SONY CXA7000R

CXA7000R
LCD Driver
Description
The CXA7000R is a driver IC developed for use
with Sony polycrystalline silicon TFT LCD panels. It
supports 10-bit digital input, and the input data is
analog demultiplexed into 6 phases and output. The
CXA7000R can directly drive an LCD panel, and the
VCOM setting circuit and precharge pulse waveform
generator are also on-chip.
64 pin LQFP (Plastic)
Features
• Supports 10-bit input
• Supports signals up to XGA
• Low output deviation by on-chip output offset cancel circuit
• On-chip timing generator with ECL
• VCOM voltage generation circuit
• Precharge pulse waveform generation circuit
Applications
LCD projectors and other video equipment
Absolute Maximum Ratings (VSS = 0V)
• Supply voltage
VCC
16
V
VDD
5.5
V
• Operating temperature
Topr
–20 to +70
°C
• Storage temperature
Tstg –65 to +150 °C
• Allowable power dissipation PD
1250
mW
Recommended Operating Conditions
• Supply voltage
VCC
15.0 to 15.5
VDD
4.75 to 5.25
• Operating temperature
Topr
–20 to +70
V
V
°C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E01821A22
CXA7000R
SL_DAT
DIRC
F/H_CNT
VREF_O
VREF_I
VDD5
PS
GND
GND
PRG
SID_LV
PRG_LV
SID_OUT
VCC15
VCOM_OFST
VCOM_OUT
Block Diagram
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VCOM_Gen.
SID_Gen.
TEST 49
Vref Gen.
STATUS 50
32 PVCC
31 SH_OUT1
Line inv.
D_IN9 51
30 NC
Offset Cancel
D_IN8 52
29 SH_OUT2
Line inv.
S/H
D_IN7 53
S/H
S/H
28 NC
Offset Cancel
D_IN6 54
S/H
S/H
S/H
S/H
S/H
S/H
27 SH_OUT3
Line inv.
D_IN5 55
26 GND
Offset Cancel
GND 56
25 PGND
D/A
GND 57
S/H
S/H
S/H
S/H
S/H
S/H
24 PGND
Line inv.
D_IN4 58
23 GND
Offset Cancel
D_IN3 59
22 SH_OUT4
S/H
D_IN2 60
S/H
S/H
Line inv.
21 NC
Offset Cancel
D_IN1 61
20 SH_OUT5
Line inv.
D_IN0 62
19 NC
Offset Cancel
MCLK 63
18 SH_OUT6
FRP
CAL_PLS
8
SHST
POSCNT0
POSCNT1
POSCNT2
POSCNT3
SHTEST
GND
9
10
11
12
13
14
15
16
DCFBOFF
7
GND
6
CAL_H
5
CAL_L
4
SIG_OFST
3
SIG.C
2
17 PVCC
NC
1
FRP
Offset Cancel Control
GND
TG
MCLKX 64
–2–
CXA7000R
Pin Description
Pin
No.
Symbol
I/O Standard
voltage level
Equivalent circuit
Description
VDD
50k
1
FRP
I
High: ≥2.0V
Low: ≤0.8V
192
1
LCD panel AC drive inversion
timing input.
High: inverted
Low: non-inverted
See the Timing Chart.
GND
VDD
50k
2
SHST
I
High: ≥2.0V
Low: ≤0.8V
192
2
GND
VDD
3
4
5
6
POSCNT0
POSCNT1
POSCNT2
POSCNT3
50k
3
I
High: ≥2.0V
Low: ≤0.8V
4
192
5
6
Internal sample-and-hold timing
circuit reset pulse input.
This pin is also used as the
offset cancel level insertion
timing input.
A reset is applied to the internal
timing generator at the falling
edge.
Output phase adjustment.
The output phase is adjusted in
MCLK period units when
SL_DAT is high, and in
1/2 MCLK period units when
SL_DAT is low.
GND
VDD
VCC
20µ
30k
11
SIG.C
I
1 to 5.0V
11
Signal center voltage (inversion
folded voltage) adjustment input.
The SH_OUT output center
voltage can be adjusted in the
range from 7.0 to 8.0V.
GND
VDD
VCC
10µ
30k
12
SIG_OFST
I
0 to 5.0V
12
GND
Output signal offset adjustment
from signal center voltage.
The SH_OUT output 100%
white level (at 3FF input) voltage
can be adjusted in the range
from 0 to 1V from the center
voltage.
VCC
40µ
13
14
CAL_L
CAL_H
I/O
3.0 to 6.0V
9.0 to 12.0V
1k
145
13
14
GND
–3–
Level output for canceling the
offset between channels.
Connect the CAL_L and
CAL_H, between ICs when
using two CXA7000R.
CXA7000R
Pin
No.
Symbol
I/O Standard
voltage level
Equivalent circuit
Description
VDD
24k
16
DCFBOFF
I
Offset cancel function off.
Normally connect to GND to
use with the offset cancel
function on.
High (offset cancel function off)
when open.
24k
145
GND
16
GND
PVCC
18
18
20
22
27
29
31
20
300
SH_OUT6
to
SH_OUT1
22
O
1.5 to 13.5V
27
300
29
Demultiplexed output of AC
inverse driven video signals.
Can be connected directly to
the LCD panel.
31
GND
VCC
80µ
100k
33
VCOM_OUT
O
500 145
5.0 to 8.0V
33
500
LCD panel common voltage
output.
Can be set in the range from
the SH_OUT center potential
Vsig.c to Vsig.c – 2V by
VCOM_OFST.
GND
VDD
VCC
80µ
2k
34
VCOM_OFST
I
0 to 5.0V
34
100
LCD panel common voltage
adjustment.
VCOM_OUT can be set in the
range from the SH_OUT center
potential Vsig.c to Vsig.c – 2V
by inputting 0 to 5V.
GND
VCC
100k
0.2p
36
SID_OUT
O
145
36
1.5 to 13.5V
100k
0.2p
GND
–4–
Precharge waveform output.
These pins cannot directly drive
the LCD panel, so input to the
LCD panel with an external
buffer.
CXA7000R
Pin
No.
Symbol
I/O Standard
voltage level
Equivalent circuit
Description
VDD
VCC
Precharge level setting.
Adjusts the SID_OUT and
SID_OUTX output potential.
PRG_LV is reflected when the
PRG input pin (Pin 60) is high,
and SID_LV is reflected when
PRG is low.
29µ
37
38
PRG_LV
SID_LV
I
1.0 to 5.0V
50k
37
50k
38
GND
VDD
VCC
100k
39
PRG
I
10k
High: ≥2.0V
Low: ≤0.8V
39
50µ
Timing pulse input for switching
the Pin 36 output levels.
(See PRG_LV (Pin 37) and
SID_LV (Pin 38).)
GND
VDD
70µ
44
VREF_I
I
3.2V
10µ
44
1k
33.3k
Internal D/A converter reference
voltage input.
Normally connect directly to
VREF_O.
280µ
GND
VDD
2k
45
VREF_O
O
45
3.2V
20k
20µ
Reference voltage output.
Normally connect directly to
VREF_I, and connect to GND
through a 0.5 to 1.0µF capacitor.
12.4k
GND
VDD
50k
46
F/H_CNT
I
High: ≥2.0V
Low: ≤0.8V
Open: Low
192
46
200k
SH_OUT output timing selection.
High: SH_OUT1 to SH_OUT3
and SH_OUT4 to SH_OUT6
are output at different timing.
Low: SH_OUT1 to SH_OUT6
are output at the same timing.
GND
VDD
50k
47
DIRC
I
High: ≥2.0V
Low: ≤0.8V
192
47
GND
–5–
Scan direction setting.
High: output as a time series in
ascending order of output pin
symbol (in order from SH_OUT1
to SH_OUT6)
Low: output in descending order
CXA7000R
Pin
No.
Symbol
I/O Standard
voltage level
Equivalent circuit
Description
VDD
50k
48
SL_DAT
I
High: ≥2.0V
Low: ≤0.8V
Open: Low
Digital input mode switch setting.
High: when using master/slave
mode two CXA7000R.
Low: when using normal mode
one CXA7000R.
192
48
200k
GND
VDD
50k
200k
50
STATUS
I
High: ≥2.0V
Low: ≤0.8V
192
50
GND
Master/slave setting when using
two CXA7000R.
High: master IC. Offset cancel
level is output.
Low: slave IC. This pin is left
open (high) when using one
CXA7000R.
VDD
51
to
55
58
to
62
50k
D_IN9 to
D_IN0
I
192
High: ≥2.0V
Low: ≤0.8V
51 to 55
Digital data input.
58 to 62
GND
VDD
63
64
MCLK
MCLKX
I
PECL
differential
(amplitude
0.4V or more
between
VDD to 2V)
or TTL input
140k
8k
140k
100µ
60k
1k
63
1k
64
60k
Dot clock input.
PECL differential input or TTL
input. For TTL input, input to
MCLK and connect MCLKX to
GND through a capacitor.
GND
VDD
70k
42
PS
I
5V
Test.
Normally connect to VDD.
42
180k
30µ
GND
24, 25 PGND
GND
Power GND.
17, 32 PVCC
15.5V
Power VCC.
35
VCC15
15.5V
15V power supply.
43
VDD5
5V
5V power supply.
–6–
CXA7000R
Pin
No.
Symbol
I/O Standard
voltage level
8, 9, 15,
23, 26,
GND
40, 41,
56, 57
Equivalent circuit
Description
GND.
GND
NC.
These pins are not connected to
anything.
10, 19,
21, 28, NC
30
VDD
20k
20k
20k
250k
7
SHTEST
I
2.5V
20k
Test.
Leave open.
192
7
250k
10µ
10µ
GND
VDD
1µ
2k
192
49
TEST
O
49
1.7 to 3.2V
20µ
GND
–7–
DAC output monitor test.
Normally connect to VDD.
CXA7000R
48
MCLKX
34
33
VCC15
SID_OUT
PRG_LV
SID_LV
PRG
GND
GND
PS
VDD5
VREF_I
VREF_O
F/H_CNT
49
32
50
31
51
30
52
29
53
28
54
27
55
26
56
25
57
24
58
23
59
22
60
21
61
20
62
19
63
18
64
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
PVCC
SH_OUT1
270p
NC
SH_OUT2
270p
NC
SH_OUT3
270p
GND
PGND
PGND
GND
SH_OUT4
270p
NC
SH_OUT5
270p
NC
SH_OUT6
270p
PVCC
A
16
DCFBOFF
MCLK
35
GND
D_IN0
36
CAL_H
D_IN1
37
CAL_L
D_IN2
38
SIG_OFST
D_IN3
39
SIG.G
D_IN4
40
NC
GND
41
GND
GND
42
GND
D_IN5
43
SHTEST
D_IN6
A
POSCNT3
D_IN7
44
POSCNT2
D_IN8
45
POSCNT1
D_IN9
46
POSCNT0
STATUS
47
SHST
TEST
FRP
VDD
DIRC
SL_DAT
A
VCOM_OUT
47p
VCOM_OFST
VDD
1µ
VCC
Electrical Characteristics Measurement Circuit
VCC
VCC
15.5V
–8–
VDD
5V
CXA7000R
Electrical Characteristics
No.
Item
Symbol
1
Digital input
resolution
n
2
Digital input
setup time
TS
3
Digital input
hold time
4
Measurement
points
Measurement conditions
Min. Typ. Max. Unit
—
10
—
bit
SHST and D_IN[9:0] minimum setup
time relative to MCLK input.
2
—
—
ns
TH
SHST and D_IN[9:0] minimum hold
time relative to MCLK input.
3
—
—
ns
MCLK input
frequency
range 1
fMCLK1
SL_DAT: 5V; maximum frequency at
which the internal timing generator
and D/A converter operate normally.
60
—
100 MHz
5
MCLK input
frequency
range 2
fMCLK2
SL_DAT: 0V; maximum frequency at
which the internal timing generator
and D/A converter operate normally.
30
—
80
MHz
6
VREF_I input
voltage range
VVREF_I
VREF_I input voltage range at which
the D/A converter operate normally.
2.7
3.2
3.5
V
7
VREF_O output
VVREF_O
voltage range
Measure the VREF_O (Pin 45)
voltage.
3.1
3.2
3.3
V
8
SH_OUT
amplitude
Measure the SH_OUT1 voltage
4.39
difference at D_IN[9:0]: 000h and 3FFh.
4.5
4.64
V
9
SH_OUT
minimum
amplitude
Lower the VREF_I voltage and adjust
the amplitude; minimum amplitude at
which SH_OUT1 can be output at
D_IN[9:0]: 000h and 3FFh.
—
—
150
—
V/µs
VSHOUTp-p
VOUT1
VOUTMINp-p VOUT1
3.9
V
SROUT
VOUT1 to
VOUT6
Load capacitance = 270pF; measure
slew rate at 10 to 90% of output
waveform rise and fall when D_IN[9:0] 150
is varied from 000h to 3FFh and from
3FFh to 000h.
SH_OUT
11 minimum
output voltage
VMIN
VOUT1 to
VOUT6
Minimum voltage at which sampleand-hold outputs VOUT1 to VOUT6 can
be output.
1.5
—
—
V
SH_OUT
12 maximum
output voltage
VMAX
VOUT1 to
VOUT6
Maximum voltage at which sampleand-hold outputs VOUT1 to VOUT6 can
be output.
—
—
13.5
V
Output deviation
13 between
DOUT1
channels 1
VOUT1 to
VOUT6
Value obtained by subtracting minimum
VOUT1 to VOUT6 value from maximum
VOUT1 to VOUT6 value at D_IN[9:0]: 200h.
—
3
10
mVp-p
Output deviation
14 between
DOUT2
channels 2
VOUT1 to
VOUT6
Value obtained by subtracting minimum
VOUT1 to VOUT6 value from maximum
VOUT1 to VOUT6 value at D_IN[9:0]: 000h
or 3FFh.
—
10
40
mVp-p
Output deviation
15
DIC1
between ICs 1
VOUT1 to
VOUT6
Value obtained by subtracting minimum
VOUT1 to VOUT6 value from maximum
VOUT1 to VOUT6 value at D_IN[9:0]: 200h.
(when using two CXA7000R)
—
10
—
mVp-p
10
SH_OUT
slew rate
–9–
CXA7000R
No.
Item
Measurement
Symbol points
Output deviation
16
DIC2
between ICs 2
Measurement conditions
Min.
Typ. Max. Unit
VOUT1 to
VOUT6
Value obtained by subtracting minimum
VOUT1 to VOUT6 value from maximum
VOUT1 to VOUT6 value at D_IN[9:0]: 000h
or 3FFh. (when using two CXA7000R)
—
20
—
mVp-p
17
SID output
gain 1
ASID1
VSID_LV
VSID
PRG: 0V; measure VSID_LV and VSID at
FRP: 0V, and VSID_LV at FRP: 5V.
Calculate as ASID1 = VSID/VSID_LV.
1.9
2
2.1 times
18
SID output
gain 2
ASID2
VPRG_LV
VSID
PRG: 5V; measure VPRG_LV and VSID at
FRP: 0V, and VPRG_LV at FRP: 5V.
Calculate as ASID2 = VSID/VPRG_LV.
1.9
2
2.1 times
VSID
Load capacitance = 47pF, PRG: 0V;
input a repeating high/low pulse to FRP
(Pin 1), and apply DC input voltage so
that VSID is 4V/10V.
Measure slew rate at 10 to 90% of
output waveform rise and fall.
27
50
—
V/µs
VOUT1
VOUT1 center voltage when SIG.C
(Pin 11) is varied from 0 to 5V.
7
—
8
V
SH_OUT offset
21
VSIGOFST
adjustable range
VOUT1
D_IN[9:0]: 3FFh, FRP: 0V; value
obtained by subtracting VOUT1 from
VOUT1 center voltage when SIG_OFST
(Pin 12) is varied from 0 to 5V.
0
—
1
V
22
VCOM
VCOM
adjustable range
VCOM
VCOM_OUT voltage when VCOM_OFST
(Pin 34) is varied from 0 to 5V.
Vc –
2.5
—
Vc
V
23
VDD current
consumption
IDD
IVDD
IDD = IVDD
—
52
—
mA
24
VCC current
consumption
ICC
IVCC1
IVCC2
ICC = IVCC1 + IVCC2
—
18
—
mA
Current
consumption in
25
IPS
power saving
mode
IVDD
IVCC1
IVCC2
GND (Pin 42),
ICC = IVDD + IVCC1 + IVCC2
—
28
—
mA
19
SID output
slew rate
20
Signal center
VSIG
adjustable range
SRSID
26
Differential
linearity error
27
Integral linearity
ILE
error
DLE
—
VVREF_I = 3.2V
–0.5
0.7
LSB
—
VVREF_I = 3.2V
–1.5
0.4
LSB
– 10 –
CXA7000R
Description of Operation
The flow of internal operations is described below.
The digital signals input to D_IN0 to D_IN9 are internally D/A converted into approximately 1.5V (at VREF_I:
3.2V) analog signals. After that, the signal that has been demultiplexed into 6 phases is amplified by a factor of
three times, inverted at the signal center potential according to FRP, and output.
The output level relative to the digital input changes according to the following settings.
A: SIG_OFST voltage
B: VREF_I voltage
VCC
C: SIG.C voltage
B
A
Signal Center
A
1023
C
B
512
0
GND
Digital IN
SH_OUT
1. Digital input block
The CXA7000R can be set to master/slave mode, single mode and left/light inversion. This makes it possible to
support various systems.
In master/slave mode, the even and odd data is internally selected respectively and input to the D/A converter.
2. D/A converter block
The internal D/A converter has two systems for odd-numbered and even-numbered outputs. The voltage input
from VREF_I becomes the 100% white level potential of the analog converted signal, and this amplitude is a
maximum 1.5Vp-p with respect to input data of 000h to 3FFh.
3. Sample-and-hold (S/H) block
The D/A converter outputs are input to the sample-and-hold blocks, respectively. The signals are converted from
time series signals into 6-phase cyclic parallel signals by the sample-and-hold group which is appropriately
controlled by the internal timing generator. For forward scan, the signals are output in the ascending order of
SH_OUT1, SH_OUT2, SH_OUT3 ... SH_OUT6. For reverse scan, this order is inverted and the signals are
output in descending order. Connect the signals to the LCD panel according to the order used. The timing of
each sample-and-hold pulse is shown on the following pages. These pulses are not output and are used only
inside the IC.
– 11 –
CXA7000R
Master/slave mode
Selector
D_IN1
D_IN[9:0]
D
D
DAC
L
10bit
D_IN2
H
D
DAC_O
D
S/H
STATUS
MCLK
MCLK/2
D_IN[9:0]
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
MCLK
D_IN1
D_IN2
DAC_O
0
1
2
3
4
1
1
5
6
3
7
8
5
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
7
9
11
13
15
17
19
21
23
25
27
3
DIRC: H
SH1_1
SH1_2
SH1_3
SH1_4
SH1_5
SH1_6
SH2_1_3
SH2_4_6
F/H_CNT: L
SH3A_1_6
CH1 to CH6 simultaneous output timing
F/H_CNT: H
SH3B_1_3
CH1 to CH3 simultaneous output timing
CH4 to CH6 simultaneous output timing
SH3B_4_6
DIRC: L
SH1_1
SH1_2
SH1_3
SH1_4
SH1_5
SH1_6
SH2_1_3
SH2_4_6
F/H_CNT: L
SH3A_1_6
CH1 to CH6 simultaneous output timing
F/H_CNT: H
SH3B_1_3
CH1 to CH3 simultaneous output timing
CH4 to CH6 simultaneous output timing
SH3B_4_6
– 12 –
CXA7000R
Single mode
DAC
10bit
D_IN[9:0]
D_IN1
DAC_O
D_IN2
D
D
D
S/H
MCLK
D_IN[9:0]
–1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
MCLK
D_IN1
–2
–1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
D_IN2
–3
–2
–1
0
1
2
3
4
5
6
7
8
9
10
11
12
–1
0
DAC_O
1
DIRC: H
SH1_1
SH1_2
SH1_3
SH1_4
SH1_5
SH1_6
SH2_1_3
SH2_4_6
CH1 to CH6 simultaneous output timing
F/H_CNT: L
SH3A_1_6
F/H_CNT : H
SH3B_1_3
CH1 to CH3 simultaneous output timing
CH4 to CH6 simultaneous output timing
SH3B_4_6
DIRC: L
SH1_1
SH1_2
SH1_3
SH1_4
SH1_5
SH1_6
SH2_1_3
SH2_4_6
F/H_CNT: L
SH3A_1_6
CH1 to CH6 simultaneous output timing
F/H_CNT: H
SH3B_1_3
CH1 to CH3 simultaneous output timing
CH4 to CH6 simultaneous output timing
SH3B_4_6
– 13 –
CXA7000R
4. Timing generator (TG) block
The internal timing generator operates by one pair of differential clock inputs (MCLK, MCLKX) and a horizontal sync
signal input (SHST), and generates the timing pulses needed by the demultiplexer block, dot inversion control pulse
and output deviation cancel circuit. The various operating modes can be designated by the pin settings.
The SHST and FRP inputs should satisfy the relationship shown in the figure below with the MCLK and
MCLKX input period as 1clk.
SHST
FRP
30clk or more
1µs or more
The CXA7000R can select various operating modes according to the timing generator block settings. These
settings are described below.
• SL_DAT (Pin 48)
Operation mode selection. Master/slave mode is selected which is common with digital input of two ICs when
set to high level, and single mode is selected with one IC when set to low level. In case of the former, connect
10-bit input as short as possible between two ICs and select which data of odd or even is obtained by STATUS
(Pin 50).
• DIRC (Pin 47)
Scan direction settings. Output is ascending order when DIRC is set to high level, and inverted to descending
order (SH_OUT1 to SH_OUT6) when set to low level. Also, the output is varied as shown below in combination
with STATUS (Pin 50).
D_IN[9:0]
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
SL_DAT: L
DIRC: L
SL_DAT: H
DIRC: H
SH_OUT1: 6
SH_OUT2: 5
SH_OUT3: 4
SH_OUT4: 3
SH_OUT5: 2
SH_OUT6: 1
SH_OUT1: 1
SH_OUT2: 2
SH_OUT3: 3
SH_OUT4: 4
SH_OUT5: 5
SH_OUT6: 6
DIRC: L
DIRC: H
STATUS: L
SH_OUT1: 11
SH_OUT2: 9
SH_OUT3: 7
SH_OUT4: 5
SH_OUT5: 3
SH_OUT6: 1
SH_OUT1: 2
SH_OUT2: 4
SH_OUT3: 6
SH_OUT4: 8
SH_OUT5: 10
SH_OUT6: 12
STATUS: H
SH_OUT1: 12
SH_OUT2: 10
SH_OUT3: 8
SH_OUT4: 6
SH_OUT5: 4
SH_OUT6: 2
SH_OUT1: 1
SH_OUT2: 3
SH_OUT3: 5
SH_OUT4: 7
SH_OUT5: 9
SH_OUT6: 11
– 14 –
CXA7000R
• F/H_CNT (Pin 46)
SH_OUT output timing phase setting. When set to low level, all SH_OUT outputs are output at the same
timing. When set to high level, SH_OUT1 to SH_OUT3 and SH_OUT4 to SH_OUT6 are output at phases
offset by 1/2 clock period from each other.
SH_OUT4 to 6
SH_OUT4 to 6
SH_OUT1 to 3
SH_OUT1 to 3
GND
GND
F/H_CNT: H
F/H_CNT: L
• Output phase setting
The phase of each SH_OUT output can be adjusted by POSCNT[3:0] (Pins 3 to 6). The phase can be set in 16
ways by 4-bit digital input. The output phase shifts backward by the clock period units when SL_DAT is high or 1/2
clock period units when SL_DAT is low each time this setting is increased by one bit.
– 15 –
CXA7000R
5. Calibration level generator block
The CXA7000R has a built-in offset cancel circuit and generates the reference with a calibration level generator
in order to minimize the deviation between channels at the center level.
The 200h output level is generated at both the AC output high and low sides respectively when STATUS (Pin 50)
is high level, and these levels are DC output from CAL_H and CAL_L and at the same time, these are used
internally. When STATUS (Pin 50) is low level, CAL_H and CAL_L are input pins and the external offset cancel
level is input. The 200h data is forcibly inserted into the video signal while the video blanking period SHST
pulse is low level, and feedback is applied so that the output levels of all SH_OUT channels conform to CAL_H
and CAL_L during this period.
Video signal replacement period
SHST
FRP
200ns
CAL_PLS
(internal pulse)
Offset cancel operation
000h
200h
SH_OUT
Signal center
Delayed by sample-and-hold
200h
000h
6. SID signal generator block
This circuit generates the precharge signal waveform used by the LCD panel.
The voltage input from PRG_LV (Pin 37) and SID_LV (Pin 38) is switched by the PRG pulse (Pin 39). The
PRG_LV voltage is selected when PRG is high, and the SID_LV voltage is selected when PRG is low. This
signal is then further amplified by a factor of two times and folded by the FRP pulse. The folded center voltage
is the SH_OUT center voltage (voltage set by the SIG.C pin). SID_OUT (Pin 36) is inverted when FRP is high,
and non-inverted when FRP is low.
SID_OUT cannot directly drive the precharge signal input of the LCD panel, so they should be connected via a
buffer having sufficient current supply capability.
7. VCOM potential generator block
This block sets the DC common potential for the LCD panel.
VCOM_OFST (Pin 33) sets the deviation relative to the SH_OUT center potential, which is set by SIG.C.
– 16 –
CXA7000R
Example of Representative Characteristics (VCC = 15.5V, VDD = 5.0V, Ta = 25°C)
Input data vs. SH_OUT voltage
VREF_I voltage vs. SH_OUT voltage white-black amplitude
14
4.7
<Measurement conditions>
SIG.C = 3.75V
SIG_OFST = 3.6V
4.6
12
FRP = High
SH_OUT voltage [V]
SH_OUT white-black amplitude voltage [V]
4.8
4.5
4.4
4.3
4.2
4.1
10
8
6
FRP = Low
4
2
3.9
0
000h
3.8
2.8
2.9
3.0
3.1
VREF_I voltage [V]
3.2
3.3
200h
300h
Input data (10 bits)
3FFh
12
8.5
11
<Measurement conditions>
SIG_OFST = 3.6V
8.0
10
SH_OUT voltage [V]
SH_OUT center voltage [V]
100h
SIG_OFST voltage vs. SH_OUT voltage
SIG.C voltage vs. SH_OUT center voltage
9.0
7.5
7.0
6.5
6.0
FRP = High
9
8
7
6
5
5.5
4
<Measurement conditions>
SIG.C = 3.75V
FRP = Low
DATA = 200h
3
5.0
2.5
3.0
3.5
4.0
SIG.C voltage [V]
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
SIG_OFST voltage [V]
4.5
VCOM_OFST voltage vs. VCOM_OUT voltage
7.5
<Measurement conditions>
SIG.C = 3.75V
7.0
VCOM_OUT voltage [V]
<Measurement conditions>
SIG.C = 3.75V
SIG_OFST = 3.6V
4.0
6.5
6.0
5.5
5.0
4.5
0.0
1.0
2.0
4.0
3.0
VCOM_OFST voltage [V]
5.0
– 17 –
CXA7000R
SID_LV voltage vs. SID_OUT voltage
PRG_LV voltage vs. SID_OUT voltage
16
16
<Measurement conditions>
SIG.C = 3.75V
<Measurement conditions>
SIG.C = 3.75V
14
12
SID_OUT voltage [V]
SID_OUT voltage [V]
14
FRP = High
10
8
6
FRP = Low
12
FRP = High
10
8
6
FRP = Low
4
4
2
2
0
0
0
1
2
3
0
4
SID_LV voltage [V]
1
2
PRG_LV voltage [V]
– 18 –
3
4
CXA7000R
Application Circuit 1 (to SVGA Panel)
VDD
20kΩ
DSD
CXD3526GG
Buffer
1
VDD
1µF
20kΩ
PRG 45
RGT
2
VDD
0.1µF
20kΩ
10Ω
20kΩ
0.1µF
VDD
10Ω
0.1µF
VCC
1Ω
47µF
ROUT3 81
ROUT2 35
ROUT1 78
ROUT0 113
CLKOUT 28
D_IN4
10Ω
D_IN3
10Ω
D_IN2
10Ω
D_IN1
10Ω
D_IN0
10Ω
MCLK
MCLKX
VCOM_OUT
24
58
23
59
22
60
21
61
20
62
19
63
18
64
17
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
10Ω
VDD
10Ω
1Ω
NC
7
Vsig1
5
Vsig2
3
Vsig3
1Ω
SH_OUT2
NC
1Ω
SH_OUT3
GND
PGND
LCD Panel
LCX026
PGND
GND
1Ω
SH_OUT4
NC
NC
Vsig4
4
Vsig5
6
Vsig6
1Ω
SH_OUT6
PVCC
0.1µF
2
1Ω
SH_OUT5
47µF
1µF
OPEN
FRP 118
SHST 119
VCOM_OFST
VCC15
SID_OUT
PRG_LV
SID_LV
GND
PRG
GND
PS
VDD5
VREF_I
VREF_O
25
CXA7000R
57
FRP
0.1µF
56
PVCC
SH_OUT1
DCFBOFF
ROUT4 80
26
GND
GND
10Ω
27
55
CAL_H
GND
54
CAL_L
D_IN5
28
SIG.C
D_IN6
10Ω
29
53
SIG_OFST
10Ω
52
NC
D_IN7
30
GND
10Ω
51
GND
D_IN8
SHTEST
10Ω
POSCNT3
ROUT5 79
D_IN9
31
POSCNT2
ROUT6 36
10Ω
32
50
POSCNT1
ROUT7 40
PVCC
49
POSCNT0
STATUS
ROUT8 39
47µF
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
TEST
SHST
10kΩ
F/H_CNT
VDD
24 COM
VDD
DIRC
SL_DAT
VDD
ROUT9 38
Psig
VDD
1µF
0.1µF
20kΩ
VDD
PVCC
VCC
VDD
0.1µF
20kΩ
15.5V
15.5V
5V
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 19 –
CXA7000R
Application Circuit 2 (to XGA Panel)
VDD
20kΩ
DSD
CXD3526GG
Buffer
1
VDD
1µF
20kΩ
PRG 45
RGT
2
VDD
0.1µF
20kΩ
10Ω
20kΩ
0.1µF
VDD
10Ω
0.1µF
VCC
1Ω
47µF
ROUT3 81
ROUT2 35
ROUT1 78
ROUT0 113
CLKOUT 28
10Ω
D_IN3
10Ω
D_IN2
10Ω
D_IN1
10Ω
D_IN0
10Ω
MCLK
MCLKX
VCOM_OUT
VCOM_OFST
VCC15
SID_OUT
PRG_LV
SID_LV
PRG
GND
GND
PS
VDD5
VREF_I
56
25
CXA7000R
57
24
58
23
59
22
60
21
61
20
62
19
63
18
64
17
0.1µF
1
FRP
FRP 118
SHST 119
VREF_O
26
10Ω
2
10Ω
3
4
5
6
7
8
PVCC
NC
3
Vsig1
5
Vsig3
7
Vsig5
9
Vsig7
1Ω
SH_OUT2
NC
1Ω
SH_OUT3
GND
PGND
PGND
GND
1Ω
SH_OUT4
NC
1Ω
SH_OUT5
11 Vsig9
NC
1Ω
SH_OUT6
13 Vsig11
PVCC
0.1µF
9 10 11 12 13 14 15 16
1Ω
SH_OUT1
47µF
DCFBOFF
ROUT4 80
D_IN4
55
GND
GND
10Ω
27
CAL_H
GND
28
54
CAL_L
D_IN5
29
53
SIG_OFST
10Ω
52
SIG.C
D_IN6
NC
D_IN7
10Ω
30
GND
10Ω
51
GND
D_IN8
SHTEST
10Ω
POSCNT3
ROUT5 79
D_IN9
31
POSCNT2
ROUT6 36
10Ω
32
50
POSCNT1
ROUT7 40
PVCC
49
POSCNT0
ROUT8 39
47µF
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
TEST
STATUS
SHST
10kΩ
F/H_CNT
VDD
31 COM
VDD
DIRC
SL_DAT
VDD
ROUT9 38
Psig
VDD
LCD Panel
LCX029
OPEN
0.47µF
VDD
0.47µF
VDD
1µF
0.1µF
SID_OUT
PRG_LV
SID_LV
PRG
GND
GND
PS
VDD5
VREF_I
VREF_O
F/H_CNT
PVCC
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
23
59
22
60
21
61
20
62
19
63
18
64
17
1
FRP
0.1µF
24
58
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
PVCC
1Ω
SH_OUT1
NC
4
Vsig2
6
Vsig4
8
Vsig6
1Ω
SH_OUT2
NC
1Ω
SH_OUT3
GND
PGND
PGND
GND
1Ω
SH_OUT4
10 Vsig8
NC
1Ω
SH_OUT5
12 Vsig10
NC
1Ω
SH_OUT6
14 Vsig12
PVCC
47µF
0.1µF
DCFBOFF
MCLKX
25
CXA7000R
57
GND
MCLK
56
CAL_H
D_IN0
26
CAL_L
D_IN1
27
55
SIG_OFST
D_IN2
54
SIG.C
D_IN3
28
NC
GND
D_IN4
53
GND
GND
29
GND
D_IN5
30
52
SHTEST
D_IN6
51
POSCNT3
D_IN7
31
POSCNT2
D_IN8
32
50
POSCNT1
D_IN9
49
POSCNT0
TEST
STATUS
SHST
10kΩ
DIRC
SL_DAT
VDD
VDD VDD
VCOM_OUT
VDD
VDD
VCOM_OFST
VCC
47µF
VCC15
20kΩ
VDD
OPEN
20kΩ
0.1µF
0.47µF
VDD
0.47µF
20kΩ
PVCC
15.5V
0.1µF
VCC
VDD
15.5V
5V
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 20 –
CXA7000R
VDD
Application Circuit 3 (to SXGA Panel)
20kΩ
DSD
CXD3511Q
VDD
Buffer
1µF
20kΩ
PRG 161
RGT 136
10Ω
0.1µF
1Ω
R1OUT0 111
CLKOUT 47
10Ω
D_IN2
10Ω
D_IN1
10Ω
D_IN0
10Ω
MCLK
MCLKX
VCOM_OUT
VCOM_OFST
VCC15
SID_OUT
PRG_LV
SID_LV
PRG
GND
GND
VDD5
VREF_I
PS
VREF_O
CXA7000R
57
24
58
23
59
22
60
21
61
20
62
19
63
18
64
17
0.1µF
1
FRP
FRP 157
SHST 159
F/H_CNT
25
10Ω
2
10Ω
3
4
5
6
7
8
PVCC
NC
3
Vsig1
5
Vsig3
7
Vsig5
9
Vsig7
1Ω
SH_OUT2
NC
1Ω
SH_OUT3
GND
PGND
PGND
GND
1Ω
SH_OUT4
NC
1Ω
SH_OUT5
11 Vsig9
NC
1Ω
SH_OUT6
13 Vsig11
PVCC
0.1µF
9 10 11 12 13 14 15 16
1Ω
SH_OUT1
47µF
DCFBOFF
R1OUT1 112
D_IN3
26
56
GND
R1OUT2 113
10Ω
55
CAL_H
R1OUT3 116
D_IN4
27
CAL_L
GND
10Ω
28
54
SIG_OFST
D_IN5
29
53
SIG.C
10Ω
52
NC
D_IN6
GND
D_IN7
10Ω
30
GND
10Ω
51
SHTEST
D_IN8
POSCNT3
10Ω
31
POSCNT2
D_IN9
32
50
POSCNT1
10Ω
GND
R1OUT4 117
PVCC
49
POSCNT0
R1OUT5 118
32 COM
47µF
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
TEST
STATUS
SHST
10kΩ
R1OUT6 119
COMR
21 COML
VCC
VDD
DIRC
SL_DAT
VDD
R1OUT7 120
2
20kΩ
0.1µF
VDD
10Ω
47µF
R1OUT8 121
Psig
VDD
0.1µF
20kΩ
VDD
R1OUT9 122
1
VDD
LCD Panel
LCX028
OPEN
0.47µF
VDD
0.47µF
VDD
1µF
0.1µF
R2OUT2 103
R2OUT1 99
R2OUT0 98
10Ω
D_IN3
10Ω
D_IN2
10Ω
D_IN1
10Ω
D_IN0
MCLK
MCLKX
VCOM_OUT
SID_OUT
SID_LV
PRG
GND
GND
PS
VDD5
VREF_I
VREF_O
PRG_LV
24
58
23
59
22
60
21
61
20
62
19
63
18
64
17
1
FRP
0.1µF
25
CXA7000R
57
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
PVCC
1Ω
SH_OUT1
NC
4
Vsig2
6
Vsig4
8
Vsig6
1Ω
SH_OUT2
NC
1Ω
SH_OUT3
GND
PGND
PGND
GND
1Ω
SH_OUT4
10 Vsig8
NC
1Ω
SH_OUT5
12 Vsig10
NC
1Ω
SH_OUT6
14 Vsig12
PVCC
47µF
0.1µF
DCFBOFF
R2OUT3 104
56
GND
R2OUT4 105
D_IN4
26
CAL_H
GND
10Ω
55
CAL_L
GND
27
SIG_OFST
D_IN5
28
54
SIG.C
10Ω
53
NC
D_IN6
GND
D_IN7
10Ω
29
GND
10Ω
30
52
SHTEST
R2OUT5 106
D_IN8
51
POSCNT3
R2OUT6 107
10Ω
31
POSCNT2
R2OUT7 108
D_IN9
32
50
POSCNT1
R2OUT8 109
10Ω
49
POSCNT0
STATUS
R2OUT9 110
PVCC
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
TEST
SHST
10kΩ
F/H_CNT
VDD
VDD VDD
VDD
DIRC
SL_DAT
VDD
VCOM_OFST
VCC
47µF
VCC15
20kΩ
VDD
OPEN
20kΩ
0.1µF
0.47µF
VDD
0.47µF
20kΩ
PVCC
15.5V
0.1µF
VCC
VDD
15.5V
5V
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 21 –
CXA7000R
Notes on Operation
The CXA7000R has high power consumption, so be sure to take the following radiation measures.
• Use four-layer substrate.
• GND lines connected to Pins 8, 9, 24, 25, 40, 41, 56 and 57 should be as thick as possible.
– 22 –
CXA7000R
Package Outline
Unit: mm
64PIN LQFP (PLASTIC)
12.0 ± 0.2
∗
10.0 ± 0.1
48
33
32
64
17
(0.22)
0.5 ± 0.2
(11.0)
49
A
16
1
0.5
b
0.13 M
+ 0.2
1.5 – 0.1
0.1
0.1 ± 0.1
0.5 ± 0.2
0˚ to 10˚
0.125 ± 0.04
b = 0.18 ± 0.03
DETAIL B: PALLADIUM
DETAIL A
NOTE: Dimension “∗” does not include mold protrusion.
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
LQFP-64P-L01
LEAD TREATMENT
PALLADIUM PLATING
EIAJ CODE
P-LQFP64-10x10-0.5
LEAD MATERIAL
COPPER ALLOY
PACKAGE MASS
0.3g
JEDEC CODE
– 23 –
Sony Corporation