SONY CXD2309AQ

CXD2309AQ
10-bit 85MSPS 3-Channel D/A Converter
Description
The CXD2309AQ is a 10-bit high-speed D/A converter
for video band, featuring RGB 3-channel input/
output. This is ideal for use in high-definition TVs and
high-resolution displays.
Features
• Resolution 10-bit
• Maximum conversion speed 85MSPS
• RGB 3-channel input/output
• Differential linearity error ±0.5LSB
• Low power consumption 275mW
(200Ω load for 2Vp-p output)
• Single +5V power supply
• Low glitch
• 48-pin QFP package
48 pin QFP (Plastic)
Absolute Maximum Ratings (Ta = 25°C)
7
V
• Supply voltage AVDD, DVDD
• Input voltage (All pins)
VIN
VDD + 0.5 to VSS – 0.5 V
• Output current IOUT
0 to 15
mA
• Storage temperature
Tstg
–55 to +150
°C
Structure
Silicon gate CMOS IC
Recommended Operating Conditions
• Supply voltage AVDD, AVSS 4.75 to 5.25
DVDD, DVSS
• Reference input voltage
VREF
• Clock pulse width
TPW1, TPW0
• Operating temperature
Topr
4.75 to 5.25
V
V
1.8 to 2.0
V
5.2 (min.)
ns
–20 to +85
°C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E00739B21-PS
CXD2309AQ
Block Diagram
(LSB) R0
1
R1
2
R2
3
R3
4
R4
5
R5
6
R6
7
R7
8
R8
9
4LSB'S
CURRENT
CELLS
43 AVSS
42 RO
6LSB'S
CURRENT
CELLS
LATCHES
DECODER
DECODER
CLOCK
GENERATOR
(MSB) R9 10
RCK 31
(LSB) G0 11
4LSB'S
CURRENT
CELLS
G1 12
45 AVSS
44 GO
G2 13
G3 14
G4 15
G5 16
6LSB'S
CURRENT
CELLS
LATCHES
DECODER
G6 17
G7 18
G8 19
DECODER
CLOCK
GENERATOR
(MSB) G9 20
GCK 32
(LSB) B0 21
4LSB'S
CURRENT
CELLS
B1 22
47 AVSS
46 BO
B2 23
B3 24
B4 25
B5 26
6LSB'S
CURRENT
CELLS
LATCHES
DECODER
B6 27
41 AVDD
40 AVDD
39 AVDD
B7 28
B8 29
DECODER
CLOCK
GENERATOR
(MSB) B9 30
38 VG
BCK 33
DVDD 48
CURRENT CELLS
(FOR FULL SCALE)
BIAS VOLTAGE
GENERATOR
VB 35
DVSS 34
–2–
37 VREF
36 IREF
B4
B5
B6
B7
B8
RCK
GCK
BCK
DVSS
VB
IREF
Pin Configuration
B9 (MSB)
CXD2309AQ
36 35 34 33 32 31 30 29 28 27 26 25
VREF 37
24 B3
VG 38
23 B2
AVDD 39
22 B1
AVDD 40
21 B0 (LSB)
AVDD 41
20 G9 (MSB)
RO 42
19 G8
AVSS 43
18 G7
GO 44
17 G6
AVSS 45
16 G5
BO 46
15 G4
AVSS 47
14 G3
DVDD 48
13 G2
(LSB) G1
(MSB) G0
10 11 12
R9
9
R8
8
R7
7
R6
6
R5
5
R4
4
R3
3
R2
2
R1
(LSB) R0
1
1 to 35 , 48 Digital system
36 to 47 Analog system
Pin Description and Equivalent Circuit
Pin No.
Symbol
I/O
Equivalent circuit
Description
1 to 10 R0 to R9
11 to 20 G0 to G9
DVDD
Digital input.
Pin 1 R0 (LSB) to Pin 10 R9 (MSB)
Pin 11 G0 (LSB) to Pin 20 G9 (MSB)
Pin 21 B0 (LSB) to Pin 30 B9 (MSB)
21 to 30 B0 to B9
I
31
RCLK
32
GCLK
33
BCLK
34
DVSS
1
to 33
DVSS
—
Clock input.
Digital ground.
DVDD
DVDD
35
VB
Connect an approximately 0.1µF
capacitor.
O
35
DVSS
–3–
CXD2309AQ
Pin No.
36
Symbol
I/O
IREF
O
Equivalent circuit
Description
Reference current output.
Connect an "RIR" resistor which are
16 times the output resistance "ROUT".
AVDD
AVDD
36
AVDD
37
VREF
AVDD
I
AVSS
Reference voltage input.
Sets an output full-scale value.
37
38
AVSS
AVSS
38
VG
39 to 41 AVDD
O
Connect an approximately 0.1µF
capacitor.
—
Analog power supply.
AVDD
42
RO
42
Current output.
Output can be obtained by connecting
a resistor (200Ω typ.).
44
44
GO
O
46
AVSS
46
BO
AVSS
43, 45, 47 AVSS
48
DVDD
—
Analog ground.
—
Digital power supply.
–4–
CXD2309AQ
Electrical Characteristics (fCLK = 85MHz, AVDD = DVDD = 5V, ROUT = 200Ω, VREF = 2.0V, RIR = 3.3kΩ, Ta = 25°C)
Item
Symbol
Resolution
n
Conversion speed
fCLK
EL
ED
Precision guaranteed output voltage range VOC
Output full-scale voltage
VFS
Output full-scale ratio ∗1
FSR
Output full-scale current
IFS
Output offset voltage
VOS
Glitch energy
GE
CT
S/N ratio
SNR
Supply current
IDD
Analog input resistance
Input capacitance
Output capacitance
RIN
CI
CO
VIH
VIL
IIH
IIL
ts
th
tPD
tr
tf
Setup time
Hold time
Propagation delay time
Rise time
Fall time
∗1 Full-scale ratio =
Unit
10
bit
0
–2.0
–0.5
1.8 1.92
1.8 1.92
0
9.0 9.6
Endpoint
Crosstalk
Digital input current
Min. Typ. Max.
AVDD = DVDD = 4.75 to 5.25V
Ta = –20 to +85°C
Integral non-linearity error
Differential non-linearity error
Digital input voltage
Measurement conditions
When "0000000000" data input
ROUT = 100Ω, 1Vp-p output
FCLK = 50MHz
When 10MHz
sin wave input
FCLK = 85MHz
FCLK = 50MHz
When 1MHz
sin wave input
FCLK = 85MHz
FCLK = 50MHz
When 10MHz
sin wave output FCLK = 85MHz
40
50
MSPS
2.0
0.5
2.0
2.0
3
10
1
LSB
LSB
V
V
%
mA
mV
pV·s
36
49
49
63
61
48
55
VREF
85
dB
dB
58
1
9
15
AVDD = DVDD = 4.75 to 5.25V
Ta = –20 to +75°C
2.15
AVDD = DVDD = 4.75 to 5.25V
Ta = –20 to +75°C
–5
0.85
5
4
1
6
7
12
Full-scale voltage of channel
Average of the full-scale voltage of the channels
Electrical Characteristics Measurement Circuit
Analog Input Resistance
Measurement Circuit
Digital Input Current
+5.25V
AVDD, DVDD
A
CXD2309AQ
V
AVSS, DVSS
–5–
–1 × 100 [%]
mA
MΩ
pF
pF
V
µA
ns
ns
ns
ns
ns
CXD2309AQ
Conversion Rate Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
10bit
COUNTER
with
LATCH
35 VB
0.1µ
200
AVSS
OSCILLOSCOPE
200
AVSS 45
AVSS
BO 46
200
DVSS
CLK
50MHz
SQUARE
WAVE
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
Setup Time
Hold Time
Glitch Energy
AVSS
Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
10bit
COUNTER
with
LATCH
35 VB
CLK
50MHz
SQUARE
WAVE
AVSS
OSCILLOSCOPE
200
AVSS 45
0.1µ
DELAY
CONTROLLER
200
AVSS
BO 46
200
DVSS
DELAY
CONTROLLER
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
VREF 37 2V
AVSS
AVDD
0.1µ
IREF 36
3.3k
AVSS
Crosstalk Measurement Circuit
DVDD
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
DIGITAL
WAVEFORM
GENERATOR
35 VB
0.1µ
200
AVSS
200
AVSS 45
AVSS
BO 46
200
DVSS
CLK
50MHz
SQUARE
WAVE
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
VREF 37 2V
AVSS
AVDD
0.1µ
IREF 36
3.3k
AVSS
–6–
SPECTRUM
ANALYZER
CXD2309AQ
DC Characteristics Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
CONTROLLER
35 VB
200
AVSS
DVM
200
AVSS 45
0.1µ
AVSS
BO 46
200
DVSS
CLK
50MHz
SQUARE
WAVE
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
Propagation Delay Time Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
10bit
COUNTER
with
LATCH
35 VB
CLK
50MHz
SQUARE
WAVE
AVSS
OSCILLOSCOPE
200
AVSS 45
0.1µ
DELAY
CONTROLLER
200
AVSS
BO 46
200
DVSS
DELAY
CONTROLLER
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
SNR Measurement Circuit
DIGITAL
WAVEFORM
GENERATOR
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
ALL "1"
ALL "1"
35 VB
0.1µ
200
AVSS
200
AVSS 45
AVSS
BO 46
200
DVSS
CLK
50MHz
SQUARE
WAVE
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
VREF 37 2V
AVSS
AVDD
0.1µ
IREF 36
3.3k
AVSS
–7–
SPECTRUM
ANALYZER
CXD2309AQ
Description of Operation
Timing Chart
tPW1
tPW0
;;
;
;;
;
;;
;
;
1.5V
CLK
tS th
tS th
tS th
DATA
1.5V
100%
90%
D/A OUT
50%
tPD
tr
I/O Correspondence Table (output full-scale voltage: 2.00V)
Input code
MSB
LSB
1 1 1 1 1 1 1 1 1 1
:
1 0 0 0 0 0 0 0 0 0
:
0 0 0 0 0 0 0 0 0 0
Output voltage
2.0V
1.0V
0V
–8–
tf
10%
0%
CXD2309AQ
Notes on Operation
• Selecting the Output Resistance
CXD2309AQ is a current output type D/A converter. The output voltage can be obtained by connecting the
reslstor ROUT to the current output pins RO, GO and BO.
Specifications:
Output full-scale voltage VFS = 18 to 2.0 [V]
Output full-scale current IFS = 9.0 to 10.0 [mA]
Calculate the output resistance from VFS = IFS × ROUT. Connect a resistance sixteen times the output
resistance to the reference current output pin IREF. In some cases, as this value may not exist, a similar
value can be used instead.
Note that the VFS Will be the following.
VFS = VREF × 16ROUT/RIR
VREF is the voltage set at the reference voltage input pin VREF, ROUT is the resistor to be connected to the
current output pins RO, GO, BO and RIR is the resistor to be connected to the IREF. Power consumption can
be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data
setting time. Set the best values according to the purpose of use.
• Power supply, ground
Separate the power supply and ground of the analog and digital signals around the device to reduce noise
effects. Bypass the power supply pin to each ground with a 0.1µF ceramics capacitor as near as possible to
the pin for both the digital and analog signals.
• Latch up
Analog and digital power supplies must be able to share the same power supply of the board. This is to
prevent latch up caused by potential difference between the two pins when the power is turned on. See
"Latch Up Prevention" on Page 11.
• IREF
The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component
not to attach to this pin because its output may become unstable.
• Output full-scale voltage
For the applications using the RGB signal, the color balance may be broken up when the RO, GO and BO
output full-scale voltages are used with not adjustment.
–9–
CXD2309AQ
Application Circuit
C
C
R2
MSB
Clock input
36
35
34
33
32
31
30
29
28
27
26
25
R3
R4
C
C
C
37
24
38
23
39
22
40
21
LSB
41
20
MSB
42
19
43
18
44
17
45
16
46
15
47
14
48
13
Bch input
R1
R1
3
4
•
•
•
•
•
•
5
6
Rch input
AVDD
DVDD
AVSS
DVSS
7
8
9
10
11
LSB
2
LSB
1
MSB
R1
Gch input
12
When the power supply (AVDD and DVDD) is 5.0V.
R1 = 200Ω
R2 = 3.3kΩ
R3 = 3.0kΩ
R4 = 2.0kΩ
C = 1µF
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 10 –
CXD2309AQ
Latch Up Prevention
The CXD2309AQ is a CMOS IC which requires latch up precausions. Latch up is mainly generated by the lag
in the voltage rising time of AVDD (Pin 39, 40 and 41) and DVDD (Pin 48), when power supply is ON.
1. Correct usage
a. When analog and digital supplies are from different sources
DVDD
AVDD
39
40
41
48
DVDD
AVDD
+5V
+5V
CXD2309AQ
C
C
AVSS
43
AVSS
45
DIGITAL IC
DVSS
47
34
b. When analog and digital supplies are from a common source
(i)
DVDD
39
40
41
48
DVDD
AVDD
+5V
CXD2309AQ
C
AVSS
43
AVSS
DIGITAL IC
C
DIGITAL IC
DVSS
47
45
C
34
(ii)
DVDD
39
40
41
48
DVDD
AVDD
+5V
CXD2309AQ
C
AVSS
AVSS
43
45
DVSS
47
34
– 11 –
CXD2309AQ
2. Example when latch up easily occurs
a. When analog and digital supplies are from different sources
DVDD
AVDD
39
40
41
48
DVDD
AVDD
+5V
+5V
CXD2309AQ
C
AVSS
43
AVSS
45
C
DIGITAL IC
DVSS
47
34
b. When analog and digital supplies are from common source
(i)
DVDD
AVDD
39
40
41
48
DVDD
AVDD
+5V
CXD2309AQ
C
AVSS
AVSS
43
DIGITAL IC
C
DIGITAL IC
DVSS
47
45
C
34
(ii)
DVDD
AVDD
39
40
41
48
DVDD
AVDD
+5V
CXD2309AQ
AVSS
AVSS
43
45
DVSS
47
34
– 12 –
CXD2309AQ
Example of Representative Characteristics
GE – Glitch energy [pV·s]
VFS – Output full-scale voltage [V]
2.0
1.0
0
2.0
1.0
100
50
0
VREF – Reference voltage [V]
ROUT – Output resistance [Ω]
Fig. 1. Reference voltage vs. Output full-scale voltage
Fig. 2. Output resistance vs. Glitch energy
1.95
70
IDD – Supply current [mA]
VFS – Output full-scale voltage [V]
200
100
1.90
60
sin wave output
50
∆V = 0.02mV/°C
40
0
–25
0
25
50
75
12 5
Ta – Ambient temperature [°C]
10
20
30
40 42
Fo – Output frequency [MHz]
Fig. 3. Ambient temperature vs. Output full-scale voltage
Fig. 4. Output frequency vs. Supply current
Standard Measurement Conditions
• AVDD = DVDD = 5.0V
• VREF = 2.0V
• FCLK = 85MHz
• ROUT = 200Ω
• RIR = 3.3kΩ
• Ta = 25°C
– 13 –
CXD2309AQ
60
60
fOUT = 1MHz sin wave
IDD – Supply current [mA]
IDD – Supply current [mA]
50
IDD
40
IA [Analog]
30
20
ID [Digital]
10
50
20
fOUT = 10MHz sin wave
50
IDD
40
IA [Analog]
30
20
ID [Digital]
10
85
50
20
FCLK – Clock frequency [MHz]
85
FCLK – Clock frequency [MHz]
Fig. 5. Clock frequency vs. Supply current
Fig. 6. Clock frequency vs. Supply current
70
Output level [dBm]
CT – Cross talk [dB]
0
sin wave output
40
–10
20
–20
10
0
2
1
5
10
20
42
1
2
5
10
20
50
Fo – Output frequency [MHz]
Fo – Output frequency [MHz]
Fig. 7. Output frequency vs. Cross talk
Fig. 8. Output frequency vs. Output level
(Including primary hold characteristics sinx/x)
SNR [dB]
70
40
Standard Measurement Conditions
• AVDD = DVDD = 5.0V
• VREF = 2.0V
• FCLK = 85MHz
• ROUT = 200Ω
• RIR = 3.3kΩ
• Ta = 25°C
10
0
0.1
1
10
40 42
Fo – Output frequency [MHz]
Fig. 9. Output frequency vs. SNR
– 14 –
CXD2309AQ
Package Outline
Unit: mm
48PIN QFP (PLASTIC)
15.3 ± 0.4
+ 0.1
0.15 – 0.05
+ 0.4
12.0 – 0.1
36
25
0.15
24
13.5
37
48
+ 0.2
0.1 – 0.1
13
12
0.8
+ 0.15
0.3 – 0.1
0.24
M
0.9 ± 0.2
1
+ 0.35
2.2 – 0.15
PACKAGE STRUCTURE
SONY CODE
QFP-48P-L04
EIAJ CODE
QFP048-P-1212
JEDEC CODE
PACKAGE MATERIAL
EPOXY RESIN
LEAD TREATMENT
PALLADIUM PLATING
LEAD MATERIAL
COPPER ALLOY
PACKAGE MASS
0.7g
– 15 –
Sony Corporation