SONY CXP846P48

CXP846P48
CMOS 8-bit Single Chip Microcomputer
Description
The CXP846P48 is a CMOS 8-bit single chip
microcomputer integrating on a single chip an A/D
converter, serial interface, timer/counter, time base
timer, capture timer/counter, I2C bus interface, remote
control reception circuit, PWM output, and 32kHz
timer/counter besides the basic configurations of 8-bit
CPU, PROM, RAM, and I/O port.
The CXP846P48 also provides a sleep/stop function
that enables lower power consumption.
The CXP846P48 is the PROM-incorporated version
of the CXP846P48 with built-in mask ROM. This
provides the additional feature of being able to write
directly into the program, Thus, it is most suitable for
evaluation use during system development and for
small-quantity production.
80 pin QFP (Plastic)
Structure
Silicon gate CMOS IC
Features
• Wide range instruction system (213 instructions) to cover various of data.
— 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
• Minimum instruction cycle
250ns at 16MHz operation (4.5 to 5.5V)
333ns at 12MHz operation (3.0 to 5.5V)
122µs at 32kHz operation (2.7 to 5.5V)
• Incorporated PROM capacity
48K bytes
• Incorporated RAM capacity
2048 bytes
• Peripheral functions
— A/D converter
8 bits, 8 channels, successive approximation method
(Conversion time 20µs/16MHz)
— Serial interface
Srart-stop synchronization (UART), 1 channel
Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 1 channel
Incorporated 8-bit, 10-stage FIFO
(Auto transfer for 1 to 10 bytes), 1 channel
8-bit clock syncronization (MSB/LSB first selectable), 1 channel
— Timer
8-bit timer, 8-bit timer/counter, 19-bit time base timer,
16-bit capture timer/counter, 32kHz timer/counter
— I2C bus interface
— Remote control reception circuit 8-bit pulse measurement counter, 6-stage FIFO
— PWM output circuit
12 bits, 2 channels
• Interruption
21 factors, 15 vectors, multi-interruption possible
• Standby mode
SLEEP/STOP
• Package
80-pin plastic QFP
• Piggyback/evaluation chip
CXP84600 80-pin ceramic QFP
Perchase of Sony's I2C components conveys a licence under the Philips I2C Patent Rights to use these components
in an I2C system, provided that the system conforms to the I2C Standard Specifications as defined by Philips.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E96308-ST
–2–
I2C BUS
INTERFACE UNIT
SCL0
SCL1
SDA0
SDA1
ADJ
16 BIT CAPTURE
TIMER/COUNTER 2
TO
CINT
EC1
8 BIT TIMER 1
8 BIT TIMER/COUNTER 0
EC0
SERIAL
INTERFACE
UNIT (CH1)
SI1
SO1
SCK1
SERIAL INTERFACE UNIT
(CH2)
FIFO
SERIAL
INTERFACE
UNIT (CH0)
CS0
SI0
SO0
SCK0
SI2
SO2
SCK2
BUFFER
RAM
REMOCON IN
FIFO
12 BIT PWM GENERATOR 1
12 BIT PWM GENERATOR 0
RMC
PWM0
PWM1
UART BAUD RATE
GENERATOR
UART RECEIVER
UART TRANSMITTER
A/D CONVERTER
AVSS
TxD
8
AVREF
RxD
AN0 to AN7
2
2
NMI
NMI
INT0
INT1
INT2
INT3
INT4
INTERRUPT CONTROLLER
Block Diagram
2
PRESCALER/
TIME BASE TIMER
PROM
48K BYTES
SPC 700
CPU CORE
TEX
TX
EXTAL
XTAL
RST
VDD
VSS
Vpp
32kHz
TIMER/COUNTER
RAM
2048 BYTES
CLOCK
GENERATOR/
SYSTEM CONTROL
8
8
8
7
2
4
8
8
8
8
PI0 to PI7
PH0 to PH7
PG0 to PG7
PF7
PF0 to PF6
PE4 to PE5
PE0 to PE3
PD0 to PD7
PC0 to PC7
PB0 to PB7
PA0 to PA7
CXP846P48
PORT I PORT H PORT G PORT F PORT E PORT D PORT C PORT B PORT A
CXP846P48
PI5/SCK2
PI6/SI2
PI7/SO2
PG0
PG1
PG2
PG3
VDD
Vpp
PG4
PG5
PG6
PG7
PF0/SCL0
PF1/SCL1
PF2/SDA0
Pin Assignment (Top View)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
PF3/SDA0
1
64
PI4/INT4
PF4/PWM0
2
63
PI3/INT3
PF5/PWM1
3
62
PI2/INT2
PF6/TxD
4
61
PI1/INT1
PF7/RxD
5
60
PI0/INT0
PD0
6
59
PE5/TO/ADJ
PD1
7
58
PE4
PD2
8
57
PE3/NMI
PD3
9
56
PE2/RMC
PD4
10
55
PE1/EC1
PD5
11
54
PE0/EC0
PD6
12
53
PB7/SO1
PD7
13
52
PB6/SI1
PC0
14
51
PB5/SCK1
PC1
15
50
PB4/SO0
PC2
16
49
PB3/SI0
PC3
17
48
PB2/SCK0
PC4
18
47
PB1/CS0
PC5
19
46
PB0/CINT
PC6
20
45
PA7/AN7
PC7
21
44
PA6/AN6
PH0
22
43
PA5/AN5
PH1
23
42
PA4/AN4
PH2
24
41
PA3/AN3
Note) Vpp (Pin 73) must be connected VDD.
–3–
PA2/AN2
PA1/AN1
PA0/AN0
AVSS
AVREF
TEX
TX
VSS
XTAL
EXTAL
RST
PH7
PH6
PH5
PH4
PH3
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
CXP846P48
Pin Description
Pin code
I/O
PA0/AN0
to
PA7/AN7
I/O/Analog input
PB0/CINT
I/O/Input
PB1/CS0
I/O/Input
PB2/SCK0
I/O/I/O
PB3/SI0
I/O/Input
PB4/SO0
I/O/Output
PB5/SCK1
I/O/I/O
PB6/SI1
I/O/Input
PB7/SO1
I/O/Output
Functions
(Port A)
8-bit I/O port. I/O can be
set in a unit of signle bits.
Incorporation of the pullup resistance can be set
through the software in a
unit of 4 bits.
(8 pins)
Analog inputs to A/D converter.
(8 pins)
External capture input to 16-bit timer/counter.
(Port B)
I/O can be set in a unit
of single bits for lower
7 bits. Incorporation of
pull-up resistor can be
set through the software
in a unit of 4 bits.
(8 pins)
Chip select input for serial interface (CH0).
Serial clock I/O (CH0).
Serial data input (CH0).
Serial data output (CH0).
Serial clock I/O (CH1).
Serial data input (CH1).
Serial data output (CH1).
I/O
(Port C)
8-bit I/O port. I/O can be set in a unit of single bits. Capable of driving
12mA sync current. Incorporation of pull-up resistor can be set through
the software in a unit of 4 bits.
(8 pins)
PD0 to PD7
I/O
(Port D)
8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits.
(8 pins)
PE0/EC0
Input/Input
PE1/EC1
Input/Input
PE2/RMC
Input/Input
PE3/NMI
Input/Input
PE4
Output
PE5/TO/
ADJ
Output/Output/
Output
PF0/SCL0
PF1/SCL1
Output/I/O
PF2/SDA0
PF3/SDA1
Output/I/O
PF4/PWM0
Output/Output
PF5/PWM1
Output/Output
PF6/TxD
Output/Output
PF7/RxD
Input/Input
PC0 to PC7
External event inputs for timer/counter.
(2 pins)
(Port E)
6-bit port. Lower 4 bits
are for inputs; upper
2 bits are for outputs.
(6 pins)
Remote control reception circuit input.
Non-maskable interruption request input.
Rectangular wave output for 16-bit timer/counter.
Output for 32kHz oscillation frequency division.
(Port F)
Lower 7 bits are for
output; of which lower
4 bits are large current
(12mA) N-ch open
drain output.
The uppermost bit
(PF7) is for input.
(8pins)
–4–
Transfer clock I/O for I2C bus interface.
(2pins)
Transfer data I/O for I2C bus interface.
(2pins)
PWM outputs.
(2pins)
UART transmission data output.
UART reception data input.
CXP846P48
Pin code
I/O
Functions
I/O
(Port G)
8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits.
(8 pins)
PH0 to PH7
I/O
(Port H)
8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits.
(8 pins)
PI0/INT0
to
PI4/INT4
I/O/Input
PI5/SCK2
I/O/I/O
PI6/SI2
I/O/Input
PI7/SO2
I/O/Output
EXTAL
Input
XTAL
Output
TEX
Input
TX
Output
Crystal connectors for 32kHz timer/counter clock oscillation. For usage
as event counter, input to TEX, and open TX.
RST
Input
Low-level active, system reset.
PG0 to PG7
External interruption request inputs.
(5 pins)
Serial clock I/O. (CH2)
Serial data input. (CH2)
Serial data output. (CH2)
Crystal connectors for system clock oscillation. When the clock is
supplied externally, input to EXTAL; opposite phase clock should be
input to XTAL.
Positive power supply pin for built-in PROM writing.
Connect to VDD for normal operation.
Vpp
AVREF
(Port I)
8-bit I/O port. I/O can be
set in a unit of single
bits. Incorporation of
pull-up resistor can be
set through the software
in a unit of 4 bits.
(8 pins)
Input
Reference voltage input for A/D converter.
AVss
A/D converter GND.
VDD
Positive power supply.
Vss
GND.
–5–
CXP846P48
I/O Circuit Format for Pins
Pin
When reset
Circuit format
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
Port A
∗
Pull-up resistance
AA
AAAA
“0” when reset
Port A data
PA0/AN0
to
PA7/AN7
Port A direction
IP
“0” when reset
Data bus
Input protection
circuit
Hi-Z
RD (Port A)
Port A function
selection
“0” when reset
8 pins
Input multiplexer
A/D converter
∗ Pull-up transistors
approx. 100kΩ
Port B
∗
Pull-up resistance
Port I
AA
AA
AA
AA
“0” when reset
PB0/CINT
PB1/CS0
PB3/SI0
PB6/SI1
PI6/SI2
Port B, I data
Port B, I direction
IP
“0” when reset
Hi-Z
Schmitt input
Data bus
RD (Port B, I)
5 pins
CINT
CS0
SI0
SI1
AAAA
AAAA
AAAAA
AAAAA
AAAA
AAAA
AAAA
∗ Pull-up transistors
approx. 100kΩ
Port B
Port I
∗
Pull-up resistance
A
AAA
“0” when reset
SCK OUT
Serial clock output enable
Port B, I function selection
PB2/SCK0
PB5/SCK1
PI5/SCK2
“0” when reset
IP
Port B, I data
Port B, I direction
“0” when reset
Schmitt input
Data bus
RD (Port B, I)
3 pins
SCK in
–6–
∗ Pull-up transistors
approx. 100kΩ
Hi-Z
CXP846P48
Pin
When reset
Circuit format
AAAA
AAAAA
AAAA
AAAA
AAAA
Port B
Port I
∗
Pull-up resistance
“0” when reset
SO
Serial data output enable
AA
AAAA
Port B, I function selection
PB4/SO0
PB7/SO1
PI7/SO2
“0” when reset
IP
Port B, I data
Port B, I direction
Hi-Z
“0” when reset
Data bus
RD (Port B, I)
∗ Pull-up transistors
approx. 100kΩ
3 pins
AAAA
AAAA
AAAA
AAAA
AAAA
Port C
∗2
Pull-up resistance
AA
AA
AA
AA
“0” when reset
Port C data
PC0 to PC7
∗1
Port C direction
“0” when reset
Data bus
RD (Port C)
∗1 Large current 12mA
∗2 Pull-up transistors
approx. 100kΩ
8 pins
PE0/EC0
PE1/EC1
PE2/RMC
PE3/NMI
PF7/RxD
5 pins
Port E
A A
Port F
Schmitt input
IP
EC0, EC1, RMC, NMI, RxD
Data bus
AAAA
AAAA
Port E data
“1” when reset
Data bus
1 pin
Hi-Z
RD (Port E, F)
Port E
PE4
Hi-Z
IP
RD (Port E)
–7–
AA
AA
High level
CXP846P48
Pin
When reset
Circuit format
Port E
AAAAA
AAAAAA
AAAAAA
Internal reset signal
PE5/TO/ADJ
Port E data
00
“1” when reset
TO
ADJ16K∗1
01
ADJ2K∗1
11
AA
AA( )
MPX
∗2
10
Port E function selection (upper)
Port E function selection (lower)
∗1 ADJ signals are frequency dividing output for
“00” when reset
TO output enable
1 pin
Port D
Port G
Port H
Pull-up resistance
“0” when reset
Port D, G, H direction
“0” when reset
Data bus
RD (Port D, G, H)
24 pins
Port I
AAAA
AAAA
AAAA
AAAA
AAAA
Pull-up resistance
“0” when reset
Port I data
PI0/INT0
to
PI4/INT4
Port I direction
“0” when reset
Data bus
RD (Port I)
5 pins
32kHz oscillation frequency adjustment.
ADJ2K provides usage as buzzer output.
∗2 Pull-up transistor approx. 150kΩ
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
Port D, G, H data
PD0 to PD7
PG0 to PG7
PH0 to PH7
High level
with approx.
150kΩ
resistor
when reset
INT0
INT1
INT2
INT3
INT4
–8–
∗
AA
AA
AA
AA
IP
Hi-Z
∗ Pull-up transistors
approx. 100kΩ
∗
AA
AA
AA
AA
IP
∗ Pull-up transistors
approx. 100kΩ
Hi-Z
CXP846P48
Pin
Circuit format
Port F
SCL, SDA
PF0/SCL0
PF1/SCL1
PF2/SDA0
PF3/SDA1
AAA
AAA
AA
AA
I2C output enable
(“0” when reset)
Port F data
∗
AA
AA
IP
“1” when reset
When reset
Hi-Z
Schmitt input
SCL, SDA
(To I2C circuit)
BUS SW
To internal I2C pin
(SCL1 for SCL0)
∗ Large current 12mA
4 pins
Port F
AAAAA
AAAAA
AAAAA
AA
AA
PWM
Port F output selection
PF4/PWM0
PF5/PWM1
“0” when reset
Port F data
High level
“1” when reset
Data bus
2 pins
RD (Port F)
Port F
AAAAA
AAAAA
AAAAA
AAAA
AAAA
AAAA
AA
AA
UART transmission circuit
Port F output selection
PF6/TxD
“0” when reset
Port F data
“1” when reset
1 pin
Data bus
RD (Port F)
Port H
Port H data
“0” when reset
Port H direction
PH0 to PH7
Data bus
RD (Port H)
Edge detection
Standby release
Data bus
8 pins
RD (Port H direction)
–9–
AA
AA
AA
AA
AA
AA
High level
IP
Hi-Z
CXP846P48
Pin
AA AA A
AA
AA AA A
AA
EXTAL
XTAL
EXTAL
2 pins
XTAL
TEX
TX
2 pins
When reset
Circuit format
IP
TEX
TX
IP
IP
• Diagram shows circuit
composition during oscillation.
• Feedback resistor is removed
during stop, and XTAL
becomes High level.
Oscillation
• Diagram shows circuit
composition during oscillation.
IP
• When the operation of the oscillation
circuit is stopped by the software,
the feedback resistor is removed,
and TEX and TX become Low level
and High level respectively.
Oscillation
Pull-up resistor
RST
AA
A
AA A
OP
Mask option
Low level
IP
1 pin
– 10 –
Schmitt input
CXP846P48
Absolute Maximum Ratings
Item
Supply voltage
(Vss = 0V reference)
Symbol
Rating
Unit
VDD
–0.3 to +7.0
V
AVSS
V
Remarks
Input voltagte
VIN
–0.3 to +0.3
–0.3 to +7.0∗1
Output voltage
VOUT
–0.3 to +7.0∗1
V
High level output current
IOH
–5
mA
Output (value per pin)
–50
mA
Total for all output pins
IOL
15
mA
All pins excluding large current
outputs (value per pin)
IOLC
20
mA
Large current outputs (value per pin) ∗2
Low level total output current
∑IOL
100
mA
Total for all output pins
Operating temperature
Topr
–10 to +75
°C
Storage temperature
Tstg
–55 to +150
°C
Allowable power dissipation
PD
600
mW
High level total output current ∑IOH
Low level output current
V
∗1 VIN and VOUT must not exceed VDD + 0.3V.
∗2 The large current output is for each pin of Port C (PC), Port F0 (PF0) to Port 3 (PF3).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should
be conducted under the recommended operating conditions. Exceeding these conditions may adversely
affect the reliability of the LSI.
– 11 –
CXP846P48
Recommended Operating Conditions
Item
Supply voltage
Symbol
VDD
VIH
HIgh level input
voltage
VIHS
VIHEX
VIL
Low level input
voltage
VILS
VILEX
Operating temperature Topr
(Vss = 0V reference)
Min.
Max.
Unit
Remarks
4.5
5.5
V
3.0
5.5
V
fc = 16MHz or less Guaranteed operation
range for 1/2 and 1/4
fc = 12MHz or less frequency dividing clock.
2.7
5.5
V
Guaranteed operation range for 1/16
frequency dividing clock or SLEEP mode
2.7
5.5
V
Guaranteed operation range by TEX clock
2.5
5.5
V
0.7VDD
VDD
V
Guaranteed data hold operation range
during STOP
∗1, ∗5
0.8VDD
VDD
V
∗1, ∗6
0.8VDD
VDD
V
VDD – 0.4 VDD + 0.3
V
VDD – 0.2 VDD + 0.2
V
Hysteresis input∗2
EXTAL pin∗3, ∗5 TEX pin∗4, ∗5
0
0.3VDD
V
EXTAL pin∗3, ∗6 TEX pin∗4, ∗6
∗1, ∗5
0
0.2VDD
V
∗1, ∗6
0
0.2VDD
V
–0.3
0.4
V
Hysteresis input∗2
EXTAL pin∗3, ∗5 TEX pin∗4, ∗5
–0.3
0.2
V
EXTAL pin∗3, ∗6 TEX pin∗4, ∗6
–10
+75
°C
∗1 Normal input port (each pin of PA, PB4, PB7, PC, PF0 to PF4, PG, PH and PI7)
∗2 Each pin of RST, CINT, CS0, SCK0, SCK1, SCK2, SI0, SI1, SI2, EC0, EC1, RMC, NMI, RxD, INT0, INT1,
INT2, INT3 and INT4
∗3 It is specified only when the external clock is input.
∗4 It is specified only when the external event count clock is input.
∗5 This case applies to the range of 4.5 to 5.5V supply voltage (VDD).
∗6 This case applies to the range of 3.0 to 5.5V supply voltage (VDD).
– 12 –
CXP846P48
Electrical Characteristics
DC Characteristics
Supply voltage (VDD) 4.5 to 5.5V
Item
Symbol
High level
VOH
output voltage
Low level
output voltage VOL
Pins
PA to PD,
PE4, PE5,
PF4, PF5,
PF6,
PG to PI
IILT
Min.
Typ.
Max.
Unit
VDD = 4.5V, IOH = –0.5mA
4.0
V
VDD = 4.5V, IOH = –1.2mA
3.5
V
0.4
V
VDD = 4.5V, IOL = 3.6mA
0.6
V
PC, PF0 to PF3 VDD = 4.5V, IOL = 12.0mA
1.5
V
PF0 to PF3 VDD = 4.5V, IOL = 3.0mA
(SCL0, SCL1,
SDA0, SDA1) VDD = 4.5V, IOL = 4.0mA
0.4
V
0.6
V
EXTAL
IIHT
Input current
Conditions
VDD = 4.5V, IOL = 1.8mA
IIHE
IILE
(Ta = –10 to +75°C, Vss = 0V reference)
TEX
IILR
RST∗1
IIL
PA to PD∗2,
PG to PI∗2
IIZ
PA to PD∗2,
PG to PI∗2,
RST∗1
VDD = 5.5V, VIH = 5.5V
0.5
40
µA
VDD = 5.5V, VIL = 0.4V
–0.5
–40
µA
VDD = 5.5V, VIL = 5.5V
0.1
10
µA
VDD = 5.5V, VIL = 0.4V
–0.1
–10
µA
–1.5
–400
µA
–45
µA
VDD = 5.5V, VIL = 0.4V
VDD = 4.5V, VIL = 4.0V
–2.78
µA
VDD = 5.5V
VI = 0, 5.5V
±10
µA
Open drain
output leakage
ILOH
current (N-ch
Tr off state)
PF0 to PF3 VDD = 5.5V
(SCL0, SCL1, VOH = 5.5V
SDA0, SDA1)
10
µA
I2C bus switch
connection
impedance
RBS
(Output Tr off
state)
SCL0: SCL1
SDA0: SDA1
120
Ω
I/O lealage
current
VDD = 4.5V
VSCL0 = VSCL1 = 2.25V
VSDA0 = VSDA1 = 2.25V
– 13 –
CXP846P48
Item
Symbol
Pins
Conditions
Min.
Typ.
Max.
Unit
31
50
mA
0.6
1.2
mA
2.5
10
mA
8
30
µA
30
µA
20
pF
1/2 frequency dividing clock operation
IDD1
VDD = 5.5V, 16MHz crystal oscillation
(C1 = C2 = 15pF)
VDD = 3V, 32kHz crystal oscillation;
and termination of 16MHz
oscillation (C1 = C2 = 47pF)
IDD2
Supply
current∗3
SLEEP mode
IDDS1
IDDS2
IDDS3
Input
capacity
CIN
VDD
VDD = 5.5V, 16MHz crystal oscillation
(C1 = C2 = 15pF)
VDD = 3V, 32kHz crystal oscillation;
and termination of 16MHz
oscillation (C1 = C2 = 47pF)
STOP mode
VDD = 5.5V, termination of 16MHz
and 32kHz crystal oscillation
PA to PC,
PE0 to PE5, Clock 1MHz
PF to PI,
0V for all pins excluding measured
EXTAL,
pins
TEX, RST
10
∗1 RST specifies the input current when pull-up resistance has been selected; leakage current when no
resistance has been selected.
∗2 PA to PD, and PG to PI specify the input current when pull-up resistance has been selected; leakage
current when no resistance has been selected.
∗3 When all pins are open.
– 14 –
CXP846P48
Electrical Characteristics
DC Characteristics
Supply voltage (VDD) 3.0 to 3.6V
Item
Symbol
High level
VOH
output voltage
Low level
output voltage VOL
Pins
PA to PD,
PE4, PE5,
PF4, PF5,
PF6
IILT
Min.
Typ.
Max.
Unit
VDD = 3.0V, IOH = –0.15mA
2.7
V
VDD = 3.0V, IOH = –0.5mA
2.3
V
0.3
V
VDD = 3.0V, IOL = 1.6mA
0.5
V
PC, PF0 to PF3 VDD = 3.0V, IOL = 5.0mA
1
V
PF0 to PF3 VDD = 3.0V, IOL = 2.0mA
(SCL0, SCL1,
SDA0, SDA1) VDD = 3.0V, IOL = 2.5mA
0.3
V
0.5
V
EXTAL
IIHT
Input current
Conditions
VDD = 3.0V, IOL = 1.2mA
IIHE
IILE
(Ta = –10 to +75°C, Vss = 0V reference)
TEX
IILR
RST∗1
IIL
PA to PD∗2,
PG to PI∗2
IIZ
PA to PD∗2,
PG to PI∗2,
RST∗1
VDD = 3.6V, VIH = 3.6V
0.3
20
µA
VDD = 3.6V, VIL = 0.3V
–0.3
–20
µA
VDD = 3.6V, VIL = 3.6V
0.1
10
µA
VDD = 3.6V, VIL = 0.4V
–0.1
–10
µA
–0.9
–200
µA
–20
µA
VDD = 3.6V, VIL = 0.3V
VDD = 3.0V, VIL = 2.7V
–1.0
µA
VDD = 3.6V
VI = 0, 3.6V
±10
µA
Open drain
output leakage
ILOH
current (N-ch
Tr off state)
PF0 to PF3 VDD = 3.6V
(SCL0, SCL1, VOH = 3.6V
SDA0, SDA1)
10
µA
I2C bus switch
connection
impedance
RBS
(Output Tr off
state)
SCL0: SCL1
SDA0: SDA1
300
Ω
I/O lealage
current
VDD = 3.0V
VSCL0 = VSCL1 = 1.5V
VSDA0 = VSDA1 = 1.5V
– 15 –
CXP846P48
Item
Symbol
Pins
Conditions
Min.
Typ.
Max.
Unit
11
25
mA
0.5
2.5
mA
20
µA
20
pF
1/2 frequency dividing clock operation
IDD1
Supply
current∗3
SLEEP mode
IDDS1
IDDS3
Input
capacity
VDD = 3.6V, 12MHz crystal oscillation
(C1 = C2 = 15pF)
CIN
VDD
VDD = 3.6V, 12MHz crystal oscillation
(C1 = C2 = 15pF)
STOP mode
VDD = 3.6V, termination of 16MHz
and 32kHz crystal oscillation
PA to PC,
PE0 to PE5, Clock 1MHz
0V for all pins excluding measured
PF to PI,
pins
EXTAL,
TEX, RST
10
∗1 RST specifies the input current when pull-up resistance has been selected; leakage current when no
resistance has been selected.
∗2 PA to PD, and PG to PI specify the input current when pull-up resistance has been selected; leakage
current when no resistance has been selected.
∗3 When all pins are open.
– 16 –
CXP846P48
AC Characteristics
(1) Clock timing
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
System clock frequency
fC
System clock input pulse
width
tXL
tXH
System clock input
rise time, fall time
Event count input clock
rise time, fall time
tCR
tCF
tEH
tEL
tER
tEF
System clock frequency
fC
Event count input clock
input pulse width
tTL
tTH
tTR
tTF
Event count input clock
pulse width
Event count input clock
rise time, fall time
Pin
Conditions
Min.
VDD = 4.5 to 5.5V
XTAL
EXTAL
Fig. 1, Fig. 2
EXTAL
Fig. 1, Fig. 2 VDD = 4.5 to 5.5V
External clock drive
EXTAL
Fig. 1, Fig. 2
External clock drive
EC0
EC1
Fig. 3
EC0
EC1
Fig. 3
TEX
TX
VDD = 2.7 to 5.5V
Fig. 2 (32kHz clock applied
condition)
TEX
Fig. 3
TEX
Fig. 3
Typ.
Max.
1
16
1
12
Unit
MHz
28
ns
37.5
ns
200
4tsys∗1
ns
20
ms
kHz
32.768
µs
10
20
ms
∗1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the control
clock register (CLC: 00FEH).
tsys [ns] = 2000/fc (upper two bits = “00”), 4000/fc (upper two bits = “01”), 16000/fc (Upper two bits = “11”)
1/fc
Fig. 1. Clock timing
VDD – 0.4V (VDD = 4.5 to 5.5V)
VDD – 0.3V
EXTAL
0.4V (VDD = 4.5 to 5.5V)
0.3V
tXH
tCF
tXL
tCR
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA AAAAAAAA
Fig. 2. Clock applied conditions
Crystal oscillation
Ceramic oscillation
EXTAL
XTAL
C1
External clock
EXTAL
C2
32kHz clock applied condition
Crystal oscillation
TEX
XTAL
74HC04
C1
TX
C2
Fig. 3. Event count clock timing
TEX
EC0
EC1
0.8VDD
0.2VDD
tEH
tTH
tEF
tTF
– 17 –
tEL
tTL
tER
tTR
CXP846P48
(2) Serial transfer (CH0)
Item
Symbol
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Pin
Condition
Min.
Max.
Unit
CS↓ → SCK
delay time
tDCSK
SCK0
Chip select transfer mode
(SCK = output mode)
tsys + 200
ns
CS↑ → SCK
floating delay time
tDCSKF
SCK0
Chip select transfer mode
(SCK = output mode)
tsys + 200
ns
CS↓ → SO delay time
tDCSO
SO0
Chip select transfer mode
tsys + 200
ns
CS↓ → SO floating
delay time
tDCSOF
SO0
Chip select transfer mode
tsys + 200
ns
CS High level width
tWHCS
CS0
Chip select transfer mode
SCK cycle time
tKCY
SCK0
SCK High and Low
level widths
tKH
tKL
SCK0
SI input setup time
(against SCK↑)
tSIK
SI0
SI input hold time
(against SCK↑)
tKSI
SI0
SCK↓ → SO
delay time
tKSO
SO0
Input mode
Output mode
Input mode
Output mode
SCK input mode
SCK output mode
SCK input mode
SCK output mode
SCK input mode
SCK output mode
tsys + 200
2tsys + 200
ns
16000/fc
ns
tsys + 100
ns
8000/fc – 100
ns
–tsys + 100
ns
200
ns
2tsys + 100
ns
100
ns
ns
2tsys + 200
ns
100
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = “00”), 4000/fc (upper 2 bits = “01”), 16000/fc (upper 2 bits = “11”)
Note 2) CS, SCK, SI and SO represent CS0, SCK0, SI0 and SO0, respectively.
Note 3) The load of SCK output mode and SO output delay time is 50pF + 1TTL.
– 18 –
CXP846P48
Serial transfer (CH0)
Item
(Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Symbol
Pin
Condition
Min.
Max.
Unit
CS↓ → SCK
delay time
tDCSK
SCK0
Chip select transfer mode
(SCK = output mode)
tsys + 250
ns
CS↑ → SCK
floating delay time
tDCSKF
SCK0
Chip select transfer mode
(SCK = output mode)
tsys + 200
ns
CS↓ → SO delay time
tDCSO
SO0
Chip select transfer mode
tsys + 250
ns
CS↓ → SO floating
delay time
tDCSOF
SO0
Chip select transfer mode
tsys + 200
ns
CS High level width
tWHCS
CS0
Chip select transfer mode
SCK cycle time
tKCY
SCK0
SCK High and Low
level widths
tKH
tKL
SCK0
SI input setup time
(against SCK↑)
tSIK
SI0
SI input hold time
(against SCK↑)
tKSI
SI0
SCK↓ → SO
delay time
tKSO
SO0
Input mode
Output mode
Input mode
Output mode
SCK input mode
SCK output mode
SCK input mode
SCK output mode
SCK input mode
SCK output mode
tsys + 200
2tsys + 200
ns
16000/fc
ns
tsys + 100
ns
8000/fc – 150
ns
–tsys + 100
ns
200
ns
2tsys + 100
ns
100
ns
ns
2tsys + 250
ns
125
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = “00”), 4000/fc (upper 2 bits = “01”), 16000/fc (upper 2 bits = “11”)
Note 2) CS, SCK, SI and SO represent CS0, SCK0, SI0 and SO0, respectively.
Note 3) The load of SCK output mode and SO output delay time is 50pF.
– 19 –
CXP846P48
Fig. 4. Serial transfer CH0 timing
tWHCS
CS0
0.8VDD
0.2VDD
tKCY
tDCSK
tKL
tDCSKF
tKH
0.8VDD
0.8VDD
SCK0
0.2VDD
tSIK
tKSI
0.8VDD
Input data
SI0
0.2VDD
tDCSO
tKSO
tDCSOF
0.8VDD
SO0
Output data
0.2VDD
– 20 –
CXP846P48
Serial transfer (CH1, CH2)
Item
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Symbol
Pin
Condition
Min.
Max.
Unit
2tsys + 200
ns
16000/fc
ns
tsys + 100
ns
8000/fc – 50
ns
SCK input mode
100
ns
SCK output mode
200
ns
tsys + 200
ns
100
ns
tKCY
SCK1
SCK2
Input mode
SCK cycle time
SCK High and Low
level widths
tKH
tKL
SCK1
SCK2
Input mode
SI input setup time
(against SCK↑)
tSIK
SI1
SI2
SI input hold time
(against SCK↑)
tKSI
SI1
SI2
SCK input mode
SCK↓ → SO delay time
tKSO
SO1
SO2
SCK input mode
Output mode
Output mode
SCK output mode
SCK output mode
tsys + 200
ns
100
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) SCK, SI and SO represent SCK1, SI1, and SO1, respectively for CH1; they represent SCK2, SI2 and
SO2, respectively for CH2.
Note 3) The load of SCK1 and SCK2 output modes and SO1 and SO2 output delay times is 50pF+1TTL.
Serial transfer (CH1, CH2)
Item
(Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Symbol
Pin
Condition
Min.
Max.
Unit
2tsys + 200
ns
16000/fc
ns
tsys + 100
ns
8000/fc – 150
ns
SCK input mode
100
ns
SCK output mode
200
ns
tsys + 200
ns
100
ns
tKCY
SCK1
SCK2
Input mode
SCK cycle time
SCK High and Low
level widths
tKH
tKL
SCK1
SCK2
Input mode
SI input setup time
(against SCK↑)
tSIK
SI1
SI2
SI input hold time
(against SCK↑)
tKSI
SI1
SI2
SCK input mode
SCK↓ → SO delay time
tKSO
SO1
SO2
SCK input mode
Output mode
Output mode
SCK output mode
SCK output mode
tsys + 250
ns
125
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) SCK, SI and SO represent SCK1, SI1, and SO1, respectively for CH1; they represent SCK2, SI2 and
SO2, respectively for CH2.
Note 3) The load of SCK1 and SCK2 output modes and SO1 and SO2 output delay times is 50pF.
– 21 –
CXP846P48
Fig. 5. Serial transfer CH1 and CH2 timing
tKCY
tKL
tKH
0.8VDD
SCK1
SCK2
0.2VDD
tSIK
tKSI
0.8VDD
SI1
SI2
Input data
0.2VDD
tKSO
0.8VDD
SO1
SO2
Output data
0.2VDD
– 22 –
CXP846P48
(3) A/D converter characteristics
(Ta = –10 to +75°C, VDD = 3.0 to 5.5V, AVREF = 2.7 to VDD, Vss = AVSS = 0V reference)
Item
Symbol
Max.
Unit
Resolution
8
Bits
Linearity errror
±3
LSB
Zero
transition voltage
VZT∗1
Full-scale transition
voltage
VFT∗2
Pin
Condition
Min.
Ta = 25°C
VDD = AVREF = 5.0V
VSS = AVSS = 0V
Typ.
–50
10
70
mV
4910
4970
5030
mV
±5
LSB
Linearity errror
Zero
transition voltage
VZT∗1
Full-scale transition
voltage
VFT∗2
Convertion time
tCONV
Sampling time
tSAMP
Reference input
voltage
VREF
Analog input voltage
VIAN
Ta = 25°C
VDD = AVREF = 3.3V
VSS = AVSS = 0V
6.5
110
mV
4870
3280
5070
mV
160/fADC∗3
12/fADC∗3
AVREF
µs
VDD – 0.5
VDD
V
VDD = 3.0 to 3.6V
VDD – 0.3
VDD
V
0
AVREF
V
0.6
1.0
mA
0.4
0.7
mA
10
µA
Operation VDD = 5.5V
mode
VDD = 3.6V
AVREF
µs
VDD = 4.5 to 5.5V
AN0 to AN7
IREF
AVREF current
–10
SLEEP mode
STOP mode
32kHz operation mode
IREFS
Fig.6. Definition of A/D converter terms
∗1 VZT: Value at which the digital conversion value changes
from 00H to 01H and vice versa.
∗2 VFT: Value at which the digital conversion value changes
from FEH to FFH and vice versa.
∗3 fADC indicates the below values due to the contents of bit 6
(CKS) of the A/D control register (ADC: 00F9H) and bits 7
(PCK1) and 6 (PCK0) of the clock control register (CLC:
00FEH).
Digital conversion value
FFH
FEH
Linearity error
CKS
01H
00H
VFT
VZT
Analog input
0(φ/2 selection)
1(φ selection)
PCK1, PCK0
00 (φ = fEX/2)
fADC = fC/2
fADC = fC
01 (φ = fEX/4)
fADC = fC/4
fADC = fC/2
11 (φ = fEX/16)
fADC = fC/16
fADC = fC/8
– 23 –
CXP846P48
(4) Interruption, reset input (Ta = –10 to +75°C, VDD = 3.0 to 5.5V, Vss = 0V reference)
Item
Symbol
Pin
External interruption
HIgh, Low level width
tIH
tIL
INT0
INT1
INT2
INT3
INT4
NMI
Reset input Low level width
tRSL
RST
Condition
Min.
Max.
Unit
1
µs
32/fc
µs
Fig. 7. Interruption input timing
tIH
INT0
INT1
INT2
INT3
INT4
NMI
(NMI is specified only for
the falling edge)
tIL
0.8VDD
0.2VDD
tIL
tIH
Fig. 8. RST input timing
tRSL
RST
0.2VDD
– 24 –
CXP846P48
(5) I2C bus timing
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
Pin
Condition
Min.
Max.
Unit
0
100
kHz
SCL clock frequency
fSLC
SCL
Bus-free time before starting transfer
tBUF
tHD; STA
tLOW
tHIGH
tSU; STA
tHD; DAT
tSU; DAT
tR
tF
tSU; STO
SDA, SCL
4.7
µs
SDA, SCL
4.0
µs
SCL
4.7
µs
SCL
4.0
µs
SDA, SCL
µs
SDA, SCL
4.7
0∗1
SDA, SCL
250
ns
Hold time for starting transfer
Clock Low level width
Clock High level width
Setup time for repetitive transfers
Data bold time
Data setup time
SDA, SCL rise time
SDA, SCL fall time
Setup time for transfer completion
µs
SDA, SCL
1
µs
SDA, SCL
300
ns
SDA, SCL
4.7
µs
∗1 The data hold time must exceed 300ns because the SCL rise time (300ns max.) is not taken into
consideration.
Fig. 9. I2C bus transfer timing
SDA
tBUF
tR
tF
tHD; STA
SCL
tHD; STA
tSU; STA
P
S
tLOW
tHD; DAT
tHIGH
St
tSU; DAT
tSU; STO
P
Fig. 10. Recommended circuit example for I2C device
I2C
device
RS
I2C
device
RS RS
R S RP
RP
SDA0
(or SDA1)
SCL0
(or SCL1)
• Pull-up resistors (RP) must be connected to SDA0 (or SDA1) and SCL0 (or SCL1).
• Serial resistance (Rs = 300Ω or less) of SDA0 (or SDA1) and SCL0 (or SCL1) reduces spike noise caused
by CRT flash-over.
– 25 –
CXP846P48
Appendix
Fig. 11. SPC700 Series recommended oscillation circuit
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
(i)
EXTAL
(ii)
TEX
XTAL
Rd
C1
C2
Manufacturer
Model
RIVER
ELETEC
CO., LTD.
HC-49/U03
TX
Rd
C2
C1
Rd (Ω)
Circuit
example
0
(i)
fc (MHz)
C1 (pF)
C2 (pF)
8.00
10
10
5
5
8.00
16 (12)
16 (12)
10.00
16 (12)
16 (12)
12.00
12
12
0
16.00
12
12
0
32.768kHz
30
18
470k
10.00
12.00
16.00
HC-49/U (-S)
KINSEKI LTD.
P3
0
(i)
(ii)
Mask option table
Option item
Mask
CXP846P48-1-
Package
80-pin plastic QFP
80-pin plastic QFP
ROM capacity
32K/40K/48K bytes
PROM 48K bytes
Existent/Non-existent
Existent
Reset pin pull-up resistance
– 26 –
CXP846P48
Characteristics Curve
IDD vs. VDD
IDD vs. VDD
(fc = 16MHz, Ta = 25°C, Typical)
(fc = 12MHz, Ta = 25°C, Typical)
50.0
50.0
1/2 frequency mode
1/4 frequency mode
1/2 frequency mode
1/16 frequency mode
10.0
1/4 frequency mode
32kHz mode
(instruction)
1/16 frequency mode
IDD–Supply current [mA]
5.0
SLEEP mode
1.0
0.5
0.1
(100µA)
5.0
IDD–Supply current [mA]
10.0
SLEEP mode
1.0
0.5
0.1
(100µA)
0.05
(50µA)
0.05
(50µA)
32kHz
SLEEP mode
0.01
(10µA)
0.01
(10µA)
3
4
5
6
3
VDD–Supply voltage [V]
5
6
IDD vs. fc
IDD vs. fc
(VDD = 5.0V, Ta = 25°C, Typical)
(VDD = 3.3V, Ta = 25°C, Typical)
30
30
1/2 frequency mode
20
1/4 frequency mode
10
IDD–Supply current [mA]
IDD–Supply current [mA]
4
VDD–Supply voltage [V]
20
1/2 frequency mode
10
1/4 frequency mode
1/16 frequency mode
0
SLEEP mode
1
5
10
15
16
fc–System clock [MHz]
1/16 frequency mode
0
SLEEP mode
1
5
10
fc–System clock [MHz]
– 27 –
15
16
CXP846P48
Package Outline
Unit: mm
80PIN QFP (PLASTIC)
23.9 ± 0.4
+ 0.1
0.15 – 0.05
+ 0.4
20.0 – 0.1
64
0.15
41
65
16.3
17.9 ± 0.4
+ 0.4
14.0 – 0.1
40
A
+ 0.2
0.1 – 0.05
25
1
24
0.8
0.12
M
+ 0.15
0.35 – 0.1
+ 0.35
2.75 – 0.15
0° to 10°
DETAIL A
PACKAGE STRUCTURE
SONY CODE
QFP-80P-L01
EIAJ CODE
∗QFP080-P-1420-A
JEDEC CODE
PACKAGE MATERIAL
EPOXY RESIN
LEAD TREATMENT
SOLDER PLATING
LEAD MATERIAL
COPPER / 42 ALLOY
PACKAGE WEIGHT
1.6g
– 28 –
0.8 ± 0.2
80