TI SN65HVD11SHKJ

SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
3.3-V RS-485 TRANSCEIVER
Check for Samples: SN65HVD11-HT
FEATURES
1
•
•
•
•
•
•
•
•
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
•
•
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Extreme (–55°C/210°C)
Temperature Range (2)
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
Texas Instruments' high temperature products
utilize highly optimized silicon (die) solutions
with design and process enhancements to
maximize performance over extended
temperatures.
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
•
Operates With a 3.3-V Supply
Bus-Pin ESD Protection Exceeds 16-kV
Human-Body Model (HBM)
1/8 Unit-Load Option Available (up to 256
Nodes on Bus)
Optional Driver Output Transition Times for
Signaling Rates (1) of 1 Mbps, 10 Mbps, and
32 Mbps
Based on ANSI TIA/EIA-485-A
Bus-Pin Short Circuit Protection From
–7 V to 12 V
Open-Circuit, Idle-Bus, and Shorted-Bus
Fail-Safe Receiver
Glitch-Free Power-Up and Power-Down
Protection for Hot-Plugging Applications
SN75176 Footprint
SUPPORTS EXTREME TEMPERATURE
APPLICATIONS
Down-Hole Drilling
High Temperature Environments
Digital Motor Controls
Utility Meters
Chassis-to-Chassis Interconnects
Electronic Security Stations
Industrial Process Control
Building Automation
Point-of-Sale (POS) Terminals and Networks
•
•
•
•
DESCRIPTION/ORDERING INFORMATION
The SN65HVD11 combines a 3-state differential line
driver and differential input line receiver that operates
with a single 3.3-V power supply. It is designed for
balanced transmission lines and meets or exceeds
ANSI TIA/EIA-485-A and ISO 8482:1993, with the
exception that the thermal shutdown is removed. This
differential bus transceiver is a monolithic integrated
circuit designed for bidirectional data communication
on multipoint bus-transmission lines. The driver and
receiver have active-high and active-low enables,
respectively, that can be externally connected
together to function as direction control.
The driver differential outputs and receiver differential
inputs connect internally to form a differential input/
output (I/O) bus port that is designed to offer
minimum loading to the bus when the driver is
disabled or VCC = 0.
D OR JD OR HKJ PACKAGE
(TOP VIEW)
R
RE
DE
D
(1)
The signaling rate of a line is the number of voltage
transitions that are made per second expressed in the units
bits per second (bps).
(2)
1
8
2
7
3
6
4
5
VCC
B
A
GND
Custom temperature ranges available
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2008–2010, Texas Instruments Incorporated
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
BARE DIE INFORMATION
DIE THICKNESS
BACKSIDE FINISH
BACKSIDE
POTENTIAL
BOND PAD
METALLIZATION COMPOSITION
15 mils.
Silicon with backgrind
GND
Cu-Ni-Pd
Table 1. Bond Pad Coordinates in Microns - Rev A
DESCRIPTION
(1)
PAD NUMBER
a
b
c
d
R
1
69.30
372.15
185.30
489.15
~RE
2
388.75
71.50
503.75
186.50
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
DNC
(1)
2
3
722.40
55.40
839.40
172.40
DNC
4
891.40
55.40
1008.40
172.40
DE
5
1174.80
71.50
1289.80
186.50
DNC
6
1754.35
65.40
1869.35
180.40
DNC
7
1907.35
65.40
2022.35
180.40
D
8
2280.55
69.50
2395.55
184.50
DNC
9
2733.50
371.50
2848.50
486.50
GND
10
2691
1693.10
2808
1810.10
GND
11
2535
1693.10
2652
1810.10
DNC
12
2253.45
1685.65
2368.45
1800.65
A
13
1961.55
1693.10
2078.55
1810.10
B
14
799.55
1693.10
916.55
1810.10
DNC
15
498.35
1681.20
613.35
1796.20
VCC
16
244.80
1668.50
359.80
1783.50
VCC
17
91.80
1668.50
206.80
1783.50
DNC = Do Not Connect
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
3
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
ORDERING INFORMATION (1)
PACKAGE (2)
SIGNALING RATE
UNIT LOADS
TA
10 Mbps
1/8
–55°C to 210°C
SN65HVD11SJD
10 Mbps
1/8
–55°C to 210°C
SN65HVD11SKGDA
10 Mbps
1/8
–55°C to 210°C
SN65HVD11SHKJ
SN65HVD11SHKJ
10 Mbps
1/8
–55°C to 175°C
SN65HVD11HD
HD11
(2)
SN65HVD11SJD
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
(1)
TOP-SIDE MARKING
CDIP
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
FUNCTIONAL BLOCK DIAGRAM
1
R
2
RE
DE
3
6
4
A
D
7
ABSOLUTE MAXIMUM RATINGS (1)
B
(2)
over operating free-air temperature range (unless otherwise noted)
VCC
VALUE
UNIT
Supply voltage range
–0.3 to 6
V
Voltage range at A or B
–9 to 14
V
–0.5 to VCC + 0.5
V
Input voltage range at D, DE, R, or RE
IO
Voltage input range, transient pulse, A and B, through 100 Ω (see Figure 12)
–50 to 50
V
Receiver output current range
–11 to 11
mA
Electrostatic discharge
Human-Body Model
(HBM) (3)
Charged-Device Model
(CDM) (4)
A, B, and GND
16
All pins
4
All pins charge
1
Continuous total power dissipation
(1)
(2)
(3)
(4)
4
kV
See Dissipation Ratings Table
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
Tested in accordance with JEDEC Standard 22, Test Method A114-A.
Tested in accordance with JEDEC Standard 22, Test Method C101.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
RECOMMENDED OPERATING CONDITIONS
TA = –55°C to 125°C
MIN
NOM
TA = 175°C
MAX
MIN
3
3.6
-7 (1)
NOM
TA = 210°C
NOM
MAX
UNIT
MAX
MIN
3
3.6
3
3.6
V
12
-7 (1)
12
-7 (1)
12
V
VCC
Supply voltage
VI or
VIC
Voltage at any bus terminal (separately or common mode)
VIH
High-level input voltage
D, DE, RE
2
VCC
2
VCC
2
VCC
V
VIL
Low-level input voltage
D, DE, RE
0
0.8
0
0.8
0
0.8
V
VID
Differential input voltage
Figure 8
-12
12
-12
12
-12
12
V
Driver
-60
-60
-60
Receiver
-8
-8
-8
High-level output current
IOL
Low-level output current
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
IOH
RL
Differential load resistance
CL
Differential load capacitance
TJ (2)
Operating junction temperature
Driver
60
60
60
Receiver
8
8
8
54
60
54
50
Signaling rate
(1)
(2)
mA
60
54
50
10
129
60
Ω
50
pF
10
179
mA
10
214
Mbps
°C
The algebraic convention, in which the least-positive (most-negative) limit is designated as minimum, is used in this data sheet.
See Thermal Characteristics table for information regarding this specification.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
5
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
DRIVER ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
VIK
Input clamp
voltage
|VOD|
Differential
output voltage
TA = 175°C (1)
TA = –55°C to 125°C
TEST CONDITIONS
MIN
II = –18 mA
TYP
MAX
–1.5
IO = 0
MIN
TYP
TA = 210°C (2)
MAX
–1.5
2
VCC
MIN
TYP
MAX
–1.5
2
VCC
V
2
RL = 54 Ω, See Figure 2
1.0
1
1
Vtest = –7 V to 12 V,
See Figure 3
1.0
1
1
UNIT
VCC
V
Change in
magnitude of
differential
output voltage
Vtest = –7 V to 12 V,
See Figure 2 and Figure 3
VOC(PP)
Peak-to-peak
common-mode
output voltage
See Figure 4
VOC(SS)
Steady-state
common-mode
output voltage
See Figure 4
1.4
2.5
1.4
2.5
1.4
2.5
V
ΔVOC(SS)
Change in
steady-state
common-mode
output voltage
See Figure 4
–0.06
0.06
–0.06
0.06
–0.06
0.06
V
IOZ
High-impedance
output current
See receiver input currents
II
Input
current
–100
0
–100
3
–100
3
0
100
0
100
0
100
IOS
Short-circuit
output current
–7 V ≤ VO ≤ 12 V
–250
250
–250
250
–250
250
C(OD)
Differential
output
capacitance
VOD = 0.4 sin (4E6pt) + 0.5 V,
DE = 0 V
18
RE = VCC,
D and
DE = VCC,
No load
Receiver
disabled and
driver enabled
11
15.5
11.5
17.5
14
18
mA
RE = VCC,
D = VCC,
DE = 0 V,
No load
Receiver
disabled and
driver disabled
(standby)
2.5
20
20
150
175
450
mA
RE = 0 V,
D and
DE = VCC,
No load
Receiver
enabled and
driver enabled
11
15.5
11
17.5
11
18
mA
ICC
(1)
(2)
6
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Δ|VOD|
-0.2
-0.25
0.25
400
D
DE
Supply current
0.2
-0.25
400
0.25
400
18
V
mV
18
mA
mA
pF
Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
DRIVER SWITCHING CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA = 175°C (1)
TA = –55°C to 125°C
TA = 210°C (2)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
tPLH
Propagation delay time,
low-to-high-level output
18
25
40
18
25
40
18
25
40
ns
tPHL
Propagation delay time,
high-to-low-level output
18
25
40
18
25
40
18
25
40
ns
tr
Differential output signal
rise time
10
21
30
10
22
30
10
22
30
ns
tf
Differential output signal
fall time
10
21
30
10
22
30
10
22
30
ns
tsk(p)
Pulse skew (|tPHL – tPLH|)
2.5
2.5
2.5
ns
tsk(pp) (3)
Part-to-part skew (tPHL or
tPLH)
11
11
11
ns
tPZH
Propagation delay time,
high-impedance to
high-level output
55
55
55
ns
tPHZ
Propagation delay time,
high-level to
high-impedance output
55
55
55
ns
tPZL
Propagation delay time,
high-impedance to
low-level output
55
55
55
ns
tPLZ
Propagation delay time,
low-level to
high-impedance output
75
75
75
ns
tPZH
Propagation delay time,
standby to high-level
output
RL = 110 Ω,
RE = 3 V,
See Figure 6
6
6
6
ms
tPZL
Propagation delay time,
standby to low-level output
RL = 110 Ω,
RE = 3 V,
See Figure 7
6
6
6
ms
(2)
(3)
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
(1)
RL = 54 Ω,
CL = 50 pF,
See Figure 5
RL = 110 Ω,
RE = 0 V,
See Figure 6
RL = 110 Ω,
RE = 0 V,
See Figure 7
Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
7
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
RECEIVER ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TA = 175°C (1)
TA = –55°C to 125°C
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
TA = 210°C (2)
MAX
MIN
TYP
MAX
UNIT
VIT+
Positive-going
input threshold
voltage
IO = –8 mA
VIT–
Negative-going
input threshold
voltage
IO = 8 mA
Vhys
Hysteresis
voltage
(VIT+ –VIT–)
VIK
Enable-input
clamp voltage
II = –18 mA
–1.5
–1.5
–1.5
V
VOH
High-level
output voltage
VID = 200 mV, IOH = –8 mA,
See Figure 8
2.4
2.4
2.4
V
VOL
Low-level
output voltage
VID = –200 mV, IOL = 8 mA,
See Figure 8
IOZ
Highimpedance
state output
current
VO = 0 or VCC, RE = VCC
–0.01
–0.2
–0.01
–0.2
–0.2
41
0.4
–1
VA or VB = 12 V
VA or VB = 12 V, VCC = 0 V
Other
input
at 0 V
1
41
0.4
–1
1
V
V
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
35
–0.01
–1
mV
0.4
V
1
mA
0.075
0.11
0.1
0.15
0.1
0.15
0.085
0.13
0.12
0.16
0.12
0.16
II
Bus input
current
IIH
High-level input
VIH = 2 V
current, RE
–30
0
–30
3
–30
3
mA
IIL
Low-level input
current, RE
VIL = 0.8 V
–30
0
–30
0
–30
0
mA
CID
Differential
input
capacitance
VID = 0.4 sin (4E6pt) + 0.5 V,
DE at 0 V
15
RE = 0 V,
D and DE = 0 V,
No load
Receiver enabled
and driver
disabled
5
8
7.5
8.5
7.5
10
mA
RE = VCC,
D = VCC,
DE = 0 V,
No load
Receiver disabled
and driver
disabled (standby)
2.5
20
12.5
200
175
450
mA
RE = 0 V,
D and DE = VCC,
No load
Receiver enabled
and driver enabled
11
15.5
11.5
17.5
14
18
mA
VA or VB = –7 V
VA or VB = –7 V, VCC = 0 V
ICC
(1)
(2)
8
Supply current
–0.1
–0.05
–0.3
–0.15
–0.3
–0.15
–0.1
–0.05
–0.3
–0.15
–0.3
–0.15
18
18
mA
pF
Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
RECEIVER SWITCHING CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
Propagation delay time,
low-to-high-level output
tPHL
Propagation delay time,
high-to-low-level output
tsk(p)
Pulse skew (|tPHL – tPLH|)
tsk(pp) (3)
Part-to-part skew
tr
Output signal rise time
tf
Output signal fall time
tPZH (2)
Output enable time to high
level
tPZL (2)
Output enable time to low
level
tPHZ
Output disable time from
high level
tPLZ
Output disable time from
low level
tPZH (3)
Propagation delay time,
standby-to-high-level
output
tPZL (3)
Propagation delay time,
standby-to-low-level output
(1)
(2)
(3)
VID = –1.5 V to 1.5 V,
CL = 15 pF,
See Figure 9
CL = 15 pF,
See Figure 9
TA = 175°C (1)
TA = –55°C to 125°C
TA = 210°C (2)
UNIT
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
30
55
70
30
55
70
30
55
70
ns
30
55
70
30
55
70
30
55
70
ns
ns
4
4
4
15
15
15
ns
1
3
5
1
4
5
1
4
5
ns
1
3
5
1
4
5
1
4
5
ns
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
tPLH
TEST CONDITIONS
CL = 15 pF, DE = 3 V,
See Figure 10
CL = 15 pF, DE = 0,
See Figure 11
15
15
15
ns
15
15
15
ns
20
20
20
ns
15
15
15
ns
6
6
6
ms
6
6
6
ms
Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature.
Production test limits with statistical guardbands are used to ensure high temperature performance.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
THERMAL CHARACTERISTICS FOR JD PACKAGE
over operating free-air temperature range unless otherwise noted
PARAMETER
qJA
Junction-to-ambient thermal
resistance (2)
qJB
Junction-to-board thermal
resistance
qJC
Junction-to-case thermal
resistance
PD
Device power dissipation
(1)
(2)
(3)
(1)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
High-K board (3), No airflow
JD pkg
64.9
No airflow
JD pkg
83.4
High-K board without underfill
JD pkg
27.9
°C/W
JD pkg
6.49
°C/W
HVD11
(10 Mbps)
165
mW
RL= 60 Ω, CL = 50 pF,
DE = VCC, RE = 0 V,
Input to D a 50% duty cycle square
wave at indicated signaling rate
°C/W
See Application Information section for an explanation of these parameters.
The intent of qJA specification is solely for a thermal performance comparison of one package to another in a standardized environment.
This methodology is not meant to and will not predict the performance of a package in an application-specific environment.
JED51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
THERMAL CHARACTERISTICS FOR HKJ PACKAGE
over operating free-air temperature range (unless otherwise noted)
PARAMETERS
qJC
MAX
Junction-to-case thermal resistance (to bottom of case)
5.7
Junction-to-case thermal resistance (to top of case lid - as if formed dead bug)
13.7
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
UNIT
°C/W
9
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
THERMAL CHARACTERISTICS FOR D PACKAGE
over operating free-air temperature range (unless otherwise noted)
PARAMETERS
MAX
UNIT
39.4
°C/W
Junction-to-case thermal resistance (to bottom of case)
qJC
xxx
1000000
Estimated Life (Hours)
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
100000
Electromigration Fail Mode
10000
1000
110
Wirebond Fail Mode
120
130
140
150
160
170
180
190
200
210
Continuous TJ (°C)
(1)
See data sheet for absolute maximum and minimum recommended operating conditions.
(2)
Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect
life).
(3)
The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the
dominant failure mechanism affecting device wearout for the specific device process and design characteristics.
(4)
Wirebond fail mode applicable for D package only.
Figure 1. SN65HVD11SJD/SN65HVD11SKGDA/SN65HVD11SHKJ/SN65HVD11HD
Operating Life Derating Chart
10
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
PARAMETER MEASUREMENT INFORMATION
VCC
DE
II
375 Ω ±1%
VCC
IOA
A
DE
VOD
0 or 3 V
B
54 Ω ±1%
0 or 3 V
D
A
VOD
IOB
60 Ω ±1%
+
_ −7 V < V(test) < 12 V
B
VI
VOB
375 Ω ±1%
VOA
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Figure 2. Driver VOD Test Circuit and Voltage and
Current Definitions
VCC
DE
Input
D
Figure 3. Driver VOD With Common-Mode Loading
Test Circuit
27 Ω ± 1%
A
A
VA
B
VB
VOC(PP)
27 Ω ± 1%
B
CL = 50 pF ±20%
VOC
∆VOC(SS)
VOC
A. Input: PRR = 500 kHz, 50% Duty Cycle, t r <6ns, t f <6ns, Z O = 50 Ω
B. CL Includes fixture and instrumentation capacitance
Figure 4. Test Circuit and Definitions for Driver Common-Mode Output Voltage
3V
VCC
DE
D
Input
Generator
VI
50 Ω
VOD
tPLH
CL Includes Fixture
and Instrumentation
Capacitance
RL = 54 Ω
± 1%
B
1.5 V
VI
CL = 50 pF ±20%
A
tPHL
90%
VOD
1.5 V
tr
≈2V
90%
0V
10%
≈ –2 V
0V
10%
tf
Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
Figure 5. Driver Switching Test Circuit and Voltage Waveforms
A
3V
D
S1
VO
VI
1.5 V
3V
1.5 V
B
DE
Input
Generator
VI
50 Ω
CL = 50 pF ±20%
CL Includes Fixture
and Instrumentation
Capacitance
RL = 110 Ω
± 1%
0.5 V
0V
tPZH
VOH
VO
2.3 V
tPHZ
≈0V
Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
Figure 6. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
11
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
3V
RL = 110 Ω
± 1%
A
3V
VI
1.5 V
VI
S1
D
1.5 V
VO
DE
Input
Generator
≈3V
50 Ω
0V
B
tPZL
tPLZ
≈3V
CL = 50 pF ±20%
0.5 V
CL Includes Fixture
and Instrumentation
Capacitance
VO
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
2.3 V
VOL
Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms
IA
VA + VB
2
VID
VB
VIC
A
R
VA
IO
B
VO
IB
Figure 8. Receiver Voltage and Current Definitions
A
Input
Generator
R
VI
50 Ω
1.5 V
0V
B
VO
CL = 15 pF ±20%
RE
CL Includes Fixture
and Instrumentation
Capacitance
Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
3V
1.5 V
VI
1.5 V
0V
tPLH
VO
tPHL
90% 90%
1.5 V
10%
tr
VOH
1.5 V
10% V
OL
tf
Figure 9. Receiver Switching Test Circuit and Voltage Waveforms
12
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
PARAMETER MEASUREMENT INFORMATION (continued)
3V
3V
A
DE
0 V or 3 V
R
D
VO
B
RE
Input
Generator
VI
A
1 kΩ ± 1%
S1
CL = 15 pF ±20%
B
CL Includes Fixture
and Instrumentation
Capacitance
50 Ω
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
3V
VI
1.5 V
1.5 V
0V
tPZH(1)
tPHZ
VOH –0.5 V
VOH
D at 3 V
S1 to B
1.5 V
VO
≈0V
tPZL(1)
tPLZ
≈3V
VO
1.5 V
VOL +0.5 V
D at 0 V
S1 to A
VOL
Figure 10. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
13
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
3V
A
0 V or 1.5 V
R
B
1.5 V or 0 V
RE
Input
Generator
VI
A
1 kΩ ± 1%
VO
S1
CL = 15 pF ±20%
B
CL Includes Fixture
and Instrumentation
Capacitance
50 Ω
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Generator: PRR = 100 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω
3V
1.5 V
VI
0V
tPZH(2)
VOH
A at 1.5 V
B at 0 V
S1 to B
1.5 V
VO
GND
tPZL(2)
3V
1.5 V
VO
A at 0 V
B at 1.5 V
S1 to A
VOL
Figure 11. Receiver Enable Time From Standby (Driver Disabled)
0 V or 3 V
RE
A
R
Pulse Generator,
15 µs Duration,
1% Duty Cycle
tr, tf ≤ 100 ns
100 Ω
± 1%
B
D
+
_
DE
3 V or 0 V
NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.
Figure 12. Test Circuit, Transient Over Voltage Test
14
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
PARAMETER MEASUREMENT INFORMATION (continued)
FUNCTION TABLES
Table 2. DRIVER (1)
OUTPUTS
INPUT
D
ENABLE
DE
A
B
H
H
H
L
H
L
H
L
Z
Z
Open
H
H
L
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
L
X
(1)
H = high level
L = low level
Z = high impedance
X = irrelevant
? = indeterminate
Table 3. RECEIVER (1)
DIFFERENTIAL INPUTS
VID = VA - VB
ENABLE
RE
OUTPUT
R
VID ≤ −0.2 V
L
L
−0.2 V < VID < −0.01 V
L
?
−0.01 V ≤ VID
L
H
(1)
X
H
Z
Open circuit
L
H
Short circuit
L
H
H = high level
L = low level
Z = high impedance
X = irrelevant
? = indeterminate
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
15
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS
D and RE Inputs
DE Input
VCC
VCC
100 kΩ
1 kΩ
1 kΩ
Input
Input
100 kΩ
9V
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
9V
A Input
B Input
VCC
16 V
VCC
16 V
R3
R1
R1
R3
Input
Input
16 V
R2
16 V
A and B Outputs
R2
R Output
VCC
VCC
16 V
5Ω
Output
Output
9V
16 V
R1/R2 = 36 kΩ
R3 = 180 kΩ
16
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
TYPICAL CHARACTERISTICS
RMS SUPPLY CURRENT
vs
SIGNALING RATE
BUS INPUT CURRENT
vs
BUS INPUT VOLTAGE
70
90
RL = 54 Ω
CL = 50 pF
80
VCC = 3.6 V
70
I I − Bus Input Current − µ A
I CC − RMS Supply Current − mA
TA = 25°C
RE at VCC
DE at VCC
60
VCC = 3 V
40
60
50
VCC = 0 V
40
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
50
TA = 25°C
DE at 0 V
VCC = 3.3 V
30
20
10
0
VCC = 3.3 V
−10
−20
−30
−40
−50
30
0
5
7.5
Signaling Rate − Mbps
−60
−7−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
VI − Bus Input Voltage − V
10
Figure 13.
Figure 14.
HIGH-LEVEL OUTPUT CURRENT
vs
DRIVER HIGH-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT CURRENT
vs
DRIVER LOW-LEVEL OUTPUT VOLTAGE
200
TA = 25°C
DE at VCC
D at VCC
VCC = 3.3 V
100
50
0
−50
−100
−150
180
I OL − Low-Level Output Current − mA
IOH − High-Level Output Current − mA
150
2.5
160
140
TA = 25°C
DE at VCC
D at 0 V
VCC = 3.3 V
120
100
80
60
40
20
0
−200
−4
−2
0
2
4
VOH − Driver High-Level Output Voltage − V
6
−20
−4
−2
0
2
4
6
VOL − Driver Low-Level Output Voltage − V
Figure 15.
8
Figure 16.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
17
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
TYPICAL CHARACTERISTICS (continued)
DRIVER DIFFERENTIAL OUTPUT
vs
FREE-AIR TEMPERATURE
DRIVER OUTPUT CURRENT
vs
SUPPLY VOLTAGE
2.5
VTest = 12 V
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
-100
TA = 25°C
DE at VCC
D at VCC
RL = 54 Ω
−35
I O − Driver Output Current − mA
2.3
VCC = 3.3 V
−30
−25
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
VOD – Driver Differential Output – V
2.4
−40
−20
−15
−10
−5
0
-50
0
50
100
150
200
0
250
0.50
1
1.50
2
2.50
3
3.50
VCC − Supply Voltage − V
TA – Free-Air Temperature – °C
Figure 17.
Figure 18.
ENABLE TIME
vs
COMMON-MODE VOLTAGE
(SEE Figure 20)
600
Enable Time − ns
500
400
300
200
100
0
-7
-2
3
8
13
V(TEST) − Common-Mode Voltage − V
Figure 19.
18
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
TYPICAL CHARACTERISTICS (continued)
375 W ± 1%
Y
D
0 or 3 V
-7 V < V(TEST) < 12 V
VOD
60 W
± 1%
Z
DE
375 W ± 1%
V
50 W
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
Input
Generator
50%
tpZH(diff)
VOD (high)
1.5 V
0V
tpZL(diff)
-1.5 V
VOD (low)
Figure 20. Driver Enable Time From DE to VOD
The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
19
SN65HVD11-HT
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
www.ti.com
APPLICATION INFORMATION
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
256 Devices on Bus
Figure 21. Typical Application Circuit
20
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
SN65HVD11-HT
www.ti.com
SLLS934D – NOVEMBER 2008 – REVISED DECEMBER 2010
THERMAL CHARACTERISTICS OF IC PACKAGES
qJA (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient
temperature divided by the operating power.
qJA is not a constant and is a strong function of:
• the PCB design (50% variation)
• altitude (20% variation)
• device power (5% variation)
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
qJA can be used to compare the thermal performance of packages if the specific test conditions are defined and
used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations,
and the thermal characteristics of holding fixtures. qJA is often misused when it is used to calculate junction
temperatures for other installations.
TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition
thermal performance, and it consists of a single copper trace layer 25 mm long and 2-oz thick. The high-k board
gives best case in-use condition, and it consists of two 1-oz buried power planes with a single copper trace layer
25 mm long and 2-oz thick. A 4% to 50% difference in qJA can be measured between these two test cards.
qJC (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by
the operating power. It is measured by putting the mounted package up against a copper block cold plate to
force heat to flow from die, through the mold compound into the copper block.
qJC is a useful thermal characteristic when a heatsink is applied to package. It is not a useful characteristic to
predict junction temperature because it provides pessimistic numbers if the case temperature is measured in a
nonstandard system and junction temperatures are backed out. It can be used with qJB in 1-dimensional thermal
simulation of a package system.
qJB (Junction-to-Board Thermal Resistance) is defined as the difference in the junction temperature and the
PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate
structure. qJB is only defined for the high-k test card.
qJB provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal
resistance (especially for BGA’s with thermal balls) and can be used for simple 1-dimensional network analysis of
package system, see Figure 22.
Figure 22. Thermal Resistance
Submit Documentation Feedback
Copyright © 2008–2010, Texas Instruments Incorporated
Product Folder Link(s): SN65HVD11-HT
21
PACKAGE OPTION ADDENDUM
www.ti.com
30-Apr-2012
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
PACKAGING INFORMATION
Orderable Device
SN65HVD11HD
(1)
Status
(1)
Package Type Package
Drawing
ACTIVE
SOIC
(2)
Pins
Package Qty
D
8
75
Green (RoHS
& no Sb/Br)
Eco Plan
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
CU NIPDAU Level-1-260C-UNLIM
SN65HVD11SHKJ
ACTIVE
CFP
HKJ
8
1
TBD
Call TI
N / A for Pkg Type
SN65HVD11SHKQ
PREVIEW
CFP
HKQ
8
25
TBD
Call TI
Call TI
SN65HVD11SJD
ACTIVE
CDIP SB
JDJ
8
1
TBD
SN65HVD11SKGDA
ACTIVE
XCEPT
KGD
0
130
TBD
POST-PLATE N / A for Pkg Type
Call TI
N / A for Pkg Type
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN65HVD11-HT :
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
NOTE: Qualified Version Definitions:
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
• Catalog: SN65HVD11
30-Apr-2012
• Catalog - TI's standard catalog product
Addendum-Page 2
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
司
公
限
有 2
件
技 83 器
科 16 元
子 29 子
电 -8 电
创 55 温
德 07 高
鸿 话 油
圳 电 石
深 系 理
联 代
业
专
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
logic.ti.com
Security
www.ti.com/security
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Audio
Amplifiers
Logic
Power Mgmt
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated