KEC KGH15N120NDA

SEMICONDUCTOR
KGH15N120NDA
TECHNICAL DATA
General Description
A
N
O
B
Q
K
H
I
FEATURES
R
C
J
F
KEC NPT IGBTs offer lowest losses and highest energy efficiency for
application such as IH (induction heating), UPS, General inverter and other
soft switching applications.
・High speed switching
G
・Higher system efficiency
・Soft current turn-off waveforms
D
E
L
・Square RBSOA using NPT technology
M
d
P
1
P
2
T
3
DIM MILLIMETERS
_ 0.20
A
15.60 +
_ 0.20
B
4.80 +
_ 0.20
C
19.90 +
_ 0.20
D
2.00 +
_ 0.20
d
1.00 +
_ 0.20
E
3.00 +
_ 0.20
3.80 +
F
_ 0.20
G
3.50 +
_ 0.20
H
13.90 +
_ 0.20
I
12.76 +
_ 0.20
J
23.40 +
K
1.5+0.15-0.05
_ 0.30
L
16.50 +
_ 0.20
M
1.40 +
_ 0.20
13.60 +
N
_ 0.20
9.60 +
O
_ 0.30
P
5.45 +
_ 0.10
Q
3.20 +
_ 0.20
R
18.70 +
0.60+0.15-0.05
T
1. GATE
2. COLLECTOR
3. EMITTER
TO-3P(N)-E
MAXIMUM RATING (Ta=25℃)
CHARACTERISTIC
SYMBOL
RATING
UNIT
Collector-Emitter Voltage
VCES
1200
V
Gate-Emitter Voltage
VGES
±20
V
24
A
15
A
ICM*
45
A
IF
15
A
IFM
45
A
200
W
80
W
Tj
150
℃
Tstg
-55 to + 150
℃
@TC=25
Collector Current
IC
@TC=100
Pulsed Collector Current
Diode Continuous Forward Current @TC=100
Diode Maximum Forward Current
Maximum Power Dissipation
@TC=25
PD
@TC=100
Maximum Junction Temperature
Storage Temperature Range
C
G
E
*Repetitive rating : Pulse width limited by max. junction temperature
THERMAL CHARACTERISTIC
CHARACTERISTIC
SYMBOL
MAX.
UNIT
Thermal Resistance, Junction to Case (IGBT)
RθJC
0.6
℃/W
Thermal Resistance, Junction to Case (DIODE)
RθJC
2.8
℃/W
2009. 2. 19
Revision No : 1
1/6
KGH15N120NDA
ELECTRICAL CHARACTERISTICS (Ta=25℃)
CHARACTERISTIC
SYMBOL
Collector-Emitter Breakdown Voltage
BVCES
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
1200
-
-
V
Static
VGE=0V , IC=3mA
Collector Cut-off Current
ICES
VGE=0V, VCE=1200V
-
-
3
mA
Gate Leakage Current
IGES
VCE=0V, VGE=±20V
-
-
±100
nA
Gate Threshold Voltage
VGE(th)
VGE=VCE, IC=15mA
3.5
5.5
7.5
V
Collector-Emitter Saturation Voltage
VCE(sat)
VGE=15V, IC=15A
-
2.2
2.7
V
-
140
-
nC
-
12
-
nC
Dynamic
Total Gate Charge
Qg
Gate-Emitter Charge
Qge
Gate-Collector Charge
Qgc
-
65
-
nC
Turn-On Delay Time
td(on)
-
60
-
ns
tr
-
50
-
ns
-
180
-
ns
-
70
-
ns
-
3.0
-
mJ
Rise Time
VCC=600V, VGE=15V, IC= 15A
td(off)
Turn-Off Delay Time
tf
Fall Time
VCC=600V, IC=15A, VGE=15V,RG=10Ω
Inductive Load, TC = 25℃
Turn-On Switching Loss
Eon
Turn-Off Switching Loss
Eoff
-
0.6
-
mJ
Total Switching Loss
Ets
-
3.6
-
mJ
Turn-On Delay Time
td(on)
-
60
-
ns
tr
-
50
-
ns
-
190
-
ns
-
100
-
ns
-
3.1
-
mJ
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
VCC=600V, IC=25A, VGE=15V, RG=10Ω
Inductive Load, TC = 125℃
Turn-On Switching Loss
Eon
Turn-Off Switching Loss
Eoff
-
0.8
-
mJ
Total Switching Loss
Ets
-
3.9
-
mJ
Input Capacitance
Cies
-
1400
-
pF
Ouput Capacitance
Coes
-
140
-
pF
Reverse Transfer Capacitance
Cres
-
57
-
pF
MIN.
TYP.
MAX.
UNIT
TC=25
-
1.5
1.9
TC=125
-
1.6
-
TC=25
-
200
300
IF = 15A
TC=125
-
270
-
di/dt = 200A/μs
TC=25
-
26
34
TC=125
-
30
-
VCE=30V, VGE=0V, f=1MHz
ELECTRICAL CHARACTERISTIC OF DIODE
CHARACTERISTIC
SYMBOL
VF
Diode Forward Voltage
IF = 15A
trr
Diode Reverse Recovery Time
Diode Peak Reverse Recovery Current
2009. 2. 19
TEST CONDITION
Irr
Revision No : 1
V
ns
A
2/6
KGH15N120NDA
Fig 2. Typical Saturation Voltage Characteristics
Fig 1. Typical Output Characteristics
17V
20V
TC=25 C
160
Common Emitter
15V
140
120
100
12V
80
60
10V
40
20
Collector Current IC (A)
Collector Current IC (A)
180
80 V = 15V
GE
TC = 25 C
TC = 125 C
60
40
20
VGE = 7V
0
0
0
2
4
6
8
0
10
Collector - Emitter Voltage VCE (V)
Collector - Emitter Voltage VCE (V)
Collector - Emitter Voltage VCE (V)
Common Emitter
VGE = 15V
3.5
3.0
24A
2.5
IC = 15A
100
75
50
20
Common Emitter
TC = 25 C
16
12
8
24A
15A
IC = 7.5A
4
0
0
125
4
12
16
20
Fig 6. Capacitance Characteristics
20
4000
Common Emitter
TC = 125 C
Common Emitter
VGE = 0V, f = 1MHZ
TC = 25 C
3500
16
3000
Capacitance (pF)
Collector - Emitter Voltage VCE (V)
Fig 5. Saturation Voltage vs. VGE
12
8
24A
15A
Ciss
2500
2000
Coss
1500
Crss
1000
500
IC = 7.5A
0
0
4
8
12
16
Gate - Emitter Voltage VGE (V)
2009. 2. 19
8
Gate - Emitter Voltage VGE (V)
Case Temperature TC ( C )
4
6
Fig 4. Saturation Voltage vs. VGE
4.0
25
4
Collector - Emitter Voltage VCE (V)
Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level
2.0
2
Revision No : 1
20
0
1
10
Collector - Emitter Voltage VCE (V)
3/6
KGH15N120NDA
Fig 7. Turn-On Characteristics vs. Gate Resistance
Fig 8. Turn-Off Characteristics vs. Gate Resistance
Common Emitter
100
Switching Time (ns)
Switching Time (ns)
1000 VCC = 600V, VGE = 15V
td(on)
tr
Common Emitter
VCC = 600V, VGE = 15V
IC = 15A
TC = 25 C
TC = 125 C
10
0
10
20
30
40
50
IC = 15A
TC = 25 C
TC = 125 C
td(off)
100
tf
10
60
70
0
10
Gate Resistance RG (Ω)
20
30
40
50
60
70
Gate Resistance RG (Ω)
Fig 9. Switching Loss vs. Gate Resistance
Fig 10. Turn-On Characteristics vs. Collector Current
10
Common Emitter
VGE = 15V, RG = 15Ω
TC = 25 C
TC = 125 C
1
Eoff
Common Emitter
VCC = 600V, VGE = 15V
IC = 25A
TC = 25 C
TC = 125 C
0.1
0
10
20
30
40
50
60
Switching Time (ns)
Switching Loss (mJ)
Eon
100
td(on)
tr
70
5
Fig 11. Turn-Off Characteristics vs. Collector Current
20
25
Fig 12. Switching Loss vs. Collector Current
1000
Common Emitter
VGE = 15V, RG = 15Ω
TC = 25 C
TC = 125 C
td(off)
100
tf
Common Emitter
VGE = 15V, RG = 15Ω
TC = 25 C
TC = 125 C
Switching Loss (mJ)
10
Switching Time (ns)
15
Collector Current IC (Α)
Gate Resistance RG (Ω)
Eon
Eoff
1
0.1
10
5
10
15
20
Collector Current IC (Α)
2009. 2. 19
10
Revision No : 1
25
5
10
15
20
25
Collector Current IC (Α)
4/6
KGH15N120NDA
Fig 13. Gate Charge Characteristics
Common Emitter
100 I MAX (Pulsed)
C
14 RL = 40Ω
50µs
TC = 25 C
12
Collector Current IC (A)
Gate-Emitter Voitage VGE (V)
16
Fig 14. SOA Characteristics
600V
10
400V
8
Vcc = 200V
6
4
2
10 IC MAX (Continuous)
1
0
30
60
90
120
150
1ms
Single nonrepetitive pulse
DC
0.1 Tc= 25 C
0.01
0
100µs
Curves must be derated
linearly with increase
in temperature
0.1
10
1
100
1000
Collector-Emitter Voltage VCE (V)
Gate Charge Qg (nC)
Fig 15. Turn-Off SOA
Collector Current IC (A)
100
10
Safe Operating Area
VGE = 15V, TC =125 C
1
1
10
100
1000
Collector-Emitter Voltage VCE (V)
Fig 16. Transient Thermal Impedance of IGBT
Thermal Resistance (Zthjc)
10
1
0.5
0.2
0.1
0.1
0.05
PDM
0.02
t1
0.01
t2
0.01
1. Duty factor D=t1/t2
2. Peak Tj = Pdm Zthjc + TC
Single Pluse
1E-3
1E-5
1E-4
1E-3
0.01
0.1
1
10
Rectangular Pulse Duration (sec)
2009. 2. 19
Revision No : 1
5/6
KGH15N120NDA
Fig 17. Forward Characteristics
Reverse Recovery Current IRRM (A)
Forward Current IF (A)
50
Fig 18. Reverse Recovery Current
TC = 25 C
TC = 125 C
10
1
TC = 125 C
TC = 25 C
0.1
0
0.4
0.8
1.2
1.6
2.0
2.4
Forward Voltage VF (V)
30
25
di/dt=200A/µs
20
15
di/dt=100A/µs
10
5
0
0
5
10
15
20
25
Forward Current IF (A)
Fig 19. Reverse Recovery Time
Reverse Recovery Time trr (ns)
400
300
di/dt=100A/µs
200
di/dt=200A/µs
100
0
0
5
10
15
20
25
Forward Current IF (A)
2009. 2. 19
Revision No : 1
6/6