BB DF1750U

DF1750
®
Dual Channel
DIGITAL DECIMATION FILTER
FEATURES
DESCRIPTION
● USER SELECTABLE FOR 1/4 OR 1/2
DECIMATING RATIOS
● USER SELECTABLE FOR 16- OR 18-BIT
INPUT DATA
The DF1750 is a high performance 1/4 or 1/2 decimating digital filter that is designed for digital audio applications. This device decimates and filters 2x or 4x (2fs
or 4fs) oversampled data from the output of an ADC to
a data frequency of fs. The technique of oversampling
and decimating allows the input to an oversampling
ADC to be processed by a much lower order, linear
phase, analog low-pass filter. This simultaneously improves system performance while reducing circuit complexity and cost.
● SERIAL DATA INPUT IS COMPATIBLE
WITH THE BURR-BROWN PCM1750 ADC
● FILTERS OUT-OF-BAND NOISE WITH
STOPBAND ATTENUATION > 95dB
● PASSBAND RIPPLE < 0.0005dB
● SINGLE +5V SUPPLY OPERATION WITH
LOW POWER DISSIPATION OF ONLY
250mW
SCSL1
SCSL2
The DF1750 provides output data word rates (fs) up to
50.5kHz and it is compatible with the Burr-Brown
PCM1750, dual 18-bit analog-to-digital converter.
2DS
IBCK
DINL
DINR
XTI
XTO
CKEN
System Clock
Input Interface Circuit
Timing Control
FIR Filter Circuit
IMOD
CKO
CC
BBC
IBO
TEST
OW20
Output Interface Circuit
LRCK
WDCK
BCK
DOUT
MUTE
FSEN
LRPOL
OBPOL
International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •
• Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706
Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
© 1990 Burr-Brown Corporation
PDS-1092
Printed in U.S.A. October, 1993
PIN CONFIGURATION
Top View
SOIC
Top View
DIP
CKO
1
40
VDD1
CKO
1
28
VDD1
NC
2
39
CKEN
SCSL1
2
27
CKEN
SCSL1
3
38
(NC)
SCSL2
3
26
XTO
TEST
4
25
XTI
SCSL2
4
37
XTO
TEST
5
36
XTI
2DS
5
24
MUTE
IMOD
6
23
DOUT
(NC)
6
35
MUTE
2DS
7
34
(NC)
VSS2
7
22
BCK
DINR
8
21
VSS1
IMOD
8
33
DOUT
(NC)
9
32
BCK
CC
9
20
WDCK
10
19
OBPOL
VSS2
10
31
(NC)
BBC
DINR
11
30
(NC)
IBCK
11
18
LRPOL
IBO
12
17
LRCK
(NC)
12
29
VSS1
CC
13
28
WDCK
DINL
13
16
FSEN
VDD2
14
15
OW20
BBC
14
27
OBPOL
(NC)
15
26
(NC)
IBCK
16
25
LRPOL
IBO
17
24
LRCK
DINL
18
23
FSEN
VDD2
19
22
(NC)
(NC)
20
21
OW20
PIN DESCRIPTION
PIN NO.
DIP SOIC
PIN NO.
NAME
I/O*
DESCRIPTION
DIP SOIC
NAME
I/O*
DESCRIPTION
15
21
OW20
ip
Output data bit select
(16bit: OW20 = H, 20 bit: OW20 = L)
I/O pin select
(FSEN = H: BCK, WDCK, LRCK pin=Input
(FSEN = L: BCK, WDCK, LRCK pin=Output)
fs clock
LRCK polarity select
(LRPOL = H: Lch/Rch=Low/High)
(LRPOL = L: Lch/Rch=High/Low)
1
1
CKO
o
Clock output (the same as XTI
frequency), CKO = L when CKEN = H
–
2
2
3
(NC)
SCSL1
ip
XTI Frequency select
–
16
22
23
(NC)
FSEN
ip
3
4
4
5
SCSL2
TEST
ip
ip
(Refer to XTI pin description)
Test, (Test = L; test mode)
17
18
24
25
LRCK
LRPOL
ip
ip
–
5
6
7
(NC)
2DS
–
26
(NC)
ip
6
–
7
8
–
9
8
9
10
11
12
13
IMOD
(NC)
VSS2
DINR
(NC)
CC
ip
ip
1/4 or 1/2 decimating select
2DS = H: 1/4 decimating,
2DS = L: 1/2 decimating
A/D converter interface mode select
o
A/D converter control signal
OBPOL
WDCK
VSS1
(NC)
(NC)
BCK
DOUT
BCK polarity select
2fs clock
GND 1
GND 2
Rch input data
27
28
29
30
31
32
33
ip
ip/o
–
–
ip
19
20
21
–
–
22
23
ip/o
o
Output data bit clock
Data output (Lch or Rch serial
data output).
10
–
14
15
BBC
(NC)
o
A/D converter control signal
–
24
25
34
35
36
(NC)
MUTE
XTI
ip
i
11
16
IBCK
ip
Input data bit clock input
12
13
14
–
17
18
19
20
IBO
DINL
VDD2
(NC)
o
ip
–
Input data bit clock output
Lch input data
+5V
26
–
27
28
37
38
39
40
XTO
(NC)
CKEN
VDD1
*i = Input pin
ip = Input with pull-up resistor
o = Output pin
®
DF1750
2
o
ip
–
Data output mute, (MUTE = L: DOUT = L)
Oscillator Input
(512fs: SCSL1 = H, SCSL2 = H)
(256fs: SCSL1 = H, SCSL2 = L)
(768fs: SCSL1 = L, SCSL2 = H)
(384fs: SCSL1 = L, SCSL2 = L)
Oscillator Output
CKO output select, (CKEN = H, CKO = L)
+5V
ip/o = Input with pull-up resistor when FSEN = H,
output with FSEN = L.
ELECTROSTATIC
DISCHARGE SENSITIVITY
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VDD) .......................................................... –0.3V to +7.0V
Input Voltage (VIN) ...................................................... –0.3V to VDD + 0.3V
Soldering Temperature .................................................................. +255°C
Soldering Time ...................................................................................... 10s
Storage Temperature ...................................................... –40°C to +125°C
Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown
Corporation recommends that all integrated circuits be handled
and stored using appropriate ESD protection methods.
PACKAGE INFORMATION
MODEL
DF1750P
DF1750U
PACKAGE
PACKAGE DRAWING
NUMBER(1)
28-Pin Plastic DIP
40-Pin Plastic SOIC
215
252
NOTE: (1) For detailed drawing and dimension table, please see end of data
sheet, or Appendix D of Burr-Brown IC Data Book.
DC SPECIFICATIONS
ELECTRICAL
VDD = 4.5V to 5.5V, VSS = 0V, TA = –20°C to +80°C unless otherwise specified.
DF1750P/U
PARAMETER
INPUTS
Logic Family
Logic Voltages
PIN
SYMBOL
CONDITION
XTI
XTI
XTI
VIL1
VIH1
VCLK
VIL2
VIH2
IIL1
IIH1
IIL2
ILH1
For Clock Input
For Clock Input
For AC Coupling
FSEN = H
FSEN = H
VIN = 0V
VIN = VDD
VIN = 0V, FSEN = H
VIN = VDD, FSEN = H
VOL
VOH
IOL = 1.6mA, FSEN = L
IOH = –0.4mA, FSEN = L
VDD1, V DD2
IDD
PD
VDD = 5V(4), FSEN = H
Nominal VDD
(1),(2)
XTI
XTI
(1),(2)
Input Leakage Current
(1),(2)
OUTPUTS
Logic Family
Logic Voltages
(2),(3)
MAX
UNIT
0.3VDD
10
10
20
1.0
V
V
VP-P
V
V
µA
µA
µA
µA
0.4
V
30
250
V
mA
mW
+80
+80
°C
°C
0.7VDD
1.8
0.5
2.4
5
5
10
CMOS
(2),(3)
POWER SUPPLY REQUIREMENTS
Supply Voltage
Supply Current
Power Dissipation
TYP
CMOS
(1),(2)
Logic Currents
MIN
2.5
+5
TEMPERATURE RANGE (AMBIENT, TA)
Specification
Operating
–20
–20
NOTES: (1) Refers to pins SCSL1, SCSL2, TEST, 2DS, IMOD, DINR, IBCK, DINL, OW20, MUTE, OBPOL, LRPOL, FSEN, CKEN. (2) Refers to pins BCK, WDCK,
LRCK. (3) Refers to pins CKO, CC, BBC, IBO, DOUT. (4) Test Condition; SCSL1 = H, SCSL2 = H, TEST = H, 2DS = H, IMOD = H, OW20 = H, MUTE = H,
OBPOL = H, LRPOL = H, FSEN = L, CKEN = L. TCY = 38ns (XTI Clock Period), CL= 0pF (Capacitive Load), DINL, DINR (Applicable Input Data).
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
®
3
DF1750
AC SPECIFICATIONS
ELECTRICAL
VDD = 4.5V to 5.5V, VSS = 0V, TA = –20°C to +80°C unless otherwise specified.
XTI Clock
CONDITION
PARAMETER
Crystal
Oscillator
Frequency
External Clock
Pulse Width
DF1750P/U
SCSL1
SCSL2
FREQ
MIN
FOSC
H
H
L
L
H
L
H
L
512fs(1)
256fs
768fs
384fs
H
H
L
L
H
L
H
L
H
H
L
L
H
L
H
L
tCW
External Clock
Pulse Period
SYS
SYMBOL
tCY
TYP
MAX
UNIT
8
4
12
6
26
13
26
20
MHz
MHz
MHz
MHz
512fs
256fs
768fs
384fs
15
38
15
25
70
140
50
100
ns
ns
ns
ns
512fs
256fs
768fs
384fs
38
77
38
50
125
250
84
167
ns
ns
ns
ns
VIH1
1/2VDD
XTI
VIL1
tCW
tCW
tCY
AC Coupling is required with an external clock.
NOTE: (1) fs = Sampling frequency.
ADC CONTROL SIGNAL TIMING (CC, BBC, AND IBO) WITH IMOD = H
DF1750P/U
PARAMETER
2DS = H
CC Pulse Width (H)
S/H Acquisition Time
CC-BBC Time
BBC Pulse Period
BBC Pulse Width (H)
BBC Pulse Width (L)
BBC-IBO Time
IBO Pulse Period
IBO Pulse Width (H)
IBO Pulse Width (L)
SYMBOL
MIN
TYP
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
65
670
285
228
65
140
140
228
140
65
1/256fs
9/256fs
4/256fs
3/256fs
1/256fs
2/256fs
2/256fs
3/256fs
2/256fs
1/256fs
MAX
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
T1
1.5V
CC
T4
T2
T3
T5
1.5V
BBC
T6
T7
2DS = L
CC Pulse Width (H)
S/H Acquisition Time
CC-BBC Time
BBC Pulse Period
BBC Pulse Width (H)
BBC Pulse Width (L)
BBC-IBO Time
IBO Pulse Period
IBO Pulse Width (H)
IBO Pulse Width (L)
T8
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
130
1350
570
456
130
280
280
456
280
130
1/256fs
9/256fs
4/256fs
3/256fs
1/256fs
2/256fs
2/256fs
3/256fs
2/256fs
1/256fs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
®
DF1750
4
T9
1.5V
IBO
T10
SERIAL INPUT TIMING (IBCK, DINL, DINR) WITH IMOD=H
DF1750P/U
PARAMETER
SYMBOL
MIN
TYP
MAX
UNIT
tIBW
tIBY
tSL
50
3/12.928MHz(1)
50
1/256fs
3/256fs
tHL
50
ns
tSD
25
ns
2DS = H
IBCK Pulse Width
IBCK Pulse Period
Data Word Latch
Set-up Time
Data Word Latch
Hold Time
DINL, DINR
Set-up Time
DINL, DINR
Hold Time
ns
ns
ns
1.5V
CC
tSL
t HL
tHD
25
1.5V
IBCK
t IBW
ns
t IBW
t IBY
t HD
tSD
2DS = L
IBCK Pulse Width
IBCK Pulse Period
Data Word Latch
Set-up Time
Data Word Latch
Hold Time
DINL, DINR
Set-up Time
DINL, DINR
Hold Time
tIBW
tIBY
tSL
50
3/12.928MHz(1)
50
tHL
50
ns
tSD
25
ns
tHD
25
ns
1/128fs
3/128fs
ns
ns
ns
DINL
DINR
1.5V
Normally, IBO output is connected to IBCK
(Refer to the applications diagram).
NOTE: (1) 12.928MHz = 256 x 50.5kHz (max sampling frequency).
ADC CONTROL SIGNAL TIMING (CC, BBC, AND IBO) WITH IMOD = L
DF1750P/U
PARAMETER
SYMBOL
MIN
TYP
MAX
UNIT
2DS = H
CC Pulse Width (H)
BBC Pulse Width
BBC Pulse Period
IBO Pulse Width
IBO Pulse Period
CC-BBC Time
CC-IBO Time
BBC-IBO Time
t CCW
tCCW
tBBW
tBBY
tBOW
tBOY
tCCBB
tCCBO
tBBBO
130
130
-5
130
130
1/8fs
1/128fs
1/64fs
1/128fs
1/64fs
0
1/128fs
1/128fs
ns
ns
ns
ns
ns
ns
ns
ns
20
CC
1.5V
tBBY
tBBW
1.5V
tBOW
tCCW
tBBW
tBBY
tBOW
tBOY
tCCBB
tCCBO
tBBBO
280
280
–5
280
280
1/4fs
1/64fs
1/32fs
1/64fs
1/32fs
0
1/64fs
1/64fs
ns
ns
ns
ns
ns
ns
ns
ns
20
t CCBB
tBBW
BBC
2DS = L
CC Pulse Width (H)
BBC Pulse Width
BBC Pulse Period
IBO Pulse Width
IBO Pulse Period
CC-BBC Time
CC-IBO Time
BBC-IBOTime
t CCW
tBOY
tBBBO
t CCBO
IBO
1.5V
tBOW
®
5
DF1750
SERIAL INPUT TIMING (IBCK, DINL, DINR) WITH IMOD = L
DF1750P/U
PARAMETER
SYMBOL
MIN
TYP
MAX
UNIT
tIBW
tIBY
tSL
100
1/3.232MHz(1)
50
1/128fs
1/64fs
tHL
50
ns
tSD
25
ns
2DS = H
IBCK Pulse Width
IBCK Pulse Period
Data Word Latch
Set-up Time
Data Word Latch
Hold Time
DINL, DINR
Set-up Time
DINL, DINR
Hold Time
ns
ns
ns
1.5V
CC
t HL
tSL
1.5V
IBCK
t IBW
tHD
25
ns
t IBW
t IBY
t HD
tSD
2DS = L
IBCK Pulse Width
IBCK Pulse Period
Data Word Latch
Set-up Time
Data Word Latch
Hold Time
DINL, DINR
Set-up Time
DINL, DINR
Hold Time
tIBW
tIBY
tSL
100
1/3.232MHz(1)
50
tHL
50
ns
tSD
25
ns
tHD
25
ns
1/64fs
1/32fs
DINL
DINR
ns
ns
ns
1.5V
Normally, IBO output is connected to IBCK.
(Refer to the application diagram).
NOTE: (1) 3.232MHz = 64 x 50.5kHz (max sampling frequency).
SERIAL OUTPUT TIMING WITH FSEN = H
DF1750P/U
PARAMETER
SYMBOL
BCK Pulse Width
BCK Pulse Period
LRCK Pulse Width
LRCK Pulse Period
LRCK Set-up Time
LRCK Hold Time
Output Data
Hold Time
Output Data
Delay Time
tBCW
tBCY
tLCW
tLCY
tBL
tLB
tH
MIN
TYP
MAX
100
1/128fs
1/3.232MHz(1) 1/64fs
1/2fs
1/50.5kHz
1/fs
50
50
0
tD
UNIT
ns
ns
µs
µs
ns
ns
ns
100
REMARKS
LRCK
1.5V
tBL
tLB
Duty = 50%
1.5V
BCK
(OBPOL = H)
CL = 0pF
ns
tBCW
tBCW
tBCY
t H, t D
CL = 15pF
1.5V
DOUT
NOTE: (1) 3.232MHz = 64 x 50.5kHz (max sampling frequency).
SERIAL OUTPUT TIMING WITH FSEN = L
DF1750P/U
PARAMETER
SYMBOL
BCK Pulse Width
BCK Pulse Period
WDCK Pulse Width
WDCK Pulse Period
LRCK Pulse Width
LRCK Pulse Period
Output Data
Delay Time
tOBCW
tOBCY
tWDCW
tWDCY
tLRCW
tLRCY
tDHL
tDLH
MIN
140
–10
–10
TYP
MAX
1/128fs
1/64fs
1/4fs
1/2fs
1/2fs
1/fs
30
30
UNIT
ns
ns
µs
µs
µs
µs
ns
ns
(OBPOL
=H)
t OBCW
t OBCW
tOBCY
t DHL
LRCK
WDCK
DOUT
®
DF1750
1.5V
BCK
6
t DLH
1.5V
THEORY
According to the Nyquist Theorem, digital audio recordings
sampled at a rate of 44.1kHz (CD) or 48kHz (DAT) should
accurately reproduce the full 20kHz audio bandwidth.
Unfortunately, if frequencies higher than1/2 the sample rate
are seen at the input of an analog-to-digital converter,
aliasing back into the baseband will occur. At these sample
frequencies, the way to assure that aliasing does not occur
is to use complicated high order filters at the input of the
ADC . These filters can be expensive and they can also have
undesirable phase characteristics. These problems can be
avoided by using an oversampling ADC (such as the
PCM1750) with a decimating filter, where a high order
filter can be replaced with a low order filter which has very
little phase distortion (Figure 1).
0
2
Analog
Filter
3.0
4.0 x fs
1.0
2.0
3.0
4.0 x fs
Foldover
Noise
1.0
2.0
3.0
Foldover
Noise
Foldover
Noise
1.0
2.0
3.0
4.0 x fs
Foldover
Noise
Foldover
Noise
Signal
4.0 x fs
0
1.0
2.0
3.0
4.0 x fs
Signal
F/N
F/N
F/N
F/N
0
1.0
2.0
3.0
4.0 x fs
A/D
(g)
1st
LPF
4.0 x fs
Foldover
Noise
Signal
0
(f)
2.0
Signal
0
(e)
1.0
Signal
0
(d)
3.0
Band limited by the
analog filter.
0
(c)
2.0
3
Sampling
4
1.0
(b)
With the oversampling-decimating technique, the input
signal (Figure 2a) is band limited by a low order analog
low-pass filter as shown in Figure 2b. This signal is 4-times
oversampled, with its spectra and foldover noise shown in
Figure 2c. The DF1750 first rejects the high frequency
components of the 4fs ADC output (Figure 2d). A 1/2
decimating filter then processes this data into a 2fs data
stream. This output spectra is shown in Figure 2e. The high
frequency components of the 2fs data are then removed,
producing the output spectra shown in Figure 2f. A second
1/2 decimating filter processes the 2fs data to a final fs data
stream and the original signal is restored without distortion
(Figure 2g). Note, when operating in the 1/2 decimating
mode the DF1750 processes data through the first LPF and
a single 1/2 decimating filter only.
1
Signal
(a)
1st 1/2
Decimating
5
2nd
LPF
6
2nd 1/2
Decimating
7
FIGURE 2. The Associated Spectra of the OversamplingDecimating Technique.
FIGURE 1. A Block Diagram of an Oversampling ADC
Followed by Digital Decimation.
®
7
DF1750
THEORETICAL FILTER
CHARACTERISTICS
1/4 DECIMATING, INPUT DATA FREQUENCY = 4fs
1/2 DECIMATING, INPUT DATA FREQUENCY = 2fs
PARAMETER
CHARACTERISTICS
PARAMETER
CHARACTERISTICS
Passband
Stopband
Passband Ripple
Stopband Attenuation
DC to 0.4583fs
0.5417fs and Above
±0.0005 dB
95dB min, 0.5417fs to 1.4583fs
88dB min, 1.4583fs to 2.5417fs
95dB min, 2.5417fs to 3.4583fs
Constant, Linear Phase
Passband
Stopband
Passband Ripple
Stopband Attenuation
Group Delay Time
DC to 0.4583fs
0.5417fs and above
±0.0002dB
95dB min, 0.5417fs to 1.4583fs
Constant, Linear Phase
Group Delay Time
0
0
20
Attenuation (dB)
Attenuation (dB)
20
40
60
60
80
80
100
100
0.5
1
2
3
0.5
4
(x fs)
DF1750 1/4 Decimating Filter Tranfer Characteristics.
1
1.5
2
(x fs)
DF1750 1/2 Decimating Filter Transfer Characteristics.
—0.001
Attenuation (dB)
—0.001
Attenuation (dB)
40
—0.0005
0
—0.0005
0
0.0005
0.0005
0.001
0.001
0.1
0.2
0.3
0.1
0.4 0.45
0.2
0.3
0.4
(x fs)
DF1750 1/2 Decimating Passband Frequency Response.
0
0
20
20
Attenuation (dB)
Attenuation (dB)
DF1750 1/4 Decimating Passband Frequency Response.
0.45
(x fs)
40
60
80
100
40
60
80
100
0.5
0.55
0.6
0.5
(x fs)
0.6
(x fs)
DF1750 1/4 Decimating Transitionband Frequency Response.
DF1750 1/2 Decimating Transitionband Frequency Response.
®
DF1750
0.55
8
FUNCTIONAL DESCRIPTION
1/4 AND 1/2 DECIMATING FUNCTIONS
1/4 or 1/2 decimating filtering converts 4fs or 2fs oversampled
data back to a sampling rate of fs data by a digital filtering
algorithm. 2DS is used to select 1/4 or 1/2 decimating.
1 WORD
IBCK
DINL
DINR
2DS = H; 1/4 decimating (0.5417fs ~ 3.4583fs)
2DS = L; 1/2 decimating (0.5417fs ~ 1.4583fs)
MSB
2
3
14(16)15(17) LSB
SIPO Loading Timing
The filter arithmetic block consists of two 1/2 decimating
finite impulse response (FIR) filters as shown in Figure 3.
2fs
INPUT
The numbers in the parenthesis in the DINL and DINR waveforms are
applicable to the 18-bit input mode.
2nd FIR
2fs 1/2 Decimating fs
OUTPUT
Filter
(141 Taps)
1st FIR
1/2 Decimating
Filter
(21 Taps)
Latch Timing
FIGURE 4. SIPO Input Data Loading Timing.
4fs
2DS
(1) IMOD = H
FIGURE 3. Filter Arithmetic Structure
CC
SYSTEM CLOCK
The system clock frequency can be 256fs, 364fs, 512fs, or
768fs selectable with SCSL1 and SCSL2 as indicated in
Table I. An external clock (applied to Pin XTI) or crystal
oscillator (Pins XTI and XTO) can be employed. AC coupling is required for an external clock.
The XTI input clock is available as an output at pin CKO,
when CKEN = L. CKO stays low when CKEN = H.
DINL
L1
L2
L3
L4
DINR
R1
R2
R3
R4
LATCH (L) LOADING
L1
L2
L3
L4
LATCH (R) LOADING
R1
R2
R3
R4
(2) IMOD = L
CC
SCSL1
H
SCSL2
XTI Clock
Frequency
FXI
Clock
Input
Internal System
Clock
Frequency
L
H
L
H
L
512fs
256fs
768fs
384fs
External Clock or
Crystal Oscillator
FSYS
DINL
L1
L2
L3
L4
DINR
R1
R2
R3
R4
LATCH (L) LOADING
L1
L2
L3
L4
LATCH (R) LOADING
R1
R2
R3
R4
256fs
TABLE I. System Clock and Internal Clock Frequency
Selection.
FIGURE 5. Input Data Latch/Loading Timing.
SERIAL DATA INPUT
The DF1750 is programmed for accepting the correct number of input data bits per word by the IMOD pin. A 16-bit
input word is selected with IMOD = L and an 18-bit input
word is selected with IMOD = H. Set IMOD = H for use
with the PCM1750. The serial input data format is two's
complement and MSB first. Both the left and right channel
data are loaded into the DF1750 simultaneously.
Each bit of the data is loaded to each channel’s SIPO (Serial/
parallel conversion register) by the rising edge of the Input
Bit Clock, IBCK (Figure 4). After the serial input data is
loaded, the data is latched into a parallel register by the
rising edge of CC for IMOD = H and the falling edge of CC
for IMOD = L (Figure 5).
®
9
DF1750
ADC CONTROL SIGNALS (CC, BBC, AND IBO) WITH IMOD = H
(1) 1/4 Decimating
(2DS = H)
(1/4fs)
31
0
1
2
3
4
5
25
30
31
0
1
30
31
0
1
(128fs)
BBC
1
CC
(SOUTL) DINL
2
2
MSB
(SOUTL) DINR
IBO
(2) 1/2 Decimating
15
3
3
16
15
17
16
17
18
19
LSB
(2DS = L)
(1/2fs)
31
0
1
2
3
4
25
5
(64fs)
BBC
1
CC
(SOUTL) DINL
2
2
MSB
(SOUTL) DINR
IBO
15
3
3
15
16
17
16
17
18
19
LSB
(SOUTL) (SOUTR) are outputs of the PCM1750.
FIGURE 6. ADC Control Signals With IMOD = H. (Applicable for use with the Burr-Brown PCM1750 ADC).
b. Sampling rate clock (LRCK)
When FSEN = H, apply a 50% duty cycle sampling
frequency (fs) to pin LRCK.
When FSEN = L, a fs clock generated from the system
clock is available at pin LRCK.
ADC CONTROL SIGNALS
(CC, BBC AND IBO) WITH IMOD = L
(1) 1/4 Decimating
15
(2DS = H)
1
0
2
(1/4fs)
12
13
14
15
(64fs)
c. Word Clock (WDCK)
When FSEN = L, WDCK provides a 2fs clock that is
derived from the system clock.
BBC
IBO
CC
DINL
DINR
MSB
2
3
(2) 1/2 Decimating
15
15
d. Output bit clock
When FSEN = H, apply a 64fs clock to pin BCK.
When FSEN = L, a 64fs clock generated from the system
clock is available at pin BCK.
LSB
(2DS = L)
1
0
14
2
(1/2fs)
12
13
14
15
e. LRCK polarity selection (LRPDL)
LRPOL = H; Lch/Rch = Low/High
LRPOL = L; Lch/Rch = High/Low
(Regardless of LRCK’s I/O mode).
(32fs)
BBC
IBO
CC
DINL
DINR
MSB
2
3
14
15
f. BCK polarity selection (OBPOL)
OBPOL = H; DOUT changes state at rising edge of
BCK.
OBPOL = L; DOUT changes state at falling edge of
BCK.
(Regardless of BCK’s I/O mode).
LSB
FIGURE 7. ADC Control Signals with IMOD = L.
OUTPUT INTERFACE
(BCK, WDCK, LRCK, OBPOL, LRPOL, FSEN)
The output of the DF1750 can be interfaced to many different
devices by programming the output interface pins. These pins
provide the following functions:
g. Timing relation between XTI and BCK, WDCK, LRCK
clocks.
When FSEN = H, clocks to BCK and LRCK must be
synchronized to XTI. However, there is no limit on their
phase differences (between XTI and BCK, LRCK clocks).
a. Output control clocks, BCK, WDCK, LRCK I/O
selection (FSEN).
FSEN = H; BCK WDCK, LRCK = Input
FSEN = L; BCK WDCK, LRCK = Output
®
DF1750
10
SERIAL DATA OUTPUT
The number of bits per output data word is selected with the
OW20 pin. With OW20 = H a 16-bit output is selected and
with OW20 = L a 20-bit output is selected.
The serial output data format is two's complement and MSB
first. The left and right channel outputs are alternated, with
the left channel preceding the right channel. Each data word
is allocated in each pulse of LRCK and the LSB is located
at the end of the LRCK pulse as shown in Figure 8.
The output of the DF1750 can be muted by the use of the
MUTE pin. When MUTE = L, the output stays low (muted).
Under normal operation MUTE = H.
LRCK
(LRPOL = H)
Lch WORD
MSB
DOUT
Rch WORD
LSB
MSB
LSB
FIGURE 8. Output Timing.
TIMING DIAGRAMS
INPUT
1/4 decimating
(2DS = H)
IMOD = H
1/2fs
1/4fs
128 1
INTERNAL
CLOCK
(128fs)
16
8
24
40
32
48
56
64
CC
BBC
IBCK
DINL
DINR
INVALID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
INVALID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NOTE: Bit 1 is the most significant bit.
1/4 decimating
(2DS = H)
IMOD = L
1/2fs
1/4fs
CC
BBC (64fs)
IBCK (64fs)
DINL
DINR
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
NOTE: Bit 1 is the most significant bit.
®
11
DF1750
1/2 decimating
(2DS = L)
IMOD = H
1/2fs
INTERNAL 64 1
CLOCK
(64fs)
8
16
24
32
CC
BBC
IBCK
DINL
DINR
INVALID
1
2
3
4
5
6
8
7
9
10
11
12
13
15
14
16
17
18
INVALID
NOTE: Bit 1 is the most significant bit.
1/2 decimating
(2DS = L)
IMOD = L
1/2fs
CC
BBC (32fs)
IBCK (32fs)
DINL
1
2
3
DINR
4
5
6
7
8
9
10
11
12
13
14
15
16
NOTE: Bit 1 is the most significant bit.
OUTPUT
LRCK
(LRPOL = H)
(LRPOL = L)
WDCK
BCK (64fs)
64 1
8
16
24
32
40
48
56
64
(OBPOL = H)
(OBPOL = L)
DOUT
LSB
16
MSB
1
Lch
MSB
1
LSB
16
Rch
LSB
16
(OW20 = H)
LSB
20
MSB
1
Lch
LSB
20
MSB
1
Rch
LSB
20
(OW20 = L)
APPLICATIONS
PCM1750 by the DF1750. The 4fs oversampled data of the
PCM1750 is filtered by the DF1750 to provide a data stream
of fs. A PCM1750/DF1750 evaluation board, DEM1133, is
available from Burr-Brown. This board incorporates the features mentioned above as well as an AES/EBU interface, test
points for monitoring both the serial and parallel data outputs,
and a breadboard area for user experimentation.
A typical circuit configuration for digital audio recording is
shown in Figure 9. Each of the stereo input channels passes
through a six pole Generalized Immittance Converter (GIC)
low pass analog filter. This filter features extremely low
distortion and negligible phase shift. The band limited signals
are 4x oversampled by the dual-channel PCM1750 A/D
converter. Clock and convert signals are provided to the
®
DF1750
12
®
13
DF1750
A1*
5
A4*
5
A4*
1
1
7
3.92kΩ
A6*
5
6
7.32k Ω
7.32k Ω
1
3.92k Ω
5
6
7.32kΩ
7.32kΩ
A3*
A5*
1000pF
3
2
7
1
A3*
1000pF
3.48k Ω
1000pF
2
3
A6*
1000pF
1.33kΩ
1000pF
3.48k Ω
1000pF
2
3
1000pF
1
5
6
1
1.33k Ω
A5*
5
6
7
A2*
*A1 – A2 = 1/2 OPA2604 with ±15V supplies or 1/2 5532 with ±5V.
1000pF
3.48k Ω
1000pF
2
3
1.33k Ω
A1*
A2*
1000pF
3
2
7
25k Ω
150Ω
150Ω
0.01µF
10 µF
0.1µ F
10 µF
25k Ω
47k Ω
150k Ω
0.01µ F
47k Ω 0.01µ F
220pF
220pF
0.01µF
47k Ω
+
+
150k Ω
47kΩ
AGND
28 OFF ADJ
27 MSB ADJ
26 VINL
DGND
10Ω
10Ω
+5V
+
-5V
10µF + 10µF
-VA 1
+VA 2
SOUTL 3
CLK 4
+VD 5
24 VREF OUT
25 VREF IN
+VD 6
+VD 7
DCOM 8
ACOM 9
DCOM 10
CONVERT 11
SOUTR 12
+VA 13
-VA 14
23 ACOM
22 REF COM
21 REF CAP
20 ACOM
19 VREF OUT
18 VREF IN
17 VINR
16 MSB ADJ
15 OFF ADJ
PCM1750P
+5V
CC
DINR
VSS2
IMOD
2DS
TEST
SCSL2
SCSL1
CKO
14 VDD2
13 DINL
12 IBO
11 IBCK
10 BBC
9
8
7
6
5
4
3
2
1
OW20
FSEN
LRCK
LRPOL
OBPOL
WDCK
VSS1
BCK
DOUT
MUTE
XTI
XTO
CKEN
VDD1
DF1750P
(28-PIN DIP PKG)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
10pF
+5V
Interleaved
Digital Output
10pF
16.9344 MHz
1.00M Ω
FIGURE 9. Circuit diagram for a typical digital audio application using the DF1750 for decimating oversampled data from the output of the PCM1750 dual channel ADC.
The OPA2604s are configured in a generalized immittance converter (GIC) filter arrangement to avoid aliasing in the PCM1750.
7
6
7.32k Ω
7.32kΩ
3.92kΩ
1000pF
3.48k Ω
1000pF
6
Left Channel
Analog Input
7
2
7.32kΩ
1.33k Ω
3
7.32kΩ
3.92kΩ
Right Channel
Analog Input
25k Ω
25kΩ