CXD1961AQ DVB-S Frontend IC (QPSK demodulation + FEC) Preliminary For the availability of this product, please contact the sales office. Description The CXD1961AQ is a single chip DVB compliant Satellite Broadcasting Frontend IC, including dual A/D converter for analog baseband I/Q input, QPSK demodulator, Viterbi decoder Reed-Solomon decoder and Energy Dispersal descrambler. It is suitable for use in a DVB Integrated Receiver Decoder. 100 pin QFP (Plastic) Features • Dual 6 bit A/D converter Absolute Maximum Rating (Ta = 25°C, GND = 0V) • QPSK demodulator • Power Supply VDD –0.5 to +4.6 V Multi-symbol rate operation • Input Voltage VIN –0.5 to VDD + 0.5 V Nyquist Roll off filter (α = 0.35) • Output Voltage VOUT –0.5 to VDD + 0.5 V Clock recovery circuit • I/O Voltage VI/O –0.5 to VDD + 0.5 V Carrier recovery circuit • CPU I/F pin Vcpuif –0.5 to +5.5 V AGC control (PWM output) • Storage Temperature Tstg –55 to +150 °C • Viterbi decoder Constraint length 7 Recommended Operating Condition Truncation length 144 (Ta = 0 to 75°C, GND = 0V) BER monitor of QPSK demodulator output • Power Supply VDD 3.15 to 3.45 V • Frame synchronization circuit • Input High level VIH 0.7 × VDD to VDD + 0.5 V • Convolutional de-interleaver • Input Low level VIL 0.3 to 0.2 × VDD V • Reed-Solomon decoder (204,188) BER monitor of Viterbi decoder output • Energy dispersal descrambler • CPU interface circuit I2C bus interface (5V input capability) • Package QFP 100pin • Operating frequency 20 to 30MSPS • Power consumption 750mW (@3.3V 30MSPS typical) • Process 0.4µm CMOS Technology Application DVB-S Set Top Box (Satellite) Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– PE97854-PS VSS9 QSYNC FSYNC AVD4 AVS4 AVD2 OPOUT VCOC OPXIN OPOUT RT1 VCOEN AVD1 QIN AVS1 RT0 RB1 AVD0 IIN Block Diagram AVS2 CXD1961AQ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 AVS0 1 RB0 2 80 VDD9 analog I/O Sampling Clock 2ch ADC VDD0 3 VSS0 4 TEST1 5 79 CR7 PLL VCO 78 CR6 77 CR5 76 CR4 QPSK Demodulator TEST2 6 75 VSS8 74 VDD8 TEST3 7 TEST4 8 73 CR3 NC 9 72 CR2 71 CR1 VDD1 10 VSS1 11 70 CR0 NCO Viterbi Decoder SDAT/SCL 12 69 CKV SCLK 13 68 AGCPWM 67 VSS7 SEN/SDA 14 VDD2 15 66 VDD7 VSS2 16 65 VCK De-interleaver 64 VDT Oscillator TCK 17 TMS 18 TEST6 19 TEST7 20 63 XI 62 XO 61 AVS3 CK8OUT 21 60 AVD3 RESET 22 Reed-Solomon Decoder TE 23 59 SDA CPU I/F I2C bus 58 SCL VDD3 24 57 TEST22 VSS3 25 56 TEST21 55 TEST20 PKTCLK 26 Energy Dispersal BYTCLK 27 54 VSS6 53 VDD6 PKTERR 28 decoded data & clock DATA0 29 DATA1 30 52 TEST19 51 TEST18 TEST17 TEST16 TEST15 TEST14 TEST13 VSS5 VDD5 TEST12 TEST11 TEST9 TEST10 TEST8 DATA7 DATA6 VSS4 DATA5 VDD4 DATA4 DATA3 DATA2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Typical Block Diagram LNB QPSK + FEC I/Q detector Amp Data SAW LPF SONY CXD1961AQ Clock LPF VCO PLL 479.5MHz 90° Reference OSC Micro Controller –2– LPF Crystal CXD1961AQ Functional Description (1) A/D Converters The CXD1961AQ has dual 6 bit A/D converters to quantize the analog baseband I/Q signal. The sampling rate is two times the symbol rate. The input range is determined by the external resisters. See reference circuit (1). The DC offset cancellation function is set by setting CPU I/F register 1E,1F(hex). (2) Clock Recovery Circuit The CXD1961AQ can operate at multiple symbol rates between 20 to 30MSPS. Initial sampling clock frequency is set by a 24 bit control word via CPU I/F register 18, 19, 1A (hex). This control word is written to the numerically controlled oscillator (NCO). The internal clock recovery loop feeds clock error data to the above NCO to provide sampling timing correction. The relation between the symbol rate and the control word is; (symbol rate) = 4 × NCO [23:0] × Fcrystal ÷ 224 (Hz) where NCO [23:0] is the 24 bit control word and Fcrystal is crystal frequency (Hz). The clock recovery loop coefficient and the loop gain are set by setting CPU I/Fregister 0C (hex) accordingly. See reference circuit (2). The recovered symbol clock can be monitored at Pin 69. There are three internal sub-registers to save the NCO control word. By setting the number of the preset subregister, the control word corresponded to the certain symbol rate is set to the internal NCO. Contents of the sub-register are deleted by power off or reset by pin 22. Refer to the explanation of CPU I/F register 0D (hex). (3) Carrier Recovery Circuit Any carrier frequency offset which remains on the analog baseband I/Q input is compensated by the internal digital costas loop. The capture range is ±Rs/8 (Rs: symbol rate). When the carrier capture is performed, QPSK lock flag QSYNC goes high. QSYNC is output at Pin 82 and CPU I/F register 09 (hex). In QPSK synchronization, the carrier offset estimation value is output at CPU I/F register 02 (hex) as AFC [7:0]. The frequency offset is; (carrier offset) = Rs × AFC [7:0] ÷ 512 (Hz) where AFC7 is the sign bit that represents the direction of the offset. (4) Nyquist Roll off Filter The Nyquist roll off filter for each channel are embedded. The roll off factor is 0.35. –3– CXD1961AQ (5) Auto Gain Control By comparing the demodulated I/Q amplitude (I2 + Q2) and the reference level which is set via CPU I/F register 21 (hex), the AGC control signal is generated as PWM output at Pin 68. The polarity of the AGC can be reversed by setting CPU I/F register 10 (hex). For the Tuner interface, see the reference circuit (4). (6) Viterbi Decoder The punctured decoding and Viterbi decoding are performed on the demodulated I and Q data. The punctured rate is programmable from 1/2 to 7/8. When punctured mapping is performed, Viterbi lock flag at CPU I/F register 09 (hex) goes one. Bit error count at QPSK demodulator output is estimated and output to CPU I/F register 03, 04 (hex) as 16 bit data. (7) Frame synchronization and Deinterleaver By detecting the MPEG2 sync word 47 (hex), the synchronization of the data packet is achieved, and the convolutional deinterleaver then recovers the original data order. (8) Reed-Solomon Decoder In DVB systems, 16 parity bytes are added to the 188 data bytes, so that up to 8 error bytes are correctable by the Reed-Solomon decoder. If there are more than 8 error bytes in a packet, error correction is not performed and the packet error flag PKTERR (Pin 28) goes high during the packet to indicate that the packet is not correctable. The MSB of the second byte of the uncorrectable packet also becomes one. Bit error count at Viterbi decoder output is estimated and output every 1280 packet (=204 × 8 × 1280 bit) to CPU I/F register 06, 07 (hex) at a resolution of 16 bits. (9) Energy Dispersal Descrambler Energy dispersal descrambling is represented by the polynomial X15 + X14 + 1. The initial sequence is loaded when an inverted MPEG sync word B8 (hex) is detected. When MPEG sync word including inverted one is detected every 204 bytes, the lock flag of the whole IC "FSYNC" goes high. FSYNC is output at Pin 83 and CPU I/F register 09 (hex). –4– CXD1961AQ (10) CPU Interface The CXD1961AQ has an I2C bus interface. Serial clock SCL is Pin 58 and serial data in out SDA is Pin 59. Slave address is "1101 111" (DChex). STA: start condition STP: stop condition Input data for sub-address N + 1 (hex) STP Input data for sub-address N (hex) ACK Sub address N (hex) ACK 0 ACK Slave address 1101 111 ACK STA <Write data> During the write operation, the second byte is input as the sub-address of the start position. The third byte then forms the data to be written to the start register. Successive data bytes are written to the successive subaddress registers up to 21 (hex). Note that registers of sub-addresses 00 (hex) to 0B (hex) are read only. ··· ACK: acknowledge XACK: no acknowledge <Read operation> –5– STP ··· XACK STP Both SCL and SDA have 5V input capability. Output data for sub-address N + 1 (hex) ACK Output data for sub-address N (hex) ACK 1 Sub address N (hex) ACK Slave address 1101 111 ACK 0 ACK STA Slave address 1101 111 STA Before the read operation, the sub-address of the start register to be read is input by using write operation, and terminated with a stop condition. Read operation then begins with the second byte which is the data of the start register. Data of the successive sub-address registers are read successively following the second byte. All registers can be read. CXD1961AQ QSYNC VSS9 FSYNC AVD4 AVS4 OPOUT AVD2 VCOC OPXIN OPOUT AVS2 VCOEN RT1 AVD1 QIN AVS1 RB1 RT0 AVD0 IIN Pin Configuration 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 AVS0 1 80 VDD9 RB0 2 79 CR7 VDD0 3 78 CR6 VSS0 4 77 CR5 TEST1 5 76 CR4 TEST2 6 75 VSS8 TEST3 7 74 VDD8 TEST4 8 73 CR3 NC 9 72 CR2 VDD1 10 71 CR1 VSS1 11 70 CR0 69 CKV SDAT/SCL 12 SCLK 13 68 AGCPWM SEN/SDA 14 67 VSS7 VDD2 15 66 VDD7 VSS2 16 65 VCK TCK 17 64 VDT TMS 18 63 XI TEST6 19 62 XO TEST7 20 61 AVS3 CK8OUT 21 60 AVD3 RESET 22 59 SDA TE 23 58 SCL 57 TEST22 VDD3 24 VSS3 25 56 TEST21 PKTCLK 26 55 TEST20 BYTCLK 27 54 VSS6 53 VDD6 PKTERR 28 DATA0 29 52 TEST19 DATA1 30 51 TEST18 –6– TEST16 TEST17 TEST15 TEST14 TEST13 VDD5 VSS5 TEST12 TEST11 TEST9 TEST10 TEST8 DATA7 DATA6 DATA5 VSS4 VDD4 DATA4 DATA3 DATA2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 CXD1961AQ Pin List Symbol No. I/O type 1 AVS0 Analog VSS 2 RB0 Ref. voltage input 3 VDD0 Digital VDD 4 VSS0 Digital VSS TEST1 to 4 CMOS input 9 NC No Connection 10 VDD1 Digital VDD 11 VSS1 Digital VSS 12 SDAT/SCL 3-state CMOS output 13 SCLK 3-state CMOS output 14 SEN/SDA In out with Pull up 15 VDD2 Digital VDD 16 VSS2 Digital VSS 17 TCK Input with pull up 18 TMS Input with pull up 19 TEST6 CMOS input 20 TEST7 Input with pull up 21 CK8OUT CMOS output 22 RESET Input with pull up 23 TE Input with pull down 24 VDD3 Digital VDD 25 VSS3 Digital VSS 26 PKTCLK 3-state CMOS output 27 BYTCLK 3-state CMOS output 28 PKTERR 3-state CMOS output DATA0 to 4 3-state CMOS output 34 VDD4 Digital VDD 35 VSS4 Digital VSS 36 to 38 DATA5 to 7 3-state CMOS output 39 to 43 TEST8 to 12 CMOS in out 44 VDD5 Digital VDD 45 VSS5 Digital VSS 46 to 48 TEST13 to 15 CMOS in out 49 to 52 TEST16 to 19 CMOS input 5 to 8 29 to 33 –7– CXD1961AQ No. Symbol I/O type 53 VDD6 Digital VDD 54 VSS6 Digital VSS TEST20 to 22 CMOS input 58 SCL 5V input 59 SDA 5V open drain in out 60 AVD3 Crystal VDD 61 AVS3 Crystal VSS 62 XO Oscillator output 63 XI Oscillator input 64 VDT CMOS in out 65 VCK CMOS in out 66 VDD7 Digital VDD 67 VSS7 Digital VSS 68 AGCPWM CMOS output 69 CKV CMOS in out CR0 to 3 CMOS output 74 VDD8 Digital VDD 75 VSS8 Digital VSS CR4 to 7 CMOS output 80 VDD9 Digital VDD 81 VSS9 Digital VSS 82 QSYNC CMOS output 83 FSYNC CMOS output 84 AVD4 Analog VDD 85 AVS4 Analog VSS 86 CPOUT 3-state CMOS output 87 AVD2 Analog VDD 88 VCOC Analog input 89 OPXIN Analog input 90 OPOUT Analog output 91 AVS2 Analog VSS 92 VCOEN CMOS input 93 RT1 Ref. voltage input 94 AVD1 Analog VDD 55 to 57 70 to 73 76 to 79 –8– CXD1961AQ No. Symbol I/O type 95 QIN Analog input 96 AVS1 Analog VSS 97 RB1 Ref. voltage input 98 RT0 Ref. voltage input 99 AVD0 Analog VDD 100 IIN Analog input Note) Apply 0.1µF capacitor to every power supply terminal and reference voltage input (RB0, RB1, RT0, RT1). –9– CXD1961AQ Pin Explanation 1. A/D Converter ADC for I input Function ADC for Q input Pin No. Pin name Pin No. Pin name Analog signal input 100 IIN 95 QIN Top reference level input 98 RT0 93 RT1 Bottom reference level input 2 RB0 97 RB1 Analog power supply (+3.3V) 99 AVD0 94 AVD1 Analog ground 1 AVS0 96 AVS1 Pin No. Pin name Crystal oscillator (output) 62 XO Crystal oscillator (input) 63 XI Crystal oscillator power supply (+3.3V) 60 AVD3 Crystal oscillator ground 61 AVS3 Pin No. Pin name Charge Pump output 86 CPOUT Charge pump power supply (+3.3V) 84 AVD4 Charge pump ground 85 AVS4 VCO control voltage input 88 VCOC VCO enable (H: enable) 92 VCOEN OP-Amp negative input 89 OPXIN OP-Amp output 90 OPOUT VCO · OP-Amp power supply (+3.3V) 87 AVD2 VCO · OP-Amp ground 91 AVS2 See reference circuit (1) 2. Clock Recovery 2-1. Crystal Function See reference circuit (3) 2-2. VCO · OP-Amp Function See reference circuit (2) – 10 – CXD1961AQ 2-3. Clock Recovery Function Pin No. Pin name 70 to 73 76 to 79 CR0 to 3 CR4 to 7 69 CKV Pin No. Pin name 82 QSYNC Pin No. Pin name 68 AGCPWM Pin No. Pin name Viterbi clock output 65 VCK Viterbi decoded data output 64 VDT Clock error output (for clock recovery by VCXO) Recovered symbol clock output (switchable to sampling clock output) 3. Carrier Recovery Function Carrier lock flag (H: lock) 4. AGC Function AGC control data (PWM output) See reference circuit (4) 5. Viterbi Decoder Function These pins can be fixed to ground by setting CPU I/F register 0E (hex). 6. Frame Synchronization Function Frame synchronization flag (H: sync) – 11 – Pin No. Pin name 83 FSYNC CXD1961AQ 7. Reed-Solomon Decoder/Data output Function Pin No. Pin name Data output clock (parallel mode) Byte clock (Serial mode) Viterbi clock 27 BYTCLK Packet clock (H: data, L: parity) 26 PKTCLK Uncorrectable packet flag 28 PKTERR Data output (Parallel mode) LSB data (Serial mode) serial data (MSB first) 29 DATA0 Data output (Parallel mode) DATA7 = MSB (Serial mode) Hi-Z 30 to 33 DATA1 to 4 36 to 38 DATA5 to 7 Output mode (Serial or Parallel) is switched by setting CPU I/F register 0F (hex). 8. CPU Interface Function Pin No. Pin name I2C bus serial clock input 58 SCL I2C 59 SDA Pin No. Pin name 22 RESET Pin No. Pin name bus serial data in out 9. Reset Function Reset (L: reset/fix H for normal use) 10. Power Supply Function Digital power supply (+3.3V) 10, 15, 24, 34, 44, 53, VDD0 to 9 66, 74, 80 Digital ground 11, 16, 25, 35, 45, 54, VSS0 to 9 67, 75, 81 Apply 0.1µF capacitor to every power supply terminal. – 12 – CXD1961AQ 11. Test / Others Function Pin No. Pin name Test mode enable (Fix L for normal use) 23 TE Test clock (Fix H for normal use) 17 TCK Test mode Control (Fix H for normal use) 18 TMS 5 to 8, 20 TEST1 to 4, TEST7 49 to 52 TEST16 to 19 55 to 57 TEST20 to 22 Test input (Fix L) Test output (connect nothing) 19 TEST6 39 to 43 46 to 48 TEST8 to 12 TEST13 to 15 Tuner interface (3 wire mode) Serial data output (I2C bus mode) Serial clock output 12 SDAT/SCL Tuner interface (3 wire) Clock output 13 SCLK Tuner interface (3 wire mode) Latch enable output (I2C bus mode) Serial data in out 14 SEN/SDA Clock output (crystal frequency/8) 21 CK8OUT No Connection 9 NC Test in out (Fix L) – 13 – CXD1961AQ Electrical Characteristics (Ta = 0 to 75°C, VDD = 3.3V) Description Symbol Min. Typ. Max. Unit 30 MSPS 20 Symbol rate Rs Crystal Frequency Fxtal DATA0 to 7 – BYTCLK falling edge (Parallel output mode PBYCK = 0) tDB0 75 ns PKTCLK – BYTCLK falling edge (Parallel output mode PBYCK = 0) tPB0 75 ns PKTERR – BYTCLK falling edge (Parallel output mode PBYCK = 0) tEB0 75 ns DATA0 to 7 – BYTCLK rising edge (Parallel output mode PBYCK = 1) tDB1 75 ns PKTCLK – BYTCLK rising edge (Parallel output mode PBYCK = 1) tPB1 75 ns PKTERR – BYTCLK rising edge (Parallel output mode PBYCK = 1) tEB1 75 ns Serial output mode cycle time (Serial output mode) tSOC 16 ns DATA0 to 7 – BYTCLK hold time (Serial output mode) tDBH 12 ns PKTCLK, PKTERR – BYTCLK setup time (Serial output mode) tPBS 6 ns PKTCLK, PKTERR – BYTCLK hold time (Serial output mode) tEBH 10 ns I2C bus Serial clock cycle time FscI I2C bus Data setup time tDSI 100 ns I2C bus Data hold time tDHI 0 ns 32 MHz 400 Timing Waveform (1) Parallel output mode, PBYTCK = 0 tPB0 tEB0 tPB0 PKTCLK PKTERR BYTCLK DATA [0:7] tDB0 tDB0 – 14 – tEB0 kHz CXD1961AQ (2) Parallel output mode, PBYTCK = 1 tPB1 tEB1 tPB1 tEB1 PKTCLK PKTERR BYTCLK DATA [0:7] tDB1 tDB1 (3) Serial output mode (Example of R = 3/4) tPBS tEBH tEBH PKTCLK tSOC PKTERR BYTCLK DATA0 tDBH (4) I2C Bus interface 0.6µs tDSI SDA SCL 1.3µs 1.3µs tDHI 0.6µs – 15 – 0.6µs CXD1961AQ READ REGISTER CPU Interface Registers Sub address (hex) Name MSB bit7 bit6 bit5 bit4 bit3 bit2 bit1 LSB bit0 00 INP_LEV INP7 INP6 INP5 INP4 INP3 INP2 INP1 INP0 01 PWM_VAL PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 02 AFC_VAL AFC7 AFC6 AFC5 AFC4 AFC3 AFC2 AFC1 AFC0 03 QBEC_LO QBEC7 QBEC3 QBEC2 QBEC1 QBEC0 QBEC15 QBEC14 QBEC13 QBEC12 QBEC11 QBEC10 QBEC9 QBEC8 04 05 QBEC_UP VBEC7 VBEC6 QBEC5 QBEC4 VBEC5 VBEC4 VBEC3 VBEC2 VBEC1 VBEC0 VBEC15 VBEC14 VBEC13 VBEC12 VBEC11 VBEC10 VBEC9 VBEC8 06 R 07 VBEC_LO — RO2 RO1 RO0 QBER1 QBER0 VBER1 VBER0 08 W OFI3 OFI2 OFI1 OFI0 OFQ3 OFQ2 OFQ1 OFQ0 NAK — FSYNC — ID 09A VBEC_UPR VCOLK VSYNC QSYNC 09B CODE/BER CM7 CM6 CM5 CM4 CM3 CM2 CM1 CM0 0A DC_OFST CM15 CM14 CM13 CM12 CM11 CM10 CM9 CM8 0B FLAG OFC7 OFC6 OFC5 OFC4 OFC3 OFC2 OFC1 OFC0 0C CM_LOW MQS3 MQS2 MQS1 MQS0 AK1 AK0 CE1 CE0 0D CM_UPR — RATE2 RATE1 RATE0 SRSAVE — SRS1 SRS0 DOH1Z DOPS PPKER 0E WRITE REGISTER W QBEC6 CAR_OFST PBYCK PPKCK MBYCK VCKVDT SEL09 SYSSEL DFSKIP RSSKIP TUNSEL TUNEN MFSYNC AGCLP 0F MQS/CLK SINV 10 CODE/SRS MAGC PAGC 11 OUT_CNT QTH5 QTH4 QTH3 QTH2 12 MOD_CNT VTH4 VTH3 VTH2 13 AGC/RST TUD17 TUD16 14 QTH TUD27 15 VTH MVSYNC CKVSEL QPRST VTRST RSRST VCORST QTH1 QTH0 TQBEC1 TQBEC0 VTH1 VTH0 TVS2 TVS1 TVS0 TUD15 TUD14 TUD13 TUD12 TUD11 TUD10 TUD26 TUD25 TUD24 TUD23 TUD22 TUD21 TUD20 TUD37 TUD36 TUD35 TUD34 TUD33 TUD32 TUD31 TUD30 16 TUN_DAT1 TUD47 TUD46 TUD45 TUD44 TUD43 TUD42 TUD41 TUD40 17 TUN_DAT2 TUD57 TUD56 TUD55 TUD54 TUD53 TUD52 TUD51 TUD50 18 TUN_DAT3 NCO7 NCO6 NCO5 NCO4 NCO3 NCO2 NCO1 NCO0 19 TUN_DAT4 NCO15 NCO14 NCO13 NCO12 NCO11 NCO10 NCO9 NCO8 1A TUN_DAT5 NCO23 NCO22 NCO21 NCO20 NCO19 NCO18 NCO17 NCO16 1B SYM_RATE1 CALRST CADRST CLKRST 1C SYM_RATE2 — — — — — — — — 1D SYM_RATE3 BSI3 BSI2 BSI1 BSI0 BSQ3 BSQ2 BSQ1 BSQ0 GAIN1 GAIN0 TCAR1 TCAR0 FLOOP TRACK FLMOD FLSTEP QTLEV1 QTLEV0 1E CAR_RST RSTEN — RANGE FSYSEL FSYTHD — MOFST OFSTEN OFSTGN 1F N.A. TQS1 TQS0 20 DC_BIAS BSC7 BSC6 BSC5 BSC4 BSC3 BSC2 BSC1 BSC0 21 CAR/DC REF7 REF6 REF5 REF4 REF3 REF2 REF1 REF0 Input "0" to write registers which are not assigned ("—"). – 16 – CXD1961AQ Description of CPU Interface Registers Sub address 00 (hex) INP7 to INP0 (MSB) (LSB) Sub address 01 (hex) PWM7 to PWM0 (MSB) (LSB) Sub address 02 (hex) AFC7 to AFC0 (MSB) (LSB) AFC7: Sign Read INP_LEV Input level estimation Upper 8 bit of I2 + Q2 of analog I/Q input. (Ex.) The value is about 40 (hex) when the analog I/Q amplitude is half the input range. Read PWM_VAL AGC PWM output value PWM output value of AGC control. Read AFC_VAL Carrier offset value Carrier offset estimation Carrier offset = (Symbol rate) × AFC [7:0] ÷ 512 (Hz) Ex.) 20MSPS AFC [7:0] = 11110000 (bin) offset = 20MHz × (–16) ÷ 512 = –625kHz In this case, by changing tuner PLL value by -625kHz, the offset may be cancelled. Sub address 03 (hex) Read QBEC_LOW Bit error count at QPSK output Sub address 04 (hex) Read QBEC_UPR Bit error count at QPSK output QBEC15 to QBEC0 (MSB) (LSB) Bit error count at the QPSK output (16 bit). Measuring period is set by TQBEC [1:0] of CPU I/F register 11 (hex) . BER is the ratio of QBEC [15:0] and the measuring period. QBEC [15:0] is valid when QSYNC, VSYNC and FSYNC are all High. Sub address 05 (hex) Read VBEC_LOW Bit error count at Viterbi output Sub address 06 (hex) Read VBEC_UPR Bit error count at Viterbi output VBEC15 to VBEC0 (MSB) (LSB) Bit error count at the Viterbi output (16 bit). Measuring period is 204 × 8 × 1280 = 2,088,960. BER is the ratio of VBEC [15:0] and 2,088,960. VBEC [15:0] is valid when QSYNC, VSYNC and FSYNC are all High. – 17 – CXD1961AQ Sub address 07 (hex) RO2 to RO0 QBER1 to QBER0 VBER1 to VBER0 Read CODE/BER Code rate and BER Current punctured rate (code rate) RO2 RO1 RO0 Code rate 0 0 1 1/2 0 1 0 2/3 0 1 1 3/4 1 0 0 4/5 1 0 1 5/6 1 1 0 6/7 1 1 1 7/8 4 level BER indicator of QPSK output. This indicator is valid when QSYNC, VSYNC and FSYNC are all High and TQBEC [1:0] = 10 (bin). TQBEC [1:0] is in register 11 (hex). QBER1 QBER0 Bit Error Rate 0 0 more than 10–2 0 1 10–3 < ∗ <10–2 1 0 10–4 < ∗ <10–3 1 1 less than 10–4 4 level BER indicator of Viterbi output. This indicator is valid when QSYNC, VSYNC and FSYNC are all High. VBER1 VBER0 Bit Error Rate 0 0 more than 10–2 0 1 10–3 < ∗ <10–2 1 0 10–4 < ∗ <10–3 1 1 less than 10–4 – 18 – CXD1961AQ Sub address 08 (hex) OFI3 to OFI0 Read DC_OFST DC offset level of A to D converter DC offset value of the I channel A/D converter. OFI3: Sign OFQ3 to OFQ0 OFQ3: Sign DC offset value of the Q channel A/D converter. In both cases, the value is depend on the operation mode. MOFST (reg. IE) Operating mode OFI [3:0] / OFQ [3:0] 0 Offset bias mode Current offset value. 1 Offset cancel mode Compensation value for each A/D converter. Refer to the explanation of register 1E (hex). Sub address 09 (hex)-A Read FLAG Status Flag Register 09 (hex) has an irregular structure. Two register -A and -B are correspond to the sub-address 09 (hex). When SEL09 of the register 0E (hex) is 0, register 09 (hex)-A is selected, else register 09 (hex)-B is selected. VCOLK This bit become 0 in case of abnormal oscillation of embedded VCO. NAK (Tuner interface I2C bus mode) This bit becomes 1 in case of no acknowledge from the tuner PLL. FSYNC This bit becomes 1 iwhen Frame synchronization is achieved. VSYNC This bit becomes 1 when the punctured mapping synchronization is achieved. QSYNC This bit becomes 1 when carrier lock is achieved. ID This bit is always 1. Sub address 09 (hex)-B Read CM_LOW Constellation Monitor Sub address 0A (hex) Read CM_UPR Constellation Monitor These registers can be access when SEL09 of register 0E (hex) is 1. CM15 to CM0 (MSB) (LSB) Monitor value of the QPSK constellation. This value depends on the AGC reference (reg. 21 (hex)). Refer to Fig.1. – 19 – CXD1961AQ Sub address 0B (hex) OFC7 to OFC0 OFC7: Sign Sub address 0C (hex) Read CAR_OFST Carrier Capture offset value Offset frequency at the point of carrier capture (Latest offset frequency is output to register 02 (hex)) (offset frequency) = (Symbol rate) × OFC [7:0] ÷ 1024 (Hz) Ex.) 20MSPS OFC [6:0] = 11110000 (bin) (offset freq.) = 20MHz × (–16) ÷ 1024 = –312.5kHz Write MQS/CLK Qsync mode/Clock recovery MQS3 to MQS0 (MSB) (LSB) Threshold for carrier lock detection AK1 to AK0 Clock recovery loop filter coefficient 00: Max. 11: min. CE1 to CE0 Clock recovery loop filter gain 00: Min. 11: Max. Clock recovery range is approximately ±200ppm with CE (1:0) = 11. Sub address 0D (hex) RATE2 to RATE0 SRSAVE Write CODE/SRS Code rate select/Symbol rate select Code rate setting RATE2 RATE1 RATE0 Code rate R 0 0 1 1/2 0 1 0 2/3 0 1 1 3/4 1 0 0 4/5 1 0 1 5/6 1 1 0 6/7 1 1 1 7/8 By saving several NCO control word to sub registers initially, symbol rate can be changed by setting the number of the sub register in which the desired control word is saved. There are three sub registers. – 20 – CXD1961AQ SRS1 to SRS0 (To set the symbol rate directly without the above function) Set SRSAVE = 0, SRS [1:0] = (1,1) and set control word to registers 18, 19, 1A (hex). (To save control word to sub registers) Set SRSAVE = 1 and set sub register No. ((0, 0) or (0, 1) or (1, 0)) to SRS [1:0]. Then set control word to registers 18, 19, 1A (hex). The control word is set to both the clock recovery circuit and the selected sub register. (To set the symbol rate with the above function) Set SRSAVE = 0, and set sub register No. of control word to be set. The control word saved in the sub register is set to the clock recovery circuit. Sub address 0E (hex) Write OUT_CNT Output control and polarity PBYCK BYTCLK polarity 0: For falling edge 1: For rising edge DOH1Z 1: Output Hi-Z mode (PKTCLK, BYTCLK, PKTERR, DATA [7:0]) DOPS 0: Parallel output mode 1: Serial output mode Refer to Electric characteristics PPKER PKTERR polarity 0: PKTERR: H at uncorrectable packet 1: PKTERR: L at uncorrectable packet PPKCK PKTCLK polarity 0: PKTCLK: H at data / L at parity 1: PKTCLK: L at data / H at parity MBYCK 1: BYTCLK mask mode In this mode BYTCLK is forced Low during parity data output VCKVDT 1: Viterbi decode data VDT (Pin 64) and clock VCK (Pin 65) output enable 0: VDT and VCK are fixed low. SEL09 Read register 09 (hex)-A, -B selection 0: 09 (hex)-A is selected 1: 09 (hex)-B is selected – 21 – CXD1961AQ Sub address 0F (hex) Write MOD_CONT Mode Control SINV I/Q exchange 1: normal operation SYSSEL Not assigned. Input 0. DFSK1P 1: Nyquist roll off filter bypass mode RSSK1P 1: Reed-Solomon decoder bypass mode TUNSEL Tuner interface mode TUNEN 1: Tuner interface enable 0: I2C bus mode 1: 3 wire mode TUNSEL TUNEN Pin 12 Pin 13 Pin 14 mode Don't care 0 Hi-Z Hi-Z Hi-Z — 0 1 clock out Hi-Z data in out I2C bus 1 1 data out clock out Latch Enable 3 wire Refer to reference circuit (5). MFSYNC Parameter for frame synchronization protection 0: normal operation mode 1: powerful protection mode AGCLP AGC loop filter gain 1: normal operation 0: large gain – 22 – CXD1961AQ Sub address 10 (hex) Write AGC/RST AGC and Reset MAGC AGC mode 0: normal mode 1: bus control mode In normal mode, PWM output is controlled so that I2 + Q2 (register 00hex) should become approximately equal to the reference level set in register 21 (hex). In bus control mode, data of the register 21 (hex) is directly converted to PWM output. PAGC AGC polarity MVSYNC Input 0 CKVSEL CKV (Pin 69) output mode 0: symbol clock output 1: sampling clock output QPRST 1: QPSK block reset (set 0 for normal operation) To reset QPSK block, set this bit to 1 and then set this bit to 0 again. VTRST 1: Viterbi block reset (set 0 for normal operation) Reset operation is same as QPRST. RSRST 1: Deinterleaver and Reed-solomon block reset (set 0 for normal operation) Reset operation is same as QPRST. VCORST 1: NCO block reset (set 0 for normal operation) Reset operation is same as QPRST. 0: For tuner whose gain increases by higher AGC control voltage 1: For tuner whose gain increases by lower AGC control voltage Select mode according to tuner AGC type. – 23 – CXD1961AQ Sub address 11 (hex) Write QTH Qsync Threshold and QBEC period QTH5 to QTH0 (MSB) (LSB) Threshold for carrier lock detection These parameters relate to QTLEV [1:0] in register 1F (hex) and AGC reference 21 (hex). Ex.) QTLEV [1:0] = 01 AGC ref = 32 (hex) QTH [5:0] = 101000 TQBEC1 to TQBEC0 Count period of QPSK bit error count TQBEC1 TQBEC0 Count period 0 0 28 0 1 216 1 0 219 1 1 223 Select TQBEC [1:0] = 10 to use QPSK BER indicator (register 07 (hex)) Sub address 12 (hex) Write VTH Viterbi sync threshold and period VTH4 to VTH0 Threshold for punctured mapping synchronization 11110: Min. 00000: Max. TVS2 to TVS0 Detection period for punctured mapping synchronization 110: Min 000: Max. code rate VTH4 to VTH0, TVS2 to TVS0 1/2 8B (hex) 2/3 BB (hex) 3/4 CB (hex) 4/5 D3 (hex) 5/6 DB (hex) 6/7 E3 (hex) 7/8 E3 (hex) – 24 – CXD1961AQ Sub address 13 (hex) Write TUN_DAT1 Tuner control data Sub address 14 (hex) Write TUN_DAT2 Tuner control data Sub address 15 (hex) Write TUN_DAT3 Tuner control data Sub address 16 (hex) Write TUN_DAT4 Tuner control data Sub address 17 (hex) Write TUN_DAT5 Tuner control data (I2C bus mode) Set TUNSEL = 0 and TUNEN = 1 in the register 0F (hex). 13 (hex): Tuner PLL IC slave address + 0 (write mode) 14 to 17 (hex): Write data (tuning parameter) I2C bus starts write operation when data setting to register 17 (hex) is finished. In case of no acknowledge from tuner PLL IC, NAK in the register 09 (hex)-A is set to 1. (3 wire mode) Set TUNSEL = 1 and TUEN = 1 in the register 0F (hex). 28 bits data (register 13 to 15 (hex) and upper 4bit of the register 16 (hex)) are transmitted serially. To start operation, dummy data setting to the register 17 (hex) is needed. Refer to the reference circuit (5). Sub address 18 (hex) Write SYM_RATE1 Control word for multi-rate oscillation Sub address 19 (hex) Write SYM_RATE2 Control word for multi-rate oscillation Sub address 1A (hex) Write SYM_RATE3 Control word for multi-rate oscillation NCO23 to NCO0 (MSB) (LSB) The relation between symbol rate and the control word of the NCO is: NCO [23:0] = (symbol rate) × 222 ÷ (crystal frequency) Ex.) Symbol rate 20MSPS crystal 32MHz NCO [23:0] = 20 × 106 × 222 ÷ 32 × 10–6 = 2,621,440 = 221 + 219 NCO21 = NCO19 = 1, other = 0 – 25 – CXD1961AQ Sub address 1B (hex) Write CAR_RST Carrier loop reset CARRST 1: Carrier loop filter reset Reset operation is same as QPRST (register 10hex) CADRST 1: Carrier recovery frequency loop reset Reset operation is same as QPRST (register 10hex) CLKRST 1: Clock recovery loop reset Reset operation is same as QPRST (register 10hex) RANGE Carrier capture range FSYSEL Frame synchronization detector mode 0: Hard decision 1: Soft decision FSYTHD Frame synchronization threshold Sub address 1C (hex) Write 0: Carrier capture range = ±Rs/8 1: Carrier capture range = ±Rs/16 N.A. 0: Low 1: High Not Assigned Input 0 to all bits. Sub address 1D (hex) Write DC_BIAS A/D Converter DC_BIAS DC offset is added to the output of the A/D converter when MOFST in the register 1E (hex) is 0. BSI3 to BSI0 DC offset for I channel A/D converter. BSI3: sign Offset range is from –8 to +7. BSQ3 to BSQ0 DC offset for Q channel A/D converter. BSI3: sign Offset range is from –8 to +7. – 26 – CXD1961AQ Sub address 1E (hex) Write CAR/DC Carrier recovery and DC offset RSTEN 1:Carrier loop filter reset enable (Set to 1 for normal operation) GAIN1 to GAIN0 Gain setting for carrier recovery loop GAIN1 GAIN0 Gain 0 0 ×1 0 1 ×2 1 0 ×4 1 1 ×8 (default ×1) TCAR1 to TCAR0 Mode setting for carrier recovery frequency loop: default TCAR [1:0] = 10. MOFST 1: A/D converter DC offset cancellation mode 0: A/D converter DC offset addition mode OFSTEN 1: A/D converter DC offset control (cancel or add) enable 0: A/D converter DC offset control (cancel or add) disable OFSTGN A/D converter DC offset cancellation loop filter gain 1: ×1 0: ×1/2 – 27 – CXD1961AQ Sub address 1F (hex) Write CAR_MODE Carrier recovery mode TQS1 to TQS0 Carrier lock detection period 00: min. 11: max. Default is TQS [1:0] = 10 FLOOP 0: Carrier recovery by phase loop 1: Carrier recovery by phase and frequency loop (default) TRACK default: 0 FLMOD 1: Carrier offset frequency is set by BSC [6:0]. 0: Carrier offset frequency is set by the internal loop. (default) FLSTEP default: 1 QTLEV1 to QTLEV0 Gain for carrier lock detection circuit. Default is QTLEV [1:0] = 00 Sub address 20 (hex) BSC7 to BSC0 BSC7: sign Write CAR_BIAS Carrier frequency offset bias Carrier offset frequency setting This mode is good when FLMOD = 1. (Carrier offset) = (Symbol rate) × BSC [7:0] ÷ 1024 (Hz) Sub address 21 (hex) AGCR7 to AGCR0 Write AGC_REF AGC reference Input level reference for AGC operation Refer to the explanation of register 10 (hex) – 28 – CXD1961AQ Application Circuit (1) A/D Converter 390Ω 390Ω 96 95 94 Connect AVD0 and AVD1 to analog +3.3V supply 93 RT1 97 1kΩ AVD1 98 0.1µF QIN 99 0.1µF AVS1 100 RB1 0.1µF 1kΩ 390Ω RT0 1kΩ 0.1µF AVD0 Baseband I input 0.1µF 0.1µF 0.1µF IIN Baseband Q input Analog VSS 1kΩ 1 390Ω AVS0 CXD1961AQ 0.1µF Analog VSS 2 RB0 (2) Clock Recovery circuit 15kΩ Analog VSS Connect AVD2 and AVD4 to analog +3.3V supply 4.7µF 2.2µF 100kΩ 22Ω 0.1µF 0.1µF 10kΩ Analog VSS 88 AVS2 OPOUT OPXIN VCOC 87 86 85 84 AVD4 89 AVS4 90 CPOUT 91 AVD2 92 VCOEN 1kΩ CXD1961AQ Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 29 – CXD1961AQ (3) Crystal Crystal Crystal Daishinku AT-49 32.0MHz XI 63 470kΩ XO 62 Connect AVD3 to ditital +3.3V supply 7pF 7pF AVS3 61 Digital VSS AVD3 60 0.1µF CXD1961AQ (4) AGC This is an example of how to set AGC control voltage from 0 to 5V. Power supply for the OP-Amp is 7V. 20kΩ OP-Amp AGCPWM 68 To tuner AGC input 5.6kΩ 0.1µF 10kΩ CXD1961AQ Analog VSS (5) Tuner Interface (3 wire type) suitable for GEC Plessey SP5658 100Ω ENABLE 12 SDAT/SCL 13 SCLK 100Ω DATA 100Ω CLOCK 14 SEN/SDA CXD1961AQ SP5658 Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 30 – CXD1961AQ (5) Tuner Interface (I2C bus type) suitable to GEC Plessey SP5659 etc. (4 bytes of data can be written) +3.3V 10kΩ 10kΩ 100Ω SDA 12 SDAT/SCL 100Ω 13 SCLK SCL 14 SEN/SDA CXD1961AQ SP5659 Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 31 – CXD1961AQ Appendix Fig.1 Constellation monitor output vs. C/N Constellation monitor output 104 103 4 6 8 10 12 14 16 18 20 C/N [dB] This figure is an example when AGCREF is set to 32 (hex). The monitor output value is proportional to AGCREF. Monitor output : CM [15:0] CPU I/F register 09-B (hex) and 0A (hex) – 32 – 22 24 26 28 CXD1961AQ Package Outline Unit: mm 100PIN QFP (PLASTIC) 23.9 ± 0.4 + 0.4 20.0 – 0.1 + 0.1 0.15 – 0.05 80 51 + 0.4 14.0 – 0.1 17.9 ± 0.4 15.8 ± 0.4 50 81 A 31 100 1 0.65 30 + 0.15 0.3 – 0.1 0.24 + 0.2 0.1 – 0.05 + 0.35 2.75 – 0.15 M 0° to 15° DETAIL A 0.8 ± 0.2 (16.3) 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE QFP-100P-L01 LEAD TREATMENT SOLDER PLATING EIAJ CODE QFP100-P-1420 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 1.7g JEDEC CODE – 33 –