CXA2542AR RF Signal Processing Servo Amplifier for CD Player Description The CXA2542AR is a bipolar IC developed for CD player RF signal processing and servo control. Features • Automatic focus bias adjustment circuit • Automatic tracking balance and gain adjustment circuits • RF level control circuit • Interruption countermeasure circuit • Anti-shock circuit • Defect detection and prevention circuits • RF I-V amplifier, RF amplifier • APC circuit • Focus and tracking error amplifier • Focus, tracking and sled servo control circuits • Focus OK circuit • Mirror detection circuit • Single power supply and dual power supplies 48 pin LQFP (Plastic) Absolute Maximum Ratings (Ta = 25°C) • Supply voltage VCC 12 V • Operating temperature Topr –20 to +75 °C • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1400 mW Recommended Operating Conditions Operating supply voltage VCC – VEE 3.0 to 3.6 V 4.5 to 5.5 V Applications CD players Structure Bipolar silicon monolithic IC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98743-PS CXA2542AR CB CC1 CC2 FOK 33 CP RFTC 34 RF_I LD 35 RF_O PD 36 RF_M PD1 Block Diagram 32 31 30 29 28 27 26 25 VCC VCC VEE VCC PD1 IV AMP VEE VEE VEE RF SUMMING AMP PD2 37 24 SENS2 VCC PD2 IV AMP APC VEE LASER POWER CONTROL F 38 IIL ↓ TTL VCC 23 SENS1 F IV AMP VCC FE AMP VCC FO. BIAS WINDOW COMP. IFB6 IFB4 IFB5 IFB3 IFB1 E IV AMP IFB2 E 39 22 VEE C. OUT VEE BAL4 BAL2 BAL1 40 BAL3 INT VEE VEE LEVEL S TGFL 21 XRST VEE TOG3 IIL ↓ TTL VCC TOG4 TOG2 TOG1 VEE MIRR TEO 41 FOK FOH FOL TGH TGL BALH BALL ATSC TZC FZC ATSC 43 ATSC WINDOW COMP. TZC 44 CC1 DFCT2 XDFCT1 MIRR TGFL LPCL LDON E-F BALANCE WINDOW COMP. LPFI 42 20 DATA 19 XLT 18 CLK 17 VCC 16 ISET 15 SL_O 14 SL_M 13 SL_P TTL ↓ IIL LPC TRK. GAIN WINDOW COMP. IIL DATA REGISTER INPUT SHIFT REGISTER ADDRESS DECODER SENS SELECTOR OUTPUT DECODER VCC DFCT TZC COMP. TM1 DFCTO TRACKING PHASE COMPENSATION TDFCT 45 IFB1-6 BAL1-4 TOG1-4 FS1-4 TG1-2 TM1-7 PS1-4 ISET TG1 VCC VCC VCC VC 46 TM4 TM6 VEE VCC FZC 47 TM7 VCC FZC COMP. FOCUS PHASE COMPENSATION FEO 48 TM3 FS1 TM5 VEE VEE FSET FS2 DFCT TG2 FS4 –2– FDFCT FGD FLB FE_O FE_M 7 8 9 10 11 12 TA_O 6 TA_M 5 FSET 4 TG2 3 TGU 2 SRCH 1 FEI VEE TM2 CXA2542AR Pin Description Pin No. 1 Symbol FEI I/O Equivalent circuit I Description Focus error input. 147 1 100k 147 2 FDFCT I 3 FGD I 2 3µ Ground this pin through a capacitor for cutting the focus servo highfrequency gain. 68k 147 Connects the capacitor for defect time constant. 3 130k 4µ 40k 4 FLB 330k External time constant setting pin for boosting the focus servo lowfrequency. 4 I 470k 5 FE_O O 12 TA_O O Focus drive output. 5 Tracking drive output. 12 15 15 SL_O 147 6 FE_M Sled drive output. 250µ O I 90k Focus amplifier inverted input. 6 50k 2µ External time constant setting pin for generating the focus search waveform. 147 7 SRCH I 7 20k 11µ 50k –3– CXA2542AR Pin No. Symbol I/O Equivalent circuit Description 110k 8 TGU 147 20k I External time constant setting pin for switching the tracking high-frequency gain. 423k 8 82k 9 TG2 External time constant setting pin for switching the tracking high-frequency gain. 9 I 470k Peak frequency setting pin for focus and tracking phase compensation amplifier. 147k 10 FSET I 10 15k 15k 100k 11 147 TA_M I Tracking amplifier inverted input. 11 11µ 13 SL_P 147 I Sled amplifier non-inverted input. 13 2µ 147 14 SL_M I Sled amplifier inverted input. 14 22µ 16 ISET I Connect the external resistor to set the current which determines the Focus search, Track jump, and Sled kick levels. 147 16 50µ –4– CXA2542AR Pin No. Symbol I/O 17 VCC I 18 CLK I Equivalent circuit Description Positive power supply. VCC 17 20µ 147 Serial data transfer clock input from CPU. (no pull-up resistance) 1k 18 20 20 DATA I 19 XLT I Serial data input from CPU. (no pull-up resistance) 20µ 147 Latch input from CPU. (no pull-up resistance) 4k 19 21 2.5p 21 XRST I Reset input; resets at Low. (no pull-up resistance) 22 C. OUT O Track number count signal output. 23 SENS1 O 22 20k Outputs FZC, DFCT1, TZC, BALH, TGH, FOH, ATSC, and others according to the command from CPU. 147 23 24 24 SENS2 100k O Outputs DFCT2, MIRR, BALL, TGL, FOL, and others according to the command from the CPU. 20k 147 25 FOK O 40k 25 100k –5– Focus OK comparator output. CXA2542AR Pin No. Symbol I/O Equivalent circuit Description 75k 26 CC2 147 I 39k Input for the RF summing amplifier output with capacitance coupled. 26 43k 147 28 CB Connects the defect bottom hold capacitor. 28 I 7.6k 240k 29 Connects the MIRR hold capacitor. MIRR comparator non-inverted input. 100k 29 CP I 30 RF_I I 31 RF_O O 1.5k Input for the RF summing amplifier output with capacitance coupled. RF summing amplifier output. Eyepattern check point. 147 30 147 31 32 RF_M 147 32 I 10k 10k RF summing amplifier inverted input. The RF amplifier gain is determined by the resistance connected between this pin and RFO pin. 27 147 27 CC1 O 33 RFTC I RF summing amplifier output. Used for the defect capacitance coupling. 147 50µ External time constant setting pin during RF level control. 33 50µ 10µ –6– CXA2542AR Pin No. Symbol I/O Equivalent circuit Description 10k 34 LD 1k O APC amplifier output. 34 20µ 8µ 35 PD I 55k 147 35 APC amplifier input. 10k 10k 0.2p 8k 2k 36 37 PD1 PD2 I I RF I-V amplifier inverted input. Connect these pins to the photo diode A + C and B + D pins. 147 36 37 100µ 8.65k 12p 260k 38 39 F E I I 147 38 39 500 F I-V and E I-V amplifier inverted input. Connect these pins to photo diodes F and E pins. 10µ 40 VEE — 40 VEE –7– Negative power supply. CXA2542AR Pin No. Symbol 41 TEO I/O Equivalent circuit O 147 Description Tracking error amplifier output. E-F signal is output. 15k 32k 15k 6.6k 3k 41 150k 20k 150k 100k 45 TDFCT I Connects the capacitor for defect time constant. 147 45 42 LPFI 3µ Comparator input for balance adjustment. (Input from TEO through LPF) 147 I 42 7µ 1k 43 ATSC I 100k 147 Window comparator input for ATSC detection. 43 1k 100k 10µ 10µ 10µ 147 44 TZC I Tracking zero-cross comparator input. 44 75k –8– CXA2542AR Pin No. 46 Symbol VC I/O Equivalent circuit 120 50 O Description 15k (VCC + VEE)/2 DC voltage output. 46 120 VC 54k 147 47 FZC I 7µ 47 Focus zero-cross comparator input. 6k 300k 10µ 25p 147 48 FEO O 48 174k 10µ 300µ –9– Focus error amplifier output. Connected internally to the window comparator input for bias adjustment. CXA2542AR Electrical Characteristics (VCC = 1.5V, VEE = 1.5V, Topr = 25°C) SD Input pin Measurement pin 19 (OFF) RST 17 Current consumption 2 19 (OFF) RST Center amplifier output offset 19 (OFF) RST TEST Item T1 Current consumption 1 T2 T3 T4 SW conditions (ON switches) Min. Typ. Max. Unit 17 12.0 18.5 25.0 mA 40 40 –25.0 –18.5 –12.0 mA — 46 –100 0 100 mV 31 –70 –13 70 mV RST Offset Measurement conditions RST 36 37 31 1kHz I/O ratio 16.5 19.5 22.5 dB Max. output 10, 13 amplitude - High RST 36 37 31 V2 = 0.2VDC 1.2 1.4 — V T7 Max. output amplitude - Low RST 36 37 31 V2 = 0.2VDC — –1.3 –1.0 V T8 Offset 39F 48 1FB6: ON –120 0 120 mV T9 Voltage gain 1 10 39F 36 48 1kHz I/O ratio 15.6 18.6 21.6 dB T10 Voltage gain 2 13 39F 37 48 1kHz I/O ratio 15.6 18.6 21.6 dB T11 Voltage gain difference 39F –3 0 3 dB T12 Max. output 13 voltage – High 39F 37 48 V2 = 100mVDC 1 1.4 — V T13 Max. output voltage – Low 39F 36 48 V2 = 100mVDC — –1.3 –1 V 560 718 1042 mV –29.0 –22.7 –16.5 mV FE amplifier T6 RF amplifier 10, 13 T5 Voltage gain 10, 13 10 BIAS0 3BF 48 IFB1, 2, 3, 4, 5, 6: OFF T15 BIAS1 3BE 48 IFB1: ON, BIAS0: reference T16 BIAS2 3BD 48 T17 BIAS3 3BB 48 T18 BIAS4 3B7 48 T19 BIAS5 3AF 48 T20 BIAS6 39F 48 T14 – 10 – IFB2: ON, BIAS0: reference Output gain difference with T15 IFB3: ON, BIAS0: reference Output gain difference with V17 IFB4: ON, BIAS0: reference Output gain difference with V18 IFB5: ON, BIAS0: reference Output gain difference with V19 IFB6: ON, BIAS0: reference Output gain difference with V20 5 6 7 dB 5 6 7 dB 5 6 7 dB 5 6 7 dB 5 6 7 dB CXA2542AR TEST Item SW conditions (ON switches) SD Input pin Measurement pin Measurement conditions 48 Pin 1 voltage when SENS1 Min. Typ. Max. Unit 5 20 35 mV –35 –20 –5 mV IFB6: ON 39F FOL threshold value 39F T23 Offset 34F 308 38 39 41 TOG: OFF, BAL1, 2, 3: ON –25 0 25 mV T24 GAIN UP (F) 14 36F 308 38 41 V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON 7.2 10.2 13.2 dB T25 GAIN UP (E) 15 36F 308 39 41 V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON 7.2 10.2 13.2 dB T26 Voltage gain F0 14 34F 38 41 V1 = 2kHz, TOG: OFF I/O ratio 1.2 4.2 7.2 dB T27 Voltage gain F1 14 34E 30F 38 41 V1 = 2kHz, TOG1: ON Reference to F0 –2.3 –1.8 –1.3 dB T28 Voltage gain F2 14 34D 38 41 V1 = 2kHz, TOG2: ON Reference to F0 –3.9 –3.4 –2.9 dB T29 Voltage gain F3 14 34B 38 41 V1 = 2kHz, TOG3: ON Reference to F0 –6.9 –6.4 –5.9 dB Voltage gain F4 14 347 38 41 V1 = 2kHz, TOG4: ON Reference to F0 –11.1 –10.6 –10.1 dB T31 Voltage gain E0 15 34F 30F 00 39 41 V1 = 2kHz, BAL: OFF I/O ratio –1.6 1.4 4.4 dB T32 Voltage gain E1 15 30E 39 41 V1 = 2kHz, BAL1: ON Reference to E0 0.16 0.46 0.76 dB T33 Voltage gain E2 15 30D 39 41 V1 = 2kHz, BAL2: ON Reference to E0 0.58 0.88 1.18 dB T34 Voltage gain E3 15 30B 39 41 V1 = 2kHz, BAL3: ON Reference to E0 1.43 1.73 2.03 dB T35 Voltage gain E4 15 307 39 41 V1 = 2kHz, BAL4: ON Reference to E0 2.96 3.26 3.56 dB T36 Max. output 1 voltage – High 34F 308 38 41 V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON 0.5 0.7 — V T37 Max. output voltage – Low 34F 308 39 41 V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON — –0.8 –0.5 V T38 Output voltage 1 3C4 35 34 I1 = 364µA –900 –704 –500 mV T39 Output voltage 2 3C4 35 34 I1 = 439µA –693 –293 107 mV T40 Output voltage 3 3C4 35 34 I1 = 515µA 163 613 1063 mV T41 Output voltage 9 4 3C4 35 34 0.8mA sink –200 132 500 mV T42 LD OFF 3C0 35 34 I1 = 515µA, LD: OFF 1.1 1.3 — V TE amplifier T30 APC T22 FE amplifier FOH threshold value T21 (Pin 23) goes from High to Low IFB6: ON 48 Pin 1 voltage when SENS2 (Pin 24) goes from High to Low 1 – 11 – CXA2542AR SW conditions (ON switches) SD Input pin Measurement pin 50% limit 8 3C7 35 30 34 30% limit 8 3C5 35 30 34 –50% limit 10, 13 3C7 T46 –30% limit 10, 13 3C5 T47 DC voltage gain 1 T48 FCS total gain T49 Feed through 1 T50 TEST Item T44 T45 RF level controll T43 35 36 37 35 36 37 34 34 Measurement conditions I1 = 273µA Output difference with LPC ON/OFF I1 = 333µA Output difference with LPC ON/OFF I1 = 742µA Output difference with LPC ON/OFF I1 = 667µA Output difference with LPC ON/OFF Min. Typ. Max. Unit 725 1330 1935 mV 315 915 1515 mV –1421 –816 –211 mV –1215 –615 –15 mV 17.4 20.9 24.4 dB 37.5 39.5 41.5 dB — — –30 dB 123 150 177 mV 1 5 — — — 00 08 1 5 FZC threshold 20 value 00 47 47 Max. output 1 voltage – High 08 1 5 V1 = 200mVDC 1 1.3 — V T52 Max. output voltage – Low 08 1 5 V1 = –200mVDC — –1.3 –1 V T53 Search voltage (–) 02 — 5 –721 –581 –441 mV T54 Search voltage (+) 03 — 5 399 539 679 mV T55 DC voltage gain 25 38 12 DC gain between TEO and TA_O 11.4 14.6 17.8 dB T56 TRK total gain — — — T26 + T55 16.8 18.8 20.8 dB T57 Feed through 1 20 25 38 12 — — –39 dB T58 Max. output voltage – High 20 25 38 12 V1 = –0.3VDC 1 1.3 — V Max. output voltage – Low 20 25 38 12 V1 = 0.3VDC — –1.3 –1 V Jump output voltage (–) 2C 12 –652 –512 –372 mV T61 Jump output voltage (+) 28 12 437 577 717 mV T62 ATSC threshold 5, 17 value (–) 10 43 43 –25 –15 –7 mV T63 ATSC threshold 5, 17 value (+) 10 43 43 7 15 25 mV T64 TZC threshold 18 value 20 44 44 –20 0 20 mV T59 T60 Tracking servo T51 Focus servo 08 1 1 – 12 – T9 + T47 I/O gain difference between SD = 00 and SD = 08 Pin 47 voltage when SENS1 (Pin 23) goes from Low to High I/O gain difference between SD = 20 and SD = 25. Input voltage when TG2 (Pin 9) goes from Vcc/2 to Vcc Input voltage when TG2 (Pin 9) goes from Vcc/2 to Vcc Pin 44 voltage when SENS1 (Pin 23) is 0V CXA2542AR SW conditions (ON switches) SD Input pin Measurement pin 16 300 42 42 16 300 42 42 14 308 34F 38 41 14 308 34F 38 41 FOK threshold value 8 — 30 25 Pin 30 voltage when Pin 25 is 0V T70 Voltage gain 6, 7 25 13 15 V1 = 100Hz, I/O ratio T71 Feed through 6 20 25 13 15 T72 Max. output voltage – High 6 25 13 15 Max. output voltage – Low 25 13 TEST Item BAL COMP T65 T67 Tracking servo T66 threshold value – High GAIN COMP threshold value – High FOK threshold value – Low Sled servo T73 threshold value – Low GAIN COMP T68 T69 BAL COMP 6 Measurement conditions Pin 42 voltage when SENS1 (Pin 23) goes from High to Low Pin 42 voltage when SENS2 (Pin 24) goes from High to Low Pin 41 voltage when SENS1 (Pin 23) goes from High to Low Pin 41 voltage when SENS2 (Pin 24) goes from Low to High Min. Typ. Max. Unit 5 20 35 mV –35 –20 –5 mV 168 193 218 mV 127 145 163 mV –560 –510 –450 mV 50 — — dB — — –34 dB V1 = 400mVDC 1 1.3 — V 15 V1 = 400mVDC — –1.3 –1 V I/O gain difference between SD = 20 and SD = 25. Kick voltage 1 20 — 15 REV × 1 –750 –600 –450 mV T75 Kick voltage 2 20 — 15 FWD × 1 450 600 750 mV T76 Max. operating frequency 1 8 20 30 24 Measures at SENS2 pin. 30 — — kHz 8 20 30 24 Measures at SENS2 pin. — — 0.3 Vp-p 8 20 30 24 Measures at SENS2 pin. 1.8 — — Vp-p T77 MIRROR T74 Min. input operating voltage 1 Max. input T78 operating voltage 1 Min. operating frequency 1 10, 11, 12, 13 10 36 37 23 Measures at SENS1 pin. — — 1 kHz T80 Max. operating frequency 1 10, 11, 12, 13 10 36 37 23 Measures at SENS1 pin. 2.5 — — kHz Min. input 10, 11, 12, 13 10 36 37 23 Measures at SENS1 pin. — — 0.5 Vp-p 10, 11, 12, 13 10 36 37 23 Measures at SENS1 pin. 1.6 — — Vp-p T81 T82 DEFECT T79 operating voltage 1 Max. input operating voltage 1 – 13 – V1 S15 R1 390k GND DC AC GND 43 ATSC 42 LPFI 41 TEO 40 VEE 39 E 38 F 36 GND S20 R3 10k GND S1 S2 3 S3 4 C4 R12 0.1µ 100k R11 13k 7 6 5 GND GND GND GND C3 1000P R9 47k 2 48 FEO 8 10 VCC R16 510k VCC R15 10k S5 9 12 13 R18 13k GND C8 0.01µ SL_P SL_M 14 SL_O 15 ISET 16 Vcc 17 CLK 18 XLT 19 DATA 20 XRST 21 C. OUT 22 SENS1 23 R17 100k 11 R19 10k SENS2 24 25 26 27 28 29 C6 C7 0.01µ 0.01µ 30 R13 30k S8 C9 0.068µ 31 1 47 FZC 44 TZC C1 1000P GND 45 TDFCT S19 GND 46 VC S18 S17 GND GND S16 R26 100k C2 33µ S14 S10 37 PD2 R7 34k R2 390k S13 R4 34k GND VEE GND GND DC AC R14 10k R8 R10 330 1M C5 1µ S9 35 32 33 34 LD FGD I1 0µA FEI PD FDFCT RFTC FLB S11 TGU S12 VCC RF_M TG2 V2 PD1 GND GND GND GND RF_O VCC VEE I2 0.8mA RF_I VCC VEE CP FSET R6 240k CB TA_M R5 240k CC1 FE_O CC2 FE_M FOK SRCH – 14 – TA_O Electrical Characteristics Measurement Circuit GND S6 S7 GND C11 47µ R24 5.1k R25 13k C10 33µ R26 120k R23 60k VCC VCC GND GND VEE VCC CLK XLT DATA XRST VCC AA AA AA AA R20 10k R21 10k R22 10k CXA2542AR CXA2542AR Application Circuit 1 (±2.5V power supply) Vcc 1µ 22 Vcc 1k 3.3µ 100µ LD 10µH PD A VEE VEE VEE C 100 500 MICRO COMPUTER DSP 0.033µ 0.01µ 1M 1µ 30k 0.01µ 0.068µ 33 32 31 30 29 28 27 26 RF_M RF_O RF_I CP CB CC1 CC2 37 PD2 F E VEE 100k 150k 0.01µ 0.01µ 47k 470p 0.047µ 330k 25 FOK 34 LD 35 RFTC 36 PD D PD1 B SENS2 24 38 F SENS1 23 39 E C. OUT 22 40 VEE XRST 21 41 TEO DATA 20 42 LPFI XLT 19 43 ATSC CLK 18 44 TZC Vcc 17 Vcc 60k 45 TDFCT 0.022µ VEE ISET 16 0.1µ 10k 0.1µ 10k 7 8 9 10 11 4.7µ 100k DRIVER 0.015µ 8.2k 13 3.3µ 12 22µ 15k 82k 100k 0.033µ 100k 510k 0.015µ 0.1µ DRIVER 2200p SL_P TA_O 6 TA_M TG2 5 0.1µ 4 FSET 2 3 680k FE_O FGD FDFCT FEI 1 TGU SL_M 14 48 FEO SRCH 47 FZC 0.022µ FE_M SL_O 15 FLB 46 VC DRIVER Vcc Application Circuit 2 (Single +5V power supply) Vcc 1µ 22 Vcc 1k 3.3µ 100µ LD 10µH PD A C 500 100 1M 1µ MICRO COMPUTER DSP 0.033µ 0.01µ 30k 0.01µ 0.068µ E 100k 32 31 30 29 28 27 26 RF_O RF_I CP CB CC1 CC2 25 FOK 33 RF_M 37 PD2 F 34 LD 35 RFTC 36 PD D PD1 B SENS2 24 38 F SENS1 23 39 E C. OUT 22 40 VEE XRST 21 41 TEO DATA 20 42 LPFI XLT 19 43 ATSC CLK 18 44 TZC Vcc 17 150k 0.01µ 0.01µ 0.047µ 330k 47k 470p Vcc 60k 0.1µ 0.022µ Vcc 10µ 45 TDFCT ISET 16 46 VC SL_O 15 47 FZC SL_M 14 100k 10k 2200p 0.1µ TA_M 8 9 10 11 4.7µ 100k DRIVER 510k 0.033µ SL_P TA_O 7 FSET 6 TGU FE_O 5 0.1µ TG2 4 SRCH 2 3 0.1µ 680k FE_M 1 10k FLB FEI 48 FEO FGD 0.022µ FDFCT 10µ 8.2k 13 3.3µ 12 100k DRIVER 0.015µ 82k 22µ 15k 0.015µ Vcc DRIVER Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 15 – CXA2542AR Description of Functions RF Amplifier The photodiode currents input to the input pins (PD1 and PD2) are each I-V converted through a 58kΩ equivalent resistor by the PD I-V amplifiers. These signals are added by the RF summing amplifier, and the photodiode (A + B + C + D) current-voltage converted voltage is output to the RFO pin. An eye-pattern check can be performed at this pin. 1k 30k 3.3µ RF_O RF_M 32 A 31 58k C PD1 VA 36 10k iPD1→ FOK DEFECT V1 PD1 IV AMP B D VC RF SUMMING AMP 58k V3 PD2 VB 37 10k iPD2→ V2 PD2 IV AMP VC The low frequency component of the RFO output voltage is VRFO = – 30k (VA + VB – 2V3) + V3 10k = –3 {–58kΩ (iPD1 + iPD2) + V1 + V2 – 2V3} + V3, and the setting is V1 = V2 = V3, then VRFO = 174kΩ × (iPD1 + iPD2) + V3 – 16 – CXA2542AR Focus Error Amplifier R3 58k R7 174k RF V2 VB PD2 37 R5 32k 48 B+D FEO PD2 IV AMP R10 10k FE AMP R2 58k VC RF V1 VA PD1 36 1 R4 32k R9 10k A+C PD1 IV AMP R6 174k VC VCC ×1 ×2 6 ×8 ×16 ×32 FOCUS PHASE COMPENSATION IFB5 GND FE_M R11 100k R8 100k FE_O 5 DRIVER IFB6 IFB3 IFB4 IFB2 VC IFB1 C1 2200p GND R1 16k ×4 FEI ×32 VIN > VH L VIN < VH H 25mV/STEP VH RESET : IFB1 to IFB6 ON VC FOH 23 SENS1 VEE 20mV SENS SELECTOR VIN VC FOL 24 SENS2 VL VIN > VL H VIN < VL L –20mV VC The focus error amplifier calculates the difference between outputs VA and VB of the RF I-V amplifier, and outputs current-voltage converted voltage of the photodiode (A + C – B – D). The FEO output voltage: VFEO = = 174kΩ (VA – VB) 32kΩ 174kΩ {(–58kΩ × iPD1) – (–58kΩ × iPD2)} 32kΩ = 315.4kΩ (iPD2 – iPD1) The focus error amplifier has a built-in bias adjustment circuit to enable software-based automatic adjustment. The focus bias adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF. The 6-bit focus bias adjustment switches are controlled with commands. IFB1 to IFB6 are all ON after a reset. The voltage is varied by approximately 25mV per step. – 17 – CXA2542AR • Focus error amplifier offset adjustment (when adjusting the IC offset) The offset adjustment is performed by comparing the FEO when the focus servo is OFF with the reference level. The FEO and reference level are compared by the window comparator, and the comparison results are output from SENS1 and SENS2. (ADDRESS D11001110D6) Adjust the offset so that SENS1 and SENS2 are both High. Set the reference level to the center ±20mV. 25mV < 40mV < 50mV Reference level width Variable voltage per step Variable voltage per 2 steps • Focus bias fine adjustment Fine adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF while monitoring a DSP jitter meter with the microcomputer. The 6-bit focus bias adjustment switches are controlled with commands. – 18 – CXA2542AR Tracking Error Amplifier R23 100k R24 150k C3 0.01µ C4 0.01µ GND TEO GND R5 13k R16 NORMAL 96k R14 13k TGFL R9 R3 26k R4 6.8k TGFL NORMAL R12 96k C1 12p E 39 R13 13k V VL – + VC TOG4 R1 260k R8 17k TOG1 VC F I-V AMP VIN > VL H –20mV VIN < VL L SENS VIN > VH L SELECTOR VIN < VH H VH TGH 200mV VC VC SENS2 CPU TGL R6 75k R7 BAL1 110k R10 BAL2 56k R11 BAL3 27k R15 BAL4 13k VC E I-V AMP 24 VIN VE VC SENS1 BALL R18 15k GAIN UP GAIN UP TOG3 VF 23 VIN 17k VC F 38 BALH 20mV VC TOG2 C2 12p VIN > VH L VIN < VH H VH TE AMP R17 20k R19 32k R20 15k R21 6.6k R22 3k R2 260k LPFI 42 41 VL 150mV RE VIN > VL H VIN < VL L VC 21 COMAND COMAND CONTROL CONTROL VC 20 19 18 XRST DATA XLT CLK The difference between E I-V amplifier output VE and F I-V amplifier output VF is taken and output from TEO. The tracking error amplifier has built-in balance and gain adjustment circuits to enable software-based automatic adjustment. The balance adjustment is performed by varying the combined resistance value of the T-configured feedback resistance at the E I-V amplifier. E I-V AMP feedback resistance = R1 + R4 + R1 × R4 RE F I-V AMP feedback resistance = R2 + R5 + R2 × R5 = 403kΩ R3 Vary the combined resistance value of the E I-V amplifier's feedback resistance by using the balance adjustment switches (BAL1 to BAL4). The gain adjustment is performed by resistance dividing the TE AMP output by the gain adjustment switches (TOG1 to TOG4). The balance and gain adjustment switches are controlled with commands. Set the cut-off frequency of the external LPF between 10Hz and 100Hz. – 19 – CXA2542AR • Balance adjustment The balance adjustment is performed by passing the tracking error signal (TEO signal) through the external LPF, extracting the offset DC, and comparing it to the reference level. However, the TEO signal frequency distribution ranges form DC to 2kHz. Merely sending the signal through the LPF leaves lower frequency components, and the complete offset DC can not be extracted. To extract it, monitor the TEO signal frequency at all times, and perform adjustment only when a frequency that can lower a sufficient gain appears on the LPF. Use the C.OUT output to check this frequency. The offset DC and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001100D6) Adjust the balance so that the SENS1 and SENS2 pins are both High. VIN < VL < VH VL < VIN < VH VL < VH < VIN H H L L H H SENS1 pin BALH SENS2 pin BALL VH: High level threshold value VIN: Window comparator input signal VL: Low level threshold value • Gain adjustment Gain adjustment is performed by passing the TEO signal through the HPF and comparing the AC component to the reference level. The AC component is generated by taking the difference between TE and the offset DC input to Pin 42. The AC component and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001101D6) The comparison signal is as follows. (1) (2) (3) VH VL VIN SENS1 pin TGH SENS2 pin TGL H H L The gain should be adjusted so that the SENS1 and SENS2 pins are as shown in status (2). When the TEO signal level is low and TGH (SENS1 pin) does not go Low, the gain should be raised with the TGFL command for adjustment. If the adjustment does not bring the result of Low, check the pulse duty of TGL (SENS2 pin). – 20 – CXA2542AR APC & Laser Power Control VCC C2 100µ R1 22 LD R6 1k VCC LDON L1 10µH R10 56k 130mV PD C1 1µ 34 R2 500 LD PD R8 10k 35 R3 100 R4 10k R5 55k R12 56k R11 10k VREF VEE GND VEE VL VEE RF_I LPC ON/OFF R14 12.5k MIRR 50%/30% 30 C3 0.01µ FOK R7 13k RF_O 670mV 31 R9 41k VC RF 0.684V for 4.5V or more 0.57V for 3.6V or less VEE RFTC 33 R13 1M C4 1µ VEE VEE • APC When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. The APC circuit is used to maintain the optical power output at a constant level. The laser diode current is controlled according to the monitor photodiode output. • Laser power control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The RF_O and RF_I levels are compared and the larger of the two is smoothed by the RFTC's external CR. This signal is then compared with the reference level. The laser power is controlled by attaching an offset to VL according to the results of comparison with the reference level. The reference level is set to 0.57V for the power supply of 3.6V or less and to 0.684V for 4.5V or more. LPC ON/OFF and LD ON/OFF control is performed with commands. The laser power control limit can also be switched between ±50% and ±17% with commands. LPC LPCL VL variable range OFF — ON ±50% Approximately 1.27V ± 625mV ON ±30% Approximately 1.27V ± 375mV Approximately 1.27V – 21 – CXA2542AR Center Voltage Generation Circuit (The figure below shows a single voltage application; Connect to GND for dual power supplies.) The maximum current is approximately ±3mA. The output impedance is approximately 50Ω. VCC VCC 30k VC 50 VC 46 30k VEE GND Connected internally to the VEE pin. – 22 – CXA2542AR Focus Servo 6k 0.022µ FZC 47 54k FZC FEO 48 10k SENS SELECTOR FE 23 SENS1 300k 1 FEI 100k 10k 2200p DFCT FS4 68k FDFCT 0.1µ FOCUS COIL FE_O Focus 100k phase Compensation FS3 2 5 FGD 3 50k 100k FE_M 6 680k 40k 11µ 22µ 0.1µ ISET 60k 16 50k FS2 FLB 4 0.1µ FSET 10 510k 7 SRCH FS1 Charge up 0.015µ 4.7µ The above figure shows a block diagram of the focus servo. Ordinarily the FE signal is input to the focus phase compensation circuit through a 68kΩ resistance; however, when DFCT is detected, the FE signal is switched to pass through a low-pass filter formed by the internal 100kΩ resistance and the capacitance connected to Pin 2. When this DFCT prevention circuit is not used, leave Pin 2 open. The defect switch operation can be enabled and disabled with command. The capacitor connected between Pin 4 and GND is a time constant to boost the low frequency in the normal playback state. The peak frequency of the focus phase compensation is approximately 1.2kHz when a resistance of 510kΩ is connected to Pin 10. The focus search level is approximately ±1.1Vp-p when using the constants indicated in the above figure. This level is inversely proportional to the resistance connected between Pin 16 and VEE. However, changing this resistance also changes the level of the track jump and sled kick as well. The FZC comparator inverted input is set to 10% of Vcc and VC (Pin 46); (Vcc – VC) × 10%. ∗ 510kΩ resistance is recommended for Pin 10. – 23 – CXA2542AR Tracking and Sled Servo + 41 – TEO 100k BUFFER AMP 150k 0.01µ 0.01µ 42 LPFI TGH GAIN TGL WINDOW COMPARATOR 24 SENS2 SENS SELECTOR 23 SENS1 BALH BALANCE WINDOW COMPARATOR BALL TM1 680k SL_M 100k 100k TDFCT 680k 14 66p TM6 22µA 45 0.1µ 8.2k TM5 470p 330k 1k ATSC 1k 13 22µA ATSC TM4 11µA 100k TZC TA_M 11 44 TM3 TZC 8 0.033µ 9 SL_P TM2 3.3µ 43 0.022µ M TG1 120k DFCT 0.047µ 47k SLED MOTOR SL_O 15 TE 0.015µ TE 20k TGU TG2 TG2 10k Tracking Phase Compensation 82k 22µ 100k 15k 11µA TRACKING COIL 90k TA_O 12 TM7 470k FSET 10 510k 0.015µ The above figure shows a block diagram of the tracking and sled servo. The capacitor connected between Pins 8 and 9 is a time constant to cut the high-frequency gain when TG2 is OFF. The peak frequency of the tracking phase compensation is approximately 1.2kHz when a 510kΩ resistance is connected to Pin 10. In the CXA2542AQ, TG1 and TG2 are inter-linked switches. To jump tracks in FWD and REV directions, turn TM3 or TM4 ON. During this time, the peak voltage applied to the tracking coil is determined by the TM3 or TM4 current and the feedback resistance from Pin 11. To be more specific, Track jump peak voltage = TM3 (or TM4) current × feedback resistance value The FWD and REV sled kick is performed by turning TM5 or TM6 ON. During this time, the peak voltage applied to the sled motor is determined by the TM5 or TM6 current and the feedback resistance from Pin 14; Sled kick peak voltage = TM5 (or TM6) current × feedback resistance The values of the current for each switch are determined by the resistance connected between Pin 16 and VEE. When this resistance is 60kΩ : TM3 (or TM4) = ±11µA, and TM5 (or TM6) = ±22µA. As is the case with the FE signal, the TE signal is switched to pass through a low-pass filter formed by the internal resistance (100kΩ) and the capacitance connected to Pin 45. – 24 – CXA2542AR The ISET pin is used to connect external resistance. This external resistance sets the current which determines the focus search, track jump, and sled kick levels. • Focus search current I1 = I1 VBG × R 1 2 I2 (VBG: approximately 1.27V) I2 = 2I1 FS1 • Track jump current (TM3 and TM4 current) I= VBG × R 1 2 • Sled kick current (TM5 and TM6 current, when D1 = D0 = 0 during 1X$ commands) I= VBG R Use external resistance of between 30kΩ and 240kΩ. Using external resistance outside this range may cause oscillation. – 25 – CXA2542AR Focus OK Circuit RF VCC DEFECT RF_O 20k 31 C5 0.01µ ×1 44k 25 FOK VG 30 RF_I V4 LPC MIRR 15k 56k 0.63V FOCUS OK AMP FOCUS OK COMPARATOR The focus OK circuit creates the timing window okaying the focus servo from the focus search state. The HPF output is obtained at Pin 30 from Pin 31 (RF signal), and the LPF output (opposite phase) of the focus OK amplifier output is also obtained. V4 is set in V3=V4 to cancel V3 of the RF amplifier voltage VRFO. The focus OK output is inverted when VRFI – VRFO ≈ –0.51V. Note that, C5 determines the time constant of the HPF for the mirror circuit and the LPF of the focus OK amplifier. Ordinarily, with a C5 equal to 0.01µF selected, the fc is equal to 1kHz, and block error rate degradation brought about by RF envelope defects caused by scratched discs can be prevented. Defect circuit After differentiated with the capacitance coupling and then inverted, the RF_O signal is bottom held by means of the long and short time constants. The short time-constant bottom hold responds to a disc mirror defect in excess of 0.1ms. The long time-constant bottom hold keeps the mirror level prior to the defect and shifts the level. The long and short time-constant signals are compared to generate the mirror defect detection signal. Be sure to disable DFCT ($34X) during focus search because the focus drive waveform is muted. 0.068µ CC1 CC2 26 27 FOK a DFCT2 FLIP FLOP 24 SENS2 RF ×2 43k b c d DFCT1 DEFECT SW DEFECT AMP DEFECT BOTTOM HOLD 30 CB 0.01µ –0.5V a RFO b DEFECT AMP c BOTTOM HOLD (1) solid line e SENS1 f INT SENS SELECTOR DEFECT COMPARATOR f INTERRUPTION COMPARATOR d H L H L – 26 – BOTTOM HOLD (2) broken line e 23 SENS1 CXA2542AR Mirror Circuit The mirror circuit performs peak and bottom hold after the RFI signal has been inverting amplified. For the peak hold, a time constant can follow a 30kHz traverse, and, for the bottom hold, one can follow the rotation cycle envelope fluctuation. FOK 1V DEFECT RF_O RF 31 51k MIRROR HOLD AMP FOK C5 0.01µ 1.5k LPC 30 × 1.4 RF_I G PEAK & BOTTOM HOLD MIRROR AMP 22k H 0.033µ 29 CP ×1 I J K MIRR SENS SELECTOR 24 SENS2 MIRROR COMPARATOR RF_O 0V G (RF_I) 0V H (PEAK HOLD) 0V I (BOTTOM HOLD) 0V J K (MIRROR HOLD) H MIRR L The DC restored-envelope signal J is obtained by amplifying the difference between the peak and bottom hold signals H and I. Signal J has a large time constant of 2/3 its peak value, and the mirror output is obtained by comparing it to the peak hold signal K. If the value of C5 is made smaller, the low frequency component of the RF signal is cut off and the amplification of the signal G gets small. Then, that of the signal J gets also small and the signal K level becomes low, resulting in the short mirror output pulse width. Accordingly, when on the disc track, the mirror output is Low; when between tracks (mirrored portion), it is High; and when a defect is detected, it is High. The mirror hold time constant must be sufficiently large compared with the traverse signal. – 27 – CXA2542AR SENS Selector FZC HIGH-Z DFCT1 DFCT2 TZC MIRR BALH BALL 23 SENS1 24 SENS2 TGH TGL FOH FOL ATSC What is output to the SENS1 and SENS2 pins varies according to the address input to the DATA pin. DATA (Pin 20) 8-bit transfer ADDRESS DATA SENS1 SENS2 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 X X X X FZC H (HIGH-Z) 0 0 0 1 X X X X DFCT1 DFCT2 0 0 1 0 X X X X TZC MIRR 0 1 1 1 0 1 0 1 X X X X X X X X H (HIGH-Z) H (HIGH-Z) DATA (Pin 20) 12-bit transfer ADDRESS D11 D10 DATA D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SENS1 SENS2 0 0 1 1 0 0 X X X X X X BALH BALL 0 0 1 1 0 1 X X X X X X TGH TGL 0 0 1 1 1 0 X X X X X X FOH FOL 0 0 1 1 1 1 X X X X X X ATSC H (HIGH-Z) Notes) • 12-bit transfer should be performed during $3XX commands. When 8 bits are transferred, SENS1 and SENS2 are switched according to the D3 and D2 data. • SENS1 and SENS2 are switched without latching. – 28 – CXA2542AR Commands The input data to operate this IC is configured as 8-bit/12-bit data; however, below, this input data is represented by 2-digit hexadecimal numerals in the form $XX, where X is a hexadecimal numeral between 0 and F/$XXX for 12-bit. Commands for the CXA2542AR can be broadly divided into four groups ranging in value from $0X, $1X, $2X, $3XX. 1. $0X (FZC at SENS1 pin (Pin 23), H (Hi-Z) at SENS2 pin (Pin 24)) These commands are related to the focus servo control. The bit configuration is as shown below. D7 0 D6 0 D5 0 D4 0 D3 FS4 D2 — D1 FS2 D0 FS1 Four focus related switches exist: FS1, FS2, FS4 and DFCT. $00 $02 When FS1 = 0, Pin 7 is charged to (22µA – 11µA) × 50kΩ = 0.55V. If, in addition, FS2 = 0, this voltage is no longer transferred, and the output at Pin 5 becomes 0V. From the state described above, the only FS2 becomes 1. When this occurs, a negative signal is output to Pin 5. This voltage level is obtained by equation 1 below. (22µA – 11µA) × 50kΩ × $03 resistance between Pins 5 and 6 .... Equation 1 50kΩ The SRCH DOWN speed can be increased by the charge up circuit. From the state described above, FS1 becomes 1, and a current source of +22µA is split off. Then, a CR charge/discharge circuit is formed, and the voltage at Pin 7 decreases with the time as shown in Fig. 1 below. 0V Fig. 1. Voltage at Pin 7 when FS1 goes from 0 → 1 This time constant is obtained with the 50kΩ resistance and an external capacitor. By alternating the commands between $02 and $03, the focus search voltage can be constructed. (Fig. 2) 0V $ 00 02 03 02 03 02 00 Fig. 2. Constructing the search voltage by alternating between $02 and $03. (Voltage at Pin 5) – 29 – CXA2542AR 1-1. FS4 This switch is provided between the focus error input and the focus phase compensation, and is in charge of turning the focus servo ON and OFF. $00 → $08 Focus off Focus on 1-2. Procedure of focus activation For description, suppose that the polarity is as described below. a) The lens is searching the disc from far to near; b) The output voltage (Pin 5) is changing from negative to positive; and c) The focus S-curve is varying as shown below. A t Fig. 3. S-curve The focus servo is activated at the operating point indicated by A in Fig. 3. Ordinarily, focus searching and turning the focus servo switch ON are performed while the focus S-curve transits the point A indicated in Fig. 3. To prevent misoperation, this signal is ANDed with the focus OK signal. In this IC, the FZC (Focus Zero Cross) signal is output from the SENS1 pin (Pin 23) as the point A transit signal. In addition, focus OK is output as a signal indicating that the signal is in focus (can be in focus in this case). Following the line of the above description, focusing can be well obtained by observing the following timing chart. (20ms) (200ms) $02 ($00) $03 $08 Drive voltage ∗ The broken lines in the figure indicate the voltage assuming the signal not in focus. Focus error SENS1 (FZC) The instant when the signal is brought into focus. Focus OK Fig. 4. Focus ON timing chart – 30 – CXA2542AR Note that the time from the High to Low transition of FZC to the time command $08 is asserted must be minimized. To do this, the software sequence shown in B is better than the sequence shown in A. FZC ↓ ? Transfer $08 NO YES F. OK? F. OK? NO NO YES YES FZC ↓ ? Transfer $08 NO YES Latch Latch (A) (B) Fig. 5. Poor and good software command sequences 2. $1X (DFCT1 at SENS1 pin (Pin 23), DFCT2 at SENS2 pin (Pin 24)) These commands deal with switching TG1/TG2, brake circuit ON/OFF, and the sled kick output. The bit configuration is as follows: 0 D6 0 D5 0 D4 1 D3 D2 TG1, TG2 Brake circuit ON/OFF ON/OFF D1 D0 Sled kick level D1 (PS1) D0 (PS0) Relative value D7 Sled kick level 0 0 0 1 ±1 ±2 1 1 0 1 ±3 ±4 TG1, TG2, TM7 The purpose of TG1 and TG2 is to switch the tracking servo gain Up/Normal. TG1 and TG2 are interlinked switches. The brake circuit (TM7) is to prevent the frequently occurred phenomena where the merely 10-track jump has been performed actually though a 100-track jump was intended to be done due to the extremely degraded actuator settling caused by the servo motor exceeding the linear range after a 100 or 10-track jump. For the prevention method, when the actuator travels radially; that is, when it traverses from the inner track to the outer track of the disc and vice versa, the brake circuit utilizes the fact that the phase relationship between the RF envelope and the tracking error is 180° out-of-phase to cut the unneeded portion of the tracking error and apply braking. – 31 – CXA2542AR [∗B] [∗A] Envelope Detection RF_I 30 Waveform Shaping [∗E] [∗D] Waveform Shaping TZC 44 D2 (MIRR) [∗C] [∗F] Edge Detection D Q [∗G] BRK TM7 Low: open High: make CK [∗H] (Latch) CXA2542AR Fig. 6. TM7 movement during braking operation From inner to outer track From outer to inner track [∗A] [∗B] [∗C] ("MIRR") [∗D] ("TZC") [∗E] [∗F] [∗G] [∗H] Braking is applied from here. 0V Fig. 7. Internal waveform 3. $2X (TZC at SENS1 pin (Pin 23), MIRR at SENS2 pin (Pin 24)) These commands deal with turning the tracking servo and sled servo ON/OFF, and creating the jump pulse and fast forward pulse during access operations. D7 0 D6 D5 D4 0 1 0 D3 D2 Tracking control 00 off 01 Servo ON 10 F-JUMP 11 R-JUMP ↓ TM1, TM3, TM4, – 32 – D1 D0 Sled control 00 off 01 Servo ON 10 F-FAST FORWARD 11 R-FAST FORWARD ↓ TM2, TM5, TM6 CXA2542AR 4. $3XX These commands mainly control the balance and gain control circuit switches used during automatic tracking adjustment and the bias circuit switch used during automatic focus bias adjustment. In the initial resetting state, BAL1 to BAL4 switches and TOG1 to TOG4 switches are ON. Also, the IFB1 to IFB6 switches are ON. • Balance adjustment The balance adjustment switches BAL1 to BAL4 can be controlled by setting D6 = 0 and D7 = 0. The switches are set using D0 to D3. At this time, SENS1 outputs BALH and SENS2 outputs BALL. Data is set by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 0 and D7 = 0. Sending a latch pulse with D6, D7 ≠ 0 does not change the balance switch settings. START C.OUT is the frequency high enough ? BAL1 to BAL4 Switch Control NO YES SENS1/2 Balance OK ? Adjustment Completed Balance adjustment • Gain adjustment The gain adjustment switches TOG1 to TOG4 can be controlled by setting D6 = 1 and D7 = 0. These switches are set using D0 to D3. At this time, SENS1 outputs TGH and SENS2 outputs TGL. In a fashion similar to the method used with the balance adjustment, set the data by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 1 and D7 = 0. START TOG1 to TOG4 Switch control SENS1/2 GAIN OK ? NO YES Adjustment Completed Gain adjustment – 33 – CXA2542AR • Focus bias adjustment The focus bias adjustment switches IFB1 to IFB6 can be controlled by setting D6 = 0 and D7 = 1. The switches are set using D0 to D5. At this time, SENS1 outputs FOH and SENS2 outputs FOL. Data is set by specifying switch conditions D0 to D5 and sending a latch pulse with D6 = 0 and D7 = 1. START IFB1 to IFB6 Switch Control SENS1/2 BIAS OK ? NO YES Adjustment Completed Focus bias adjustment method • TGFL The tracking gain can be switched by setting D5 with D6 = 1 and D7 = 0. The tracking gain is GAIN UP with D5 = 1 and NORMAL GAIN with D5 = 0. The TEO signal level can be made higher by approximately 6dB for GAIN UP. When the TEO signal level is low and TGH (SENS1 pin) does not go Low during tracking adjustment, the gain should be raised with the TGFL command for adjustment. • LPC The laser power control circuit can be turned ON and OFF by setting D0 with D6 = 1 and D7 = 1. The circuit is ON with D0 = 1 and OFF with D0 = 0. • LPCL The laser power control limit can be switched between ±30% and ±50% by setting D1 with D6 = 1 and D7 = 1. The control limit is ±30% with D1 = 0 and ±50% with D1 = 1. • LDON The laser diode can be turned ON and OFF by setting D2 with D6 = 1 and D7 = 1. The laser diode is ON with D2 = 1 and OFF with D2 = 0. – 34 – CXA2542AR • ATSC The anti-shock function can be controlled by setting D3 with D6 = 1 and D7 = 1. This function is disabled with D3 = 1 and enabled with D3 = 0. At this time, SENS1 outputs ATSC. Even if ATSC is disabled, ATSC is output to SENS1. When an anti-shock signal is generated during the enable status, TG1 and TG2 switch to GAIN UP mode. (In the Block Diagram, TG1 is set to the side and TG2 is OFF. Even if TG1 and TG2 are in NORMAL mode, they switch to GAIN UP mode in conjunction with ATSC.) When the anti-shock function is not used, Pin 43 (ATSC) should be connected to VC. • RDFCT2 DFCT2 can be reset by setting D4 with D6 = 1 and D7 = 1. DFCT2 is reset with D4 = 1. After a reset, High is held when DFCT1 rises. During $1X commands, DFCT2 is output from SENS2. DFCT2 operates even if DFCT is disabled. Whether or not DFCT rises at the proper timing for the microcomputer can also be confirmed. • INT The interruption (scratched disc) countermeasure circuit can be set to the operating status by setting D5 with D6 = 1 and D7 = 1. This circuit is enabled when D5 = 1 and disabled when D5 = 0. Even if DFCT1 does not rise, this circuit is effective for scratched discs which cause MIRR to rise. When MIRR rises, the DFCT switch is routed through the low-pass filter. The interruption countermeasure circuit is forcibly turned OFF regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC) Even if DFCT is disabled, the interruption countermeasure circuit operates when INT is enabled. – 35 – CXA2542AR CPU Serial Interface Timing Chart DATA D0 D1 tWCK D2 D3 tWCK tSU D4 D5 D6 D7 D0 th CLK tCD 1/fck tD XLT tWL (VCC = 3.0V) Item Symbol Min. Typ. Max. Unit 1 MHz Clock frequency fck Clock pulse width fwck 500 ns Setup time 500 ns 500 ns 500 ns 1000 ns Data transfer interval tsu th tD tWL tCD 1000 ns Low level input voltage VIL 0.0 (VCC – VEE) × 0.1 V High level input voltage VIH (VCC – VEE) × 0.9 VCC V Hold time Delay time Latch pulse width – 36 – 0 0 TRACKING CONTROL TRACKING SLED MODE – 37 – ON FWD MOVE REV MOVE 1 0 1 0 1 1 ON FWD JUMP REV JUMP 1 1 0 0 OFF 0 1 0 1 0 D0 D1 SLED MODE ∗2 SLED KICK + 2 FS2 SRCH ON 1 = ON 0 = OFF DATA 1 = ENABLE 0 = DISABLE 0 ∗2 SLED MODE — D2 BRAKE TRACKING MODE ∗1 1 = GAIN UP 0 = NORMAL TG1, TG2 FS4 Focus 1 = ON 0 = OFF D3 OFF 0 1 0 D4 D1 1 0 0 D5 D2 0 0 0 D6 ADDRESS DATA (Pin 20) 8-bit transfer D3 ∗1 TRACKING MODE 0 D7 FOCUS CONTROL Item System Control SLED KICK + 1 FS2 SRCH UP 1 = UP 0 = DOWN D0 TZC DFCT1 FZC SENS1 MIRR DFCT2 H (HIGH-Z) SENS2 CXA2542AR 0 FOCUS BIAS – 38 – 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 D6 RDFCT2 INT ATSC 1 = OFF 0 = ON IFB4 1 = OFF 0 = ON TOG4 1 = OFF 0 = ON BAL4 D3 LDON 1 = OFF 0 = ON IFB3 1 = OFF 0 = ON TOG3 1 = OFF 0 = ON BAL3 D2 1 = ENABLE 1 = RESET 1 = DISABLE 1 = ON 0 = DISABLE 0 = NORMAL 0 = ENABLE 0 = OFF 1 = OFF 0 = ON IFB5 — — D4 1 = OFF 0 = ON IFB6 1 = GAIN UP 0 = NORMAL TGFL 1 = DISABLE 0 = ENABLE DFCT D5 DATA 1 = ON 0 = OFF LPC LPCL 1 = ±50% 0 = ±30% 1 = OFF 0 = ON IFB1 IFB2 1 = OFF 0 = ON 1 = OFF 0 = ON TOG1 TOG2 1 = OFF 0 = ON 1 = OFF 0 = ON BAL1 D0 1 = OFF 0 = ON BAL2 D1 Notes) • When ATSC is enabled, even if TG1 and TG2 are in NORMAL mode, TG1 and TG2 switch to GAIN UP mode in conjunction with ATSC. • INT is forcibly disabled regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC) When reset • SENS1 = FZC • SENS2 = High (Hi-Z) • RDFCT2 = 1 (Reset) • IFB1 to IFB6 = 0 (switch ON) • TOG1 to TOG4 = 0 (switch ON) • BAL1 to BAL4 = 1 (switch ON) • Other data is "0". 0 0 TRACKING GAIN Others 0 D8 D7 ADDRESS D11 D10 D9 E-F BALANCE Item DATA (Pin 20) 12-bit transfer ATSC FOH TGH BALH SENS1 H (HIGH-Z) FOL TGL BALL SENS2 CXA2542AR CXA2542AR Serial Data Truth Table Serial Data HEX FOCUS CONTROL 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 Functions FS2 FS1 FS4 $00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0A $0B $0C $0D $0E $0F 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • FS1 1: OFF 0: ON • FS2 1: ON 0: OFF • FS4 In the Block Diagram: 1: SW side 0: SW side BRAK SLD KICK TG1 Fig. 6 KICK KICK TG2 D2 +2 +1 TRACKING CONTROL 0001 0000 0001 0001 0001 0010 0001 0011 0001 0100 0001 0101 0001 0110 0001 0111 0001 1000 0001 1001 0001 1010 0001 1011 0001 1100 0001 1101 0001 1110 0001 1111 $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $1B $1C $1D $1E $1F 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • TG1 In the Block Diagram: 1: SW side 0: SW side • TG2 1: OFF 0: ON • BRAKE When D2 in Fig. 6 is: 1: 1 0: 0 • Sled kick level – 39 – D1 D0 0 0 1 1 0 1 0 1 Relative value ±1 ±2 ±3 ±4 CXA2542AR Serial Data HEX TM6 TM5 TM4 TM3 TM2 TM1 TRACKING/SLED MODE 0010 0000 0010 0001 0010 0010 0010 0011 0010 0100 0010 0101 0010 0110 0010 0111 0010 1000 0010 1001 0010 1010 0010 1011 0010 1100 0010 1101 0010 1110 0010 1111 Function $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $2B $2C $2D $2E $2F 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 – 40 – 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Notes) • TM1/TM2 In the Block Diagram: 1: SW side 0: SW side • TM3/TM4/TM5/TM6 1: ON 0: OFF CXA2542AR Serial Data $3XX HEX BAL SW TOG SW 0011 0000 0000 0011 0000 0001 0011 0000 0010 0011 0000 0011 0011 0000 0100 0011 0000 0101 0011 0000 0110 0011 0000 0111 0011 0000 1000 0011 0000 1001 0011 0000 1010 0011 0000 1011 0011 0000 1100 0011 0000 1101 0011 0000 1110 0011 0000 1111 $300 $301 $302 $303 $304 $305 $306 $307 $308 $309 $30A $30B $30C $30D $30E $30F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — E E E E E E E E E E E E E E E E 0011 0001 0000 0011 0001 0001 0011 0001 0010 0011 0001 0011 0011 0001 0100 0011 0001 0101 0011 0001 0110 0011 0001 0111 0011 0001 1000 0011 0001 1001 0011 0001 1010 0011 0001 1011 0011 0001 1100 0011 0001 1101 0011 0001 1110 0011 0001 1111 $310 $311 $312 $313 $314 $315 $316 $317 $318 $319 $31A $31B $31C $31D $31E $31F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — E E E E E E E E E E E E E E E E 0011 0010 0000 0011 0010 0001 0011 0010 0010 0011 0010 0011 0011 0010 0100 0011 0010 0101 0011 0010 0110 0011 0010 0111 0011 0010 1000 0011 0010 1001 0011 0010 1010 0011 0010 1011 0011 0010 1100 0011 0010 1101 0011 0010 1110 0011 0010 1111 $320 $321 $322 $323 $324 $325 $326 $327 $328 $329 $32A $32B $32C $32D $32E $32F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — D D D D D D D D D D D D D D D D 4 3 2 1 4 3 2 1 TGFL IFB SW 6 5 4 3 2 1 – 41 – INT RDF ATSC LDON LPCL LPC DFCT CT2 CXA2542AR Serial Data $3XX HEX BAL SW TOG SW 0011 0011 0000 0011 0011 0001 0011 0011 0010 0011 0011 0011 0011 0011 0100 0011 0011 0101 0011 0011 0110 0011 0011 0111 0011 0011 1000 0011 0011 1001 0011 0011 1010 0011 0011 1011 0011 0011 1100 0011 0011 1101 0011 0011 1110 0011 0011 1111 $330 $331 $332 $333 $334 $335 $336 $337 $338 $339 $33A $33B $33C $33D $33E $33F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0011 0100 0000 0011 0100 0001 0011 0100 0010 0011 0100 0011 0011 0100 0100 0011 0100 0101 0011 0100 0110 0011 0100 0111 0011 0100 1000 0011 0100 1001 0011 0100 1010 0011 0100 1011 0011 0100 1100 0011 0100 1101 0011 0100 1110 0011 0100 1111 $340 $341 $342 $343 $344 $345 $346 $347 $348 $349 $34A $34B $34C $34D $34E $34F 0011 0101 0000 0011 0101 0001 0011 0101 0010 0011 0101 0011 0011 0101 0100 0011 0101 0101 0011 0101 0110 0011 0101 0111 0011 0101 1000 0011 0101 1001 0011 0101 1010 0011 0101 1011 0011 0101 1100 0011 0101 1101 0011 0101 1110 0011 0101 1111 $350 $351 $352 $353 $354 $355 $356 $357 $358 $359 $35A $35B $35C $35D $35E $35F 4 3 2 1 4 3 2 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 TGFL IFB SW 6 5 4 3 2 1 INT RDF ATSC LDON LPCL LPC DFCT CT2 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — D D D D D D D D D D D D D D D D ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — – 42 – CXA2542AR Serial Data $3XX HEX BAL SW TOG SW 0011 0110 0000 0011 0110 0001 0011 0110 0010 0011 0110 0011 0011 0110 0100 0011 0110 0101 0011 0110 0110 0011 0110 0111 0011 0110 1000 0011 0110 1001 0011 0110 1010 0011 0110 1011 0011 0110 1100 0011 0110 1101 0011 0110 1110 0011 0110 1111 $360 $361 $362 $363 $364 $365 $366 $367 $368 $369 $36A $36B $36C $36D $36E $36F ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0011 0111 0000 0011 0111 0001 0011 0111 0010 0011 0111 0011 0011 0111 0100 0011 0111 0101 0011 0111 0110 0011 0111 0111 0011 0111 1000 0011 0111 1001 0011 0111 1010 0011 0111 1011 0011 0111 1100 0011 0111 1101 0011 0111 1110 0011 0111 1111 $370 $371 $372 $373 $374 $375 $376 $377 $378 $379 $37A $37B $37C $37D $37E $37F ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0011 1000 0000 0011 1000 0001 0011 1000 0010 0011 1000 0011 0011 1000 0100 0011 1000 0101 0011 1000 0110 0011 1000 0111 0011 1000 1000 0011 1000 1001 0011 1000 1010 0011 1000 1011 0011 1000 1100 0011 1000 1101 0011 1000 1110 0011 1000 1111 $380 $381 $382 $383 $384 $385 $386 $387 $388 $389 $38A $38B $38C $38D $38E $38F — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 4 3 2 1 4 3 2 1 TGFL IFB SW 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 – 43 – 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 INT RDF ATSC LDON LPCL LPC DFCT CT2 CXA2542AR Serial Data $3XX HEX BAL SW TOG SW 0011 1001 0000 0011 1001 0001 0011 1001 0010 0011 1001 0011 0011 1001 0100 0011 1001 0101 0011 1001 0110 0011 1001 0111 0011 1001 1000 0011 1001 1001 0011 1001 1010 0011 1001 1011 0011 1001 1100 0011 1001 1101 0011 1001 1110 0011 1001 1111 $390 $391 $392 $393 $394 $395 $396 $397 $398 $399 $39A $39B $39C $39D $39E $39F — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0011 1010 0000 0011 1010 0001 0011 1010 0010 0011 1010 0011 0011 1010 0100 0011 1010 0101 0011 1010 0110 0011 1010 0111 0011 1010 1000 0011 1010 1001 0011 1010 1010 0011 1010 1011 0011 1010 1100 0011 1010 1101 0011 1010 1110 0011 1010 1111 $3A0 $3A1 $3A2 $3A3 $3A4 $3A5 $3A6 $3A7 $3A8 $3A9 $3AA $3AB $3AC $3AD $3AE $3AF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0011 1011 0000 0011 1011 0001 0011 1011 0010 0011 1011 0011 0011 1011 0100 0011 1011 0101 0011 1011 0110 0011 1011 0111 0011 1011 1000 0011 1011 1001 0011 1011 1010 0011 1011 1011 0011 1011 1100 0011 1011 1101 0011 1011 1110 0011 1011 1111 $3B0 $3B1 $3B2 $3B3 $3B4 $3B5 $3B6 $3B7 $3B8 $3B9 $3BA $3BB $3BC $3BD $3BE $3BF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 4 3 2 1 4 3 2 1 TGFL IFB SW 6 5 4 3 2 1 – 44 – INT RDF ATSC LDON LPCL LPC DFCT CT2 CXA2542AR Serial Data $3XX HEX BAL SW TOG SW 0011 1100 0000 0011 1100 0001 0011 1100 0010 0011 1100 0011 0011 1100 0100 0011 1100 0101 0011 1100 0110 0011 1100 0111 0011 1100 1000 0011 1100 1001 0011 1100 1010 0011 1100 1011 0011 1100 1100 0011 1100 1101 0011 1100 1110 0011 1100 1111 $3C0 $3C1 $3C2 $3C3 $3C4 $3C5 $3C6 $3C7 $3C8 $3C9 $3CA $3CB $3CC $3CD $3CE $3CF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — 0011 1101 0000 0011 1101 0001 0011 1101 0010 0011 1101 0011 0011 1101 0100 0011 1101 0101 0011 1101 0110 0011 1101 0111 0011 1101 1000 0011 1101 1001 0011 1101 1010 0011 1101 1011 0011 1101 1100 0011 1101 1101 0011 1101 1110 0011 1101 1111 $3D0 $3D1 $3D2 $3D3 $3D4 $3D5 $3D6 $3D7 $3D8 $3D9 $3DA $3DB $3DC $3DD $3DE $3DF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — 0011 1110 0000 0011 1110 0001 0011 1110 0010 0011 1110 0011 0011 1110 0100 0011 1110 0101 0011 1110 0110 0011 1110 0111 0011 1110 1000 0011 1110 1001 0011 1110 1010 0011 1110 1011 0011 1110 1100 0011 1110 1101 0011 1110 1110 0011 1110 1111 $3E0 $3E1 $3E2 $3E3 $3E4 $3E5 $3E6 $3E7 $3E8 $3E9 $3EA $3EB $3EC $3ED $3EE $3EF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — — — — — — — — — — — — — — —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — 4 3 2 1 4 3 2 1 TGFL IFB SW 6 5 4 3 2 1 – 45 – INT RDF ATSC LDON LPCL LPC DFCT CT2 CXA2542AR Serial Data $3XX HEX 0011 1111 0000 0011 1111 0001 0011 1111 0010 0011 1111 0011 0011 1111 0100 0011 1111 0101 0011 1111 0110 0011 1111 0111 0011 1111 1000 0011 1111 1001 0011 1111 1010 0011 1111 1011 0011 1111 1100 0011 1111 1101 0011 1111 1110 0011 1111 1111 $3F0 $3F1 $3F2 $3F3 $3F4 $3F5 $3F6 $3F7 $3F8 $3F9 $3FA $3FB $3FC $3FD $3FE $3FF BAL SW TOG SW 4 3 2 1 4 3 2 1 — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — TGFL — — — — — — — — — — — — — — — — IFB SW 6 5 4 3 2 1 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RDF ATSC LDON LPCL LPC DFCT CT2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — Notes) • 0 means OFF and 1 means ON for TOG SW and BAL SW. These are not equal to the setting values of each bit for serial data. • "—" in the Truth Table indicates that the status does not change. • TGFL In the Block Diagram: 1: SW side 0: SW side • ATSC E: enable/D: disable • DFCT E: enable/D: disable – 46 – CXA2542AR Initial State (resetting state) ADDRESS Item DATA D7 D6 D5 D4 D3 D2 D1 D0 HEX FOCUS CONTROL 0 0 0 0 0 0 0 0 $00 TRACKING CONTROL 0 0 0 1 0 0 0 0 $10 TRACKING SLED MODE 0 0 1 0 0 0 0 0 $20 Item ADDRESS DATA D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HEX E-F BALANCE 0 0 1 1 0 0 0 0 0 0 0 0 $300 TRACKING GAIN 0 0 1 1 0 1 0 0 0 0 0 0 $340 FOCUS BIAS 0 0 1 1 1 0 0 0 0 0 0 0 $380 Others 0 0 1 1 1 1 0 1 0 0 0 0 $3D0 The above data means the following operation modes. FOCUS CONTROL TRACKING CONTROL TRACKING SLED MODE E-F BALANCE TRACKING GAIN FOCUS BIAS Others : FOCUS OFF, FOCUS SEARCH OFF, FOCUS SEACH DOWN : TG1-TG2 NORMAL, BRAKE DISABLE, SLED KICK relative level value ±1 : TRACKING OFF, SLED OFF : BAL1 to BAL4 = 0 (switch ON). DFCT ENABLE : TOG1 to TOG4 = 0 (switch ON), TGFL NORMAL : IFB1 to IFB6 = 0 (switch ON) : INT DISABLE, DFCT2 RESET, ATSC ENABLE, LDON OFF, LPCL ±30%, LPC OFF – 47 – CXA2542AR Notes on Operation 1. Focus OK circuit 1) Refer to the "Description of Operation" for the time constant setting of the focus OK amplifier LPF and the mirror amplifier HPF. 2) The equivalent circuit for the output pin (FOK) is shown in the diagram below. VCC 20k FOK 25 40k The FOK and comparator output are as follows: Output voltage High : VFOKH ≈ near Vcc Output voltage Low : VFOKL ≈ Vsat (NPN) + VEE RL 100k VCC VEE VEE 2. Sled amplifier The sled amplifier may oscillate when used by the buffer amplifier. Use with a gain of approximately 20dB. 3. Focus/Tracking internal phase compensation and reference design material TRK FCS Item SD 1.2kHz gain 08 1.2kHz phase 08 1.2kHz gain 25 1.2kHz phase 25 2.7kHz gain 25 → 13 2.7kHz phase 25 → 13 Measurement pin 6 13 Conditions Typ. Unit CFLB = 0.1µF CFGD = 0.1µF 21.5 dB 63 deg 13 dB –125 deg 26.5 dB –130 deg CTGU = 0.1µF 4. Laser Poser Control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The laser life is shortened by increasing the laser power when the less light is reflected from the disc. It is recommended that the typical laser power value is set lower to maintain the laser life. Take care of the laser maximum ratings when using the laser power control circuit. – 48 – CXA2542AR Package Outline Unit: mm 48PIN LQFP (PLASTIC) 9.0 ± 0.2 ∗ 7.0 ± 0.1 36 S 25 13 0.5 ± 0.2 B A 48 (8.0) 24 37 (0.22) 12 1 + 0.05 0.127 – 0.02 0.5 + 0.08 0.18 – 0.03 + 0.2 1.5 – 0.1 0.13 M 0.1 S 0.5 ± 0.2 (0.18) 0° to 10° DETAIL B:SOLDER DETAIL A 0.18 ± 0.03 0.127 ± 0.04 + 0.08 0.18 – 0.03 (0.127) +0.05 0.127 – 0.02 0.1 ± 0.1 DETAIL B:PALLADIUM NOTE: Dimension “∗” does not include mold protrusion. PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE LQFP-48P-L01 LEAD TREATMENT SOLDER/PALLADIUM PLATING EIAJ CODE LQFP048-P-0707 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.2g JEDEC CODE – 49 –