ 31/32
0/16 ~ 15/16
0/256 ~ 255/256
0/64 ~ 63/64
0/32 ~ 31/32
0/16 ~ 15/16
1.953125K
7.8125K
15.625K
31.25K
15.625
62.5K
125K
250K
Overflow per 256 count
Overflow per 64 count
Overflow per 32 count
Overflow per 16 count
Overflow per 256 count
Overflow per 64 count
Overflow per 32 count
Overflow per 16 count
Table 8-7. The Maximum PWM Frequency Example (TC0RATE/TC1RATE = 111)
SONiX TECHNOLOGY CO., LTD
Page 75
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Reference Register
Value (TC0R/TC1R)
0000 0000
0000 0001
0000 0010
TC0/1_Counter=8-bit TC0/1_Counter=6-bit TC0/1_Counter=5-bit TC0/1_Counter=4-bit
Duty Cycle
Duty Cycle
Duty Cycle
Duty Cycle
0/256
0/64
0/32
0/16
1/256
1/64
1/32
1/16
2/256
2/64
2/32
2/16
…
…
…
…
…
0000 1110
0000 1111
0001 0000
14/256
15/256
16/256.
14/64
15/64
16/64
14/32
15/32
16/32
…
…
…
…
0001 1110
0001 1111
0010 0000
30/256
31/256
32/256.
30/64
31/64
32/64
…
…
…
0011 1110
0011 1111
0100 0000
62/256
63/256
64/256.
…
…
1111 1110
1111 1111
254/256
255/256
62/64
63/64
N/A
N/A
N/A
N/A
30/32
31/32
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
14/16
15/16
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Table 8-8. The PWM Duty Cycle Table
Note: Functionality is not guaranteed in shaded area.
SONiX TECHNOLOGY CO., LTD
Page 76
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
0
1
..... 128
..... 254 255
0
1
..... 128
..... 254 255
TC0/TC1 Clock
Low
TC0R/TC1R = 00H
High
Low
TC0R/TC1R = 01H
High
Low
TC0R/TC1R = 80H
High
TC0R/TC1R = FFH
Low
Figure 8-5 The Output of PWM with different TC0R/TC1R. (TC0/TC1_Counter=8-bit)
0
1
2
...
16 17
18
...
32 33
34
...
64 65
66
...
255
0
1
...
TC0 Clock
TC0R = 01H
TC0_count:4-bit
High
Low
High
TC0R = 01H
TC0_count:5-bit
Low
High
TC0R = 01H
TC0_count:6-bit
TC0R = 01H
TC0_count:8-bit
Low
High
Low
Figure 8-6 The Output of PWM with different TC0_Counter
SONiX TECHNOLOGY CO., LTD
Page 77
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PWM PROGRAM DESCRIPTION
Example: Setup PWM0 output from TC0 to PWM0OUT (P5.4). The external high-speed oscillator clock is
4MHz. The duty of PWM is 30/256. The PWM frequency is about 1KHz. The PWM clock source is
from external oscillator clock. TC0 rate is Fcpu/4. The TC0RATE2~TC0RATE1 = 110, TC0C = TC0R
= 30, TC0X8 =0, TC0_Counter=8-bit
B0BCLR
MOV
B0MOV
MOV
B0MOV
MOV
FTC0X8
A,#01100000B
TC0M,A
A,#0x00
TC0C,A
A,#30
B0MOV
TC0R,A
B0BCLR
B0BSET
B0BSET
FTC0OUT
FPWM0OUT
FTC0ENB
; Set the TC0 rate to Fcpu/4
;First Time Initial TC0
; Set the PWM duty to 30/256
; Disable TC0OUT function.
; Enable PWM0 output to P5.4 and disable P5.4 I/O function
; Enable TC0 timer
Note1: The TC0R and TC1R are write-only registers. Don’t process them using INCMS, DECMS
instructions.
Note2: Set TC0C at initial is to make first duty-cycle correct. After TC0 is enabled, don’t modify TC0R
value to avoid duty cycle error of PWM output.
Example: Modify TC0R/TC1R registers’ value.
MOV
B0MOV
A, #30H
TC0R, A
; Input a number using B0MOV instruction.
INCMS
B0MOV
B0MOV
BUF0
A, BUF0
TC0R, A
; Get the new TC0R value from the BUF0 buffer defined by
; programming.
Note2: That is better to set the TC0C and TC0R value together when PWM0 duty modified. It protects the
PWM0 signal no glitch as PWM0 duty changing. That is better to set the TC1C and TC1R value together
when PWM1 duty modified. It protects the PWM1 signal no glitch as PWM1 duty changing.
Note3: The TC0OUT function must be set “0” when PWM0 output enable. The TC1OUT function must be
set “0” when PWM1 output enable.
Note4: The PWM can work with interrupt request.
SONiX TECHNOLOGY CO., LTD
Page 78
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
9 INTERRUPT
OVERVIEW
The SN8P1702A/SN8P1703A provides 3 interrupt sources, including two internal interrupts (TC0, TC1) and one
external interrupts (INT0 ). The external interrupt can wakeup the chip from power down mode to high-speed normal
mode. The external clock input pins of INT0 are shared with P0.0 pins. Once interrupt service is executed, the GIE bit
in STKP register will clear to “0” for stopping other interrupt request. When interrupt service exits, the GIE bit will set to
“1” to accept the next interrupts’ request. All of the interrupt request signals are stored in INTRQ register. The user can
program the chip to check INTRQ’s content for setting executive priority.
INTEN Interrupt enable reg ister
TC0IRQ
TC0 time out
TC1 time out
INT0 trigger
INTRQ
3-bit
Latchs
TC1IRQ
P00IRQ
Interrupt
enable
gating
Interrupt vector address (0008H)
Global interrupt request signal
Figure 9-1. The 7 Interrupts
Note: The GIE bit must enable and all interrupt operations work.
SONiX TECHNOLOGY CO., LTD
Page 79
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
INTEN INTERRUPT ENABLE REGISTER
INTEN is the interrupt request control register including two internal interrupts, one external interrupts enable control
bits. One of the register to be set “1” is to enable the interrupt request function. Once of the interrupt occur, the
program jump to ORG 8 to execute interrupt service routines. The program exits the interrupt service routine when the
returning interrupt service routine instruction (RETI) is executed.
INTEN initial value = x000 0000
0C9H
Bit 7
Bit 6
0
TC1IEN
INTEN
R/W
Bit0
Bit5
Bit6
Bit 5
TC0IEN
R/W
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
0
-
Bit 0
P00IEN
R/W
P00IEN:External P0.0 interrupt control bit.
0 = disable,
1 = enable.
TC0IEN:Timer interrupt control bit.
0 = disable,
1 = enable.
TC1IEN:Timer interrupt control bit.
0 = disable,
1 = enable.
INTRQ INTERRUPT REQUEST REGISTER
INTRQ is the interrupt request flag register. The register includes all interrupt request indication flags. Each one of
these interrupt request occurs, the bit of the INTRQ register would be set “1”. The INTRQ value needs to be clear by
programming after detecting the flag. In the interrupt vector of program, users know the any interrupt requests
occurring by the register and do the routine corresponding of the interrupt request.
INTRQ initial value = x000 0000
0C8H
INTRQ
Bit0
Bit5
Bit6
Bit 7
0
-
Bit 6
TC1IRQ
R/W
Bit 5
TC0IRQ
R/W
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
0
-
Bit 0
P00IRQ
R/W
P00IRQ:External P0.0 interrupt request bit.
0 = non-request
1 = request.
TC0IRQ:TC0 timer interrupt request controls bit.
0 = non request
1 = request.
TC1IRQ:TC1 timer interrupt request controls bit.
0 = non request
1 = request.
When interrupt occurs, the related request bit of INTRQ register will be set to “1” no matter the related enable bit of
INTEN register is enabled or disabled. If the related bit of INTEN = 1 and the related bit of INTRQ is also set to be “1”.
As the result, the system will execute the interrupt vector (ORG 8). If the related bit of INTEN = 0, moreover, the
system won’t execute interrupt vector even when the related bit of INTRQ is set to be “1”. Users need to be cautious
with the operation under multi-interrupt situation.
SONiX TECHNOLOGY CO., LTD
Page 80
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
INTERRUPT OPERATION DESCRIPTION
SN8P1702A/SN8P1703A provides 3 interrupts. The operation of the 3 interrupts is as following.
GIE GLOBAL INTERRUPT OPERATION
GIE is the global interrupt control bit. All interrupts start work after the GIE = 1. It is necessary for interrupt service
request. One of the interrupt requests occurs, and the program counter (PC) points to the interrupt vector (ORG 8) and
the stack add 1 level.
STKP initial value = 0xxx 1111
0DFH
STKP
Bit7
Bit 7
GIE
R/W
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
STKPB3
R/W
Bit 2
STKPB2
R/W
Bit 1
STKPB1
R/W
Bit 0
STKPB0
R/W
GIE:Global interrupt control bit.
0 = disable
1 = enable.
Example: Set global interrupt control bit (GIE).
B0BSET
FGIE
; Enable GIE
Note: The GIE bit must enable and all interrupt operations work.
SONiX TECHNOLOGY CO., LTD
Page 81
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
INT0 (P0.0) INTERRUPT OPERATION
The P0.0 interrupt trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH
PEDGE
Bit 7
PEDGEN
R/W
Bit 6
-
Bit 5
-
Bit 4
P00G1
R/W
Bit 3
P00G0
R/W
Bit 2
-
Bit7
PEDGEN: Interrupt and wakeup trigger edge control bit.
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger.
Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits.
Port 1: Level change (falling or rising edge) wakeup trigger.
Bit[4:3]
P00G[1:0]: Port 0.0 edge select bits.
00 = reserved,
01 = rising edge,
10 = falling edge,
11 = rising/falling bi-direction.
Bit 1
-
Bit 0
-
Example: INT0 interrupt request setup.
B0BSET
B0BCLR
B0BSET
FP00IEN
FP00IRQ
FGIE
; Enable INT0 interrupt service
; Clear INT0 interrupt request flag
; Enable GIE
Example: INT0 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FP00IRQ
EXIT_INT
; Check P00IRQ
; P00IRQ = 0, exit interrupt vector
B0BCLR
.
.
FP00IRQ
.
.
; Reset P00IRQ
; INT0 interrupt service routine
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
EXIT_INT:
RETI
; Restore ACC value.
; Exit interrupt vector
When the INT0 trigger occurs, the P00IRQ will be set to “1” no matter the P00IEN is enable or disable. If the P00IEN =
1 and the trigger event P00IRQ is also set to be “1”. As the result, the system will execute the interrupt vector (ORG
8). If the P00IEN = 0 and the trigger event P00IRQ is still set to be “1”. Moreover, the system won’t execute interrupt
vector even when the P00IRQ is set to be “1”. Users need to be cautious with the operation under multi-interrupt
situation.
SONiX TECHNOLOGY CO., LTD
Page 82
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC0 INTERRUPT OPERATION
When the TC0C counter occurs overflow, the TC0IRQ will be set to “1” however the TC0IEN is enable or disable. If the
TC0IEN = 1, the trigger event will make the TC0IRQ to be “1” and the system enter interrupt vector. If the TC0IEN = 0,
the trigger event will make the TC0IRQ to be “1” but the system will not enter interrupt vector. Users need to care for
the operation under multi-interrupt situation.
Example: TC0 interrupt request setup.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC0IEN
FTC0ENB
A, #20H
TC0M, A
A, #74H
TC0C, A
; Disable TC0 interrupt service
; Disable TC0 timer
;
; Set TC0 clock = Fcpu / 64
; Set TC0C initial value = 74H
; Set TC0 interval = 10 ms
B0BSET
B0BCLR
B0BSET
FTC0IEN
FTC0IRQ
FTC0ENB
; Enable TC0 interrupt service
; Clear TC0 interrupt request flag
; Enable TC0 timer
B0BSET
FGIE
; Enable GIE
Example: TC0 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
FTC0IRQ
EXIT_INT
; Check TC0IRQ
; TC0IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
FTC0IRQ
A, #74H
TC0C, A
.
.
; Reset TC0IRQ
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
INT_SERVICE:
; Reset TC0C.
; TC0 interrupt service routine
EXIT_INT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore ACC value.
; Exit interrupt vector
Page 83
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
TC1 INTERRUPT OPERATION
When the TC1C counter occurs overflow, the TC1IRQ will be set to “1” however the TC1IEN is enable or disable. If the
TC1IEN = 1, the trigger event will make the TC1IRQ to be “1” and the system enter interrupt vector. If the TC1IEN = 0,
the trigger event will make the TC1IRQ to be “1” but the system will not enter interrupt vector. Users need to care for
the operation under multi-interrupt situation.
Example: TC1 interrupt request setup.
B0BCLR
B0BCLR
MOV
B0MOV
MOV
B0MOV
FTC1IEN
FT C1ENB
A, #20H
TC1M, A
A, #74H
TC1C, A
; Disable TC1 interrupt service
; Disable TC1 timer
;
; Set TC1 clock = Fcpu / 64
; Set TC1C initial value = 74H
; Set TC1 interval = 10 ms
B0BSET
B0BCLR
B0BSET
FTC1IEN
FTC1IRQ
FTC1ENB
; Enable TC1 interrupt service
; Clear TC1 interrupt request flag
; Enable TC1 timer
B0BSET
FGIE
; Enable GIE
Example: TC1 interrupt service routine.
ORG
JMP
8
INT_SERVICE
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
INT_SERVICE:
;
B0BTS1
JMP
FTC1IRQ
EXIT_INT
; Check TC1IRQ
; TC1IRQ = 0, exit interrupt vector
B0BCLR
MOV
B0MOV
.
.
FTC1IRQ
A, #74H
TC1C, A
.
.
; Reset TC1IRQ
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
; Reset TC1C.
; TC1 interrupt service routine
EXIT_INT:
RETI
SONiX TECHNOLOGY CO., LTD
; Restore ACC value.
; Exit interrupt vector
Page 84
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
MULTI-INTERRUPT OPERATION
In most conditions, the software designer uses more than one interrupt request. Processing multi-interrupt request
needs to set the priority of these interrupt requests. The IRQ flags of the 7 interrupt are controlled by the interrupt event
occurring. But the IRQ flag set doesn’t mean the system to execute the interrupt vector. The IRQ flags can be triggered
by the events without interrupt enable. Just only any the event occurs and the IRQ will be logic “1”. The IRQ and its
trigger event relationship is as the below table.
Interrupt Name
P00IRQ
TC0IRQ
TC1IRQ
Trigger Event Description
P0.0 trigger. Falling/Rising/Both.
TC0C overflow.
TC1C overflow.
There are two things need to do for multi-interrupt. One is to make a good priority for these interrupt requests. Two is
using IEN and IRQ flags to decide executing interrupt service routine or not. Users have to check interrupt control bit
and interrupt request flag in interrupt vector. There is a simple routine as following.
SONiX TECHNOLOGY CO., LTD
Page 85
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: How does users check the interrupt request in multi-interrupt situation?
ORG
8
; Interrupt vector
B0XCH
B0MOV
B0MOV
A, ACCBUF
A, PFLAG
PFLAGBUF, A
; Store ACC value.
B0BTS1
JMP
B0BTS0
JMP
FP00IEN
INTTC0CHK
FP00IRQ
INTP00
B0BTS1
JMP
B0BTS0
JMP
FTC0IEN
INTTC1CHK
FTC0IRQ
INTTC0
B0BTS1
JMP
B0BTS0
JMP
FTC1IEN
INT_EXIT
FTC1IRQ
INTTC1
;
; Check INT0 interrupt request
; Check P00IEN
; Jump check to next interrupt
; Check P00IRQ
; Jump to INT0 interrupt service routine
; Check TC0 interrupt request
; Check TC0IEN
; Jump check to next interrupt
; Check TC0IRQ
; Jump to TC0 interrupt service routine
; Check TC1 interrupt request
; Check TC1IEN
; Jump check to next interrupt
; Check TC1IRQ
; Jump to TC1 interrupt service routine
B0MOV
B0MOV
B0XCH
A, PFLAGBUF
PFLAG, A
A, ACCBUF
; Restore ACC value.
INTP00CHK:
INTTC0CHK:
INTTC1HK:
INT_EXIT:
RETI
SONiX TECHNOLOGY CO., LTD
; Exit interrupt vector
Page 86
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
10 I/O PORT
OVERVIEW
The SN8P1702A/SN8P1703A provides up to 4 ports for users’ application, consisting of one input only port (P0), four
I/O ports (P1, P4, P5). The direction of I/O port is selected by PnM register and PnUR register (N=0,1,4,5) is defined for
user setting pull-up register. After the system resets, all ports work as input function without pull-up resistors.
Port1, 4, 5 structure
Port0 structure
PUR
PUR
PnM
PnM
Pin
Pin
Latch
Int. bus
Int. bus
PnM
Figure 10-1. The I/O Port Block Diagram
Note : All of the latch output circuits are push-pull structures.
SONiX TECHNOLOGY CO., LTD
Page 87
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
I/O PORT FUNCTION TABLE
Port/Pin
I/O
P0.0
I
P1.0~P1.1
I/O
P4.0~P4.3
I/O
P5.0~P5.5
I/O
Function Description
General-purpose input function
External interrupt (INT0)
Wakeup for power down mode
General-purpose input/output function
Wakeup for power down mode
General-purpose input/output function
ADC analog signal input
General-purpose input/output function
Remark
Table 10-1. I/O Function Table
SONiX TECHNOLOGY CO., LTD
Page 88
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PULL-UP RESISTERS
SN8P1702A/SN8P1703A series chips built-in pull-up resisters in port 0, port 1, port4 and port 5. User can set pull-up
register by pin
Register Name
Address
Bit
Bit’s Name
Read/Write
After reset
Register Name
Address
Bit
Bit’s Name
Read/Write
After reset
Register Name
Address
Bit
Bit’s Name
Read/Write
After reset
Register Name
Address
Bit
Bit’s Name
Read/Write
After reset
P0UR
E0H
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
P00R
R/W
0
Bit 3
0
Bit 2
0
Bit 1
P11R
R/W
0
Bit 0
P10R
R/W
0
Bit 3
P43R
R/W
0
Bit 2
P42R
R/W
0
Bit 1
P41R
R/W
0
Bit 0
P40R
R/W
0
Bit 3
P53R
R/W
0
Bit 2
P52R
R/W
0
Bit 1
P51R
R/W
0
Bit 0
P50R
R/W
0
P1UR
E1H
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
P4UR
E4H
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
P5UR
0E0H
Bit 7
0
CHIP SN8P1703A
ORG 0x10
Main:
MOV
B0MOV
Bit 6
0
A, #01H
P0UR,A
Bit 5
P55R
R/W
0
Bit 4
P54R
R/W
0
; Enable port 0.0 pull-up resisters
Example 2: Enable all pull-up resisters
CHIP SN8P1703A
ORG 0x10
Main:
MOV
A, #01H
B0MOV
P0UR,A
; Enable port 0 pull-up resisters
MOV
A, #03H
B0MOV
P1UR,A
; Enable port 1 pull-up resisters
MOV
A, #0FH
B0MOV
P4UR,A
; Enable port 4 pull-up resisters
MOV
A, #01FH
B0MOV
P5UR,A
; Enable port 5 pull-up resisters
Note:
Enable on-chip pull-up resisters of port 0 and port 1 to avoid unpredicted wakeup in sleep mode.
SONiX TECHNOLOGY CO., LTD
Page 89
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
I/O PORT MODE
The port direction is programmed by PnM register. Port 0 is always input mode. Port 1,2,4 and 5 can select input or
output direction.
P1M initial value = xxxx xx00
0C1H
P1M
Bit 7
0
-
Bit 6
0
-
Bit 5
0
-
Bit 4
0
-
Bit 3
0
-
Bit 2
0
-
Bit 1
P11M
R/W
Bit 0
P10M
R/W
Bit 4
0
-
Bit 3
P43M
R/W
Bit 2
P42M
R/W
Bit 1
P41M
R/W
Bit 0
P40M
R/W
Bit 4
P54M
R/W
Bit 3
P53M
R/W
Bit 2
P52M
R/W
Bit 1
P51M
R/W
Bit 0
P50M
R/W
Bit[1:0]
P1[1:0]M:P1.0~P1.1 I/O direction control bit.
0 = input mode
1 = output mode.
P4M initial value = xxxx 0000
0C4H
P4M
Bit 7
0
-
Bit 6
0
-
Bit 5
0
-
Bit[3:0]
P4[3:0]M:P4.0~P4.3 I/O direction control bit.
0 = input mode
1 = output mode.
P5M initial value = xx00 0000
0C5H
P5M
Bit[5:0]
Bit 7
0
-
Bit 6
0
-
Bit 5
P55M
R/W
P5[5:0]M: P5.0~P5.5 I/O direction control bit.
0 = input mode
1 = output mode.
The each bit of PnM is set to “0”, the I/O pin is input mode. The each bit of PnM is set to “1”, the I/O pin is output mode.
Input mode is with pull-up resistor controlled by setting @SET_UP macro. The output mode disables the pull-up
resistors no matter pull-up resistors is set or not.
The PnM registers are read/write bi-direction registers. Users can program them by bit control
instructions (B0BSET, B0BCLR).
SONiX TECHNOLOGY CO., LTD
Page 90
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: I/O mode selecting.
CLR
CLR
CLR
P1M
P4M
P5M
; Set all ports to be input mode.
MOV
B0MOV
B0MOV
B0MOV
A, #0FFH
P1M, A
P4M, A
P5M, A
; Set all ports to be output mode.
B0BCLR
P1M.0
; Set P1.0 to be input mode.
B0BSET
P1M.0
; Set P1.0 to be output mode.
SONiX TECHNOLOGY CO., LTD
Page 91
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
I/O PORT DATA REGISTER
P0 initial value = xxxx x000
0D0H
P0
Bit 7
-
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
-
Bit 1
-
Bit 0
P00
R
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
-
Bit 2
-
Bit 1
P11
R/W
Bit 0
P10
R/W
Bit 6
-
Bit 5
-
Bit 4
-
Bit 3
P43
R/W
Bit 2
P42
R/W
Bit 1
P41
R/W
Bit 0
P40
R/W
Bit 6
-
Bit 5
P55
R/W
Bit 4
P54
R/W
Bit 3
P53
R/W
Bit 2
P52
R/W
Bit 1
P51
R/W
Bit 0
P50
R/W
P1 initial value = xx00 0000
0D1H
P1
Bit 7
-
P4 initial value = 0000 0000
0D4H
P4
Bit 7
-
P5 initial value = 0000 0000
0D5H
P5
Bit 7
-
Example: Read data from input port.
B0MOV
B0MOV
B0MOV
B0MOV
A, P0
A, P1
A, P4
A, P5
; Read data from Port 0
; Read data from Port 1
; Read data from Port 4
; Read data from Port 5
Example: Write data to output port.
MOV
B0MOV
B0MOV
B0MOV
A, #55H
P1, A
P4, A
P5, A
SONiX TECHNOLOGY CO., LTD
; Write data 55H to Port 1, Port 4, Port 5
Page 92
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
Example: Write one bit data to output port.
B0BSET
B0BSET
P1.1
P4.0
; Set P1.1 and P4.0 to be “1”.
B0BCLR
B0BCLR
P1.0
P5.5
; Set P1.0 and P5.5 to be “0”.
P0.0
; Bit test 1 for P0.0
P1.1
; Bit test 0 for P1.1
Example: Port bit test.
B0BTS1
.
B0BTS0
SONiX TECHNOLOGY CO., LTD
Page 93
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
11CONVERTER
4-CHANNEL ANALOG TO DIGITAL
OVERVIEW
This analog to digital converter of SN8P1702A/SN8P1703A has 4-input sources with up to 4096-step resolution to
transfer analog signal into 12-bits digital data. The sequence of ADC operation is to select input source (AIN0 ~ AIN3)
at first, then set GCHS and ADS bit to “1” to start conversion. When the conversion is complete, the ADC circuit will set
EOC bit to “1” and final value output in ADB register. This ADC circuit can select between 8-bit and 12-bit resolution
operation by programming ADLEN bit in ADR register.
AIN0/P4.0
A/D
CONVERTER
AIN2/P4.2
8/12
(ADC)
AIN3/P4.3
DATABUS
AIN1/P4.1
Figure 11-1. AD Converter Function Diagram
Note: For 8-bit resolution, the conversion time is 12 steps.
For 12-bit resolution, the conversion time is 16 steps.
Note: The analog input level must be between the AVREFH and VSS.
Note: The AVREFH level must be between the VDD and VSS+1.2V.
SONiX TECHNOLOGY CO., LTD
Page 94
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ADM REGISTER
ADM initial value = 0000 x000
0B1H
ADM
Bit[1:0]
Bit4
Bit5
Bit6
Bit7
Bit 7
ADENB
R/W
Bit 6
ADS
R/W
Bit 5
EOC
R/W
Bit 4
GCHS
R/W
Bit 3
-
Bit 2
-
Bit 1
CHS1
R/W
Bit 0
CHS0
R/W
Bit 4
ADCKS0
R/W
Bit 3
ADB3
R
Bit 2
ADB2
R
Bit 1
ADB1
R
Bit 0
ADB0
R
CHS[1:0]: ADC input channels select bit.
00 = AIN0
01 = AIN1
10 = AIN2
11 = AIN3
GCHS:Global channel select bit.
0 = to disable AIN channel
1 = to enable AIN channel.
EOC: ADC status bit.
0 = Progressing
1 = End of converting and reset ADENB bit.
ADS:ADC start bit.
0 = stop
1 = starting.
ADENB:ADC control bit.
0 = disable
1 = enable.
ADR REGISTERS
ADR initial value = x00x 0000
0B3H
ADR
Bit[3:0]
Bit5
Bit6,Bit4
Bit 7
-
Bit 6
ADCKS1
R/W
Bit 5
ADLEN
R/W
ADBn: ADC data buffer.
ADB11~ADB4 data for 8-bit ADC.
ADB11~ADB0 data for 12-bit ADC.
ADLEN: ADC’s resolution select bits.
0 = 8-bit
1 = 12-bit.
ADCKS1, ADCKS0: ADC’s clock source select bit.
ADCKS1 ADCKS0 ADC Clock Source Note
0
0
Fcpu/4
Both validate in Normal mode and Slow mode
0
1
Fcpu/2
Both validate in Normal mode and Slow mode
1
0
Fhosc
Only validate in Normal mode
1
1
Fhosc/2
Only validate in Normal mode
SONiX TECHNOLOGY CO., LTD
Page 95
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ADB REGISTERS
ADB initial value = xxxx xxxx
0B2H
ADB
Bit 7
ADB11
R
Bit 6
ADB10
R
Bit 5
ADB9
R
Bit 4
ADB8
R
Bit 3
ADB7
R
Bit 2
ADB6
R
Bit 1
ADB5
R
Bit 0
ADB4
R
ADB is ADC data buffer to store AD converter result. The ADB is only 8-bit register including bit4~bit11 ADC data. To
combine ADB register and the low-nibble of ADR will get full 12-bit ADC data buffer. The ADC buffer is a read-only
register. In 8-bit ADC mode, the ADC data is stored in ADB register. In 12-bit ADC mode, the ADC data is stored in
ADB and ADR registers.
Note: ADB[0:11] value is unknown when power on.
SONiX TECHNOLOGY CO., LTD
Page 96
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
P4CON REGISTERS
ADB initial value = xxxx 0000
0AEH
P4CON
Bit 7
0
-
Bit 6
0
-
Bit 5
0
-
Bit 4
0
-
Bit 3
P4CON3
R/W
Bit 2
P4CON2
R/W
Bit 1
P4CON1
R/W
Bit 0
P4CON0
R/W
P4CON is Port4 Configuration register. This register can avoid current leakage in unselected ADC channel, which
connected to an analog input source. P4CON [3:0] sets to high will isolate related Port4 digital input path outside chip.
For example, both AIN0 (Port4.0) and AIN1 (Port4.1) are connected to analog input signal, and AIN0 be selected as
conversion channel (CHS [1:0] = 00), this mean the unselected channel P4.1 maybe in digital input mode (if P41M = 0)
In this condition will possible leak current from analog input source. Set P4CON1 = “1” can block P4.1 digital input path
to avoid the current leakage from AIN1.
For the same reason, P4CON0 must set to “1” when conversion channel is AIN1. So any Port4 pin be connected
to analog input source should be set related bit of P4CON as high to avoid unpredictable current leakage. Especially
before entering Sleep mode, remember to set related bit of P4CON as “1”.
Bit [3:0]
P4CON: Port4 Configuration register.
0
Pass P4.3 digital path into chip.
P4CON3
1
Isolate P4.3 digital path into chip
0
Pass P4.2 digital path into chip.
P4CON2
1
Isolate P4.2 digital path into chip
0
Pass P4.1 digital path into chip.
P4CON1
1
Isolate P4.1 digital path into chip
0
Pass P4.0 digital path into chip.
P4CON0
1
Isolate P4.0 digital path into chip
Note 1: When Port4 is general I/O port, set related P4CON [3:0] = “0”
Note 2: When Port4 is ADC input channel, set related P4CON [3:0] = “1”
The AIN’s input voltage vs. ADB’s output data
AIN n
ADB11 ADB10 ADB9
0/4096*AVREFH
0
0
0
1/4096*AVREFH
0
0
0
.
.
.
.
.
.
.
.
.
.
.
.
4094/4096*AVREFH
1
1
1
4095/4096*AVREFH
1
1
1
ADB8
0
0
.
.
.
1
1
ADB7
0
0
.
.
.
1
1
ADB6
0
0
.
.
.
1
1
ADB5
0
0
.
.
.
1
1
ADB4
0
0
.
.
.
1
1
ADB3
0
0
.
.
.
1
1
ADB2
0
0
.
.
.
1
1
ADB1
0
0
.
.
.
1
1
ADB0
0
1
.
.
.
0
1
For different applications, users maybe need more than 8-bit resolution but less than 12-bit ADC converter. To process
the ADB and ADR data can make the job well. First, the AD resolution must be set 12-bit mode and then to execute
ADC converter routine. Then delete the LSB of ADC data and get the new resolution result. The table is as following.
ADC
ADB11
Resolution
8-bit
O
9-bit
O
10-bit
O
11-bit
O
12-bit
O
O = Selected, x = Delete
ADB
ADR
ADB10
ADB9
ADB8
ADB7
ADB6
ADB5
ADB4
ADB3
ADB2
ADB1
ADB0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
x
O
O
O
O
x
x
O
O
O
x
x
x
O
O
x
x
x
x
O
SONiX TECHNOLOGY CO., LTD
Page 97
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ADC CONVERTING TIME
12-bit ADC conversion time = 1/(ADC clock /4)*16 sec
8-bit ADC conversion time = 1/(ADC clock /4)*12 sec
High clock (Fosc) is @3.58MHz
ADLEN
ADCKS1
ADCKS0
0
0
0
1
0 (8-bit)
1
0
1
1
0
0
0
1
1 (12-bit)
1
0
1
1
ADC Clock
Fcpu/4
Fcpu/2
Fhosc
Fhosc/2
Fcpu/4
Fcpu/2
Fhosc
Fhosc/2
ADC conversion time
1/((3.58MHz/4)/4/4)*12 = 214.5 us
1/((3.58MHz/4)/2/4)*12 = 107.3 us
1/(3.58MHz/4)*12 = 13.4 us
1/(3.58MHz/2/4)*12 = 26.8 us
1/((3.58MHz/4)/4/4)*16 = 286 us
1/((3.58MHz/4)/2/4)*16 = 143 us
1/(3.58MHz/4)*16 = 17.9 us
1/(3.58MHz/2/4)*16 = 35.8 us
Example: To set AIN0 ~ AIN1 for ADC input and executing 12-bit ADC
ADC0:
MOV
B0MOV
B0SET
B0CLR
MOV
B0MOV
B0SET
B0BSET
A, #60H
ADR, A
FP4CON1
FP4CON0
A,#90H
ADM,A
P4CON1
FADS
B0BTS1
JMP
B0MOV
FEOC
WADC0
A,ADB
; To skip, if end of converting =1
; else, jump to WADC0
; To get AIN0 input data
B0SET
B0CLR
MOV
B0MOV
B0BSET
.
FP4CON0
FP4CON1
A,#91H
ADM,A
FADS
.
;Isolate AIN0 signal to avoid current leakage
;Pass AIN1 signal into ADC
;
; To enable ADC and set AIN1 input
; To start conversion
.
B0BCLR
FGCHS
; To release AINx input channel
; To set 12-bit ADC and ADC clock = Fosc.
;Isolate AIN1 signal to avoid current leakage
;Pass AIN0 signal into ADC
; To enable ADC and set AIN0 input
; To enable ADC and set AIN0 input
; To start conversion
WADC0:
ADC1:
QEXADC:
SONiX TECHNOLOGY CO., LTD
Page 98
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
ADC CIRCUIT
VDD
AVREF
MCU
AIN0/P40
Analog Signal Input
0.1uF
AVREFH is connected to VDD.
VDD
AVREF
Reference Voltage Input
MCU
AIN0/P40
Analog Signal Input
0.1uF
47uF
AVREFH is connected to external AD reference voltage.
Figure 11-2. The AINx and AVREFH Circuit of AD Converter
Note: The capacitor between AIN and GND is a bypass capacitor. It is helpful to stable the analog signal.
Users can omit it.
SONiX TECHNOLOGY CO., LTD
Page 99
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
12 CODING ISSUE
TEMPLATE CODE
;*******************************************************************************
; FILENAME : TEMPLATE.ASM
; AUTHOR
: SONiX
; PURPOSE
: Template Code for SN8X17XX
; REVISION : 09/01/2002 V1.0
First issue
;*******************************************************************************
;* (c) Copyright 2002, SONiX TECHNOLOGY CO., LTD.
;*******************************************************************************
CHIP
SN8P1703A
; Select the CHIP
;------------------------------------------------------------------------------;
Include Files
;------------------------------------------------------------------------------.nolist
; do not list the macro file
INCLUDESTD
INCLUDESTD
INCLUDESTD
MACRO1.H
MACRO2.H
MACRO3.H
.list
; Enable the listing function
;------------------------------------------------------------------------------;
Constants Definition
;------------------------------------------------------------------------------;
ONE
EQU
1
;------------------------------------------------------------------------------;
Variables Definition
;------------------------------------------------------------------------------.DATA
Wk00B0
Iwk00B0
AccBuf
PflagBuf
org
DS
DS
DS
DS
0h
1
1
1
1
;Bank 0 data section start from RAM address 0x000
;Temporary buffer for main loop
;Temporary buffer for ISR
;Accumulator buffer
;PFLAG buffer
BufB1
org
DS
100h
20
;Bank 1 data section start from RAM address 0x100
;Temporary buffer in bank 1
;------------------------------------------------------------------------------;
Bit Flag Definition
;------------------------------------------------------------------------------Wk00B0_0
EQU
Wk00B0.0
;Bit 0 of Wk00B0
Iwk00B0_1
EQU
Iwk00B0.1
;Bit 1 of Iwk00
SONiX TECHNOLOGY CO., LTD
Page 100
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
;------------------------------------------------------------------------------;
Code section
;------------------------------------------------------------------------------.CODE
ORG
jmp
0
Reset
ORG
jmp
8
Isr
;Code section start
;Reset vector
;Address 4 to 7 are reserved
;Interrupt vector
ORG
10h
;------------------------------------------------------------------------------;
Program reset section
;------------------------------------------------------------------------------Reset:
mov
A,#07Fh
;Initial stack pointer and
b0mov
STKP,A
;disable global interrupt
b0mov
PFLAG,#00h
;pflag = x,x,x,x,x,c,dc,z
b0mov
RBANK,#00h
;Set initial RAM bank in bank 0
mov
A,#40h
;Clear watchdog timer and initial system mode
b0mov
OSCM,A
call
call
b0bset
ClrRAM
SysInit
FGIE
;Clear RAM
;System initial
;Enable global interrupt
;------------------------------------------------------------------------------;
Main routine
;------------------------------------------------------------------------------Main:
b0bset
FWDRST
;Clear watchdog timer
call
MnApp
jmp
Main
;------------------------------------------------------------------------------;
Main application
;------------------------------------------------------------------------------MnApp:
; Put your main program here
ret
;----------------------------------;
Jump table routine
;----------------------------------ORG
0x0100
;The jump table should start from the head
;of boundary.
b0mov
A,Wk00
and
A,#3
ADD
PCL,A
jmp
JmpSub0
jmp
JmpSub1
jmp
JmpSub2
;-----------------------------------
SONiX TECHNOLOGY CO., LTD
Page 101
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
JmpSub0:
; Subroutine 1
jmp
JmpExit
JmpSub1:
; Subroutine 2
jmp
JmpExit
JmpSub2:
; Subroutine 3
jmp
JmpExit
JmpExit:
ret
;Return Main
;------------------------------------------------------------------------------; Isr (Interrupt Service Routine)
; Arguments :
; Returns
:
; Reg Change:
;------------------------------------------------------------------------------Isr:
;----------------------------------;
Save ACC and system registers
;----------------------------------b0xch
A,AccBuf
;B0xch instruction do not change C,Z flag
b0mov
A,PFLAG
b0mov
PflagBuf,A
;----------------------------------; Check which interrupt happen
;----------------------------------IntP00Chk:
b0bts1
FP00IEN
jmp
IntTc0Chk
;Modify this line for another interrupt
b0bts0
FP00IRQ
jmp
P00isr
;If necessary, insert another interrupt checking here
IntTc0Chk:
b0bts1
jmp
b0bts0
jmp
FTC0IEN
IsrExit
FTC0IRQ
TC0isr
;Suppose TC0 is the last interrupt which you
;want to check
;----------------------------------; Exit interrupt service routine
;----------------------------------IsrExit:
; Following two lines for SN8X1702 only
b0mov
A,PFLAG
b0mov
PflagBuf,A
b0xch
A,AccBuf
;B0xch instruction do not change C,Z flag
reti
;Exit the interrupt routine
SONiX TECHNOLOGY CO., LTD
Page 102
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
;------------------------------------------------------------------------------;
INT0 interrupt service routine
;------------------------------------------------------------------------------P00isr:
b0bclr
FP00IRQ
;Process P0.0 external interrupt here
jmp
IsrExit
;------------------------------------------------------------------------------;
TC0 interrupt service routine
;------------------------------------------------------------------------------TC0isr:
b0bclr
FTC0IRQ
;Process TC0 timer interrupt here
jmp
IsrExit
;------------------------------------------------------------------------------;
SysInit
;
Initialize I/O, Timer, Interrupt, etc.
;------------------------------------------------------------------------------SysInit:
ret
;------------------------------------------------------------------------------; ClrRAM
; Use index @YZ to clear RAM (00h~7Fh)
;------------------------------------------------------------------------------ClrRAM:
; RAM Bank 0
clr
b0mov
Y
Z,#0x7f
;Select bank 0
;Set @YZ address from 7fh
ClrRAM10:
clr
decms
jmp
clr
@YZ
Z
ClrRAM10
@YZ
;Clear @YZ content
;z = z – 1 , skip next if z=0
; RAM Bank 1
mov
b0mov
b0mov
A,#1
Y,A
Z,#0x7f
ClrRAM20:
clr
decms
jmp
clr
ret
@YZ
Z
ClrRAM20
@YZ
;Clear address 0x00
;Select bank 1
;Set @YZ address from 17fh
;Clear @YZ content
;z = z – 1 , skip next if z=0
;Clear address 0x100
;------------------------------------------------------------------------------ENDP
SONiX TECHNOLOGY CO., LTD
Page 103
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
PROGRAM CHECK LIST
Item
Pull-up Resister
Undefined Bits
ADC
Description
Use PnUR register to enable or disable on-chip pull-up resisters. Refer I/O port chapter for
detailed information.
All bits those are marked as “0” (undefined bits) in system registers should be set “0” to avoid
unpredicted system errors.
Set ADC input pin I/O direction as input mode and disable pull-up resister of ADC input pin
PWM0
Set PWM0 (P5.4) pin as output mode.
PWM1
Set PWM1 (P5.3) pin as output mode.
Interrupt
Non-Used I/O
Sleep Mode
Stack Buffer
Do not enable interrupt before initializing RAM.
Non-used I/O ports should be pull-up or pull-down in input mode, or be set as low in output
mode to save current consumption.
Enable on-chip pull-up resisters of port 0 and port 1 to avoid unpredicted wakeup.
Be careful of function call and interrupt service routine operation. Don’t let stack buffer
overflow or underflow.
1. Write 0x7F into STKP register to initial stack pointer and disable global interrupt
System Initial
2. Clear all RAM.
3. Initialize all system register even unused registers.
1. Enable OSG and High_Clk / 2 code option together
2. Enable the watchdog option and internal RC for the watchdog clock to protect system
crash.
Noisy Immunity
3. Non-used I/O ports should be set as output low mode or input with pull-up resistors.
4. Constantly refresh important system registers and variables in RAM to avoid system
crash by a high electrical fast transient noise.
SONiX TECHNOLOGY CO., LTD
Page 104
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
13 INSTRUCTION SET TABLE
Field
M
O
V
E
A
R
I
T
H
M
E
T
I
C
L
O
G
I
C
P
R
O
C
E
S
S
B
R
A
N
C
H
M
I
S
C
C
DC
Z
Cycle
MOV
MOV
B0MOV
B0MOV
MOV
B0MOV
XCH
B0XCH
MOVC
Mnemonic
A,M
M,A
A,M
M,A
A,I
M,I
A,M
A,M
A←M
M←A
A ← M (bank 0)
M (bank 0) ← A
A←I
M ← I, (M = only for Working registers R, Y, Z , RBANK & PFLAG)
A ←→M
A ←→M (bank 0)
R, A ← ROM [Y,Z]
-
-
√
√
-
1
1
1
1
1
1
1
1
2
ADC
ADC
ADD
ADD
B0ADD
ADD
SBC
SBC
SUB
SUB
SUB
DAA
A,M
M,A
A,M
M,A
M,A
A,I
A,M
M,A
A,M
M,A
A,I
A ← A + M + C, if occur carry, then C=1, else C=0
M ← A + M + C, if occur carry, then C=1, else C=0
A ← A + M, if occur carry, then C=1, else C=0
M ← A + M, if occur carry, then C=1, else C=0
M (bank 0) ← M (bank 0) + A, if occur carry, then C=1, else C=0
A ← A + I, if occur carry, then C=1, else C=0
A ← A - M - /C, if occur borrow, then C=0, else C=1
M ← A - M - /C, if occur borrow, then C=0, else C=1
A ← A - M, if occur borrow, then C=0, else C=1
M ← A - M, if occur borrow, then C=0, else C=1
A ← A - I, if occur borrow, then C=0, else C=1
To adjust ACC’s data format from HEX to DEC.
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
-
√
√
√
√
√
√
√
√
√
√
√
-
1
1
1
1
1
1
1
1
1
1
1
1
AND
AND
AND
OR
OR
OR
XOR
XOR
XOR
A,M
M,A
A,I
A,M
M,A
A,I
A,M
M,A
A,I
A ← A and M
M ← A and M
A ← A and I
A ← A or M
M ← A or M
A ← A or I
A ← A xor M
M ← A xor M
A ← A xor I
-
-
1
1
1
1
1
1
1
1
1
SWAP
SWAPM
RRC
RRCM
RLC
RLCM
CLR
BCLR
BSET
B0BCLR
B0BSET
M
M
M
M
M
M
M
M.b
M.b
M.b
M.b
A (b3~b0, b7~b4) ←M(b7~b4, b3~b0)
M(b3~b0, b7~b4) ← M(b7~b4, b3~b0)
A ← RRC M
M ← RRC M
A ← RLC M
M ← RLC M
M←0
M.b ← 0
M.b ← 1
M(bank 0).b ← 0
M(bank 0).b ← 1
√
√
√
√
-
-
√
√
√
√
√
√
√
√
√
-
CMPRS
CMPRS
INCS
INCMS
DECS
DECMS
BTS0
BTS1
B0BTS0
B0BTS1
JMP
CALL
A,I
A,M
M
M
M
M
M.b
M.b
M.b
M.b
d
d
ZF,C ← A - I, If A = I, then skip next instruction
ZF,C ← A – M, If A = M, then skip next instruction
A ← M + 1, If A = 0, then skip next instruction
M ← M + 1, If M = 0, then skip next instruction
A ← M - 1, If A = 0, then skip next instruction
M ← M - 1, If M = 0, then skip next instruction
If M.b = 0, then skip next instruction
If M.b = 1, then skip next instruction
If M(bank 0).b = 0, then skip next instruction
If M(bank 0).b = 1, then skip next instruction
PC15/14 ← RomPages1/0, PC13~PC0 ← d
Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d
√
√
-
-
√
√
-
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
1+S
2
2
VAL
PC ← Stack
PC ← Stack, and to enable global interrupt
No operation
Enable or disable pull-up resisters. Bit N of VAL: “0” disable port N pull-up, “1” enable port N pull-up
-
-
√
2
2
1
-
RET
RETI
NOP
@SET_PUR
Description
1
1
1
1
1
1
1
1
1
1
1
Table 13-1. Instruction Set Table
Note 1: Any instruction that read/write from 0SCM, will add an extra cycle.
SONiX TECHNOLOGY CO., LTD
Page 105
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
14 ELECTRICAL CHARACTERISTIC
ABSOLUTE MAXIMUM RATING
(All of the voltages referenced to Vss)
Supply voltage (Vdd)………………………………………………………………………………………………… - 0.3V ~ 6.0V
Input in voltage (Vin)……………………………………………………………………………………..Vss - 0.2V ~ Vdd + 0.2V
Operating ambient temperature (Topr)…………………………………………………………………………..-20°C ~ + 70°C
Storage ambient temperature (Tstore)…………………………………………………………………………-30°C ~ + 125°C
Power consumption (Pc)…………………………………………………………………………………………………..500 mW
STANDARD ELECTRICAL CHARACTERISTIC
(All of voltages referenced to Vss, Vdd = 5.0V, Fosc = 3.579545 MHz, ambient temperature is 25°C unless otherwise note.)
PARAMETER
SYM.
DESCRIPTION
MIN.
TYP.
MAX.
UNIT
Normal
mode,
Vpp
=
Vdd
2.2
5.0
5.5
Operating voltage
Vdd
V
Programming mode, Vpp = 12.5V
4.5
5.0
5.5
RAM Data Retention voltage
Vdr
1.5
V
Internal POR
Vpor
Vdd rise rate to ensure internal power-on reset
0.05
V/ms
ViL1
All input pins except those specified below
Vss
0.3Vdd
V
ViL2
Input with Schmitt trigger buffer - Port0
Vss
0.2Vdd
V
Input Low Voltage
ViL3
Reset pin ; Xin ( in RC mode )
Vss
0.2Vdd
V
ViL4
Xin ( in X’tal mode )
Vss
0.3Vdd
V
ViH1
All input pins except those specified below
0.7Vdd
Vdd
V
ViH2
Input with Schmitt trigger buffer –Port0
0.8Vdd
Vdd
V
Input High Voltage
ViH3
Reset pin ; Xin ( in RC mode )
0.9Vdd
Vdd
V
ViH4
Xin ( in X’tal mode )
0.7Vdd
Vdd
V
Reset pin leakage current
Ilekg
Vin = Vdd
2
uA
I/O port pull-up resistor
Rup
Vin = Vss , Vdd = 5V
100
KΩ
I/O port input leakage current
Ilekg
Pull-up resistor disable, Vin = Vdd
2
uA
Port1 output source current
IoH
Vop = Vdd - 0.5V
15
mA
sink current
IoL
Vop = Vss + 0.5V
15
Port4 output source current
IoH
Vop = Vdd - 0.5V
15
mA
sink current
IoL
Vop = Vss + 0.5V
15
Port5 output source current
IoH
Vop = Vdd - 0.5V
15
mA
sink current
IoL
Vop = Vss + 0.5V
15
INTn trigger pulse width
Tint0
INT0 interrupt request pulse width
2/fcpu
cycle
AVREFH input voltage
AVref
Vdd = 5.0V
1.2V
Vdd
V
AIN0 ~ AIN3 input voltage
Vani
Vss+0.2
AVref
V
Crystal type or ceramic resonator
32768
4M
16M
Oscillator Frequency
Fhosc VDD = 3V, RC type for external mode
Hz
6M
VDD = 5V, RC type for external mode
10M
Vdd= 5V 4Mhz
2.5
6
mA
Run Mode
Idd1
Vdd= 3V 4Mhz
1
2
mA
(Low Power Disable)
Vdd= 3V 32768Hz
40
80
uA
Vdd=
5V
4Mhz
1.6
3
mA
Run Mode
Idd2
(Low Power Enable) Vdd= 3V 4Mhz
0.7
1.5
mA
Supply Current
Vdd= 5V 32KHz Int. RC
30
60
uA
Slow mode
(Disable ADC)
Idd3
(Stop High Clock)
Vdd= 3V 16KHz Int. RC
7
20
uA
Vdd= 5V
1
2
uA
Idd4
Sleep mode
Vdd= 3V
0.6
uA
Vdd= 5V 32KHz Int. RC
16
40
Green Mode
Idd5
uA
(Stop High Clock)
Vdd= 3V 16KHz Int. RC
3
10
ADC current consumption
IADC
Vdd=5.0V
Vdd=3.0V
-
0.6
0.4
1
0.8
mA
mA
LVD Detect Voltage
Vdet
Low voltage detect level
-
1.8
-
V
SONiX TECHNOLOGY CO., LTD
Page 106
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
15 PACKAGE INFORMATION
P-DIP18 PIN
Symbols
A
A1
A2
D
E
E1
L
MIN.
0.015
0.125
0.880
MAX.
0.210
0.135
0.920
0.245
0.115
NOR.
0.130
0.900
0.300BSC.
0.250
0.130
eB
0.335
0.355
0.375
θ °
0
7
15
0.255
0.150
UNIT : INCH
SONiX TECHNOLOGY CO., LTD
Page 107
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SOP18 PIN
Symbols
A
A1
D
E
H
L
θ °
MIN.
0.093
0.004
0.447
0.291
0.394
0.016
0
MAX.
0.104
0.012
0.463
0.299
0.419
0.050
8
UNIT : INCH
SONiX TECHNOLOGY CO., LTD
Page 108
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
P-DIP 20 PIN
SONiX TECHNOLOGY CO., LTD
Page 109
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SOP 20 PIN
SONiX TECHNOLOGY CO., LTD
Page 110
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SSOP20 PIN
Symbols
A
A1
A2
b
b1
C
C1
D
E
E1
e
h
L
L1
ZD
Y
θ °
-
DIMENSION (MM)
NOM.
1.60
0.15
0.254
0.254
0.203
0.203
8.66
6.00
3.90
0.635 BSC
0.42
0.635
1.05
1.50 REF
-
0°
-
MIN,
1.35
0.10
0.20
0.20
0.18
0.18
8.56
5.80
3.80
0.25
0.40
1.00
SONiX TECHNOLOGY CO., LTD
0.10
-
DIMENSION (MIL)
NOM.
63
6
10
11
8
8
341
236
154
25 BSC
17
25
41
58 REF
-
8°
0°
-
MAX.
1.75
0.25
1.50
0.30
0.28
0.25
0.23
8.74
6.20
4.00
MIN.
53
4
8
8
7
7
337
228
150
0.50
1.27
1.10
10
16
39
Page 111
MAX.
69
10
59
12
11
10
9
344
244
157
20
50
43
4
8°
Revision 0.5
Preliminary
SN8P1702A/SN8P1703A
8-bit micro-controller build-in 12-bit ADC
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or
design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed,
intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a
situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such
unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries,
affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use
even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.
Main Office:
Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C.
Tel: 886-3-551 0520
Fax: 886-3-551 0523
Taipei Office:
Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.
Tel: 886-2-2759 1980
Fax: 886-2-2759 8180
Hong Kong Office:
Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon.
Tel: 852-2723 8086
Fax: 852-2723 9179
Technical Support:
Email: [email protected]
MSN: [email protected]
SONiX TECHNOLOGY CO., LTD
Page 112
Revision 0.5