TI RM46L850

RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
RM46Lx50 16/32-Bit RISC Flash Microcontroller
1 RM46Lx50 16/32-Bit RISC Flash Microcontroller
1.1
Features
• High-Performance Microcontroller for Safety
Critical Applications
– Dual CPUs running in lockstep
– ECC on flash and RAM interfaces
– Built-In Self Test for CPU and on-chip RAMs
– Error Signaling Module with Error Pin
– Voltage and Clock Monitoring
• ARM® Cortex™ – R4F 32-bit RISC CPU
– 1.66DMIPS/MHz with 8-stage pipeline
– FPU with Single/Double Precision
– 12-Region Memory Protection Unit
– Open Architecture with 3rd Party Support
• Operating Conditions
– 200MHz System Clock
– Core Supply Voltage (VCC): 1.14V - 1.32V
– I/O Supply Voltage (VCCIO): 3.0V - 3.6V
• Integrated Memory
– Up to 1.25MB Program Flash with ECC
– Up to 192KB RAM with ECC
– 64KB Flash for emulated EEPROM with ECC
• 16- bit External Memory Interface (EMIF)
• Common Platform Architecture
– Consistent memory map across family
– Real-Time Interrupt Timer (RTI) OS Timer
– 128-channel Vectored Interrupt Module (VIM)
– 2-channel Cyclic Redundancy Checker (CRC)
• Direct Memory Access (DMA) Controller
– 16 Channels and 32 Control Packets
– Parity protection for control packet RAM
– DMA Accesses Protected by Dedicated MPU
• Frequency-Modulated Phase-Locked-Loop
(FMPLL) with Built-In Slip Detector
• Separate Non-Modulating PLL
• IEEE 1149.1 JTAG, Boundary Scan and ARM
CoreSight Components
• Advanced JTAG Security Module (AJSM)
• Trace and Calibration Capabilities
– Parameter Overlay Module (POM)
• Enhanced Timing Peripherals for Motor Control
– 7 Enhanced Pulse Width Modulators (ePWM)
– 6 Enhanced Capture (eCAP)
– 2 Enhanced Quadrature Encoder Pulse
(eQEP)
• Two High-End Timer Modules (N2HET)
– N2HET1: 32 programmable channels
– N2HET2: 18 programmable channels
– 160 Word Instruction RAM with parity
protection each
– Each includes Hardware Angle Generator
– Dedicated Transfer Units (HTU) on N2HETs
• Two 10/12-bit Multi-Buffered ADC Modules
– ADC1: 24 channels
– ADC2: 16 channels
– 16 shared channels
– 64 result buffers with parity protection each
• Multiple Communication Interfaces
– 10/100 Mbps Ethernet MAC (EMAC)
• IEEE 802.3 compliant (3.3V-I/O only)
• Supports MII, RMII and MDIO
– USB (revision 2.0 full-speed)
• 2-port USB Specification, revision 2.0compatible host controller, based on the
OHCI Specification for USB, release 1.0
• USB device compatible with the USB
Specification, revision 2.0 and USB
Specification, revision 1.1
– Three CAN Controllers (DCAN)
• 64 mailboxes with parity protection each
• Compliant to CAN protocol version
2.0A/B
– Inter-Integrated Circuit (I2C)
– Three Multi-buffered Serial Peripheral
Interfaces (MibSPI)
• 128 Words with Parity Protection each
• 8 Transfer groups
– Up to two Standard Serial Peripheral
Interfaces (SPI)
– Two UART (SCI) interfaces, one with Local
Interconnect Network Interface (LIN 2.1)
Support
• Up to 101 general purpose I/O (GIO) capable
pins
– 16 dedicated GIO pins with interrupt
generation capability
• Packages
– 144-pin Quad Flatpack (PGE) [Green]
– 337-Ball Grid Array (ZWT) [Green]
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCT PREVIEW information concerns products in the formative or design phase of
development. Characteristic data and other specifications are design goals. Texas
Instruments reserves the right to change or discontinue these products without notice.
Copyright © 2012, Texas Instruments Incorporated
PRODUCT PREVIEW
1
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
1.2
•
•
www.ti.com
Applications
Industrial Safety Applications
– Industrial Automation
– Safe PLC’s (Programmable Logic Controllers)
– Power Generation and Distribution
– Turbines and Windmills
– Elevators and Escalators
Medical Applications
– Ventilators
– Defibrillators
– Infusion and Insulin pumps
– Radiation therapy
– Robotic surgery
PRODUCT PREVIEW
2
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
1.3
SPNS184 – SEPTEMBER 2012
Description
The RM46Lx50 is a high performance microcontroller family for safety systems. The safety architecture
includes Dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the Flash
and the data SRAM, parity on peripheral memories, and loop back capability on peripheral IOs.
The RM46Lx50 integrates the ARM® Cortex™-R4F Floating Point CPU which offers an efficient
1.66DMIPS/MHz, and has configurations which can run up to 200MHz providing up to 332 DMIPS. The
device supports the little-endian [LE32] format.
The RM46Lx50 device features peripherals for real-time control-based applications, including two Next
Generation High End Timer (N2HET) timing coprocessors with up to 44 total IO terminals, seven
Enhanced PWM (ePWM) modules with up to 14 outputs, six Enhanced Capture Modules (eCAP), two
Enhanced Quadrature Encoders (eQEP) and two 12-bit Analog-to-Digital converters supporting up to 24
inputs.
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer
Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main
memory. A Memory Protection Unit (MPU) is built into the HET-TU.
The enhanced pulse width modulator (ePWM) module is able to generate complex pulse width waveforms
with minimal CPU overhead or intervention. It is easy to use and supports both high side and low side
PWM and deadband generation. With integrated trip zone protection and synchronization with the on chip
MibADC, the ePWM module is ideal for digital motor control applications.
The enhanced Capture (eCAP) module is essential in systems where the accurately timed capture of
external events is important. The eCAP can also be used to monitor the ePWM outputs or for simple PWM
generation when not needed for capture applications.
The enhanced quadrature encoder pulse (eQEP) module is used for direct interface with a linear or rotary
incremental encoder to get position, direction, and speed information from a rotating machine as used in
high-performance motion and position-control systems.
The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected
buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for
sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are
three separate groups. Each group can be converted once when triggered or configured for continuous
conversion mode.
The device has multiple communication interfaces: three MibSPIs, two SPIs, one LIN, one SCI, three
DCANs, one I2C, one Ethernet, and one USB module.. The SPI provides a convenient method of serial
interaction for high-speed communications between similar shift-register type devices. The LIN supports
the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard
Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial,
Copyright © 2012, Texas Instruments Incorporated
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
3
PRODUCT PREVIEW
The RM46Lx50 has up to 1.25MB integrated Flash and up to 192KB data RAM configurations with single
bit error correction and double bit error detection. The flash memory on this device is a nonvolatile,
electrically erasable and programmable, implemented with a 64-bit-wide data bus interface. The flash
operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase operations.
When in pipeline mode, the flash operates with a system clock frequency of up to 200MHz. The SRAM
supports single-cycle read/write accesses in byte, halfword, and word modes throughout the supported
frequency range..
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
multimaster communication protocol that efficiently supports distributed real-time control with robust
communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating
in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial
communication or multiplexed wiring. The Ethernet module supports MII, RMII and MDIO interfaces. The
USB module includes a 2-port USB host controller and a USB device controller
The I2C module is a multi-master communication module providing an interface between the
microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and
400 Kbps speeds.
A frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external
frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible
clock source inputs to the global clock module (GCM). The GCM module manages the mapping between
the available clock sources and the device clock domains.
The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous
external clock on the ECLK terminal. The ECLK frequency is a user-programmable ratio of the peripheral
interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of
the device operating frequency.
PRODUCT PREVIEW
The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on
its memory. A Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous
transfers.
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or
external Error pin/ball is triggered when a fault is detected. The nERROR terminal can be monitored
externally as an indicator of a fault condition in the microcontroller.
The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous
memories or other slave devices.
A Parameter Overlay Module (POM) is included to enhance the calibration capabilities of application code.
The POM can re-route Flash accesses to internal memory or to the EMIF, thus avoiding the reprogramming steps necessary for parameter updates in Flash.
With integrated safety features and a wide choice of communication and control peripherals, the
RM46Lx50 is an ideal solution for high performance real time control applications with safety critical
requirements.
4
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
1.4
SPNS184 – SEPTEMBER 2012
Functional Block Diagram
NOTE
The block diagram reflects the 337BGA package. Some pins are multiplexed or not available
in the 144QFP. Please see the Terminal functions table for details.
192kB RAM
with ECC
32K
32K
32K
32K
32K
32K
1.25MB
Flash
with
ECC
DMA
Dual Cortex-R4F
CPUs in Lockstep
POM
HTU1
Switched
Central Resource
HTU2
EMAC
Switched
Central Resource
OHCI
Switched
Central Resource
Main Cross Bar: Arbitration and Prioritization Control
Switched Central Resource
64 KB Flash
for EEPROM
Emulation
with ECC
EMIF
Switched
Central Resource
eQEPxA
eQEPxB
eQEPxS
eQEPxI
USB Slaves
EMIF_nWAIT
EMIF_CLK
EMIF_CKE
EMIF_nCS[4:2]
EMIF_nCS[0]
EMIF_ADDR[12:0]
EMIF_BA[1:0]
EMIF_DATA[15:0]
EMIF_nDQM[1:0]
EMIF_nOE
EMIF_nWE
EMIF_nRAS
EMIF_nCAS
EMIF_nRW
USB1.OverCurrent
USB1.RCV
USB1.VM
USB1.VP
USB1.PortPower
USB1.SPEED
USB1.SUSPEND
USB1.TXDAT
USB1.TXEN
USB1.TXSE0
USB2.OverCurrent
USB2.RCV
USB2.VM
USB2.VP
USB2.PortPower
USB2.SPEED
USB2.SUSPEND
USB2.TXDAT
USB2.TXEN
USB2.TXSE0
Host
EMAC Slaves
eCAP
1..6
eCAP[6:1]
ePWM
1..7
nTZ[3:1]
SYNCO
SYNCI
ePWMxA
ePWMxB
MDIO
MII
Color Legend for
Power Domains
PMM
VIM
nERROR
DCAN1
DCAN2
RTI
DCC1
MibSPI1
GIO
SPI2
MibSPI3
I2C
I2C_SCL
I2C_SDA
GIOB[7:0]
GIOA[7:0]
N2HET2[18,16]
N2HET2_PIN_nDIS
N2HET1[31:0]
AD2EVT
CAN1_RX
CAN1_TX
CAN2_RX
CAN2_TX
CAN3_RX
CAN3_TX
MIBSPI1_CLK
MIBSPI1_SIMO[1:0]
MIBSPI1_SOMI[1:0]
MIBSPI1_nCS[5:0]
MIBSPI1_nENA
MibSPI5
N2HET1_PIN_nDIS
AD1IN[23:16] \
AD2IN[7:0]
#1
#2
ESM
DCAN3
USB_FUNC.GZO
USB_FUNC.PUENO
USB_FUNC.PUENON
USB_FUNC.RXDI
USB_FUNC.RXDMI
DCC2
USB_FUNC.RXDPI
USB_FUNC.SE0O
USB_FUNC.SUSPENDO
USB_FUNC.TXDO
USB_FUNC.VBUSI
MibADC2 N2HET1 N2HET2
MibADC1
#2
#3
#5
RAM
nPORRST
nRST
ECLK
SPI4
VCCAD
VSSAD
ADREFHI
ADREFLO
Core
Device
SYS
IOMM
#1
AD1IN[15:8] \
AD2IN[15:8]
always on
AD1EVT
AD1IN[7:0]
Core/RAM
MDCLK
MDIO
MII_RXD[3:0]
MII_RXER
MII_TXD[3:0]
MII_TXEN
MII_TXCLK
MII_RXCLK
MII_CRS
MII_RXDV
MII_COL
N2HET2[15:0]
eQEP
1,2
Peripheral Central Resource Bridge
Switched Central Resource
SPI2_CLK
SPI2_SIMO
SPI2_SOMI
SPI2_nCS[1:0]
SPI2_nENA
MIBSPI3_CLK
MIBSPI3_SIMO
MIBSPI3_SOMI
MIBSPI3_nCS[5:0]
MIBSPI3_nENA
SPI4_CLK
SPI4_SIMO
SPI4_SOMI
SPI4_nCS0
SPI4_nENA
MIBSPI5_SIMO[3:0]
MIBSPI5_SOMI[3:0]
MIBSPI5_nCS[3:0]
MIBSPI5_nENA
LIN
LIN_RX
LIN_TX
SCI
SCI_RX
SCI_TX
Figure 1-1. Functional Block Diagram
Copyright © 2012, Texas Instruments Incorporated
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
5
PRODUCT PREVIEW
CRC
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 1-1. Device Comparison Table
Orderable Part #
Part #
Flash
RAM
EMAC
USB
Package
RM46L450PGET
RM46L450
1MB
128kB
10/100
Host + Device
144-Pin QFP
RM46L450ZWTT
RM46L450
1MB
128kB
10/100
Host + Device
337-Ball Grid Array
RM46L850PGET
RM46L850
1.25MB
192kB
10/100
Host + Device
144-Pin QFP
RM46L850ZWTT
RM46L850
1.25MB
192kB
10/100
Host + Device
337-Ball Grid Array
PRODUCT PREVIEW
6
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2
3
. 1
............................................. 1
1.2
Applications .......................................... 2
1.3
Description ........................................... 3
1.4
Functional Block Diagram ........................... 5
Device Package and Terminal Functions .......... 8
2.1
PGE QFP Package Pinout (144-Pin) ................ 8
2.2
ZWT BGA Package Ball-Map (337 Ball Grid Array) . 9
2.3
Terminal Functions ................................. 10
Device Operating Conditions ....................... 46
4.11
Tightly-Coupled RAM Interface Module
1.1
4.12
Parity Protection for Accesses to peripheral RAMs
4.13
On-Chip SRAM Initialization and Testing ........... 86
4.14
External Memory Interface (EMIF)
4.15
Vectored Interrupt Manager
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4
............
RM46Lx50 16/32-Bit RISC Flash Microcontroller
Features
Absolute Maximum Ratings Over Operating FreeAir Temperature Range, ............................ 46
Device Recommended Operating Conditions ...... 46
Switching Characteristics over Recommended
Operating Conditions for Clock Domains .......... 47
4.16
4.17
4.18
4.19
4.20
4.21
5
......................
Input Timings .......................................
Output Timings .....................................
Low-EMI Output Buffers ............................
Output Buffer Drive Strengths
5.2
5.3
5.4
5.5
5.6
50
5.7
51
5.8
51
5.9
53
5.10
5.11
System Information and Electrical Specifications
.............................................................
Device Power Domains ............................
4.2
Voltage Monitor Characteristics ....................
4.3
Power Sequencing and Power On Reset ..........
4.4
Warm Reset (nRST) ................................
4.5
ARM© Cortex-R4F™ CPU Information .............
4.6
Clocks ..............................................
4.7
Clock Monitoring ....................................
4.8
Glitch Filters ........................................
4.9
Device Memory Map ................................
4.10 Flash Memory ......................................
4.1
54
54
54
56
6
................. 88
........................ 95
DMA Controller ..................................... 99
Real Time Interrupt Module ....................... 102
Error Signaling Module ............................ 104
Reset / Abort / Error Sources ..................... 108
Digital Windowed Watchdog ...................... 111
Debug Subsystem ................................. 112
Peripheral Information and Electrical
Specifications ......................................... 117
5.1
Wait States Required ............................... 47
Power Consumption Over Recommended
Operating Conditions ............................... 48
Input/Output Electrical Characteristics Over
Recommended Operating Conditions .............. 49
....
..............
Enhanced Quadrature Encoder (eQEP) ..........
Multi-Buffered 12bit Analog-to-Digital Converter ..
General-Purpose Input/Output ....................
Enhanced High-End Timer (N2HET) ..............
Controller Area Network (DCAN) ..................
Local Interconnect Network Interface (LIN) .......
Serial Communication Interface (SCI) ............
Inter-Integrated Circuit (I2C) ......................
Enhanced Translator PWM Modules (ePWM)
Enhanced Capture Modules (eCAP)
................
...................
Device and Documentation Support .............
5.12
Ethernet Media Access Controller
5.13
Universal Serial Bus Controller
6.1
59
............................
...............................
Mechanical Data ......................................
7.1
Thermal Data ......................................
7.2
Packaging Information ............................
71
73
74
81
7
117
122
124
126
137
138
142
143
144
145
Multi-Buffered / Standard Serial Peripheral Interface
..................................................... 148
58
62
84
84
160
164
165
Device and Development-Support Tool
Nomenclature ..................................... 165
6.2
Community Resources
6.3
Device Identification
Contents
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
165
166
167
167
167
7
PRODUCT PREVIEW
1
SPNS184 – SEPTEMBER 2012
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2 Device Package and Terminal Functions
PGE QFP Package Pinout (144-Pin)
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
TMS
N2HET1[28]
N2HET1[08]
MIBSPI1NCS[0]
VCCIO
VSS
VSS
VCC
MIBSPI5CLK
MIBSPI5SIMO[0]
MIBSPI5SOMI[0]
MIBSPI5NENA
MIBSPI1NENA
MIBSPI1CLK
MIBSPI1SOMI
MIBSPI1SIMO
N2HET1[26]
N2HET1[24]
CAN1RX
CAN1TX
VSS
VCC
AD1EVT
AD1IN[15] / AD2IN[15]
AD1IN[23] / AD2IN[07]
AD1IN[08] / AD2IN[08]
AD1IN[14] / AD2IN[14]
AD1IN[22] / AD2IN[06]
AD1IN[06]
AD1IN[13] / AD2IN[13]
AD1IN[05]
AD1IN[12] / AD2IN[12]
AD1IN[04]
AD1IN[11] / AD2IN[11]
AD1IN[03]
AD1IN[02]
2.1
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
AD1IN[10] / AD2IN[10]
AD1IN[01]
AD1IN[09] / AD2IN[09]
VCCAD
VSSAD
ADREFLO
ADREFHI
AD1IN[21] / AD2IN[05]
AD1IN[20] / AD2IN[04]
AD1IN[19] / AD2IN[03]
AD1IN[18] / AD2IN[02]
AD1IN[07]
AD1IN[0]
AD1IN[17] / AD2IN[01]
AD1IN[16] / AD2IN[0]
VCC
VSS
MIBSPI3NCS[0]
MIBSPI3NENA
MIBSPI3CLK
MIBSPI3SIMO
MIBSPI3SOMI
VSS
VCC
VCC
VSS
nPORRST
VCC
VSS
VSS
VCCIO
N2HET1[15]
MIBSPI1NCS[2]
N2HET1[13]
N2HET1[06]
MIBSPI3NCS[1]
GIOB[3]
GIOA[0]
MIBSPI3NCS[3]
MIBSPI3NCS[2]
GIOA[1]
N2HET1[11]
FLTP1
FLTP2
GIOA[2]
VCCIO
VSS
CAN3RX
CAN3TX
GIOA[5]
N2HET1[22]
GIOA[6]
VCC
OSCIN
Kelvin_GND
OSCOUT
VSS
GIOA[7]
N2HET1[01]
N2HET1[03]
N2HET1[0]
VCCIO
VSS
VSS
VCC
N2HET1[02]
N2HET1[05]
MIBSPI5NCS[0]
N2HET1[07]
TEST
N2HET1[09]
N2HET1[4]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
PRODUCT PREVIEW
nTRST
TDI
TDO
TCK
RTCK
VCC
VSS
nRST
nERROR
N2HET1[10]
ECLK
VCCIO
VSS
VSS
VCC
N2HET1[12]
N2HET1[14]
GIOB[0]
N2HET1[30]
CAN2TX
CAN2RX
MIBSPI1NCS[1]
LINRX
LINTX
GIOB[1]
VCCP
VSS
VCCIO
VCC
VSS
N2HET1[16]
N2HET1[18]
N2HET1[20]
GIOB[2]
VCC
VSS
Figure 2-1. PGE QFP Package Pinout (144-Pin)
Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram.
8
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
ZWT BGA Package Ball-Map (337 Ball Grid Array)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
AD1IN
[06]
AD1IN[11]
/
AD2IN[11]
VSSAD
VSSAD
19
AD1IN[08] AD1IN[14] AD1IN[13]
/
/
/
AD2IN[08] AD2IN[14] AD2IN[13]
AD1IN
[04]
AD1IN
[02]
VSSAD
18
AD1IN
[05]
AD1IN[10]
/
AD2IN[10]
AD1IN
[01]
AD1IN[15] AD1IN[22]
/
/
AD1EVT
AD2IN[15] AD2IN[06]
19
VSS
VSS
TMS
N2HET1
[10]
MIBSPI5
NCS[0]
MIBSPI1
SIMO
MIBSPI1
NENA
MIBSPI5
CLK
MIBSPI5
SIMO[0]
N2HET1
[28]
NC
CAN3RX
18
VSS
TCK
TDO
nTRST
N2HET1
[08]
MIBSPI1
CLK
MIBSPI1
SOMI
MIBSPI5
NENA
MIBSPI5
SOMI[0]
N2HET1
[0]
NC
CAN3TX
NC
17
TDI
nRST
NC
EMIF_
nWE
MIBSPI5
SOMI[1]
NC
MIBSPI5
SIMO[3]
MIBSPI5
SIMO[2]
N2HET1
[31]
EMIF_
nCS[3]
EMIF_
nCS[2]
EMIF_
nCS[4]
EMIF_
nCS[0]
NC
16
RTCK
NC
NC
EMIF_
BA[1]
MIBSPI5
SIMO[1]
NC
MIBSPI5
SOMI[3]
MIBSPI5
SOMI[2]
NC
NC
NC
NC
NC
NC
15
NC
NC
NC
NC
NC
NC
NC
NC
NC
EMIF_
DATA[0]
EMIF_
DATA[1]
EMIF_
DATA[2]
EMIF_
DATA[3]
NC
NC
14
N2HET1
[26]
nERROR
NC
NC
NC
VCCIO
VCCIO
VCCIO
VCC
VCC
VCCIO
VCCIO
VCCIO
VCCIO
NC
13
N2HET1
[17]
N2HET1
[19]
NC
NC
EMIF_BA[0]
VCCIO
VCCIO
12
ECLK
N2HET1
[04]
NC
NC
EMIF_nOE
VCCIO
VSS
VSS
VCC
VSS
VSS
11
N2HET1
[14]
N2HET1
[30]
NC
NC
EMIF_
nDQM[1]
VCCIO
VSS
VSS
VSS
VSS
10 CAN1TX
CAN1RX
EMIF_
ADDR[12]
NC
EMIF_
nDQM[0]
VCC
VCC
VSS
VSS
AD1IN
[03]
AD1IN[09]
/
17
AD2IN[09]
AD1IN[23] AD1IN[12] AD1IN[19]
/
/
/
ADREFLO
AD2IN[07] AD2IN[12] AD2IN[03]
VSSAD
16
AD1IN[21] AD1IN[20]
/
/
ADREFHI
AD2IN[05] AD2IN[04]
VCCAD
15
NC
AD1IN[18]
/
AD2IN[02]
AD1IN
[0]
14
NC
NC
AD1IN[17] AD1IN[16]
/
/
AD2IN[01] AD2IN[0]
NC
13
VCCIO
NC
MIBSPI5
NCS[3]
NC
NC
NC
12
VSS
VCCPLL
NC
NC
NC
NC
NC
11
VSS
VCC
VCC
NC
NC
NC
MIBSPI3
NCS[0]
GIOB[3]
10
AD1IN
[07]
9
N2HET1
[27]
NC
EMIF_
ADDR[11]
NC
EMIF_
ADDR[5]
VCC
VSS
VSS
VSS
VSS
VSS
VCCIO
EXTCLKI
N2
NC
NC
MIBSPI3
CLK
MIBSPI3
9
NENA
8
NC
NC
EMIF_
ADDR[10]
NC
EMIF_
ADDR[4]
VCCP
VSS
VSS
VCC
VSS
VSS
VCCIO
EMIF_
DATA[15]
NC
NC
MIBSPI3
SOMI
MIBSPI3
8
SIMO
7
LINRX
LINTX
EMIF_
ADDR[9]
NC
EMIF_
ADDR[3]
VCCIO
VCCIO
EMIF_
DATA[14]
NC
NC
N2HET1
[09]
nPORRST 7
6
GIOA[4]
MIBSPI5
NCS[1]
EMIF_
ADDR[8]
NC
EMIF_
ADDR[2]
VCCIO
VCCIO
VCCIO
VCCIO
VCC
VCC
VCCIO
VCCIO
VCCIO
EMIF_
DATA[13]
NC
NC
N2HET1
[05]
MIBSPI5
6
NCS[2]
5
GIOA[0]
GIOA[5]
EMIF_
ADDR[7]
EMIF_
ADDR[1]
EMIF_
DATA[4]
EMIF_
DATA[5]
EMIF_
DATA[6]
FLTP2
FLTP1
EMIF_
DATA[7]
EMIF_
DATA[8]
EMIF_
DATA[9]
EMIF_
DATA[10]
EMIF_
DATA[11]
EMIF_
DATA[12]
NC
NC
MIBSPI3
NCS[1]
N2HET1
[02]
5
4
N2HET1
[16]
N2HET1
[12]
EMIF_
ADDR[6]
EMIF_
ADDR[0]
NC
NC
NC
N2HET1
[21]
N2HET1
[23]
NC
NC
NC
NC
NC
EMIF_
nCAS
NC
NC
NC
NC
4
3
N2HET1
[29]
N2HET1
[22]
MIBSPI3
NCS[3]
SPI2
NENA
N2HET1
[11]
MIBSPI1
NCS[1]
MIBSPI1
NCS[2]
GIOA[6]
MIBSPI1
NCS[3]
EMIF_
CLK
EMIF_
CKE
N2HET1
[25]
SPI2
NCS[0]
EMIF_
nWAIT
EMIF_
nRAS
NC
NC
NC
N2HET1
[06]
3
2
VSS
MIBSPI3
NCS[2]
GIOA[1]
SPI2
SOMI
SPI2 CLK
GIOB[2]
GIOB[5]
CAN2TX
GIOB[6]
GIOB[1]
KELVIN_
GND
GIOB[0]
N2HET1
[13]
N2HET1
[20]
MIBSPI1
NCS[0]
NC
TEST
N2HET1
[01]
VSS
2
1
VSS
VSS
GIOA[2]
SPI2
SIMO
GIOA[3]
GIOB[7]
GIOB[4]
CAN2RX
N2HET1
[18]
OSCIN
OSCOUT
GIOA[7]
N2HET1
[15]
N2HET1
[24]
NC
N2HET1
[07]
N2HET1
[03]
VSS
VSS
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Figure 2-2. ZWT Package Pinout. Top View
Note: Balls can have multiplexed functions. Only the default function is depicted in above diagram.
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
9
PRODUCT PREVIEW
2.2
SPNS184 – SEPTEMBER 2012
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3
www.ti.com
Terminal Functions
Section 2.3.1 and Section 2.3.2 identify the external signal names, the associated pin/ball numbers along
with the mechanical package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether
the pin/ball has any internal pullup/pulldown, whether the pin/ball can be configured as a GIO, and a
functional pin/ball description. The first signal name listed is the primary function for that terminal. The
signal name in Bold is the function being described. Refer to the I/O Multiplexing Module (IOMM) User
Guide for information on how to select between different multiplexed functions.
NOTE
All I/O signals except nRST are configured as inputs while nPORRST is low and immediately
after nPORRST goes High.
All output-only signals are configured as inputs while nPORRST is low, and are configured
as outputs immediately after nPORRST goes High.
While nPORRST is low, the input buffers are disabled, and the output buffers are tri-stated.
PRODUCT PREVIEW
2.3.1
PGE Package
2.3.1.1
Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-1. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
-
-
Description
ADREFHI (1)
66
Power
ADREFLO (1)
67
Power
ADC low reference supply
VCCAD (1)
69
Power
Operating supply for ADC
(1)
VSSAD
68
Ground
AD1EVT/MII_RX_ER/RMII_RX_ER
86
Input
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/
EQEP1I/N2HET2_PIN_nDIS
55
I/O
AD1IN[0]
60
Input
AD1IN[01]
71
AD1IN[02]
73
AD1IN[03]
74
AD1IN[04]
76
AD1IN[05]
78
AD1IN[06]
80
AD1IN[07]
61
(1)
10
ADC high reference
supply
Pull Down
Programmable,
20uA
ADC1 event trigger input,
or GIO
Pull Up
Programmable,
20uA
ADC2 event trigger input,
or GIO
-
-
ADC1 analog input
The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-1. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued)
144
PGE
Signal
Type
Default
Pull State
Pull Type
Description
Input
-
-
ADC1/ADC2 shared
analog inputs
AD1IN[08] / AD2IN[08]
83
AD1IN[09] / AD2IN[09]
70
AD1IN[10] / AD2IN[10]
72
AD1IN[11] / AD2IN[11]
75
AD1IN[12] / AD2IN[12]
77
AD1IN[13] / AD2IN[13]
79
AD1IN[14] / AD2IN[14]
82
AD1IN[15] / AD2IN[15]
85
AD1IN[16] / AD2IN[0]
58
AD1IN[17] / AD2IN[01]
59
AD1IN[18] / AD2IN[02]
62
AD1IN[19] / AD2IN[03]
63
AD1IN[20] / AD2IN[04]
64
AD1IN[21] / AD2IN[05]
65
AD1IN[22] / AD2IN[06]
81
AD1IN[23] / AD2IN[07]
84
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
51
Output
Pull Up
-
AWM1 external analog
mux enable
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
52
Output
Pull Up
-
AWM1 external analog
mux select line0
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
53
Output
Pull Up
-
AWM1 external analog
mux select line0
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Terminal
Signal Name
11
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.1.2
www.ti.com
Enhanced High-End Timer Modules (N2HET)
Table 2-2. PGE Enhanced High-End Timer Modules (N2HET)
Terminal
Signal Name
144
PGE
PRODUCT PREVIEW
N2HET1[0]/SPI4CLK/EPWM2B
25
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]/EQEP2A
23
N2HET1[02]/SPI4SIMO/EPWM3A
30
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
24
N2HET1[04]/EPWM4B
36
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
31
N2HET1[06]/SCIRX/EPWM5A
38
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/
N2HET2[14]/EPWM7B
33
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO/EPWM7A
35
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4/nTZ3
118
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
N2HET1[12]/MII_CRS/RMII_CRS_DV
Signal
Type
I/O
Default Pull
State
Pull Down
Programmable,
20uA
Description
N2HET1
time
input
capture
or
output
compare, or GIO.
Each terminal has a
suppression filter that
ignores input pulses
smaller
than
a
programmable duration.
6
124
N2HET1[13]/SCITX/EPWM5B
39
N2HET1[14]/USB1.TXSE0
125
N2HET1[15]/MIBSPI1NCS[4]/ECAP1
41
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO
139
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND/EQEP1S
130
Pull Up
N2HET1[18]/EPWM6A
140
Pull Down
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
Pull Up
N2HET1[20]/EPWM6B
141
Pull Down
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
96
Pull Up
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
91
Pull Down
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
Pull Up
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
92
Pull Down
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
4
Pull Up
N2HET1[28]/MII_RXCLK/RMII_REFCLK/MII_RX_AVCLK4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
107
3
Pull Down
Pull Up
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
127
Pull Down
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]
54
Pull Up
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
14
Pull Down
12
Pull Type
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-2. PGE Enhanced High-End Timer Modules (N2HET) (continued)
144
PGE
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQE
P2I
9
GIOA[6]/N2HET2[4]/EPWM1B
16
GIOA[7]/N2HET2[6]EPWM2A
22
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO//N2HET2[8]
23
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
24
N2HET1[05]/SPI4SOMI/N2HET2[12]
31
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/
N2HET2[14]/EPWM7B
33
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
6
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_n
DIS
55
2.3.1.3
Signal
Type
I/O
Default Pull
State
Pull Down
Pull Type
Programmable,
20uA
Description
N2HET2
time
input
capture
or
output
compare, or GIO
Each terminal has a
suppression filter that
ignores input pulses
smaller
than
a
programmable duration.
Pull Up
PRODUCT PREVIEW
Terminal
Signal Name
Enhanced Capture Modules (eCAP)
Table 2-3. PGE Enhanced Capture Modules (eCAP) (1)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
I/O
Pull Down
Pull Type
NHET1[15]/MIBSPI1NCS[4]/ECAP1
41
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
51
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
52
Enhanced Capture
Module 3 I/O
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
96
Enhanced Capture
Module 4 I/O
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
97
Enhanced Capture
Module 5 I/O
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV/ECAP6
105
Enhanced Capture
Module 6 I/O
(1)
Pull Up
Fixed, 20uA
Description
Enhanced Capture
Module 1 I/O
Enhanced Capture
Module 2 I/O
These signals, when used as inputs, are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
13
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.1.4
www.ti.com
Enhanced Quadrature Encoder Pulse Modules (eQEP)
Table 2-4. PGE Enhanced Quadrature Encoder Pulse Modules (eQEP) (1)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
53
Input
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
54
Input
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nDI
S
55
I/O
Enhanced QEP1 Index
MIBSPI1NCS[1]/N2HET1[17]/MII_COL
/USB1.SUSPEND /EQEP1S
130
I/O
Enhanced QEP1 Strobe
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]/EQEP2A
23
Input
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
24
Input
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
9
I/O
Enhanced QEP2 Index
127
I/O
Enhanced QEP2 Strobe
PRODUCT PREVIEW
(1)
14
Fixed, 20uA
Description
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
Pull Up
Pull Type
Enhanced QEP1 Input A
Enhanced QEP1 Input B
Pull Down
Enhanced QEP2 Input A
Enhanced QEP2 Input B
These signals are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2.3.1.5
SPNS184 – SEPTEMBER 2012
Enhanced Pulse-Width Modulator Modules (ePWM)
Table 2-5. PGE Enhanced Pulse-Width Modulator Modules (ePWM)
144
PGE
Signal
Type
Default
Pull State
Pull Type
Output
Pull Down
-
Description
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
14
GIOA[6]/N2HET2[4]/EPWM1B
16
Enhanced PWM1 Output
B
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
6
External ePWM Sync
Pulse Output
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO
139
External ePWM Sync
Pulse Output
GIOA[7]/N2HET2[6]/EPWM2A
22
Enhanced PWM2 Output
A
N2HET1[0]/SPI4CLK/EPWM2B
25
Enhanced PWM2 Output
B
N2HET1[02]/SPI4SIMO/EPWM3A
30
Enhanced PWM3 Output
A
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
31
Enhanced PWM3 Output
B
MIBSPI5NCS[0]/EPWM4A
32
Pull Up
Enhanced PWM4 Output
A
N2HET1[04]/EPWM4B
36
Pull Down
Enhanced PWM4 Output
B
N2HET1[06]/SCIRX/EPWM5A
38
Enhanced PWM5 Output
A
N2HET1[13]/SCITX/EPWM5B
39
Enhanced PWM5 Output
B
N2HET1[18]/EPWM6A
140
Enhanced PWM6 Output
A
N2HET1[20]/EPWM6B
141
Enhanced PWM6 Output
B
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO/EPWM7A
35
Enhanced PWM7 Output
A
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/
N2HET2[14]/EPWM7B
33
Enhanced PWM7 Output
B
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
3
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
4
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4/nTZ3
Copyright © 2012, Texas Instruments Incorporated
118
Input
Pull Up
Pull Down
Fixed, 20uA
Enhanced PWM1 Output
A
PRODUCT PREVIEW
Terminal
Signal Name
Trip Zone Inputs 1, 2 and
3. These signals are
either connected
asynchronously to the
ePWMx trip zone inputs,
or double-synchronized
with VCLK4, or doublesynchronized and then
filtered with a 6-cycle
VCLK4-based counter
before connecting to the
ePWMx trip zone inputs.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
15
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.1.6
www.ti.com
General-Purpose Input / Output (GIO)
Table 2-6. PGE General-Purpose Input / Output (GIO)
Terminal
Signal Name
144
PGE
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
2
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
5
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2II
9
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
14
GIOA[6]/N2HET2[4]/EPWM1B
16
GIOA[7]/N2HET2[6]/EPWM2A
22
GIOB[0]/USB1.TXDAT
126
GIOB[1]/USB1.PortPower
133
GIOB[2]
142
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nD
IS
55 (1)
PRODUCT PREVIEW
GIOB[3]USB2.RCV/USB_FUNC.RXDI
(1)
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
General-purpose I/O.
All GIO terminals are
capable of generating
interrupts to the CPU on
rising / falling / both
edges.
Pull Up
1
Pull Down
GIOB[2] cannot output a level on to pin 55. Only the input functionality is supported so that the application can generate an interrupt
whenever the N2HET2_PIN_nDIS is asserted (driven low). Also, a pull up is enabled on the input. This is not programmable using the
GIO module control registers.
2.3.1.7
Controller Area Network Controllers (DCAN)
Table 2-7. PGE Controller Area Network Controllers (DCAN)
Terminal
Signal Name
144
PGE
Signal
Type
Pull Up
Pull Type
Programmable,
20uA
Description
CAN1RX
90
CAN1TX
89
CAN2RX
129
CAN2 receive, or GIO
CAN2TX
128
CAN2 transmit, or GIO
CAN3RX
12
CAN3 receive, or GIO
CAN3TX
13
CAN3 transmit, or GIO
2.3.1.8
I/O
Default
Pull State
CAN1 receive, or GIO
CAN1 transmit, or GIO
Local Interconnect Network Interface Module (LIN)
Table 2-8. PGE Local Interconnect Network Interface Module (LIN)
Terminal
Signal Name
144
PGE
LINRX
131
LINTX
132
16
Signal
Type
I/O
Default
Pull State
Pull Up
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Pull Type
Programmable,
20uA
Description
LIN receive, or GIO
LIN transmit, or GIO
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2.3.1.9
SPNS184 – SEPTEMBER 2012
Standard Serial Communication Interface (SCI)
Table 2-9. PGE Standard Serial Communication Interface (SCI)
Terminal
Signal Name
144
PGE
N2HET1[06]/SCIRX/EPWM5A
38
N2HET1[13]/SCITX/EPWM5B
39
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
SCI receive, or GIO
SCI transmit, or GIO
2.3.1.10 Inter-Integrated Circuit Interface Module (I2C)
Table 2-10. PGE Inter-Integrated Circuit Interface Module (I2C)
144
PGE
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
3
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
I2C serial data, or GIO
I2C serial clock, or GIO
2.3.1.11 Standard Serial Peripheral Interface (SPI)
Table 2-11. PGE Standard Serial Peripheral Interface (SPI)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET1[0]/SPI4CLK/EPWM2B
25
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
24
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]/EQEP2A
23
SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO/EPWM3A
30
SPI4 slave-input masteroutput, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
31
SPI4 slave-output masterinput, or GIO
Copyright © 2012, Texas Instruments Incorporated
SPI4 clock, or GIO
SPI4 chip select, or GIO
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
17
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.1.12 Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-12. PGE Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Terminal
Signal Name
144
PGE
Signal
Type
Pull Up
Pull Type
Description
PRODUCT PREVIEW
MIBSPI1CLK
95
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV/ECAP6
105
MIBSPI1NCS[1]/N2HET1[17]/MII_COL
/USB1.SUSPEND /EQEP1S
130
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
N2HET1[15]/MIBSPI1NCS[4]/ECAP1
41
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
91
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
96
MIBSPI1SIMO
93
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
Pull Down
Programmable,
20uA
MibSPI1 slave-in masterout, or GIO
MIBSPI1SOMI
94
Pull Up
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV/ECAP6
105
Programmable,
20uA
MibSPI1 slave-out masterin, or GIO
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
53
Pull Up
55
Programmable,
20uA
MibSPI3 clock, or GIO
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nD
IS
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
6
Pull Down
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
54
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
54
MibSPI3 enable, or GIO
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
52
MibSPI3 slave-in masterout, or GIO
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
51
MibSPI3 slave-out masterin, or GIO
MIBSPI5CLK/MII_TXEN/RMII_TXEN
100
MIBSPI5NCS[0]/EPWM4A
32
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
97
MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/MII_TXD[1]/RMII_TXD[1]/MIBSPI5SOMI[2]
99
MibSPI5 slave-in masterout, or GIO
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
98
MibSPI5 slave-out masterin, or GIO
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
97
MibSPI5 SOMI, or GIO
MIBSPI5SIMO[0]/MII_TXD[1]/RMII_TXD[1]/MIBSPI5SOMI[2]
99
MibSPI5 SOMI, or GIO
18
I/O
Default
Pull State
Programmable,
20uA
MibSPI1 clock, or GIO
Pull Down
Programmable,
20uA
MibSPI1 chip select, or
GIO
Pull Up
Programmable,
20uA
MibSPI1 enable, or GIO
MibSPI1 chip select, or
GIO
MibSPI1 slave-in masterout, or GIO
I/O
I/O
Pull Up
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Programmable,
20uA
MibSPI3 chip select, or
GIO
MibSPI5 clock, or GIO
MibSPI5 chip select, or
GIO
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
2.3.1.13 Ethernet Controller
Table 2-13. PGE Ethernet Controller: MDIO Interface
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
Output
Pull Up
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
I/O
Pull Up
Pull Type
Fixed, 20uA
Description
Serial clock output
Serial data input/output
Table 2-14. PGE Ethernet Controller: Reduced Media Independent Interface (RMII)
Signal
Type
Default
Pull State
Input
Pull Down
Pull Type
Description
144
PGE
N2HET1[12]/MII_CRS/RMII_CRS_DV
124
N2HET1[28]/MII_RXCLK/RMII_REFCLK/MII_RX_AVCLK4
107
RMII synchronous
reference clock for
receive, transmit and
control interface
AD1EVT/MII_RX_ER/RMII_RX_ER
86
RMII receive error
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
91
RMII receive data
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
92
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
98
MIBSPI5SIMO[0]/MII_TXD[1]/RMII_TXD[1]/MIBSPI5SOMI[2]
99
MIBSPI5CLK/MII_TXEN/RMII_TXEN
100
Output
Pull Up
Fixed, 20uA
-
RMII carrier sense and
data valid
RMII transmit data
RMII transmit enable
Table 2-15. PGE Ethernet Controller: Media Independent Interface (MII)
Terminal
Signal Name
144
PGE
Signal
Type
Pull Up
Pull Type
130
N2HET1[12]/MII_CRS/RMII_CRS_DV
124
N2HET1[28]/MII_RXCLK/RMII_REFCLK/MII_RX_AVCLK4
107
I/O
Pull Down
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S/EQEP2S
127
Input
Pull Down
AD1EVT/MII_RX_ER/RMII_RX_ER
86
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4
107
I/O
Receive clock
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
91
Input
Receive data
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
92
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
96
MIBSPI5NENA/MII_RXD[3]/USB1.VM/ECAP5/ECAP5
97
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4/nTZ3
118
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4/nTZ3
118
Pull Down
-
Description
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND/EQEP1S
Copyright © 2012, Texas Instruments Incorporated
Input
Default
Pull State
Fixed, 20uA
Fixed, 20uA
Collision detect
Carrier sense and receive
valid
MII output receive clock
Received data valid
Receive error
Pull Up
I/O
Pull Down
Fixed, 20uA
-
MII output transmit clock
Transmit clock
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
19
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 2-15. PGE Ethernet Controller: Media Independent Interface (MII) (continued)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
Output
Pull Up
-
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
98
MIBSPI5SIMO[0]/MII_TXD[1]
99
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV/ECAP6
105
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
Pull Down
-
MIBSPI5CLK/MII_TXEN/RMII_TXEN
100
Pull Up
-
Description
Transmit data
Transmit enable
2.3.1.14 USB Host Port Controller Interface
Table 2-16. PGE USB Host Port Controller Interface (USB1, USB2)
Terminal
Signal Name
144
PGE
PRODUCT PREVIEW
Signal
Type
Default
Pull State
Pull Type
Description
Input
Pull Down
Fixed, 20uA
Overcurrent indication
from USB power switch
Pull Up
Fixed, 20uA
Receive data from USB
port transceiver
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]
/USB1.OverCurrent
106
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV/ECAP6
105
MIBSPI5NENA/MII_RXD[3]/USB1.VM
97
NRZI encoded D-minus
from USB port transceiver
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
96
NRZI encoded D-plus
from USB port transceiver
GIOB[1]/USB1.PortPower
133
N2HET1[30]/MII_RX_DV/USB1.SPEED
127
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND/EQEP1S
130
Pull Up
-
GIOB[0]/USB1.TXDAT
126
Pull Down
-
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4
118
Transmit enable to port
transceiver
N2HET1[14]/USB1.TXSE0
125
Single-ended zero to port
transceiver
Output
Pull Down
Transmit speed indication
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
6
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
1
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
5
NRZI encoded D-minus
from USB port transceiver
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
2
NRZI encoded D-plus
from USB port transceiver
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]/EPWM7B
33
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
24
Transmit speed indication
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
Port suspend indication
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
9
NRZI encoded D-plus to
port transceiver
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
23
Transmit enable to port
transceiver
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
Single-ended zero to port
transceiver
20
Input
Output
Pull Down
Fixed, 20uA
Pull Down
Fixed, 20uA
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
-
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-17. PGE USB Device Port Controller Interface (USB_FUNC)
Signal
Type
Default
Pull State
Pull Type
Description
Output
Pull Down
-
Pull Up enable, allows for
software-programmable
USB device
connect/disconnect
144
PGE
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14]
33
N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/
N2HET2[8]
23
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO
N/
N2HET2[10]/EQEP2B
24
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
1
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
5
USB device logic value of
D-minus
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
2
USB device logic value of
D-plus
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
9
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
6
PUENO inverted
Input
Output
Pull Down
Fixed, 20uA
Pull Down
-
USB device single-ended
data input
USB device single-ended
zero
USB device suspend
output
USB device transmit data
Input
Pull Down
Fixed, 20uA
USB device power
connected
2.3.1.15 System Module Interface
Table 2-18. PGE System Module Interface
Terminal
Signal Name
144
PGE
Signal
Type
nPORRST
46
Input
nRST
116
I/O
Copyright © 2012, Texas Instruments Incorporated
Default
Pull State
Pull Type
Pull Down 100uA
Pull Up
100uA
Description
Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
21
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 2-18. PGE System Module Interface (continued)
Terminal
Signal Name
144
PGE
nERROR
117
Signal
Type
I/O
Default
Pull State
Pull Type
Pull Down 20uA
Description
ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.3.1.16 Clock Inputs and Outputs
Table 2-19. PGE Clock Inputs and Outputs
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
PRODUCT PREVIEW
OSCIN
18
From external
crystal/resonator, or
external clock input
KELVIN_GND
19
Input
OSCOUT
20
Output
ECLK
119
I/O
Pull Down
Programmable,
20uA
External prescaled clock
output, or GIO.
GIOA[5]/EXTCLKIN/EPWM1A /N2HET1_PIN_nDIS
14
Input
Pull Down
20uA
External clock input #1
Kelvin ground for oscillator
To external
crystal/resonator
2.3.1.17 Test and Debug Modules Interface
Table 2-20. PGE Test and Debug Modules Interface
Terminal
Signal Name
144
PGE
Signal
Type
Input
Default
Pull State
TEST
34
nTRST
109
Input
RTCK
113
Output
TCK
112
Input
TDI
110
Input
Pull Up
TDO
111
Output
Pull Down
TMS
108
Input
Pull Up
Pull Type
Pull Down Fixed, 100uA
Description
Test enable
JTAG test hardware reset
-
-
JTAG return test clock
Pull Down Fixed, 100uA
JTAG test clock
JTAG test data in
JTAG test data out
JTAG test select
2.3.1.18 Flash Supply and Test Pads
Table 2-21. PGE Flash Supply and Test Pads
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
Description
VCCP
134
3.3V
Power
-
-
Flash pump supply
FLTP1
7
-
-
-
FLTP2
8
Flash test pads. These
terminals are reserved for
TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
22
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
2.3.1.19 Supply for Core Logic: 1.2V nominal
Table 2-22. PGE Supply for Core Logic: 1.2V nominal
144
PGE
VCC
17
VCC
29
VCC
45
VCC
48
VCC
49
VCC
57
VCC
87
VCC
101
VCC
114
VCC
123
VCC
137
VCC
143
Signal
Type
Default
Pull State
Pull Type
1.2V
Power
-
-
Description
Core supply
2.3.1.20 Supply for I/O Cells: 3.3V nominal
Table 2-23. PGE Supply for I/O Cells: 3.3V nominal
Terminal
Signal Name
144
PGE
VCCIO
10
VCCIO
26
VCCIO
42
VCCIO
104
VCCIO
120
VCCIO
136
Copyright © 2012, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
3.3V
Power
-
-
Description
Operating supply for I/Os
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
23
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.1.21 Ground Reference for All Supplies Except VCCAD
Table 2-24. PGE Ground Reference for All Supplies Except VCCAD
Terminal
Signal Name
144
PGE
VSS
11
VSS
21
VSS
27
VSS
28
VSS
43
VSS
44
VSS
47
VSS
50
VSS
56
PRODUCT PREVIEW
VSS
88
VSS
102
VSS
103
VSS
115
VSS
121
VSS
122
VSS
135
VSS
138
VSS
144
24
Signal
Type
Default
Pull State
Pull Type
Ground
-
-
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Description
Ground reference
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2.3.2
SPNS184 – SEPTEMBER 2012
ZWT Package
2.3.2.1
Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-25. ZWT Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal
Signal
Type
Default
Pull State
Pull Type
V15
Power
-
-
ADREFLO (1)
V16
Power
ADC low reference supply
VCCAD (1)
W15
Power
Operating supply for ADC
V19
Ground
-
-
Pull Down
Programmable,
20uA
ADC1 event trigger input,
or GIO
Pull Up
Programmable,
20uA
ADC2 event trigger input,
or GIO
Signal Name
337
ZWT
ADREFHI (1)
VSSAD
Description
ADC high reference
supply
ADC supply power
W16
W18
N19
Input
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nD
IS
V10
I/O
AD1IN[0]
W14
Input
-
-
ADC1 analog input
AD1IN[01]
V17
AD1IN[02]
V18
Input
-
-
ADC1/ADC2 shared
analog inputs
Output
Pull Up
-
AWM1 external analog
mux enable
AD1IN[03]
T17
AD1IN[04]
U18
AD1IN[05]
R17
AD1IN[06]
T19
AD1IN[07]
V14
AD1IN[08] / AD2IN[08]
P18
AD1IN[09] / AD2IN[09]
W17
AD1IN[10] / AD2IN[10]
U17
AD1IN[11] / AD2IN[11]
U19
AD1IN[12] / AD2IN[12]
T16
AD1IN[13] / AD2IN[13]
T18
AD1IN[14] / AD2IN[14]
R18
AD1IN[15] / AD2IN[15]
P19
AD1IN[16] / AD2IN[0]
V13
AD1IN[17] / AD2IN[01]
U13
AD1IN[18] / AD2IN[02]
U14
AD1IN[19] / AD2IN[03]
U16
AD1IN[20] / AD2IN[04]
U15
AD1IN[21] / AD2IN[05]
T15
AD1IN[22] / AD2IN[06]
R19
AD1IN[23] / AD2IN[07]
R16
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
V8
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
W8
AWM1 external analog
mux select line0
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
V9
AWM1 external analog
mux select line0
(1)
The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
25
PRODUCT PREVIEW
W19
AD1EVT/MII_RX_ER/RMII_RX_ER
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.2.2
www.ti.com
Enhanced High-End Timer Modules (N2HET)
Table 2-26. ZWT Enhanced High-End Timer Modules (N2HET)
Terminal
Signal Name
337
ZWT
N2HET1[0]/SPI4CLK/EPWM2B
K18
N2HET1[01]/SPI4NENA/N2HET2[8]
V2
N2HET1[02]/SPI4SIMO/EPWM3A
W5
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
U1
N2HET1[04]/EPWM4B
B12
PRODUCT PREVIEW
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
V6
N2HET1[06]/SCIRX/EPWM5A
W3
N2HET1[07]/EPWM7B/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]/EPWM7B
T1
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
E18
N2HET1[09]/N2HET2[16]/
USB2.SUSPEND/USB_FUNC.SUSPENDO/EPWM7A
V7
N2HET1[10]/MII_TX_CLK/
USB1.TXEN/MII_TX_AVCLK4/nTZ3
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET1
time
capture
or
compare, or GIO.
input
output
Each terminal has a
suppression filter that
ignores
input
pulses
smaller
than
a
programmable duration.
D19
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
E3
N2HET1[12]/MII_CRS/RMII_CRS_DV
B4
N2HET1[13]/SCITX/EPWM5B
N2
N2HET1[14]/USB1.TXSE0
A11
N2HET1[15]/MIBSPI1NCS[4]/ECAP1
N1
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO
A4
N2HET1[17]
A13
N2HET1[18]/EPWM6A
J1
N2HET1[19]
B13
N2HET1[20]/EPWM6B
P2
N2HET1[21]
H4
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
N2HET1[23]
J4
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
P1
N2HET1[25]
M3
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
A14
N2HET1[27]
A9
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4
K19
N2HET1[29]
A3
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
B11
N2HET1[31]
J17
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
B5
26
Signal
Type
input
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Fixed, 20uA
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-26. ZWT Enhanced High-End Timer Modules (N2HET) (continued)
337
ZWT
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
C1
EMIF_ADDR[0]/N2HET2[1]
D4
GIOA[3]/N2HET2[2]
E1
EMIF_ADDR[1]/N2HET2[3]
D5
GIOA[6]/N2HET2[4]/EPWM1B
H3
EMIF_BA[1]/N2HET2[5]
D16
GIOA[7]/N2HET2[6]/EPWM2A
M1
EMIF_nCS[0]/N2HET2[7]
N17
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
V2
EMIF_nCS[3]/N2HET2[9]
K17
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
U1
EMIF_ADDR[6]/N2HET2[11]
C4
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
V6
EMIF_ADDR[7]/N2HET2[13]
C5
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]/EPWM7B
T1
EMIF_ADDR[8]/N2HET2[15]
C6
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO/EPWM7A
V7
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
E3
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nD
IS
V10
2.3.2.3
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET2
time
capture
or
compare, or GIO.
input
output
Each terminal has a
suppression filter that
ignores
input
pulses
smaller
than
a
programmable duration.
PRODUCT PREVIEW
Terminal
Signal Name
Pull Up
Enhanced Capture Modules (eCAP)
Table 2-27. ZWT Enhanced Capture Modules (eCAP) (1)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Down
Pull Type
N2HET1[15]/MIBSPI1NCS[4]/ECAP1
N1
I/O
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
V8
std
buffer
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
W8
std
buffer
Enhanced Capture
Module 3 I/O
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/USB1.VP/ECAP4
G19
std
buffer
Enhanced Capture
Module 4 I/O
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
H18
std
buffer
Enhanced Capture
Module 5 I/O
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/USB1.RCV/EC
AP6
R2
std
buffer
Enhanced Capture
Module 6 I/O
(1)
Pull Up
Fixed, 20uA
Description
Enhanced Capture
Module 1 I/O
Enhanced Capture
Module 2 I/O
These signals, when used as inputs, are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
27
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.2.4
www.ti.com
Enhanced Quadrature Encoder Pulse Modules (eQEP)
Table 2-28. ZWT Enhanced Quadrature Encoder Pulse Modules (eQEP) (1)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
V9
Input
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
W9
Input
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nDI
S
V10
I/O
Enhanced QEP1 Index
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/USB1.SUSPEND/EQ
EP1S
F3
I/O
Enhanced QEP1 Strobe
N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/N
2HET2[8]/EQEP2A
V2
Input
Pull Down
Enhanced QEP2 Input A
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO
N/N2HET2[10]/EQEP2B
U1
Input
Pull Down
Enhanced QEP2 Input B
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
C1
I/O
Pull Down
Enhanced QEP2 Index
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
B11
I/O
Pull Down
Enhanced QEP2 Strobe
PRODUCT PREVIEW
28
Fixed, 20uA
Description
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
(1)
Pull Up
Pull Type
Enhanced QEP1 Input A
Enhanced QEP1 Input B
These signals are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2.3.2.5
SPNS184 – SEPTEMBER 2012
Enhanced Pulse-Width Modulator Modules (ePWM)
Table 2-29. ZWT Enhanced Pulse-Width Modulator Modules (ePWM)
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Output
Pull Down
-
Description
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
B5
GIOA[6]/N2HET2[4]/EPWM1B
H3
Enhanced PWM1 Output
B
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/USB2.OverCurrent
/USB_FUNC.VBUSI/EPWM1SYNCO
E3
External ePWM Sync
Pulse Output
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO
A4
External ePWM Sync
Pulse Output
GIOA[7]/N2HET2[6]/EPWM2A
M1
Enhanced PWM2 Output
A
N2HET1[0]/SPI4CLK/EPWM2B
K18
Enhanced PWM2 Output
B
N2HET1[02]/SPI4SIMO/EPWM3A
W5
Enhanced PWM3 Output
A
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
V6
Enhanced PWM3 Output
B
MIBSPI5NCS[0]/EPWM4A
E19
Pull Up
Enhanced PWM4 Output
A
N2HET1[04]/EPWM4B
B12
Pull Down
Enhanced PWM4 Output
B
N2HET1[06]/SCIRX/EPWM5A
W3
Enhanced PWM5 Output
A
N2HET1[13]/SCITX/EPWM5B
N2
Enhanced PWM5 Output
B
N2HET1[18]/EPWM6A
J1
Enhanced PWM6 Output
A
N2HET1[20]/EPWM6B
P2
Enhanced PWM6 Output
B
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/USB_FUNC.SUS
PENDO/EPWM7A
V7
Enhanced PWM7 Output
A
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14]/
EPWM7B
T1
Enhanced PWM7 Output
B
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
C3
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
B2
N2HET1[10]/MII_TX_CLK/USB1.TXEN//MII_TX_AVCLK4/nT
Z3
Copyright © 2012, Texas Instruments Incorporated
D19
Input
Pull Up
Pull Down
Fixed, 20uA
Enhanced PWM1 Output
A
PRODUCT PREVIEW
Terminal
Signal Name
Trip Zone Inputs 1, 2 and
3These signals are either
connected
asynchronously to the
ePWMx trip zone inputs,
or double-synchronized
with VCLK4, or doublesynchronized and then
filtered with a 6-cycle
VCLK4-based counter
before connecting to the
ePWMx trip zone inputs.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
29
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
2.3.2.6
www.ti.com
General-Purpose Input / Output (GIO)
Table 2-30. ZWT General-Purpose Input / Output (GIO)
Terminal
Signal Name
337
ZWT
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
/EQEP2I
C1
GIOA[3]/N2HET2[2]
E1
GIOA[4]
A6
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
B5
GIOA[6]/N2HET2[4]/EPWM1B
H3
GIOA[7]/N2HET2[6]/EPWM2A
M1
GIOB[0]/USB1.TXDAT
M2
GIOB[1]/USB1.PortPower
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
General-purpose I/O.
All GIO terminals are
capable of generating
interrupts to the CPU on
rising / falling / both
edges.
F2 /
V10 (1)
PRODUCT PREVIEW
GIOB[3]/USB2.RCV
W10
GIOB[4]
G1
GIOB[5]
G2
GIOB[6]
J2
GIOB[7]
F1
30
Default
Pull State
K2
GIOB[2]
(1)
Signal
Type
GIOB[2] cannot output a level on to terminal V10. Only the input functionality is supported so that the application can generate an
interrupt whenever the N2HET2_PIN_nDIS is asserted (driven low). Also, a pull up is enabled on the input. This is not programmable
using the GIO module control registers.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
2.3.2.7
SPNS184 – SEPTEMBER 2012
Controller Area Network Controllers (DCAN)
Table 2-31. ZWT Controller Area Network Controllers (DCAN)
Terminal
Signal Name
337
ZWT
Signal
Type
Pull Up
Pull Type
Programmable,
20uA
Description
CAN1RX
B10
CAN1TX
A10
CAN2RX
H1
CAN2 receive, or GIO
CAN2TX
H2
CAN2 transmit, or GIO
CAN3RX
M19
CAN3 receive, or GIO
CAN3TX
M18
CAN3 transmit, or GIO
2.3.2.8
I/O
Default
Pull State
CAN1 receive, or GIO
CAN1 transmit, or GIO
Local Interconnect Network Interface Module (LIN)
Table 2-32. ZWT Local Interconnect Network Interface Module (LIN)
337
ZWT
LINRX
A7
LINTX
B7
2.3.2.9
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
PRODUCT PREVIEW
Terminal
Signal Name
LIN receive, or GIO
LIN transmit, or GIO
Standard Serial Communication Interface (SCI)
Table 2-33. ZWT Standard Serial Communication Interface (SCI)
Terminal
Signal Name
337
ZWT
N2HET1[06]/SCIRX/EPWM5A
W3
N2HET1[13]/SCITX/EPWM5B
N2
Copyright © 2012, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
SCI receive, or GIO
SCI transmit, or GIO
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
31
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.10 Inter-Integrated Circuit Interface Module (I2C)
Table 2-34. ZWT Inter-Integrated Circuit Interface Module (I2C)
Terminal
Signal Name
337
ZWT
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
B2
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
C3
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
I2C serial data, or GIO
I2C serial clock, or GIO
2.3.2.11 Standard Serial Peripheral Interface (SPI)
Table 2-35. ZWT Standard Serial Peripheral Interface (SPI)
Terminal
Signal Name
337
ZWT
Signal
Type
PRODUCT PREVIEW
SPI2NCS[0]
N3
SPI2NENA/SPI2NCS[1]
D3
SPI2 chip select, or GIO
SPI2NENA/SPI2NCS[1]
D3
SPI2 enable, or GIO
SPI2SIMO
D1
SPI2 slave-input masteroutput, or GIO
SPI2SOMI
D2
SPI2 slave-output masterinput, or GIO
N2HET1[0]/SPI4CLK/EPWM2B
K18
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
U1
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
V2
SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO/EPWM3A
W5
SPI4 slave-input masteroutput, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12]/EPWM3B
V6
SPI4 slave-output masterinput, or GIO
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Programmable,
20uA
Description
E2
I/O
Pull Up
Pull Type
SPI2CLK
32
I/O
Default
Pull State
Programmable,
20uA
SPI2 clock, or GIO
SPI2 chip select, or GIO
SPI4 clock, or GIO
SPI4 chip select, or GIO
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
2.3.2.12 Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-36. ZWT Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
337
ZWT
MIBSPI1CLK
F18
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND /EQEP1S
F3
MIBSPI1NCS[2]/N2HET1[19]/MDIO
G3
MIBSPI1NCS[3]/N2HET1[21]
J3
N2HET1[15]/MIBSPI1NCS[4]
N1
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
P1
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Description
Programmable,
20uA
MibSPI1 clock, or GIO
Pull Down
Programmable,
20uA
MibSPI1 chip select, or
GIO
Pull Up
Programmable,
20uA
MibSPI1 enable, or GIO
MibSPI1 chip select, or
GIO
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
G19
MIBSPI1SIMO
F19
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/USB1.OverCurrent
E18
Pull Down
Programmable,
20uA
MibSPI1 slave-in masterout, or GIO
MIBSPI1SOMI
G18
Pull Up
Programmable,
20uA
MibSPI1 slave-out masterin, or GIO
Pull Up
Programmable,
20uA
MibSPI3 clock, or GIO
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ECAP6/
USB1.RCV
MibSPI1 slave-in masterout, or GIO
R2
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A
V9
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/EQEP1I/N2HET2_PIN_nD
IS
V10
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
V5
I/O
MibSPI3 chip select, or
GIO
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2
B2
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1
C3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
E3
Pull Down
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
W9
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B
W9
MibSPI3 enable, or GIO
MIBSPI3SIMO/AWM1_EXT_SEL[0]/ECAP3
W8
MibSPI3 slave-in masterout, or GIO
MIBSPI3SOMI/AWM1_EXT_ENA/ECAP2
V8
MibSPI3 slave-out masterin, or GIO
MIBSPI5CLK/MII_TXEN/RMII_TXEN
H19
MIBSPI5NCS[0]/EPWM4A
E19
MIBSPI5NCS[1]
B6
I/O
Pull Up
Programmable,
20uA
MibSPI5 clock, or GIO
MibSPI5 chip select, or
GIO
MIBSPI5NCS[2]
W6
MIBSPI5NCS[3]
T12
MIBSPI5NENAMII_RXD[3]/
USB1.VM/MIBSPI5SOMI[1]/ECAP5
H18
MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/MII_TXD[1]/RMII_TXD[1]
J19
MibSPI5 slave-in masterout, or GIO
MIBSPI5SIMO[1]
E16
MIBSPI5SIMO[2]
H17
MIBSPI5SIMO[3]
G17
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
J18
MIBSPI5SOMI[1]
E17
MIBSPI5SOMI[2]
H16
MIBSPI5SOMI[3]
G16
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
33
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.13 Ethernet Controller
Table 2-37. ZWT Ethernet Controller: MDIO Interface
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
V5
Output
Pull Up
MIBSPI1NCS[2]/N2HET1[19]/MDIO
G3
I/O
Pull Up
Pull Type
Fixed, 20uA
Description
Serial clock output
Serial data input/output
Table 2-38. ZWT Ethernet Controller: Reduced Media Independent Interface (RMII)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Input
Pull Down
Pull Type
Fixed, 20uA
Description
PRODUCT PREVIEW
N2HET1[12]/MII_CRS/RMII_CRS_DV
B4
RMII carrier sense and
data valid
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4
K19
RMII synchronous
reference clock for
receive, transmit and
control interface
AD1EVT/MII_RX_ER/RMII_RX_ER
N19
RMII receive error
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
P1
RMII receive data
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
A14
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
J18
MIBSPI5SIMO[0]/MII_TXD[1]/RMII_TXD[1]
J19
MIBSPI5CLK//MII_TXEN/RMII_TXEN
H19
Output
Pull Up
-
RMII transmit data
RMII transmit enable
Table 2-39. ZWT Ethernet Controller: Media Independent Interface (MII)
Terminal
Signal Name
337
ZWT
Signal
Type
Pull Up
Pull Type
F3
N2HET1[12]/MII_CRS/RMII_CRS_DV
B4
N2HET1[28]/MII_RXCLK/RMII_REFCLK/MII_RX_AVCLK4
K19
I/O
Pull Down
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
B11
Input
Pull Down
AD1EVT/MII_RX_ER/RMII_RX_ER
N19
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4
K19
I/O
Receive clock
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]
P1
Input
Receive data
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]
A14
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
G19
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
H18
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4/nTZ3
D19
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4/nTZ3
D19
Pull Down
-
Description
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND/EQEP1S
34
Input
Default
Pull State
Fixed, 20uA
Fixed, 20uA
Collision detect
Carrier sense and receive
valid
MII output receive clock
Received data valid
Receive error
Pull Up
I/O
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Fixed, 20uA
-
MII output transmit clock
Transmit clock
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-39. ZWT Ethernet Controller: Media Independent Interface (MII) (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Output
Pull Up
-
J18
MIBSPI5SIMO[0]/MII_TXD[1]
J19
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
E18
Pull Down
-
MIBSPI5CLK/MII_TXEN/RMII_TXEN
H19
Pull Up
-
Transmit data
Transmit enable
PRODUCT PREVIEW
MIBSPI5SOMI[0]/MII_TXD[0]/RMII_TXD[0]
Description
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
35
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.14 USB Host Port Controller Interface
Table 2-40. ZWT USB Host Port Controller Interface (USB1, USB2)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
Input
Pull Down
Fixed, 20uA
Overcurrent indication
from USB power switch
Pull Up
Fixed, 20uA
Receive data from USB
port transceiver
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
E18
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
MIBSPI5NENA/MII_RXD[3]/USB1.VM/MIBSPI5SOMI[1]/ECA
P5
H18
NRZI encoded D-minus
from USB port transceiver
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP/ECAP4
G19
NRZI encoded D-plus
from USB port transceiver
PRODUCT PREVIEW
GIOB[1]/USB1.PortPower
K2
N2HET1[30]/MII_RX_DV/USB1.SPEED/EQEP2S
B11
Output
Pull Down
-
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND/EQEP1S
F3
Pull Up
-
GIOB[0]/USB1.TXDAT
M2
Pull Down
-
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4/nTZ3
D19
Transmit enable to port
transceiver
N2HET1[14]/USB1.TXSE0
A11
Single-ended zero to port
transceiver
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
E3
Transmit speed indication
Input
Pull Down
Fixed, 20uA
Pull Down
Fixed, 20uA
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
W10
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
NRZI encoded D-minus
from USB port transceiver
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
NRZI encoded D-plus
from USB port transceiver
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]/EPWM7B
T1
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]/EQEP2B
U1
Transmit speed indication
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO/EPWM7A
V7
Port suspend indication
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
C1
NRZI encoded D-plus to
port transceiver
N2HET1[01]/SPI4NENA/USB2.TXEN\
USB_FUNC.PUENO/N2HET2[8]
V2
Transmit enable to port
transceiver
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
Single-ended zero to port
transceiver
Output
Pull Down
-
Table 2-41. ZWT USB Device Port Controller Interface (USB_FUNC)
Terminal
Signal Name
337
ZWT
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14]/
EPWM7B
T1
N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/
N2HET2[8]
V2
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO
N/
N2HET2[10]/EQEP2B
U1
36
Signal
Type
Default
Pull State
Pull Type
Description
Output
Pull Down
-
Pull Up enable, allows for
software-programmable
USB device
connect/disconnect
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PUENO inverted
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-41. ZWT USB Device Port Controller Interface (USB_FUNC) (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Input
Pull Down
Pull Type
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
W10
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
USB device logic value of
D-minus
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
USB device logic value of
D-plus
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/USB_FUNC.SUS
PENDO/EPWM7A
V7
USB device suspend
output
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]/EQEP
2I
C1
USB device transmit data
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI/EPWM1SYNCO
E3
Output
Pull Down
-
Fixed, 20uA
USB device single-ended
data input
USB device single-ended
zero
USB device power
connected
PRODUCT PREVIEW
Input
Pull Down
Fixed, 20uA
Description
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
37
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.15 External Memory Interface (EMIF)
Table 2-42. External Memory Interface (EMIF)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Pull Down
-
Description
PRODUCT PREVIEW
EMIF_CKE
L3
Output
EMIF_CLK
K3
I/O
EMIF_nWE/EMIF_RNW
D17
Output
EMIF_nOE
E12
EMIF_nWAIT
P3
I/O
Pull Up
Fixed, 20uA
EMIF Extended Wait
Signal
EMIF_nWE/EMIF_RNW
D17
Output
Pull Up
R4
Output
Programmable,
20uA
EMIF Write Enable.
EMIF_nCAS
EMIF_nRAS
R3
Output
EMIF_nCS[0]/N2HET2[7] (1)
N17
Output
Pull Down
EMIF chip select,
synchronous
EMIF_nCS[2]
L17
Output
Pull Up
EMIF_nCS[3]/N2HET2[9] (1)
K17
Output
Pull Down
EMIF_nCS[4]
M17
Output
Pull Up
EMIF chip selects,
asynchronous
This applies to chip
selects 2, 3 and 4
EMIF_nDQM[0]
E10
Output
Pull Down
EMIF_nDQM[1]
E11
Output
EMIF_BA[0]
E13
Output
EMIF bank address or
address line
EMIF_BA[1]/N2HET2[5] (1)
D16
Output
EMIF bank address or
address line
EMIF_ADDR[0]/N2HET2[1] (1)
D4
Output
EMIF address
EMIF_ADDR[1]/N2HET2[3] (1)
D5
Output
EMIF_ADDR[2]
E6
Output
EMIF_ADDR[3]
E7
Output
EMIF_ADDR[4]
E8
Output
EMIF_ADDR[5]
E9
Output
EMIF_ADDR[6]/NHET2[11] (1)
C4
Output
(1)
C5
Output
EMIF_ADDR[8]/NHET2[15] (1)
C6
Output
EMIF_ADDR[9]
C7
Output
EMIF_ADDR[10]
C8
Output
EMIF_ADDR[11]
C9
Output
EMIF_ADDR[12]
C10
Output
EMIF_ADDR[7]/NHET2[13]
(1)
38
EMIF Clock Enable
EMIF clock. This is an
output signal in functional
mode. It is gated off by
default, so that the signal
is tri-stated. PINMUX29[8]
must be cleared to enable
this output.
Pull Up
-
EMIF Read-Not-Write
Pull Down
-
EMIF Read Enable
EMIF column address
strobe
EMIF row address strobe
Programmable,
20uA
EMIF Data Mask or Write
Strobe.
Data mask for SDRAM
devices, write strobe for
connected asynchronous
devices.
These signals are tri-stated and pulled down by default after power-up. Any application that requires the EMIF must set the bit 31 of the
system module general-purpose register GPREG1.
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-42. External Memory Interface (EMIF) (continued)
337
ZWT
Signal
Type
EMIF_DATA[0]
K15
I/O
EMIF_DATA[1]
L15
I/O
EMIF_DATA[2]
M15
I/O
EMIF_DATA[3]
N15
I/O
EMIF_DATA[4]
E5
I/O
EMIF_DATA[5]
F5
I/O
EMIF_DATA[6]
G5
I/O
EMIF_DATA[7]
K5
I/O
EMIF_DATA[8]
L5
I/O
EMIF_DATA[9]
M5
I/O
EMIF_DATA[10]
N5
I/O
EMIF_DATA[11]
P5
I/O
EMIF_DATA[12]
R5
I/O
EMIF_DATA[13]
R6
I/O
EMIF_DATA[14]
R7
I/O
EMIF_DATA[15]
R8
I/O
Copyright © 2012, Texas Instruments Incorporated
Default
Pull State
Pull Up
Pull Type
Fixed, 20uA
Description
EMIF Data
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Terminal
Signal Name
39
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.16 System Module Interface
Table 2-43. ZWT System Module Interface
Terminal
Signal Name
337
ZWT
Signal
Type
PRODUCT PREVIEW
nPORRST
W7
Input
nRST
B17
I/O
nERROR
B14
I/O
Default
Pull State
Pull Type
Pull Down 100uA
Pull Up
Description
Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
100uA
System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
Pull Down 20uA
ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.3.2.17 Clock Inputs and Outputs
Table 2-44. ZWT Clock Inputs and Outputs
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
-
Pull Type
OSCIN
K1
Input
KELVIN_GND
L2
Input
OSCOUT
L1
Output
A12
I/O
Pull Down
Programmable,
20uA
External prescaled clock
output, or GIO.
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS
B5
Input
Pull Down
20uA
External clock input #1
EXTCLKIN2
R9
Input
VCCPLL
P11
1.2V
Power
ECLK
40
-
Description
From external
crystal/resonator, or
external clock input
Kelvin ground for oscillator
To external
crystal/resonator
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
External clock input #2
-
Dedicated core supply for
PLL's
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
2.3.2.18 Test and Debug Modules Interface
Table 2-45. ZWT Test and Debug Modules Interface
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
TEST
U2
Input
nTRST
D18
Input
RTCK
A16
Output
TCK
B18
Input
TDI
A17
Input
Pull Up
TDO
C18
Output
Pull Down
TMS
C19
Input
Pull Up
Pull Type
Pull Down Fixed, 100uA
Description
Test enable
JTAG test hardware reset
-
-
JTAG return test clock
Pull Down Fixed, 100uA
JTAG test clock
JTAG test data in
JTAG test data out
JTAG test select
2.3.2.19 Flash Supply and Test Pads
Table 2-46. ZWT Flash Supply and Test Pads
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
VCCP
F8
3.3V
Power
-
-
Flash pump supply
FLTP1
J5
-
-
-
FLTP2
H5
Flash test pads. These
terminals are reserved for
TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
Signal
Type
Default
Pull State
Pull Type
Description
2.3.2.20 No Connects
Table 2-47. No Connects
Terminal
Signal Name
337
ZWT
NC
A8
-
-
-
NC
A15
-
-
-
NC
B8
-
-
-
NC
B9
-
-
-
NC
B15
-
-
-
NC
B16
-
-
-
Copyright © 2012, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
41
PRODUCT PREVIEW
Terminal
Signal Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 2-47. No Connects (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
No Connects. These balls
are not connected to any
internal logic and can be
connected to the PCB
ground without affecting
the functionality of the
device.
PRODUCT PREVIEW
NC
C11
-
-
-
NC
C12
-
-
-
NC
C13
-
-
-
NC
C14
-
-
-
NC
C15
-
-
-
NC
C16
-
-
-
NC
C17
-
-
-
NC
D6
-
-
-
NC
D7
-
-
-
NC
D8
-
-
-
NC
D9
-
-
-
NC
D10
-
-
-
NC
D11
-
-
-
NC
D12
-
-
-
NC
D13
-
-
-
NC
D14
-
-
-
NC
D15
-
-
-
NC
E4
-
-
-
NC
F4
-
-
-
NC
F16
-
-
-
NC
F17
-
-
-
NC
G4
-
-
-
NC
K4
-
-
-
NC
K16
-
-
-
NC
L4
-
-
-
NC
L16
-
-
-
NC
M4
-
-
-
NC
M16
-
-
-
NC
N4
-
-
-
NC
N16
-
-
-
NC
N18
-
-
-
NC
P4
NC
P15
-
-
-
NC
P16
-
-
-
NC
P17
-
-
-
NC
R1
-
-
-
NC
R10
-
-
-
NC
R11
-
-
-
NC
R12
-
-
-
NC
R13
-
-
-
NC
R14
-
-
-
NC
R15
-
-
-
42
-
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 2-47. No Connects (continued)
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
No Connects. These balls
are not connected to any
internal logic and can be
connected to the PCB
ground without affecting
the functionality of the
device.
NC
T2
-
-
-
NC
T3
-
-
-
NC
T4
-
-
-
NC
T5
-
-
-
NC
T6
-
-
-
NC
T7
-
-
-
NC
T8
-
-
-
NC
T9
-
-
-
NC
T10
-
-
-
NC
T11
-
-
-
NC
T13
-
-
-
NC
T14
-
-
-
NC
U3
-
-
-
NC
U4
-
-
-
NC
U5
-
-
-
NC
U6
-
-
-
NC
U7
-
-
-
NC
U8
-
-
-
NC
U9
-
-
-
NC
U10
-
-
-
NC
U11
-
-
-
NC
U12
-
-
-
NC
V3
-
-
-
NC
V4
-
-
-
NC
V11
-
-
-
NC
V12
-
-
-
NC
W4
-
-
-
NC
W13
-
-
-
PRODUCT PREVIEW
Terminal
Signal Name
2.3.2.21 Supply for Core Logic: 1.2V nominal
Table 2-48. ZWT Supply for Core Logic: 1.2V nominal
Terminal
Signal Name
VCC
337
ZWT
F9
VCC
F10
VCC
H10
VCC
J14
VCC
K6
VCC
K8
VCC
K12
VCC
K14
VCC
L6
VCC
M10
VCC
P10
Copyright © 2012, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
1.2V
Power
-
-
Description
Core supply
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
43
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
2.3.2.22 Supply for I/O Cells: 3.3V nominal
Table 2-49. ZWT Supply for I/O Cells: 3.3V nominal
Terminal
Signal Name
337
ZWT
VCCIO
F6
VCCIO
F7
VCCIO
F11
VCCIO
F12
VCCIO
F13
VCCIO
F14
VCCIO
G6
VCCIO
G14
VCCIO
H6
VCCIO
H14
PRODUCT PREVIEW
VCCIO
J6
VCCIO
L14
VCCIO
M6
VCCIO
M14
VCCIO
N6
VCCIO
N14
VCCIO
P6
VCCIO
P7
VCCIO
P8
VCCIO
P9
VCCIO
P12
VCCIO
P13
VCCIO
P14
44
Signal
Type
Default
Pull State
Pull Type
3.3V
Power
-
-
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Description
Operating supply for I/Os
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
2.3.2.23 Ground Reference for All Supplies Except VCCAD
Table 2-50. ZWT Ground Reference for All Supplies Except VCCAD
337
ZWT
VSS
A1
VSS
A2
VSS
A18
VSS
A19
VSS
B1
VSS
B19
VSS
H8
VSS
H9
VSS
H11
VSS
H12
VSS
J8
VSS
J9
VSS
J10
VSS
J11
VSS
J12
VSS
K9
VSS
K10
VSS
K11
VSS
L8
VSS
L9
VSS
L10
VSS
L11
VSS
L12
VSS
M8
VSS
M9
VSS
M11
VSS
M12
VSS
V1
VSS
W1
VSS
W2
Copyright © 2012, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
Ground
-
-
Description
Ground reference
Device Package and Terminal Functions
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Terminal
Signal Name
45
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
3 Device Operating Conditions
3.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range,
(1)
VCC (2)
Supply voltage range:
VCCIO, VCCP
Input voltage range:
-0.3 V to 1.43 V
(2)
-0.3 V to 4.1 V
VCCAD
-0.3 V to 5.5 V
All input pins, with exception of ADC pins
-0.3 V to 4.1 V
ADC input pins
Input clamp current:
-0.3 V to 5.25 V
IIK (VI < 0 or VI > VCCIO)
All pins, except AD1IN[23:0]
±20 mA
IIK (VI < 0 or VI > VCCAD)
AD1IN[23:0]
±10 mA
Total
±40 mA
Operating free-air temperature range, TA:
-40°C to 105°C
Operating junction temperature range, TJ:
-40°C to 150°C
Storage temperature range, Tstg
-65°C to 150°C
(1)
PRODUCT PREVIEW
(2)
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated
grounds.
Device Recommended Operating Conditions (1)
3.2
MIN
NOM
MAX
UNIT
VCC
Digital logic supply voltage (Core)
1.14
1.2
1.32
V
VCCPLL
PLL Supply Voltage
1.14
1.2
1.32
V
VCCIO
Digital logic supply voltage (I/O)
3
3.3
VCCAD
MibADC supply voltage
3
VCCP
Flash pump supply voltage
3
VSS
Digital logic supply ground
VSSAD
MibADC supply ground
VADREFHI
3.3
3.6
V
5.25
V
3.6
V
0
V
-0.1
0.1
V
A-to-D high-voltage reference source
VSSAD
VCCAD
V
VADREFLO
A-to-D low-voltage reference source
VSSAD
VCCAD
V
TA
Operating free-air temperature
-40
105
°C
TJ
Operating junction temperature
-40
150
°C
(1)
46
All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
RM46L450
RM46L850
www.ti.com
3.3
SPNS184 – SEPTEMBER 2012
Switching Characteristics over Recommended Operating Conditions for Clock Domains
Parameter
fHCLK
Description
Conditions
HCLK - System clock frequency
Max
Unit
Pipeline mode
enabled
200
MHz
Pipeline mode
disabled
50
MHz
fGCLK
GCLK - CPU clock frequency
fHCLK
MHz
fVCLK
VCLK - Primary peripheral clock frequency
100
MHz
fVCLK2
VCLK2 - Secondary peripheral clock
frequency
100
MHz
fVCLK3
VCLK3 - Secondary peripheral clock
frequency
100
MHz
fVCLKA1
VCLKA1 - Primary asynchronous
peripheral clock frequency
100
MHz
fVCLKA2
VCLKA2 - Secondary asynchronous
peripheral clock frequency
100
MHz
fVCLKA3
VCLKA3 - Primary asynchronous
peripheral clock frequency
100
MHz
fVCLKA4
VCLKA4 - Secondary asynchronous
peripheral clock frequency
100
MHz
fRTICLK
RTICLK - clock frequency
fVCLK
MHz
3.4
Wait States Required
RAM
0
Address Waitstates
200MHz
0MHz
Data Waitstates
0
200MHz
0MHz
Flash
Address Waitstates
1
0
Data Waitstates
0
0MHz
200MHz
120MHz
0MHz
1
50MHz
3
2
100MHz
150MHz
200MHz
Figure 3-1. Wait States Scheme
As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without
any address or data wait states required.
The TCM flash can support zero address and data wait states up to a CPU speed of 50MHz in non-pipelined
mode. The flash supports a maximum CPU clock speed of 200MHz in pipelined mode with one address wait
state and three data wait states.
The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait
state.
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
47
PRODUCT PREVIEW
Table 3-1. Clock Domain Timing Specifications
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
3.5
www.ti.com
Power Consumption Over Recommended Operating Conditions
PARAMETER
TEST CONDITIONS
fHCLK = 200MHz
VCC digital supply current (operating mode)
ICC
VCC Digital supply current (LBIST mode)
VCC Digital supply current
(PBIST mode)
Peak
RMS
fVCLK = 100MHz,
Flash in pipelined
mode, VCCmax
MIN
TYP
MAX
UNIT
350 for PGE
Package
375 for ZWT
Package400
mA
LBIST clock rate =
100MHz
mA
PBIST ROM clock
frequency = 100MHz
TBD
240
mA
ICCPLL
VCCPLL digital supply current (operating mode)
VCCPLL = VCCPLLmax
10
mA
ICCIO
VCCIO Digital supply current (operating mode.
No DC load, VCCmax
15
mA
Single ADC
operational,
VCCADmax
15
Both ADCs
operational,
VCCADmax
30
Single ADC
operational,
ADREFHImax
3
Both ADCs
operational,
ADREFHImax
6
read operation
VCCPmax
34
program, VCCPmax
37
read from 1 bank
and program
another bank,
VCCPmax
55
erase, VCCPmax
27
ICCAD
VCCAD supply current (operating mode)
PRODUCT PREVIEW
ICCREFHI
ICCP
48
ADREFHI supply current (operating mode)
VCCP supply current
Device Operating Conditions
mA
mA
mA
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
RM46L450
RM46L850
www.ti.com
Input/Output Electrical Characteristics Over Recommended Operating Conditions (1)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Vhys
Input hysteresis
All inputs
180
mV
VIL
Low-level input voltage
All inputs
-0.3
0.8
V
VIH
High-level input voltage
All inputs
2
VCCIO + 0.3
V
IOL = IOLmax
VOL
VOH
IIC
II
Low-level output voltage
IOL = 50 µA, standard
output mode
0.2
IOL = 50 µA, low-EMI
output mode (see
Section 3.10)
0.2 VCCIO
V
IOH = IOHmax
0.8 VCCIO
IOH = 50 µA, standard
output mode
VCCIO -0.2
IOH = 50 µA, low-EMI
output mode (see
Section 3.10)
0.8 VCCIO
VI < VSSIO - 0.3 or VI
> VCCIO + 0.3
-2
2
IIH Pulldown 20µA
VI = VCCIO
5
40
IIH Pulldown 100µA
VI = VCCIO
40
195
IIL Pullup 20µA
VI = VSS
-40
-5
IIL Pullup 100µA
VI = VSS
-195
-40
All other pins
No pullup or pulldown
-1
1
High-level output voltage
Input clamp current (I/O pins)
Input current (I/O pins)
0.2 VCCIO
V
mA
µA
CI
Input capacitance
2
pF
CO
Output capacitance
3
pF
(1)
PRODUCT PREVIEW
3.6
SPNS184 – SEPTEMBER 2012
Source currents (out of the device) are negative while sink currents (into the device) are positive.
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
49
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
3.7
www.ti.com
Output Buffer Drive Strengths
Table 3-2. Output Buffer Drive Strengths
Low-level Output Current,
IOL for VI=VOLmax
or
High-level Output Current,
IOH for VI=VOHmin
Signals
MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3],
MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],
TMS, TDI, TDO, RTCK,
SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,
N2HET2[1], N2HET2[3], N2HET2[5], N2HET2[7], N2HET2[9], N2HET2[11], N2HET2[13],
N2HET2[15]
ECAP1, ECAP4, ECAP5, ECAP6
EQEP1I, EQEP1S, EQEP2I, EQEP2S
8mA
EPWM1A, EPWM1B, EPWM1SYNCO, ETPW2A, EPWM2B, EPWM3A, EPWM3B,
EPWM4A, EPWM4B, EPWM5A, EPWM5B, EPWM6A, EPWM6B, EPWM7A, EPWM7B
PRODUCT PREVIEW
EMIF_ADDR[0:12], EMIF_BA[0:1], EMIF_CKE, EMIF_CLK, EMIF_DATA[0:15], EMIF_nCAS,
EMIF_nCS[0:4], EMIF_nDQM[0:1], EMIF_nOE, EMIF_nRAS, EMIF_nWAIT, EMIF_nWE,
EMIF_RNW
MDCLK,
MDIO,
MII_RX_VCLKA4,
MII_TX_VCLKA4,
RMII_REFCLK, RMII_TXD[0:1], RMII_TXEN
MII_TXD[0:3],
MII_TXEN,
USB1.PortPower,
USB1.SPEED,
USB1.SUSPEND,
USB1.TXDAT,
USB1.TXEN,
USB1.TXSE0,
USB2.PortPower,
USB2.SPEED,
USB2.SUSPEND,
USB2.TXDAT,
USB2.TXEN, USB2.TXSE0 ,USB_FUNC.GZO, USB_FUNC.PUENO, USB_FUNC.PUENON,
USB_FUNC.SE0O, USB_FUNC.SUSPENDO, USB_FUNC.TXDO
TEST,
4mA
MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,
ECAP2, ECAP3
nRST
AD1EVT,
CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,
GIOA[0-7], GIOB[0-7],
LINRX, LINTX,
2mA zero-dominant
MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA,
MIBSPI5NCS[0-3], MIBSPI5NENA,
N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7],
N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14],
N2HET2[15], N2HET2[16], N2HET2[18],
SPI2NCS[0], SPI2NENA, SPI4NCS[0], SPI4NENA
ECLK,
selectable 8mA / 2mA
SPI2CLK, SPI2SIMO, SPI2SOMI
The default output buffer drive strength is 8mA for these signals.
50
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
RM46L450
RM46L850
www.ti.com
3.8
SPNS184 – SEPTEMBER 2012
Input Timings
t pw
Input
V IH
VCCIO
VIH
VIL
V IL
0
Figure 3-2. TTL-Level Inputs
Table 3-3. Timing Requirements for Inputs (1)
Parameter
MIN
Input minimum pulse width
tin_slew
Time for input signal to go from VIL to VIH or from VIH to VIL
(1)
(2)
3.9
MAX
Unit
tc(VCLK) + 10 (2)
tpw
ns
1
ns
tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
The timing shown above is only valid for pin used in general-purpose input mode.
Output Timings
Parameter
Rise time, tr
8mA low EMI pins
(see Table 3-2)
Fall time, tf
Rise time, tr
4mA low EMI pins
(see Table 3-2)
Fall time, tf
Rise time, tr
2mA-z low EMI pins
(see Table 3-2)
Fall time, tf
MAX
Unit
CL = 15 pF
MIN
2.5
ns
CL = 50 pF
4
CL = 100 pF
7.2
CL = 150 pF
12.5
CL = 15 pF
2.5
CL = 50 pF
4
CL = 100 pF
7.2
CL = 150 pF
12.5
CL = 15 pF
5.6
CL = 50 pF
10.4
CL = 100 pF
16.8
CL = 150 pF
23.2
CL = 15 pF
5.6
CL= 50 pF
10.4
CL = 100 pF
16.8
CL = 150 pF
23.2
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL)
ns
ns
ns
ns
ns
51
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL) (continued)
Parameter
Rise time, tr
Selectable 8mA / 2mA-z
pins
(see Table 3-2)
MIN
8mA mode
Fall time, tf
Rise time, tr
2mA-z mode
Fall time, tf
MAX
Unit
CL = 15 pF
2
ns
CL = 50 pF
4
CL = 100 pF
8
CL = 150 pF
11
CL = 15 pF
2
CL = 50 pF
4
CL = 100 pF
8
CL = 150 pF
11
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
PRODUCT PREVIEW
tr
VOL
ns
ns
tf
V OH
Output
ns
VCCIO
VOH
VOL
0
Figure 3-3. CMOS-Level Outputs
Table 3-5. Timing Requirements for Outputs (1)
Parameter
td(parallel_out)
(1)
52
MIN
Delay between low to high, or high to low transition of general-purpose output signals
that can be configured by an application in parallel, e.g. all signals in a GIOA port, or
all N2HET1 signals, etc.
MAX
UNIT
6
ns
This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check
Table 3-2 for output buffer drive strength information on each signal.
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
3.10 Low-EMI Output Buffers
The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of
emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of
the output buffer, and is particularly effective with capacitive loads.
This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the
system module GPCR1 register for the desired module or signal, as shown in . The adaptive impedance
control circuit monitors the DC bias point of the output signal. The buffer internally generates two
reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO,
respectively.
Conversely, once the output buffer has driven the output to a high level, if the output voltage is above
VREFHIGH then the output buffer’s impedance will again increase to hi-Z. A high degree of decoupling
between internal power bus ad output pin will occur with capacitive loads or any loads in which no current
is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which
attempt to pull the output voltage below VREFHIGH will be opposed by the buffer’s output impedance so
as to maintain the output voltage at or above VREFHIGH.
The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance
control mode cannot respond to high-frequency noise coupling into the buffer’s power buses. In this
manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.
Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will
allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a
negative current load will pull the output voltage down to VSSIO – 0.6V without opposition. This is not an
issue since the actual clamp current capability is always greater than the IOH / IOL specifications.
The low-EMI output buffers are automatically configured to be in the standard buffer mode when the
device enters a low-power mode.
Table 3-6. Low-EMI Output Buffer Hookup
Module or Signal Name
Control Register to Enable Low-EMI Mode
Module: MibSPI1
GPREG1.0
Module: SPI2
GPREG1.1
Module: MibSPI3
GPREG1.2
Reserved
GPREG1.3
Module: MibSPI5
GPREG1.4
Reserved
GPREG1.5
Module: EMIF
GPREG1.6
Reserved
GPREG1.7
Signal: TMS
GPREG1.8
Signal: TDI
GPREG1.9
Signal: TDO
GPREG1.10
Signal: RTCK
GPREG1.11
Signal: TEST
GPREG1.12
Signal: nERROR
GPREG1.13
Signal: AD1EVT
GPREG1.14
Device Operating Conditions
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
53
PRODUCT PREVIEW
Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then
the output buffer’s impedance will increase to hi-Z. A high degree of decoupling between the internal
ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing,
e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull
the output voltage above VREFLOW will be opposed by the buffer’s output impedance so as to maintain
the output voltage at or below VREFLOW.
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4 System Information and Electrical Specifications
4.1
Device Power Domains
The device core logic is split up into multiple power domains in order to optimize the power for a given
application use case. There are 6 core power domains in total: PD1, PD2, PD3, PD5, RAM_PD1, and
RAM_PD2. Refer to Section 1.4 for more information.
PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains
can be turned ON/OFF one time during device initialization as per the application requirement. Refer to
the Power Management Module (PMM) chapter of the device technical reference manual for more details.
NOTE
The clocks to a module must be turned off before powering down the core domain that
contains the module.
NOTE
PRODUCT PREVIEW
The logic in the modules that are powered down loses its power completely. Any access to
modules that are powered down results in an abort being generated. When power is
restored, the modules power-up to their default states (after normal power-up). No register or
memory contents are preserved in the core domains that are turned off.
4.2
Voltage Monitor Characteristics
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the
requirement for a specific sequence when powering up the core and I/O voltage supplies.
4.2.1
Important Considerations
•
•
4.2.2
The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the
device is held in reset when the voltage supplies are out of range.
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other
supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a
source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and
VCCP supplies.
Voltage Monitor Operation
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device
enters a low power mode.
The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 4.3.3.1 for the timing
information on this glitch filter.
54
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-1. Voltage Monitoring Specifications
PARAMETER
VMON
4.2.3
Voltage monitoring
thresholds
MIN
TYP
MAX
UNIT
VCC low - VCC level below this
threshold is detected as too low.
0.8
0.9
1.0
V
VCC high - VCC level above this
threshold is detected as too high.
1.40
1.7
2.1
VCCIO low - VCCIO level below this
threshold is detected as too low.
1.9
2.4
2.9
Supply Filtering
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the
maximum specification cannot be filtered.
Table 4-2. VMON Supply Glitch Filtering Capability
MIN
MAX
250ns
1us
Width of glitch on VCCIO that can be filtered
250ns
1us
PRODUCT PREVIEW
Parameter
Width of glitch on VCC that can be filtered
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
55
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.3
www.ti.com
Power Sequencing and Power On Reset
4.3.1
Power-Up Sequence
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The powerup sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see Table 4-4 for
more details), core voltage rising above the minimum core supply threshold and the release of power-on
reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The
oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The
different supplies to the device can be powered up in any order.
The device goes through the following sequential phases during power up.
Table 4-3. Power-Up Phases
Oscillator start-up and validity check
1032 oscillator cycles
eFuse autoload
1160 oscillator cycles
Flash pump power-up
688 oscillator cycles
Flash bank power-up
617 oscillator cycles
Total
3497 oscillator cycles
PRODUCT PREVIEW
The CPU reset is released at the end of the above sequence and fetches the first instruction from address
0x00000000.
4.3.2
Power-Down Sequence
The different supplies to the device can be powered down in any order.
4.3.3
Power-On Reset: nPORRST
This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core
supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an
internal pulldown.
4.3.3.1
nPORRST Electrical and Timing Requirements
Table 4-4. Electrical Requirements for nPORRST
NO Parameter
MIN
MAX
Unit
0.5
V
VCCPORL
VCC low supply level when nPORRST must be active during powerup
VCCPORH
VCC high supply level when nPORRST must remain active during
power-up and become active during power down
VCCIOPORL
VCCIO / VCCP low supply level when nPORRST must be active during
power-up
VCCIOPORH
VCCIO / VCCP high supply level when nPORRST must remain active
during power-up and become active during power down
VIL(PORRST)
Low-level input voltage of nPORRST VCCIO > 2.5V
0.2 * VCCIO
V
Low-level input voltage of nPORRST VCCIO < 2.5V
0.5
V
1.14
V
1.1
3.0
V
V
3
tsu(PORRST)
Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL
during power-up
0
ms
6
th(PORRST)
Hold time, nPORRST active after VCC > VCCPORH
1
ms
7
tsu(PORRST)
Setup time, nPORRST active before VCC < VCCPORH during power
down
2
µs
8
th(PORRST)
Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH
1
ms
9
th(PORRST)
Hold time, nPORRST active after VCC < VCCPORL
0
ms
56
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-4. Electrical Requirements for nPORRST (continued)
NO Parameter
tf(nPORRST)
Filter time nPORRST pin;
MIN
MAX
Unit
500
2000
ns
pulses less than MIN will be filtered out, pulses greater than MAX
will generate a reset.
1.2 V
VCCIOPORH
VCCPORH
6
VCCIOPORL
VCC (1.2 V)
VCCIO / VCCP(3.3 V)
nPORRST
VCCIOPORH
VCCIO / VCCP
8
VCCPORH
VCC
7
6
7
VCCPORL
VCCPORL
3
VIL(PORRST)
VCCIOPORL
9
VIL
VIL
VIL
VIL(PORRST)
PRODUCT PREVIEW
3.3 V
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.
Figure 4-1. nPORRST Timing Diagram
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
57
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.4
www.ti.com
Warm Reset (nRST)
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.
This terminal has a glitch filter. It also has an internal pullup
4.4.1
Causes of Warm Reset
Table 4-5. Causes of Warm Reset
DEVICE EVENT
SYSTEM STATUS FLAG
Power-Up Reset
Exception Status Register, bit 15
Oscillator fail
Global Status Register, bit 0
PLL slip
Global Status Register, bits 8 and 9
Watchdog exception / Debugger reset
Exception Status Register, bit 13
CPU Reset (driven by the CPU STC)
Exception Status Register, bit 5
Software Reset
Exception Status Register, bit 4
External Reset
Exception Status Register, bit 3
PRODUCT PREVIEW
4.4.2
nRST Timing Requirements
Table 4-6. nRST Timing Requirements (1)
PARAMETER
tv(RST)
Valid time, nRST active after
nPORRST inactive
Valid time, nRST active (all other
System reset conditions)
tf(nRST)
Filter time nRST pin;
MIN
MAX
1160 tc(OSC) + 1048tc(OSC)
UNIT
ns
8tc(VCLK)
500
2000
ns
pulses less than MIN will be
filtered out, pulses greater than
MAX will generate a reset
(1)
58
Specified values do NOT include rise/fall times. For rise and fall timings, see Table 3-4.
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.5.1
ARM© Cortex-R4F™ CPU Information
Summary of ARM Cortex-R4F™ CPU Features
The features of the ARM Cortex-R4F™ CPU include:
• An integer unit with integral EmbeddedICE-RT logic.
• High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)
for Level two (L2) master and slave interfaces.
• Floating Point Coprocessor
• Dynamic branch prediction with a global history buffer, and a 4-entry return stack
• Low interrupt latency.
• Non-maskable interrupt.
• A Harvard Level one (L1) memory system with:
– Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking
memories
– ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions
• Dual core logic for fault detection in safety-critical applications.
• An L2 memory interface:
– Single 64-bit master AXI interface
– 64-bit slave AXI interface to TCM RAM blocks
• A debug interface to a CoreSight Debug Access Port (DAP).
• A Performance Monitoring Unit (PMU).
• A Vectored Interrupt Controller (VIC) port.
For more information on the ARM Cortex-R4F™ CPU please see www.arm.com.
4.5.2
ARM Cortex-R4F™ CPU Features Enabled by Software
The following CPU features are disabled on reset and must be enabled by the application if required.
• ECC On Tightly-Coupled Memory (TCM) Accesses
• Hardware Vectored Interrupt (VIC) Port
• Floating Point Coprocessor
• Memory Protection Unit (MPU)
4.5.3
Dual Core Implementation
The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the CCMR4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2 clock
cycles as shown in Figure 4-3.
The CPUs have a diverse CPU placement given by following requirements:
• different orientation; e.g. CPU1 = "north" orientation, CPU2 = "flip west" orientation
• dedicated guard ring for each CPU
F
Flip West
F
North
Figure 4-2. Dual - CPU Orientation
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
59
PRODUCT PREVIEW
4.5
SPNS184 – SEPTEMBER 2012
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.5.4
www.ti.com
Duplicate clock tree after GCLK
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU
running at the same frequency and in phase to the clock of CPU1. See Figure 4-3.
4.5.5
ARM Cortex-R4F™ CPU Compare Module (CCM) for Safety
This device has two ARM Cortex-R4F™ CPU cores, where the output signals of both CPUs are compared
in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed
in a different way as shown in the figure below.
Output + Control
CCM-R4
2 cycle delay
CCM-R4
compare
CPU1CLK
PRODUCT PREVIEW
CPU 1
compare
error
CPU 2
2 cycle delay
CPU2CLK
Input + Control
Figure 4-3. Dual Core Implementation
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of
both CPUs before the registers are used, including function calls where the register values are pushed
onto the stack.
4.5.6
CPU Self-Test
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the
Deterministic Logic BIST Controller as the test engine.
The main features of the self-test controller are:
• Ability to divide the complete test run into independent test intervals
• Capable of running the complete test as well as running few intervals at a time
• Ability to continue from the last executed interval (test set) as well as ability to restart from the
beginning (First test set)
• Complete isolation of the self-tested CPU core from rest of the system during the self-test run
• Ability to capture the Failure interval number
• Timeout counter for the CPU self-test run as a fail-safe feature
60
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.5.6.1
1.
2.
3.
4.
5.
6.
7.
SPNS184 – SEPTEMBER 2012
Application Sequence for CPU Self-Test
Configure clock domain frequencies.
Select number of test intervals to be run.
Configure the timeout period for the self-test run.
Enable self-test.
Wait for CPU reset.
In the reset handler, read CPU self-test status to identify any failures.
Retrieve CPU state if required.
For more information see the device Technical Reference Manual.
4.5.6.2
CPU Self-Test Clock Configuration
The maximum clock rate for the self-test is 100MHz. The STCCLK is divided down from the CPU clock.
This divider is configured by the STCCLKDIV register at address 0xFFFFE108.
For more information see the device Technical Reference Manual.
CPU Self-Test Coverage
Table 4-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.
Table 4-7. CPU Self-Test Coverage
INTERVALS
TEST COVERAGE, %
TEST CYCLES
0
0
0
1
62.13
1365
2
70.09
2730
3
74.49
4095
4
77.28
5460
5
79.28
6825
6
80.90
8190
7
82.02
9555
8
83.10
10920
9
84.08
12285
10
84.87
13650
11
85.59
15015
12
86.11
16380
13
86.67
17745
14
87.16
19110
15
87.61
20475
16
87.98
21840
17
88.38
23205
18
88.69
24570
19
88.98
25935
20
89.28
27300
21
89.50
28665
22
89.76
30030
23
90.01
31395
24
90.21
32760
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
61
PRODUCT PREVIEW
4.5.6.3
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.6
www.ti.com
Clocks
4.6.1
Clock Sources
The table below lists the available clock sources on the device. Each of the clock sources can be enabled
or disabled using the CSDISx registers in the system module. The clock source number in the table
corresponds to the control bit in the CSDISx register for that clock source.
The table also shows the default state of each clock source.
Table 4-8. Available Clock Sources
Clock
Source #
Name
0
OSCIN
Main Oscillator
Enabled
1
PLL1
Output From PLL1
Disabled
Description
Default State
2
Reserved
Reserved
Disabled
3
EXTCLKIN1
External Clock Input #1
Disabled
4
LFLPO
Low Frequency Output of Internal Reference Oscillator
Enabled
HFLPO
High Frequency Output of Internal Reference
Oscillator
Enabled
5
PRODUCT PREVIEW
6
PLL2
Output From PLL2
Disabled
7
EXTCLKIN2
External Clock Input #2
Disabled
4.6.1.1
Main Oscillator
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors
across the external OSCIN and OSCOUT pins as shown in Figure 4-4. The oscillator is a single stage
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test
measurement and low power modes.
TI strongly encourages each customer to submit samples of the device to the resonator/crystal
vendors for validation. The vendors are equipped to determine what load capacitors will best tune
their resonator/crystal to the microcontroller device for optimum start-up and operation over
temperature/voltage extremes.
An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving
the OSCOUT pin unconnected (open) as shown in the figure below.
OSCIN
(see Note B)
Kelvin_GND
C1
OSCOUT
OSCIN
OSCOUT
C2
(see Note A)
External
Clock Signal
(toggling 0-3.3V)
Crystal
(a)
(b)
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.
Note B: Kelvin_GND should not be connected to any other GND.
Figure 4-4. Recommended Crystal/Clock Connection
62
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.6.1.1.1 Timing Requirements for Main Oscillator
Table 4-9. Timing Requirements for Main Oscillator
Unit
Cycle time, OSCIN (when using a sine-wave input)
Parameter
MIN
50
Type
200
ns
tc(OSC_SQR)
Cycle time, OSCIN, (when input to the OSCIN is a
square wave )
12.5
200
ns
tw(OSCIL)
Pulse duration, OSCIN low (when input to the OSCIN
is a square wave)
15
ns
tw(OSCIH)
Pulse duration, OSCIN high (when input to the OSCIN
is a square wave)
15
ns
PRODUCT PREVIEW
MAX
tc(OSC)
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
63
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.6.1.2
www.ti.com
Low Power Oscillator
The Low Power Oscillator (LPO) is comprised of two oscillators — HF LPO and LF LPO, in a single
macro.
4.6.1.2.1 Features
The main features of the LPO are:
• Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #
4 of the Global Clock Module.
• Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5
of the Global Clock Module.
• Provides a comparison clock for the crystal oscillator failure detection circuit.
BIAS_EN
LFLPO
LFEN
PRODUCT PREVIEW
LF_TRIM
Low
Power
Oscillator
HFEN
HFLPO
HF_TRIM
HFLPO_VALID
nPORRST
Figure 4-5. LPO Block Diagram
Figure 4-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO)
and provides two clock sources: one nominally 80KHz and one nominally 10MHz.
Table 4-10. LPO Specifications
Parameter
Clock Detection
LPO - HF oscillator
MIN
Typical
MAX
Unit
oscillator fail frequency - lower threshold, using
untrimmed LPO output
1.375
2.4
4.875
MHz
oscillator fail frequency - higher threshold, using
untrimmed LPO output
22
38.4
78
MHz
untrimmed frequency
5.5
9.6
19.5
MHz
10
µs
startup time from STANDBY (LPO BIAS_EN High for
at least 900µs)
cold startup time
LPO - LF oscillator
64
900
µs
180
kHz
startup time from STANDBY (LPO BIAS_EN High for
at least 900µs)
100
µs
cold startup time
2000
µs
untrimmed frequency
36
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
85
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.6.1.3
SPNS184 – SEPTEMBER 2012
Phase Locked Loop (PLL) Clock Modules
The PLL is used to multiply the input frequency to some higher frequency.
The main features of the PLL are:
• Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The
frequency modulation capability of PLL2 is permanently disabled.
• Configurable frequency multipliers and dividers.
• Built-in PLL Slip monitoring circuit.
• Option to reset the device on a PLL slip detection.
4.6.1.3.1 Block Diagram
Figure 4-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and
PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the
multiplier and dividers for PLL2.
/NR
INTCLK
VCOCLK
PLL
/1 to /64
/OD
post_ODCLK
/1 to /8
/R
PLLCLK
/1 to /32
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)
/NF
PRODUCT PREVIEW
OSCIN
/1 to /256
OSCIN
/NR2
VCOCLK2
INTCLK2
/1 to /64
PLL#2
/NF2
/OD2
post_ODCLK2
/1 to /8
/R2
PLL2CLK
/1 to /32
f PLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2)
/1 to /256
Figure 4-6. PLLx Block Diagram
4.6.1.3.2 PLL Timing Specifications
Table 4-11. PLL Timing Specifications
PARAMETER
fINTCLK
fpost_ODCLK
PLL1 Reference Clock frequency
VCOCLK – PLL1 Output Divider (OD) input
clock frequency
fINTCLK2
PLL2 Reference Clock frequency
fVCOCLK2
MAX
1
f(OSC_SQR)
MHz
400
MHz
150
550
MHz
1
f(OSC_SQR)
MHz
400
MHz
550
MHz
Post-ODCLK – PLL1 Post-divider input
clock frequency
fVCOCLK
fpost_ODCLK2
MIN
Post-ODCLK – PLL2 Post-divider input
clock frequency
VCOCLK – PLL2 Output Divider (OD) input
clock frequency
Copyright © 2012, Texas Instruments Incorporated
150
UNIT
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
65
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.6.1.4
www.ti.com
External Clock Inputs
The device supports up to two external clock inputs. This clock input must be a square wave input. The
electrical and timing requirements for these clock inputs are specified below.
Table 4-12. External Clock Timing and Electrical Specifications
Parameter
Description
Min
Max
Unit
80
MHz
fEXTCLKx
External clock input frequency
tw(EXTCLKIN)H
EXTCLK high-pulse duration
6
ns
tw(EXTCLKIN)L
EXTCLK low-pulse duration
6
ns
viL(EXTCLKIN)
Low-level input voltage
-0.3
0.8
V
viH(EXTCLKIN)
High-level input voltage
2
VCCIO + 0.3
V
4.6.2
Clock Domains
4.6.2.1
Clock Domain Descriptions
The table below lists the device clock domains and their default clock sources. The table also shows the
system module control register that is used to select an available clock source for each clock domain.
PRODUCT PREVIEW
Table 4-13. Clock Domain Descriptions
Clock Domain Name
Default Clock
Source
Clock Source
Selection Register
HCLK
OSCIN
GHVSRC
•
•
Is disabled via the CDDISx registers bit 1
Used for all system modules including DMA, ESM
GCLK
OSCIN
GHVSRC
•
•
•
•
Always the same frequency as HCLK
In phase with HCLK
Is disabled separately from HCLK via the CDDISx registers bit 0
Can be divided by 1up to 8 when running CPU self-test (LBIST)
using the CLKDIV field of the STCCLKDIV register at address
0xFFFFE108
GCLK2
OSCIN
GHVSRC
•
•
•
•
Always the same frequency as GCLK
2 cycles delayed from GCLK
Is disabled along with GCLK
Gets divided by the same divider setting as that for GCLK when
running CPU self-test (LBIST)
VCLK
OSCIN
GHVSRC
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 2
VCLK2
OSCIN
GHVSRC
•
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Frequency must be an integer multiple of VCLK frequency
Is disabled separately from HCLK via the CDDISx registers bit 3
VCLK3
OSCIN
GHVSRC
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 8
VCLK4
OSCIN
GHVSRC
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 9
VCLKA1
VCLK
VCLKASRC
•
•
Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 4
VCLKA2
VCLK
VCLKASRC
•
•
Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 5
66
Description
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-13. Clock Domain Descriptions (continued)
Default Clock
Source
Clock Source
Selection Register
Description
VCLKA3_S
VCLK
VCLKACON
•
•
•
Defaults to VCLK as the source
Frequency can be as fast as HCLK frequency.
Is disabled via the CDDISx registers bit 10
VCLKA3_DIVR
VCLK
VCLKACON1
•
Divided down from the AVCLK3_S using the VCLKA3R field of
the VCLKACON1 register at address 0xFFFFE140
Frequency can be VCLKA3_S/1, VCLKA3_S/2, ..., or
VCLKA3_S/8
Default frequency is VCLKA3_S/2
Is disabled separately via the VCLKACON1 register
VCLKA3_DIV_CDDIS bit only if the VCLKA3_S clock is not
disabled
•
•
•
VCLKA4_S
VCLK
VCLKACON1
•
•
•
Defaults to VCLK as the source
Frequency can be as fast as HCLK frequency
Is disabled via the CDDISx registers bit 11
VCLKA4_DIVR
VCLK
VCLKACON1
•
Divided down from the VCLKA4_S using the VCLKA4R field of
the VCLKACON1 register at address 0xFFFFE140
Frequency can be VCLKA4_S/1, VCLKA4_S/2, ..., or
VCLKA4_S/8
Default frequency is VCLKA4_S/2
Is disabled separately via the VCLKACON1 register
VCLKA4_DIV_CDDIS bit only if the VCLKA4_S clock is not
disabled
•
•
•
RTICLK
VCLK
RCLKSRC
•
•
•
Copyright © 2012, Texas Instruments Incorporated
Defaults to VCLK as the source
If a clock source other than VCLK is selected for RTICLK, then
the RTICLK frequency must be less than or equal to VCLK/3
– Application can ensure this by programming the RTI1DIV
field of the RCLKSRC register, if necessary
Is disabled via the CDDISx registers bit 6
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
67
PRODUCT PREVIEW
Clock Domain Name
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.6.2.2
www.ti.com
Mapping of Clock Domains to Device Modules
Each clock domain has a dedicated functionality as shown in the figures below.
GCM
0
OSCIN
PLL #1
X1..256
/1..64
Low Power
Oscillator
GCLK, GCLK2 (to CPU)
(FMzPLL)
/1..32
/1..8
1
*
80kHz
4
10MHz
5
VCLK_sys (VCLK to system modules)
PLL # 2 (FMzPLL)
/1..64
X1..256
/1..32
/1..8
* the frequency at this node must not
exceed the maximum HCLK specifiation.
3
EXTCLKIN 1
7
EXTCLKIN2
0
1
3
4
5
6
7
VCLK
VCLKA3_DIVR / 4
VCLK3
VCLKA3_DIVR
/1..16
VCLK2 (to N2HETx and HTUx)
/1..16
VCLK3 (to Ethernet, USB)
0
1
3
4
5
6
7
VCLK
6
*
HCLK (to SYSTEM)
VCLK _peri (VCLK to peripherals on PCR1)
/1..16
VCLKA1 (to
to DCANx)
VCLKA3_S (left open)
/DIVR
VCLKA3_DIVR
(to USB Device / 48MHZ
and USB Host / 48 MHz)
PRODUCT PREVIEW
VCLKA4_DIVR
Ethernet
USB Host
/4
0
1
3
4
5
6
7
VCLK
VCLKA3_DIVR / 4
(to USB Host / 12 MHz)
VCLKA4_S (left open)
VCLKA4_SRC
VCLKA3_DIVR
/DIVR
VCLKA4_DIVR
VCLKA4_DIVR_EMAC
(to EMAC)
PLL2 ODCLK/8
EMIF
0
1
3
4
5
6
7
USB Device
VCLKA1
VCLK
PLL2 ODCLK/16
/1, 2, 4, or 8
RTICLK (to RTI, DWWD)
VCLK
VCLK2
VCLK2
/1,2,..1024
Prop_seg
/1,2,..256
/2,3..224
/1,2..32
/1,2..65536
N2HETx
TU
Phase_seg2
SPI
Baud Rate
LIN / SCI
Baud Rate
ADCLK
ECLK
I2C baud
rate
LIN, SCI
MibADCx
External Clock
I2C
Phase_seg1
SPIx,MibSPIx
EXTCLKIN1
CAN Baud Rate
DCANx
HRP
/1..64
/1,2..256
PLL#2 output
Reserved
Reserved
NTU[3]
NTU[2]
NTU[1]
RTI
LRP
/20 ..2 5
Loop
High
Resolution Clock
N2HETx
NTU[0]
Figure 4-7. Device Clock Domains
68
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.6.2.3
SPNS184 – SEPTEMBER 2012
Special Clock Source Selection Scheme for VCLKA4_DIVR_EMAC
Some applications may need to use both the of Ethernet interfaces. The MII interface requires
VCLKA4_DIVR_EMAC to be 25MHz and the RMII requires VCLKA4_DIVR_EAMC to be 50MHz.
These different frequencies are supported by adding special dedicated clock source selection options for
the VCLKA4_DIVR_EMAC clock domain. This logic is shown in .
0
1
3
4
5
6
7
VCLK
VCLKA4_S (left open)
/DIVR
VCLKA4_DIVR_EMAC
(to EMAC)
PLL2 post_ODCLK/8
PLL2 post_ODCLK/16
VCLKA4_SRC
The PLL2 post_ODCLK is brought out as a separate output from the PLL wrapper module. There are two
additional dividers implemented at the device-level to divide this PLL2 post_ODCLK by 8 and by 16.
As shown in , the VCLKA4_SRC configured via the system module VCLKACON1 control register is used
to determine the clock source for the VCLKA4_S and VCLKA4_DIVR. An additional multiplexor is
implemented to select between the VCLKA4_DIVR and the two additional clock sources – PLL2
post_ODCLK/8 and post_ODCLK/16.
The selection is done as shown in the following table.
Table 4-14. VCLKA4_DIVR_EMAC Clock Source
Selection
VCLKA4_SRC from
VCLKACON1[19–16]
Clock Source for
VCLKA4_DIVR_EMAC
0x0
OSCIN / VCLKA4R
0x1
PLL1CLK / VCLKA4R
Copyright © 2012, Texas Instruments Incorporated
0x2
Reserved
0x3
EXTCLKIN1 / VCLKA4R
0x4
LF LPO / VCLKA4R
0x5
HF LPO / VCLKA4R
0x6
PLL2CLK / VCLKA4R
0x7
EXTCLKIN2 / VCLKA4R
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
69
PRODUCT PREVIEW
Figure 4-8. VCLKA4_DIVR Source Selection Options
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.6.3
www.ti.com
Clock Test Mode
The RM4x platform architecture defines a special mode that allows various clock signals to be brought out
on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is very
useful for debugging purposes and can be configured via the CLKTEST register in the system module.
Table 4-15. Clock Test Mode Options
SEL_ECP_PIN
=
CLKTEST[3-0]
PRODUCT PREVIEW
70
SIGNAL ON ECLK
SEL_GIO_PIN
=
CLKTEST[11-8]
SIGNAL ON N2HET1[12]
0000
Oscillator
0000
Oscillator Valid Status
0001
Main PLL free-running clock output
0001
Main PLL Valid status
0010
Reserved
0010
Reserved
0011
EXTCLKIN1
0011
Reserved
0100
LFLPO
0100
Reserved
0101
HFLPO
0101
HFLPO Valid status
0110
Secondary PLL free-running clock output
0110
Secondary PLL Valid Status
0111
EXTCLKIN2
0111
Reserved
1000
GCLK
1000
LFLPO
1001
RTI Base
1001
Oscillator Valid status
1010
Reserved
1010
Oscillator Valid status
1011
VCLKA1
1011
Oscillator Valid status
1100
Reserved
1100
Oscillator Valid status
1101
VCLKA3_DIVR
1101
VCLKA3_S
1110
VCLKA4_DIVR
1110
VCLKA4_S
1111
Reserved
1111
Oscillator Valid status
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.7
SPNS184 – SEPTEMBER 2012
Clock Monitoring
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low
power oscillator (LPO).
The LPO provides two different clock sources – a low frequency (LFLPO) and a high frequency (HFLPO).
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the HFLPO clock (limp
mode clock).
The valid OSCIN frequency range is defined as: fHFLPO / 4 < fOSCIN < fHFLPO * 4.
4.7.1
Clock Monitor Timings
For more information on LPO and Clock detection, refer to Table 4-10.
lower
threshold
1.375
upper
guaranteed fail
threshold
guaranteed pass
4.875
22
78
f[MHz]
Figure 4-9. LPO and Clock Detection, Untrimmed HFLPO
4.7.2
External Clock (ECLK) Output Functionality
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.
This output can be externally monitored as a safety diagnostic.
4.7.3
Dual Clock Comparators
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of
spec, an error signal is generated. For example, the DCC1 can be configured to use HFLPO as the
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration
allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source.
An additional use of this module is to measure the frequency of a selectable clock source, using the input
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1
does not reach 0 within the counting window generated by counter 0.
4.7.3.1
•
•
•
•
Features
Takes two different clock sources as input to two independent counter blocks.
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock
under test."
Each counter block is programmable with initial, or seed values.
The counter blocks start counting down from their seed values at the same time; a mismatch from the
expected frequency for the clock under test generates an error signal which is used to interrupt the
CPU.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
71
PRODUCT PREVIEW
guaranteed fail
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.7.3.2
www.ti.com
Mapping of DCC Clock Source Inputs
Table 4-16. DCC1 Counter 0 Clock Sources
CLOCK SOURCE [3:0]
CLOCK NAME
others
oscillator (OSCIN)
0x5
high frequency LPO
0xA
test clock (TCK)
Table 4-17. DCC1 Counter 1 Clock Sources
KEY [3:0]
CLOCK SOURCE [3:0]
others
-
N2HET1[31]
0x0
Main PLL free-running clock output
0x1
PLL #2 free-running clock output
0xA
CLOCK NAME
0x2
low frequency LPO
0x3
high frequency LPO
PRODUCT PREVIEW
0x4
reserved
0x5
EXTCLKIN1
0x6
EXTCLKIN2
0x7
reserved
0x8 - 0xF
VCLK
Table 4-18. DCC2 Counter 0 Clock Sources
CLOCK SOURCE [3:0]
CLOCK NAME
others
oscillator (OSCIN)
0xA
test clock (TCK)
Table 4-19. DCC2 Counter 1 Clock Sources
KEY [3:0]
72
CLOCK SOURCE [3:0]
CLOCK NAME
others
-
N2HET2[0]
0xA
00x0 - 0x7
Reserved
0x8 - 0xF
VCLK
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.8
SPNS184 – SEPTEMBER 2012
Glitch Filters
A glitch filter is present on the following signals.
Table 4-20. Glitch Filter Timing Specifications
Pin
nPORRST
Parameter
tf(nPORRST)
Filter time nPORRST pin;
MIN
MAX
Unit
500
2000
ns
500
2000
ns
500
2000
ns
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset (1)
nRST
tf(nRST)
Filter time nRST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset
TEST
tf(TEST)
Filter time TEST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will pass through
The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,
I/O pins, etc.) without also generating a valid reset signal to the CPU.
PRODUCT PREVIEW
(1)
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
73
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
4.9
4.9.1
www.ti.com
Device Memory Map
Memory Map Diagram
The figure below shows the device memory map.
0xFFFFFFFF
SYSTEM Modules
0xFFF80000
Peripherals - Frame 1
0xFF000000
0xFE000000
CRC
RESERVED
0xFCFFFFFF
0xFC000000
Peripherals - Frame 2
RESERVED
0xF07FFFFF
Flash Module Bus2 Interface
(Flash ECC, OTP and
EEPROM Emulation accesses)
PRODUCT PREVIEW
0xF0000000
RESERVED
0x87FFFFFF
0x80000000
0x6FFFFFFF
0x60000000
EMIF (64MB)
SDRAM
RESERVED
CS0
reserved
0x6C000000
CS4
0x68000000
CS3
0x64000000
CS2
EMIF (32kB * 3)
Async RAM
RESERVED
0x2013FFFF
0x20000000
Flash (1.25MB) (Mirrored Image)
RESERVED
0x0842FFFF
0x08400000
RAM - ECC
RESERVED
0x0802FFFF
0x08000000
0x0013FFFF
0x00000000
RAM (192KB)
RESERVED
Flash (1.25MB)
Figure 4-10. Memory Map
The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash
image is 0x2000 0000.
74
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.9.2
SPNS184 – SEPTEMBER 2012
Memory Map Table
Please refer to and for a block diagrams showing the devices interconnect.
Table 4-21. Device Memory Map
FRAME ADDRESS RANGE
MODULE NAME
FRAME CHIP
SELECT
TCM Flash
CS0
0x0000_0000
0x00FF_FFFF
16MB
1.25MB
TCM RAM + RAM
ECC
CSRAM0
0x0800_0000
0x0BFF_FFFF
64MB
192kB
Mirrored Flash
Flash mirror
frame
0x2000_0000
0x20FF_FFFF
16MB
1.25MB
START
END
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
Memories tightly coupled to the ARM Cortex-R4F CPU
Abort
External Memory Accesses
EMIF select 2
0x6000_0000
0x63FF_FFFF
64MB
32kB
EMIF Chip Select
3 (asynchronous)
EMIF select 3
0x6400_0000
0x67FF_FFFF
64MB
32kB
EMIF Chip Select
4 (asynchronous)
EMIF select 4
0x6800_0000
0x6BFF_FFFF
64MB
32kB
EMIF Chip Select
0 (synchronous)
EMIF select 0
0x8000_0000
0x87FF_FFFF
128MB
64MB
Access to "Reserved" space will
generate Abort
PRODUCT PREVIEW
EMIF Chip Select
2 (asynchronous)
Flash Module Bus2 Interface
Customer OTP,
TCM Flash Banks
0xF000_0000
0xF000_1FFF
8kB
4kB
Customer OTP,
Bank 7
0xF000_E000
0xF000_FFFF
8kB
4kB
Customer
OTP–ECC, TCM
Flash Banks
0xF004_0000
0xF004_03FF
1kB
512B
Customer
OTP–ECC,
Bank 7
0xF004_1C00
0xF004_1FFF
1kB
512B
TI OTP, TCM
Flash Banks
0xF008_0000
0xF008_1FFF
8kB
4kB
TI OTP,
Bank 7
0xF008_E000
0xF008_FFFF
8kB
4kB
TI OTP–ECC,
TCM Flash Banks
0xF00C_0000
0xF00C_03FF
1kB
512B
TI OTP–ECC,
Bank 7
0xF00C_1C00
0xF00C_1FFF
1kB
512B
Bank 7 – ECC
0xF010_0000
0xF013_FFFF
256kB
8kB
Bank 7
0xF020_0000
0xF03F_FFFF
2MB
64kB
Flash Data Space
ECC
0xF040_0000
0xF04F_FFFF
1MB
160kB
Abort
Ethernet and EMIF slave interfaces
CPPI Memory
Slave (Ethernet
RAM)
0xFC52_0000
0xFC52_1FFF
8kB
8kB
Abort
CPGMAC Slave
(Ethernet Slave)
0xFCF7_8000
0xFCF7_87FF
2kB
2kB
No error
CPGMACSS
Wrapper
(Ethernet
Wrapper)
0xFCF7_8800
0xFCF7_88FF
256B
256B
No error
Ethernet MDIO
Interface
0xFCF7_8900
0xFCF7_89FF
256B
256B
No error
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
75
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-21. Device Memory Map (continued)
MODULE NAME
FRAME CHIP
SELECT
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
W2FC (USB
device controller
registers)
0xFCF7_8A00
0xFCF7_8A7F
128B
128B
Abort
OHCI (USB Host
controller
registers)
0xFCF7_8B00
0xFCF7_8BFF
256B
256B
Abort
EMIF Registers
0xFCFF_E800
0xFCFF_E8FF
256B
256B
Abort
SCR5: Enhanced Timer Peripherals
PRODUCT PREVIEW
ePWM1
0xFCF7_8C00
0xFCF7_8CFF
256B
256B
Abort
ePWM2
0xFCF7_8D00
0xFCF7_8DFF
256B
256B
Abort
ePWM3
0xFCF7_8E00
0xFCF7_8EFF
256B
256B
Abort
ePWM4
0xFCF7_8F00
0xFCF7_8FFF
256B
256B
Abort
ePWM5
0xFCF7_9000
0xFCF7_90FF
256B
256B
Abort
ePWM6
0xFCF7_9100
0xFCF7_91FF
256B
256B
Abort
ePWM7
0xFCF7_9200
0xFCF7_92FF
256B
256B
Abort
eCAP1
0xFCF7_9300
0xFCF7_94FF
256B
256B
Abort
eCAP2
0xFCF7_9400
0xFCF7_95FF
256B
256B
Abort
eCAP3
0xFCF7_9500
0xFCF7_96FF
256B
256B
Abort
eCAP4
0xFCF7_9600
0xFCF7_97FF
256B
256B
Abort
eCAP5
0xFCF7_9700
0xFCF7_98FF
256B
256B
Abort
eCAP6
0xFCF7_9800
0xFCF7_99FF
256B
256B
Abort
eQEP1
0xFCF7_9900
0xFCF7_9AFF
256B
256B
Abort
eQEP2
0xFCF7_9A00
0xFCF7_9BFF
256B
256B
Abort
Cyclic Redundancy Checker (CRC) Module Registers
CRC
CRC frame
0xFE00_0000
0xFEFF_FFFF
16MB
512B
Accesses above 0x200 generate abort.
Peripheral Memories
MIBSPI5 RAM
PCS[5]
0xFF0A_0000
0xFF0B_FFFF
128kB
2kB
Abort for accesses above 2kB
MIBSPI3 RAM
PCS[6]
0xFF0C_0000
0xFF0D_FFFF
128kB
2kB
Abort for accesses above 2kB
MIBSPI1 RAM
PCS[7]
0xFF0E_0000
0xFF0F_FFFF
128kB
2kB
Abort for accesses above 2kB
DCAN3 RAM
PCS[13]
0xFF1A_0000
0xFF1B_FFFF
128kB
2kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
DCAN2 RAM
PCS[14]
0xFF1C_0000
0xFF1D_FFFF
128kB
2kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
DCAN1 RAM
PCS[15]
0xFF1E_0000
0xFF1F_FFFF
128kB
2kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
8kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
384B
Look-Up Table for ADC2 wrapper.
Starts at address offset 0x2000 and
ends at address offset 0x217F. Wrap
around for accesses between offsets
0x0180 and 0x3FFF. Abort generated
for accesses beyond offset 0x4000.
MIBADC2 RAM
PCS[29]
MIBADC2 LookUp Table
76
0xFF3A_0000
0xFF3B_FFFF
128kB
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-21. Device Memory Map (continued)
MODULE NAME
FRAME ADDRESS RANGE
FRAME CHIP
SELECT
START
END
FRAME ACTUA
SIZE
L SIZE
MIBADC1 RAM
PCS[31]
0xFF3E_0000
0xFF3F_FFFF
8kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
384B
Look-Up Table for ADC1 wrapper.
Starts at address offset 0x2000 and
ends at address offset 0x217F. Wrap
around for accesses between offsets
0x0180 and 0x3FFF. Abort generated
for accesses beyond offset 0x4000.
128kB
MibADC1 LookUp Table
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
PCS[34]
0xFF44_0000
0xFF45_FFFF
128kB
16kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
N2HET1 RAM
PCS[35]
0xFF46_0000
0xFF47_FFFF
128kB
16kB
Wrap around for accesses to
unimplemented address offsets lower
than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
N2HET2 TU2
RAM
PCS[38]
0xFF4C_0000
0xFF4D_FFFF
128kB
1kB
Abort
N2HET1 TU1
RAM
PCS[39]
0xFF4E_0000
0xFF4F_FFFF
128kB
1kB
Abort
PRODUCT PREVIEW
N2HET2 RAM
Debug Components
CoreSight Debug
ROM
CSCS0
0xFFA0_0000
0xFFA0_0FFF
4kB
4kB
Reads return zeros, writes have no
effect
Cortex-R4F
Debug
CSCS1
0xFFA0_1000
0xFFA0_1FFF
4kB
4kB
Reads return zeros, writes have no
effect
POM
CSCS4
0xFFA0_4000
0xFFA0_4FFF
4kB
4kB
Abort
Peripheral Control Registers
HTU1
PS[22]
0xFFF7_A400
0xFFF7_A4FF
256B
256B
Reads return zeros, writes have no
effect
HTU2
PS[22]
0xFFF7_A500
0xFFF7_A5FF
256B
256B
Reads return zeros, writes have no
effect
N2HET1
PS[17]
0xFFF7_B800
0xFFF7_B8FF
256B
256B
Reads return zeros, writes have no
effect
N2HET2
PS[17]
0xFFF7_B900
0xFFF7_B9FF
256B
256B
Reads return zeros, writes have no
effect
GIO
PS[16]
0xFFF7_BC00
0xFFF7_BDFF
512B
256B
Reads return zeros, writes have no
effect
MIBADC1
PS[15]
0xFFF7_C000
0xFFF7_C1FF
512B
512B
Reads return zeros, writes have no
effect
MIBADC2
PS[15]
0xFFF7_C200
0xFFF7_C3FF
512B
512B
Reads return zeros, writes have no
effect
I2C
PS[10]
0xFFF7_D400
0xFFF7_D4FF
256B
256B
Reads return zeros, writes have no
effect
DCAN1
PS[8]
0xFFF7_DC00
0xFFF7_DDFF
512B
512B
Reads return zeros, writes have no
effect
DCAN2
PS[8]
0xFFF7_DE00
0xFFF7_DFFF
512B
512B
Reads return zeros, writes have no
effect
DCAN3
PS[7]
0xFFF7_E000
0xFFF7_E1FF
512B
512B
Reads return zeros, writes have no
effect
LIN
PS[6]
0xFFF7_E400
0xFFF7_E4FF
256B
256B
Reads return zeros, writes have no
effect
SCI
PS[6]
0xFFF7_E500
0xFFF7_E5FF
256B
256B
Reads return zeros, writes have no
effect
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
77
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-21. Device Memory Map (continued)
MODULE NAME
FRAME CHIP
SELECT
MibSPI1
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
PS[2]
0xFFF7_F400
0xFFF7_F5FF
512B
512B
Reads return zeros, writes have no
effect
SPI2
PS[2]
0xFFF7_F600
0xFFF7_F7FF
512B
512B
Reads return zeros, writes have no
effect
MibSPI3
PS[1]
0xFFF7_F800
0xFFF7_F9FF
512B
512B
Reads return zeros, writes have no
effect
SPI4
PS[1]
0xFFF7_FA00
0xFFF7_FBFF
512B
512B
Reads return zeros, writes have no
effect
MibSPI5
PS[0]
0xFFF7_FC00
0xFFF7_FDFF
512B
512B
Reads return zeros, writes have no
effect
DMA RAM
PPCS0
0xFFF8_0000
System Modules Control Registers and Memories
VIM RAM
PPCS2
0xFFF8_2000
0xFFF8_0FFF
4kB
4kB
Abort
0xFFF8_2FFF
4kB
1kB
Wrap around for accesses to
unimplemented address offsets
between 1kB and 4kB.
PRODUCT PREVIEW
Flash Module
PPCS7
0xFFF8_7000
0xFFF8_7FFF
4kB
4kB
Abort
eFuse Controller
PPCS12
0xFFF8_C000
0xFFF8_CFFF
4kB
4kB
Abort
Power
Management
Module (PMM)
PPSE0
0xFFFF_0000
0xFFFF_01FF
512B
512B
Abort
PCR registers
PPS0
0xFFFF_E000
0xFFFF_E0FF
256B
256B
Reads return zeros, writes have no
effect
System Module Frame 2 (see
device TRM)
PPS0
0xFFFF_E100
0xFFFF_E1FF
256B
256B
Reads return zeros, writes have no
effect
PBIST
PPS1
0xFFFF_E400
0xFFFF_E5FF
512B
512B
Reads return zeros, writes have no
effect
STC
PPS1
0xFFFF_E600
0xFFFF_E6FF
256B
256B
Generates address error interrupt, if
enabled
IOMM
Multiplexing
Control Module
PPS2
0xFFFF_EA00
0xFFFF_EBFF
512B
512B
Reads return zeros, writes have no
effect
DCC1
PPS3
0xFFFF_EC00
0xFFFF_ECFF
256B
256B
Reads return zeros, writes have no
effect
DMA
PPS4
0xFFFF_F000
0xFFFF_F3FF
1kB
1kB
Reads return zeros, writes have no
effect
DCC2
PPS5
0xFFFF_F400
0xFFFF_F4FF
256B
256B
Reads return zeros, writes have no
effect
ESM
PPS5
0xFFFF_F500
0xFFFF_F5FF
256B
256B
Reads return zeros, writes have no
effect
CCMR4
PPS5
0xFFFF_F600
0xFFFF_F6FF
256B
256B
Reads return zeros, writes have no
effect
RAM ECC even
PPS6
0xFFFF_F800
0xFFFF_F8FF
256B
256B
Reads return zeros, writes have no
effect
RAM ECC odd
PPS6
0xFFFF_F900
0xFFFF_F9FF
256B
256B
Reads return zeros, writes have no
effect
RTI + DWWD
PPS7
0xFFFF_FC00
0xFFFF_FCFF
256B
256B
Reads return zeros, writes have no
effect
VIM Parity
PPS7
0xFFFF_FD00
0xFFFF_FDFF
256B
256B
Reads return zeros, writes have no
effect
VIM
PPS7
0xFFFF_FE00
0xFFFF_FEFF
256B
256B
Reads return zeros, writes have no
effect
System Module Frame 1 (see
device TRM)
PPS7
0xFFFF_FF00
0xFFFF_FFFF
256B
256B
Reads return zeros, writes have no
effect
78
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
4.9.3
SPNS184 – SEPTEMBER 2012
Special Consideration for CPU Access Errors Resulting in Imprecise Aborts
Any CPU write access to a Normal or Device type memory, which generates a fault, will generate an
imprecise abort. The imprecise abort exception is disabled by default and must be enabled for the CPU to
handle this exception. The imprecise abort handling is enabled by clearing the "A" bit in the CPU’s
program status register (CPSR).
4.9.4
Master/Slave Access Privileges
The table below lists the access permissions for each bus master on the device. A bus master is a module
that can initiate a read or a write transaction on the device.
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed
in the "MASTERS" column can access that slave module.
Table 4-22. Master / Slave Access Matrix
ACCESS MODE
SLAVES ON MAIN SCR
Flash Module
Bus2 Interface:
OTP, ECC, Bank
7
Non-CPU
Accesses to
Program Flash
and CPU Data
RAM
CRC
EMIF, Ethernet,
USB Slave
Interfaces
Peripheral
Control
Registers, All
Peripheral
Memories, And
All System
Module Control
Registers And
Memories
CPU READ
User/Privilege
Yes
Yes
Yes
Yes
Yes
CPU WRITE
User/Privilege
No
Yes
Yes
Yes
Yes
DMA
User
Yes
Yes
Yes
Yes
Yes
POM
User
Yes
Yes
Yes
Yes
Yes
DAP
Privilege
Yes
Yes
Yes
Yes
Yes
HTU1
Privilege
No
Yes
Yes
Yes
Yes
HTU2
Privilege
No
Yes
Yes
Yes
Yes
EMAC
User
No
Yes
No
Yes
No
OHCI
User
No
Yes
No
Yes
No
4.9.5
Special Notes on Accesses to Certain Slaves
Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU
(master id = 1). The other masters can only read from these registers.
A debugger can also write to the PMM registers. The master-id check is disabled in debug mode.
The device contains dedicated logic to generate a bus error response on any access to a module that is in
a power domain that has been turned OFF.
4.9.6
Parameter Overlay Module (POM) Considerations
•
•
•
The POM can map onto up to 8MB of the internal or external memory space. The starting address and
the size of the memory overlay are configurable via the POM control registers. Care must be taken to
ensure that the overlay is mapped on to available memory.
ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors
will be generated.
POM overlay must not be enabled when the flash and internal RAM memories are swapped via the
MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1).
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
79
PRODUCT PREVIEW
MASTERS
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
•
www.ti.com
When POM is used to overlay the flash on to internal or external RAM, there is a bus contention
possibility when another master accesses the TCM flash. This results in a system hang.
– The POM implements a timeout feature to detect this exact scenario. The timeout needs to be
enabled whenever POM overlay is enabled.
– The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global
Control register (POMGLBCTRL, address = 0xFFA04000).
– In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO)
flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is
generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a
data fetch.
– The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM is set. If
so, then the application can assume that the timeout is caused by a bus contention between the
POM transaction and another master accessing the same memory region. The abort handlers need
to clear the TO flag, so that any further aborts are not misinterpreted as having been caused due to
a timeout from the POM.
PRODUCT PREVIEW
80
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.10 Flash Memory
4.10.1 Flash Memory Configuration
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense
amplifiers, and control logic.
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical
construction constraints.
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or
erasing the flash banks.
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.
Memory Arrays (or Banks)
Sector
No.
Segment
Low Address
High Address
BANK0 (1.25MBytes)
0
16K Bytes
0x0000_0000
0x0000_3FFF
1
16K Bytes
0x0000_4000
0x0000_7FFF
2
16K Bytes
0x0000_8000
0x0000_BFFF
3
16K Bytes
0x0000_C000
0x0000_FFFF
4
16K Bytes
0x0001_0000
0x0001_3FFF
5
16K Bytes
0x0001_4000
0x0001_7FFF
6
32K Bytes
0x0001_8000
0x0001_FFFF
7
128K Bytes
0x0002_0000
0x0003_FFFF
8
128K Bytes
0x0004_0000
0x0005_FFFF
9
128K Bytes
0x0006_0000
0x0007_FFFF
10
128K Bytes
0x0008_0000
0x0009_FFFF
11
128K Bytes
0x000A_0000
0x000B_FFFF
12
128K Bytes
0x000C_0000
0x000D_FFFF
13
128K Bytes
0x000E_0000
0x000F_FFFF
14
128K Bytes
0x0010_0000
0x0011_FFFF
15
128K Bytes
0x0012_0000
0x0013_FFFF
0
16K Bytes
0xF020_0000
0xF020_3FFF
1
16K Bytes
0xF020_4000
0xF020_7FFF
2
16K Bytes
0xF020_8000
0xF020_BFFF
3
16K Bytes
0xF020_C000
0xF020_FFFF
BANK7 (64kBytes) for EEPROM emulation
PRODUCT PREVIEW
Table 4-23. Flash Memory Banks and Sectors
4.10.2 Main Features of Flash Module
•
•
•
•
•
•
Support for multiple flash banks for program and/or data storage
Simultaneous read access on a bank while performing program or erase operation on any other bank
Integrated state machines to automate flash erase and program operations
Pipelined mode operation to improve instruction access interface bandwidth
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU
– Error address is captured for host system debugging
Support for a rich set of diagnostic features
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
81
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.10.3 ECC Protection for Flash Accesses
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on
the 64 bits received and compares it with the ECC code returned by the flash module. A single-bit error is
corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error
via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the
"X" bit of the Performance Monitor Control Register, c9.
MRC
ORR
MCR
MRC
p15,#0,r1,c9,c12,#0
r1, r1, #0x00000010
p15,#0,r1,c9,c12,#0
p15,#0,r1,c9,c12,#0
;Enabling Event monitor states
;Set 4th bit (‘X’) of PMNC register
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN
bits of the System Control coprocessor's Auxiliary Control Register, c1.
MRC p15, #0, r1, c1, c0, #1
ORR r1, r1, #0x0e000000
DMB
MCR p15, #0, r1, c1, c0, #1
;Enable ECC checking for ATCM and BTCMs
PRODUCT PREVIEW
4.10.4 Flash Access Speeds
For information on flash memory access speeds and the relevant wait states required, refer to Section 3.4.
82
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.10.5 Program Flash
Table 4-24. Timing Requirements for Program Flash
Parameter
tprog(144bit)
Wide Word (144bit) programming time
tprog(Total)
1.25MByte programming time (1)
terase(bank0)
twec
(1)
Sector/Bank erase time
MIN
NOM
MAX
Unit
40
300
µs
13
s
6.6
s
-40°C to 105°C
0°C to 60°C, for first
25 cycles
3.3
-40°C to 105°C
0.3
4
s
0°C to 60°C, for first
25 cycles
30
500
ms
1000
cycles
Write/erase cycles with 15 year Data Retention -40°C to 105°C
requirement
This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes
programming 144 bits at a time at the maximum specified operating frequency.
4.10.6 Data Flash
Table 4-25. Timing Requirements for Data Flash
tprog(144bit)
Wide Word (144bit) programming time
tprog(Total)
EEPROM Emulation (bank 7) 64kByte
programming time (1)
EEPROM Emulation (bank 7) Sector/Bank erase time terase(bank7)
MIN
(1)
MAX
40
300
µs
660
ms
330
ms
-40°C to 105°C
Unit
0°C to 60°C, for first
25 cycles
165
-40°C to 105°C
0.08
8
s
30
500
ms
100000
cycles
0°C to 60°C, for first
25 cycles
twec
NOM
Write/erase cycles with 15 year Data Retention -40°C to 105°C
requirement
PRODUCT PREVIEW
Parameter
This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes
programming 144 bits at a time at the maximum specified operating frequency.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
83
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.11 Tightly-Coupled RAM Interface Module
Figure 4-11 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4F™ CPU.
Upper 32 bits data &
4 ECC bits
Cortex R4F™
B0
TCM
TCM BUS
TCRAM
Interface 1
72 Bit data + ECC
Lower 32 bits data &
4 ECC bits
A
TCM
B1
TCM
Upper 32 bits data &
4 ECC bits
TCM BUS
72 Bit data + ECC
TCRAM
Interface 2
Lower 32 bits data &
4 ECC bits
36 Bit
Bit
3636
Bit
wide
wide
wide
RAM
RAM
RAM
36 Bit
Bit
3636
Bit
wide
wide
wideRAM
RAM
RAM
36 Bit
Bit
wide
3636
Bit
wide
wideRAM
RAM
RAM
36 Bit
Bit
3636
Bit
wide
wide
wideRAM
RAM
RAM
PRODUCT PREVIEW
Figure 4-11. TCRAM Block Diagram
4.11.1 Features
The features of the Tightly Coupled RAM (TCRAM) Module are:
• Acts as slave to the Cortex-R4F CPU's BTCM interface
• Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code
• Monitors CPU Event Bus and generates single or multi-bit error interrupts
• Stores addresses for single and multi-bit errors
• Supports RAM trace module
• Provides CPU address bus integrity checking by supporting parity checking on the address bus
• Performs redundant address decoding for the RAM bank chip select and ECC select generation logic
• Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved
RAM banks and generating independent RAM access control signals to the two banks
• Supports auto-initialization of the RAM banks along with the ECC bits
4.11.2 TCRAMW ECC Support
The TCRAMW passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also
stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The
TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and
also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC
checking for the RAM accesses must be enabled inside the CPU.
For more information see the device Technical Reference Manual.
4.12
Parity Protection for Accesses to peripheral RAMs
Accesses to some peripheral RAMs are protected by odd/even parity checking. During a read access the
parity is calculated based on the data read from the peripheral RAM and compared with the good parity
value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates
a parity error signal that is mapped to the Error Signaling Module. The module also captures the
peripheral RAM address that caused the parity error.
84
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the
application. Each individual peripheral contains control registers to enable the parity protection for
accesses to its RAM.
NOTE
PRODUCT PREVIEW
The CPU read access gets the actual data from the peripheral. The application can choose
to generate an interrupt whenever a peripheral RAM parity error is detected.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
85
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.13 On-Chip SRAM Initialization and Testing
4.13.1 On-Chip SRAM Self-Test Using PBIST
4.13.1.1 Features
•
•
•
Extensive instruction set to support various memory test algorithms
ROM-based algorithms allow application to run TI production-level memory tests
Independent testing of all on-chip SRAM
4.13.1.2 PBIST RAM Groups
Table 4-26. PBIST RAM Grouping
Test Pattern (Algorithm)
Memory
RAM Group
Test Clock
MEM Type
triple read
slow read
triple read
fast read
March 13N (1)
two port
(cycles)
March 13N (1)
single port
(cycles)
ALGO MASK
0x1
ALGO MASK
0x2
ALGO MASK
0x4
ALGO MASK
0x8
1
ROM CLK
ROM
X
X
STC_ROM
2
ROM CLK
ROM
X
X
DCAN1
3
VCLK
Dual Port
25200
DCAN2
4
VCLK
Dual Port
25200
DCAN3
5
VCLK
Dual Port
25200
ESRAM1
6
HCLK
Single Port
MIBSPI1
7
VCLK
Dual Port
33440
MIBSPI3
8
VCLK
Dual Port
33440
MIBSPI5
9
VCLK
Dual Port
33440
VIM
10
VCLK
Dual Port
12560
MIBADC1
11
VCLK
Dual Port
4200
DMA
12
HCLK
Dual Port
18960
N2HET1
13
VCLK
Dual Port
31680
6480
PRODUCT PREVIEW
PBIST_ROM
HET TU1
14
VCLK
Dual Port
MIBADC2
18
VCLK
Dual Port
4200
N2HET2
19
VCLK
Dual Port
31680
HET TU2
20
VCLK
Dual Port
6480
ESRAM5
21
HCLK
Single Port
ESRAM6
22
HCLK
Single Port
23
ETHERNET
USB
(1)
266280
24
VCLK3
Dual Port
25
Single Port
26
Dual Port
27
VCLK3
Single Port
266280
266280
8700
6360
133160
4240
66600
There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for
application testing.
The PBIST ROM clock frequency is limited to 100MHz, if 100MHz < HCLK <= HCLKmax, or HCLK, if
HCLK <= 100MHz.
The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV
field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.
86
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.13.2 On-Chip SRAM Auto Initialization
This microcontroller allows some of the on-chip memories to be initialized via the Memory Hardware
Initialization mechanism in the System module. This hardware mechanism allows an application to
program the memory arrays with error detection capability to a known state based on their error detection
scheme (odd/even parity or ECC).
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects
the memories that are to be initialized.
For more information on these registers see the device Technical Reference Manual.
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in
Table 4-27.
Table 4-27. Memory Initialization
ADDRESS RANGE
ENDING ADDRESS
RAM (PD#1)
0x08000000
0x0800FFFF
0 (1)
RAM (RAM_PD#1)
0x08010000
0x0801FFFF
0 (1)
RAM (RAM_PD#2)
0x08020000
0x0802FFFF
0 (1)
MIBSPI5 RAM
0xFF0A0000
0xFF0BFFFF
12 (2)
MIBSPI3 RAM
0xFF0C0000
0xFF0DFFFF
11 (2)
MIBSPI1 RAM
0xFF0E0000
0xFF0FFFFF
7 (2)
DCAN3 RAM
0xFF1A0000
0xFF1BFFFF
10
DCAN2 RAM
0xFF1C0000
0xFF1DFFFF
6
DCAN1 RAM
0xFF1E0000
0xFF1FFFFF
5
MIBADC2 RAM
0xFF3A0000
0xFF3BFFFF
14
MIBADC1 RAM
0xFF3E0000
0xFF3FFFFF
8
N2HET2 RAM
0xFF440000
0xFF57FFFF
15
N2HET1 RAM
0xFF460000
0xFF47FFFF
3
HET TU2 RAM
0xFF4C0000
0xFF4DFFFF
16
HET TU1 RAM
0xFF4E0000
0xFF4FFFFF
4
DMA RAM
0xFFF80000
0xFFF80FFF
1
VIM RAM
0xFFF82000
0xFFF82FFF
USB Device RAM
Ethernet RAM (CPPI Memory
Slave)
(1)
(2)
MSINENA REGISTER BIT #
BASE ADDRESS
RAM is not CPU-Addressable
0xFC520000
0xFC521FFF
PRODUCT PREVIEW
CONNECTING MODULE
2
n/a
n/a
The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized.
The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the module is released from its local reset..
This is independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization
method. The MibSPIx module must be first brought out of its local reset in order to use the system module auto-initialization method.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
87
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.14 External Memory Interface (EMIF)
4.14.1 Features
The EMIF includes many features to enhance the ease and flexibility of connecting to external
asynchronous memories or SDRAM devices. The EMIF features includes support for:
• 3 addressable chip select for asynchronous memories of up to 32kB each
• 1 addressable chip select space for SDRAMs up to 128MB
• 8 or 16-bit data bus width
• Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time
• Select strobe mode
• Extended Wait mode
• Data bus parking
4.14.2 Electrical and Timing Specifications
4.14.2.1 Read Timing (Asynchronous RAM)
3
PRODUCT PREVIEW
1
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[12:0]
EMIF_nDQM[1:0]
4
8
5
9
6
29
7
30
10
EMIF_nOE
13
12
EMIF_DATA[15:0]
EMIF_nWE
Figure 4-12. Asynchronous Memory Read Timing
88
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
EMIF_nCS[3:2]
SPNS184 – SEPTEMBER 2012
SETUP
Extended Due to EMIF_WAIT
STROBE
STROBE HOLD
EMIF_BA[1:0]
EMIF_ADDR[12:0]
EMIF_DATA[15:0]
14
11
EMIF_nOE
2
EMIF_WAIT
2
Asserted
Deasserted
Figure 4-13. EMIFnWAIT Read Timing Requirements
PRODUCT PREVIEW
4.14.2.2 Write Timing (Asynchronous RAM)
15
1
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[12:0]
EMIF_nDQM[1:0]
16
17
18
19
20
22
24
21
23
EMIF_nWE
27
26
EMIF_DATA[15:0]
EMIF_nOE
Figure 4-14. Asynchronous Memory Write Timing
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
89
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
SETUP
Extended Due to EMIF_WAIT
STROBE
STROBE HOLD
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[12:0]
EMIF_DATA[15:0]
28
25
EMIF_nWE
2
EMIF_WAIT
Asserted
2
Deasserted
Figure 4-15. EMIFnWAIT Write Timing Requirements
PRODUCT PREVIEW
4.14.2.3 Read Timing (Synchronous RAM)
BASIC SDRAM
READ OPERATION
1
2
2
EMIF_CLK
4
3
EMIF_nCS[0]
6
5
EMIF_nDQM[1:0]
7
8
7
8
EMIF_BA[1:0]
EMIF_ADDR[12:0]
19
2 EM_CLK Delay
17
20
18
EMIF_DATA[15:0]
11
12
EMIF_nRAS
13
14
EMIF_nCAS
EMIF_nWE
Figure 4-16. Basic SDRAM Read Operation
90
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.14.2.4 Write Timing (Synchronous RAM)
1
BASIC SDRAM
WRITE OPERATION
2
2
EMIF_CLK
4
3
EMIF_CS[0]
6
5
EMIF_DQM[1:0]
7
8
7
8
EMIF_BA[1:0]
EMIF_ADDR[12:0]
9
10
11
PRODUCT PREVIEW
EMIF_DATA[15:0]
12
EMIF_nRAS
13
EMIF_nCAS
15
16
EMIF_nWE
Figure 4-17. Basic SDRAM Write Operation
4.14.2.5 EMIF Asynchronous Memory Timing
Table 4-28. EMIF Asynchronous Memory Timing Requirements
NO.
Value
MIN
NOM
Unit
MAX
Reads and Writes
2
tw(EM_WAIT)
Pulse duration, EMIFnWAIT
assertion and deassertion
2E
ns
12
tsu(EMDV-EMOEH)
Setup time, EMIFDATA[15:0]
valid before EMIFnOE high
11
ns
13
th(EMOEH-EMDIV)
Hold time, EMIFDATA[15:0]
valid after EMIFnOE high
0.5
ns
14
tsu(EMOEL-EMWAIT)
Setup Time, EMIFnWAIT
asserted before end of Strobe
Phase (1)
4E+3
ns
28
tsu(EMWEL-EMWAIT)
Setup Time, EMIFnWAIT
asserted before end of Strobe
Phase (1)
4E+3
ns
Reads
Writes
(1)
Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended
wait states. Figure Figure 4-13 and Figure Figure 4-15 describe EMIF transactions that include extended wait states inserted during the
STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start
of where the HOLD phase would begin if there were no extended wait cycles.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
91
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-29. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3)
NO
Parameter
Value
MIN
Unit
NOM
MAX
(TA)*E
(TA)*E + 3
Reads and Writes
1
td(TURNAROUND)
Turn around time
(TA)*E -3
ns
3
tc(EMRCYCLE)
EMIF read cycle time (EW = 0)
(RS+RST+RH)* (RS+RST+RH)* (RS+RST+RH)*
E -3
E
E+3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+(
EWC*16))*E -3
EWC*16))*E
EWC*16))*E +
3
ns
Reads
4
tsu(EMCEL-EMOEL)
5
th(EMOEH-EMCEH)
PRODUCT PREVIEW
Output setup time,
EMIFnCS[4:2] low to EMIFnOE
low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnOE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMIFnOE high
to EMIFnCS[4:2] high (SS = 0)
(RH)*E -3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMIFnOE high
to EMIFnCS[4:2] high (SS = 1)
-3
0
+3
ns
6
tsu(EMBAV-EMOEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnOE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMIFnOE high
to EMIFBA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time,
EMIFADDR[12:0] valid to
EMIFnOE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMIFnOE high
to EMIFADDR[12:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
10
tw(EMOEL)
EMIFnOE active low width (EW
= 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
EMIFnOE active low width (EW
= 1)
11
td(EMWAITH-EMOEH)
Delay time from EMIFnWAIT
deasserted to EMIFnOE high
15
tc(EMWCYCLE)
(RST+(EWC*16 (RST+(EWC*16 (RST+(EWC*16
)) *E-3
))*E
)) *E+3
ns
3E-3
4E
4E+3
ns
EMIF write cycle time (EW = 0)
(WS+WST+WH
)* E-3
(WS+WST+WH
)*E
(WS+WST+WH
)* E+3
ns
EMIF write cycle time (EW = 1)
(WS+WST+WH
+( EWC*16))*E
-3
(WS+WST+WH
+(E WC*16))*E
(WS+WST+WH
+( EWC*16))*E
+3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnWE
low (SS = 0)
(WS)*E -3
(WS)*E
(WS)*E + 3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnWE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMIFnWE
high to EMIFnCS[4:2] high (SS =
0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Writes
16
17
(1)
(2)
(3)
92
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–1], RH[8–1], WS[16–1], WST[64–1],
WH[8–1], and MEWC[1–256]. See the EMIF User’s guide for more information.
E = EMIF_CLK period in ns.
EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[256–1]. Note
that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See
the EMIF User’s Guide for more information.
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-29. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)
Parameter
Value
Unit
MIN
NOM
MAX
Output hold time, EMIFnWE
high to EMIFCS[4:2] high (SS =
1)
-3
0
+3
ns
18
tsu(EMDQMV-EMWEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
19
th(EMWEH-EMDQMIV)
Output hold time, EMIFnWE
high to EMIFBA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMIFnWE
high to EMIFBA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
22
tsu(EMAV-EMWEL)
Output setup time,
EMIFADDR[12:0] valid to
EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMIFnWE
high to EMIFADDR[12:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
24
tw(EMWEL)
EMIFnWE active low width (EW
= 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
EMIFnWE active low width (EW
= 1)
(WST+(EWC*1
6)) *E-3
(WST+(EWC*1
6))*E
(WST+(EWC*1
6)) *E+3
ns
3E-3
4E
4E+3
ns
25
td(EMWAITH-EMWEH)
Delay time from EMIFnWAIT
deasserted to EMIFnWE high
26
tsu(EMDV-EMWEL)
Output setup time,
EMIFDATA[15:0] valid to
EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMIFnWE
high to EMIFDATA[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
PRODUCT PREVIEW
NO
Table 4-30. EMIF Synchronous Memory Timing Requirements
NO.
Parameter
MIN
19
tsu(EMIFDV-EM_CLKH)
Input setup time, read data valid on
EMIFDATA[15:0] before EMIF_CLK
rising
20
th(CLKH-DIV)
Input hold time, read data valid on
EMIFDATA[15:0] after EMIF_CLK
rising
MAX
Unit
1
ns
1.5
ns
Table 4-31. EMIF Synchronous Memory Switching Characteristics
NO.
Parameter
MIN
MAX
Unit
1
tc(CLK)
Cycle time, EMIF clock EMIF_CLK
10
ns
2
tw(CLK)
Pulse width, EMIF clock EMIF_CLK
high or low
3
ns
3
td(CLKH-CSV)
Delay time, EMIF_CLK rising to
EMIFnCS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMIF_CLK rising to
EMIFnCS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMIF_CLK rising to
EMIFnDQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMIF_CLK rising to
EMIFnDQM[1:0] invalid
7
td(CLKH-AV)
Delay time, EMIF_CLK rising to
EMIFADDR[12:0] and EMIFBA[1:0]
valid
Copyright © 2012, Texas Instruments Incorporated
7
1
ns
ns
7
1
ns
ns
7
ns
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
93
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-31. EMIF Synchronous Memory Switching Characteristics (continued)
PRODUCT PREVIEW
94
NO.
Parameter
8
toh(CLKH-AIV)
Output hold time, EMIF_CLK rising to
EMIFADDR[12:0] and EMIFBA[1:0]
invalid
MIN
9
td(CLKH-DV)
Delay time, EMIF_CLK rising to
EMIFDATA[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMIF_CLK rising to
EMIFDATA[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMIF_CLK rising to
EMIFnRAS valid
12
toh(CLKH-RASIV)
Output hold time, EMIF_CLK rising to
EMIFnRAS invalid
13
td(CLKH-CASV)
Delay time, EMIF_CLK rising to
EMIFnCAS valid
14
toh(CLKH-CASIV)
Output hold time, EMIF_CLK rising to
EMIFnCAS invalid
15
td(CLKH-WEV)
Delay time, EMIF_CLK rising to
EMIFnWE valid
16
toh(CLKH-WEIV)
Output hold time, EMIF_CLK rising to
EMIFnWE invalid
17
tdis(CLKH-DHZ)
Delay time, EMIF_CLK rising to
EMIFDATA[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMIF_CLK rising to
EMIFDATA[15:0] driving
MAX
1
ns
7
1
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
ns
ns
7
1
Unit
ns
ns
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.15 Vectored Interrupt Manager
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow
of program execution. Normally, these events require a timely response from the central processing unit
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to
an interrupt service routine (ISR).
4.15.1 VIM Features
The VIM module has the following features:
• Supports 128 interrupt channels.
– Provides programmable priority and enable for interrupt request lines.
• Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.
• Provides two software dispatch mechanisms when the CPU VIC port is not used.
– Index interrupt
– Register vectored interrupt
• Parity protected vector interrupt table against soft errors.
PRODUCT PREVIEW
4.15.2 Interrupt Request Assignments
Table 4-32. Interrupt Request Assignments
Modules
Interrupt Sources
Default VIM Interrupt
Channel
ESM
ESM High level interrupt (NMI)
0
Reserved
Reserved
1
RTI
RTI compare interrupt 0
2
RTI
RTI compare interrupt 1
3
RTI
RTI compare interrupt 2
4
RTI
RTI compare interrupt 3
5
RTI
RTI overflow interrupt 0
6
RTI
RTI overflow interrupt 1
7
RTI
RTI timebase interrupt
8
GIO
GIO interrupt A
9
N2HET1
N2HET1 level 0 interrupt
10
HET TU1
HET TU1 level 0 interrupt
11
MIBSPI1
MIBSPI1 level 0 interrupt
12
LIN
LIN level 0 interrupt
13
MIBADC1
MIBADC1 event group interrupt
14
MIBADC1
MIBADC1 sw group 1 interrupt
15
DCAN1
DCAN1 level 0 interrupt
16
SPI2
SPI2 level 0 interrupt
17
Reserved
Reserved
18
CRC
CRC Interrupt
19
ESM
ESM Low level interrupt
20
SYSTEM
Software interrupt (SSI)
21
CPU
PMU Interrupt
22
GIO
GIO interrupt B
23
N2HET1
N2HET1 level 1 interrupt
24
HET TU1
HET TU1 level 1 interrupt
25
MIBSPI1
MIBSPI1 level 1 interrupt
26
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
95
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-32. Interrupt Request Assignments (continued)
Modules
PRODUCT PREVIEW
96
Interrupt Sources
Default VIM Interrupt
Channel
LIN
LIN level 1 interrupt
27
MIBADC1
MIBADC1 sw group 2 interrupt
28
DCAN1
DCAN1 level 1 interrupt
29
SPI2
SPI2 level 1 interrupt
30
MIBADC1
MIBADC1 magnitude compare interrupt
31
Reserved
Reserved
32
DMA
FTCA interrupt
33
DMA
LFSA interrupt
34
DCAN2
DCAN2 level 0 interrupt
35
MIBSPI3
MIBSPI3 level 0 interrupt
37
MIBSPI3
MIBSPI3 level 1 interrupt
38
DMA
HBCA interrupt
39
DMA
BTCA interrupt
40
EMIF
AEMIFINT3
41
DCAN2
DCAN2 level 1 interrupt
42
DCAN1
DCAN1 IF3 interrupt
44
DCAN3
DCAN3 level 0 interrupt
45
DCAN2
DCAN2 IF3 interrupt
46
Reserved
Reserved
47
Reserved
Reserved
48
SPI4
SPI4 level 0 interrupt
49
MIBADC2
MibADC2 event group interrupt
50
MIBADC2
MibADC2 sw group1 interrupt
51
Reserved
Reserved
52
MIBSPI5
MIBSPI5 level 0 interrupt
53
SPI4
SPI4 level 1 interrupt
54
DCAN3
DCAN3 level 1 interrupt
55
MIBSPI5
MIBSPI5 level 1 interrupt
56
MIBADC2
MibADC2 sw group2 interrupt
57
Reserved
Reserved
58
MIBADC2
MibADC2 magnitude compare interrupt
59
DCAN3
DCAN3 IF3 interrupt
60
FMC
FSM_DONE interrupt
61
Reserved
Reserved
62
N2HET2
N2HET2 level 0 interrupt
63
SCI
SCI level 0 interrupt
64
HET TU2
HET TU2 level 0 interrupt
65
I2C
I2C level 0 interrupt
66
USB Host
OHCI_INT
67
USB Device
USB_FUNC.IRQISOON
68
USB Device
USB_FUNC.IRQGENION
69
USB Device
USB_FUNC.IRQNONISOON
70
USB Device
not (USB_FUNC.DSWAKEREQON)
71
USB Device
USB_FUNC.USBRESETO
72
N2HET2
N2HET2 level 1 interrupt
73
SCI
SCI level 1 interrupt
74
HET TU2
HET TU2 level 1 interrupt
75
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Modules
Interrupt Sources
Default VIM Interrupt
Channel
Ethernet
C0_MISC_PULSE
76
Ethernet
C0_TX_PULSE
77
Ethernet
C0_THRESH_PULSE
78
Ethernet
C0_RX_PULSE
79
HWAG1
HWA_INT_REQ_H
80
HWAG2
HWA_INT_REQ_H
81
DCC1
DCC done interrupt
82
DCC2
DCC2 done interrupt
83
Reserved
Reserved
84
PBIST Controller
PBIST Done Interrupt
85
Reserved
Reserved
86-87
HWAG1
HWA_INT_REQ_L
88
HWAG2
HWA_INT_REQ_L
89
ePWM1INTn
ePWM1 Interrupt
90
ePWM1TZINTn
ePWM1 Trip Zone Interrupt
91
ePWM2INTn
ePWM2 Interrupt
92
ePWM2TZINTn
ePWM2 Trip Zone Interrupt
93
ePWM3INTn
ePWM3 Interrupt
94
ePWM3TZINTn
ePWM3 Trip Zone Interrupt
95
ePWM4INTn
ePWM4 Interrupt
96
ePWM4TZINTn
ePWM4 Trip Zone Interrupt
97
ePWM5INTn
ePWM5 Interrupt
98
ePWM5TZINTn
ePWM5 Trip Zone Interrupt
99
ePWM6INTn
ePWM6 Interrupt
100
ePWM6TZINTn
ePWM6 Trip Zone Interrupt
101
ePWM7INTn
ePWM7 Interrupt
102
ePWM7TZINTn
ePWM7 Trip Zone Interrupt
103
eCAP1INTn
eCAP1 Interrupt
104
eCAP2INTn
eCAP2 Interrupt
105
eCAP3INTn
eCAP3 Interrupt
106
eCAP4INTn
eCAP4 Interrupt
107
eCAP5INTn
eCAP5 Interrupt
108
eCAP6INTn
eCAP6 Interrupt
109
eQEP1INTn
eQEP1 Interrupt
110
eQEP2INTn
eQEP2 Interrupt
111
Reserved
Reserved
112-127
PRODUCT PREVIEW
Table 4-32. Interrupt Request Assignments (continued)
NOTE
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR
entry; therefore only request channels 0..126 can be used and are offset by 1 address in the
VIM RAM.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
97
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
NOTE
The EMIF_nWAIT signal has a pull-up on it. The EMIF module generates a "Wait Rise"
interrupt whenever it detects a rising edge on the EMIF_nWAIT signal. This interrupt
condition is indicated as soon as the device is powered up. This can be ignored if the
EMIF_nWAIT signal is not used in the application. If the EMIF_nWAIT signal is actually used
in the application, then the external slave memory must always drive the EMIF_nWAIT signal
such that an interrupt is not caused due to the default pull-up on this signal.
NOTE
The lower-order interrupt channels are higher priority channels than the higher-order interrupt
channels.
NOTE
The application can change the mapping of interrupt sources to the interrupt channels via the
interrupt channel control registers (CHANCTRLx) inside the VIM module.
PRODUCT PREVIEW
98
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.16 DMA Controller
The DMA controller is used to transfer data between two locations in the memory map in the background
of CPU operations. Typically, the DMA is used to:
• Transfer blocks of data between external and internal data memories
• Restructure portions of internal data memory
• Continually service a peripheral
4.16.1 DMA Features
CPU independent data transfer
One 64-bit master port that interfaces to the RM4x Memory System.
FIFO buffer(4 entries deep and each 64bit wide)
Channel control information is stored in RAM protected by parity
16 channels with individual enable
Channel chaining capability
32 peripheral DMA requests
Hardware and Software DMA requests
8, 16, 32 or 64-bit transactions supported
Multiple addressing modes for source/destination (fixed, increment, offset)
Auto-initiation
Power-management mode
Memory Protection with four configurable memory regions
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
•
•
•
•
•
•
•
•
•
•
•
•
•
99
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.16.2 Default DMA Request Map
The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The
module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By
default, channel 0 is mapped to request 0, channel 1 to request 1, and so on.
Some DMA requests have multiple sources, as shown in Table 4-33. The application must ensure that
only one of these DMA request sources is enabled at any time.
Table 4-33. DMA Request Line Connection
Modules
PRODUCT PREVIEW
(1)
(2)
100
DMA Request Sources
DMA Request
MIBSPI1
MIBSPI1[1]
(1)
DMAREQ[0]
MIBSPI1
MIBSPI1[0] (2)
DMAREQ[1]
SPI2
SPI2 receive
DMAREQ[2]
SPI2
SPI2 transmit
DMAREQ[3]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3
DMAREQ[4]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2
DMAREQ[5]
DCAN1 / MIBSPI5
DCAN1 IF2 / MIBSPI5[2]
DMAREQ[6]
MIBADC1 / MIBSPI5
MIBADC1 event / MIBSPI5[3]
DMAREQ[7]
MIBSPI1 / MIBSPI3 / DCAN1
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1
DMAREQ[8]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1
DMAREQ[9]
MIBADC1 / I2C / MIBSPI5
MIBADC1 G1 / I2C receive / MIBSPI5[4]
DMAREQ[10]
MIBADC1 / I2C / MIBSPI5
MIBADC1 G2 / I2C transmit / MIBSPI5[5]
DMAREQ[11]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]
DMAREQ[12]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]
DMAREQ[13]
(1)
MIBSPI3 / USB Device / MibADC2 / MIBSPI5
MIBSPI3[1] / USB_FUNC.DMATXREQ_ON[0] /
MibADC2 event / MIBSPI5[6]
DMAREQ[14]
MIBSPI3 / USB Device / MIBSPI5
MIBSPI3[0] (2) / USB_FUNC.DMARXREQ_ON[0] /
MIBSPI5[7]
DMAREQ[15]
MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2
MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1
DMAREQ[16]
MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2
MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2
DMAREQ[17]
RTI / USB Device / MIBSPI5
RTI DMAREQ2 / USB_FUNC.DMATXREQ_ON[1] /
MIBSPI5[8]
DMAREQ[18]
RTI / USB Device / MIBSPI5
RTI DMAREQ3 / USB_FUNC.DMARXREQ_ON[1] /
MIBSPI5[9]
DMAREQ[19]
N2HET1 / N2HET2 / DCAN3
N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3
IF2
DMAREQ[20]
N2HET1 / N2HET2 / DCAN3
N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3
IF3
DMAREQ[21]
MIBSPI1 / MIBSPI3 / MIBSPI5
MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10]
DMAREQ[22]
MIBSPI1 / MIBSPI3 / MIBSPI5
MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11]
DMAREQ[23]
N2HET1 / N2HET2 / SPI4 / MIBSPI5
N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4
receive / MIBSPI5[12]
DMAREQ[24]
N2HET1 / N2HET2 / SPI4 / MIBSPI5
N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4
transmit / MIBSPI5[13]
DMAREQ[25]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]
DMAREQ[26]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]
DMAREQ[27]
LIN / USB Device / MIBSPI5
LIN receive / USB_FUNC.DMATXREQ_ON[2] /
MIBSPI5[14]
DMAREQ[28]
LIN / USB Device / MIBSPI5
LIN transmit / USB_FUNC.DMARXREQ_ON[2] /
MIBSPI5[15]
DMAREQ[29]
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5
MIBSPI1[14] / MIBSPI3[14] / SCI receive /
MIBSPI5[1] (1)
DMAREQ[30]
SPI1, SPI3, SPI5 receive when configured in standard SPI mode
SPI1, SPI3, SPI5 transmit when configured in standard SPI mode
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-33. DMA Request Line Connection (continued)
DMA Request Sources
DMA Request
MIBSPI1[15] / MIBSPI3[15] / SCI transmit /
MIBSPI5[0] (2)
DMAREQ[31]
PRODUCT PREVIEW
Modules
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
101
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.17 Real Time Interrupt Module
The real-time interrupt (RTI) module provides timer functionality for operating systems and for
benchmarking code. The RTI module can incorporate several counters that define the timebases needed
for scheduling an operating system.
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the
beginning and the end of the desired code range and calculating the difference between the values.
4.17.1 Features
The RTI module has the following features:
• Two independent 64 bit counter blocks
• Four configurable compares for generating operating system ticks or DMA requests. Each event can
be driven by either counter block 0 or counter block 1.
• Fast enabling/disabling of events
• Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block
4.17.2 Block Diagrams
PRODUCT PREVIEW
Figure 4-18 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI
module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only
available as time base inputs for the counter block 0.
31
0
Compare
up counter
RTICLK
NTU0
NTU1
NTU2
NTU3
0
Up counter
RTIUCx
RTICPUCx
OVLINTx
=
31
31
0
Free running counter
RTIFRCx
31
0
31
0
Capture
up counter
Capture
free running counter
RTICAUCx
RTICAFRCx
CAP event source 0
CAP event source 1
To Compare
Unit
External
control
Figure 4-18. Counter Block Diagram
102
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
31
0
Update
compare
RTIUDCPy
+
31
0
Compare
DMAREQy
RTICOMPy
From counter
block 0
=
INTy
From counter
block 1
Compare
control
Figure 4-19. Compare Block Diagram
4.17.3 Clock Source Options
The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the
System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK.
For more information on clock sources refer to Table 4-8 and Table 4-13.
4.17.4 Network Time Synchronization Inputs
The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which
can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are
connected as shown below.
Table 4-34. Network Time Synchronization Inputs
NTU Input
Source
0
Reserved
1
Reserved
2
PLL2 Clock output
3
EXTCLKIN1 clock input
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
103
PRODUCT PREVIEW
The RTI module uses the RTI1CLK clock domain for generating the RTI time bases.
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.18 Error Signaling Module
The Error Signaling Module (ESM) manages the various error conditions on the RM4x microcontroller. The
error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be
configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an
indicator to an external monitor circuit to put the system into a safe state.
4.18.1 Features
The features of the Error Signaling Module are:
• 128 interrupt/error channels are supported, divided into 3 different groups
– 64 channels with maskable interrupt and configurable error pin behavior
– 32 error channels with non-maskable interrupt and predefined error pin behavior
– 32 channels with predefined error pin behavior only
• Error pin to signal severe device failure
• Configurable timebase for error signal
• Error forcing capability
4.18.2 ESM Channel Assignments
PRODUCT PREVIEW
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest
severity. The device response to each error is determined by the severity group it is connected to.
Table 4-36 shows the channel assignment for each group.
Table 4-35. ESM Groups
ERROR GROUP
INTERRUPT CHARACTERISTICS
INFLUENCE ON ERROR PIN
Group1
maskable, low or high priority
configurable
Group2
non-maskable, high priority
fixed
Group3
no interrupt generated
fixed
Table 4-36. ESM Channel Assignments
104
ERROR Condition
Group
Channels
Reserved
Group1
0
MibADC2 - RAM parity error
Group1
1
DMA - MPU configuration violation
Group1
2
DMA - control packet RAM parity error
Group1
3
Reserved
Group1
4
DMA - error on DMA read access, imprecise error
Group1
5
FMC - correctable ECC error: bus1 and bus2 interfaces
(does not include accesses to Bank 7)
Group1
6
N2HET1 - RAM parity error
Group1
7
HET TU1/HET TU2 - dual-control packet RAM parity error
Group1
8
HET TU1/HET TU2 - MPU configuration violation
Group1
9
PLL1 - Slip
Group1
10
Clock Monitor - oscillator fail
Group1
11
Reserved
Group1
12
DMA - error on DMA write access, imprecise error
Group1
13
Reserved
Group1
14
VIM RAM - parity error
Group1
15
Reserved
Group1
16
MibSPI1 - RAM parity error
Group1
17
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
ERROR Condition
Group
Channels
MibSPI3 - RAM parity error
Group1
18
MibADC1 - RAM parity error
Group1
19
Reserved
Group1
20
DCAN1 - RAM parity error
Group1
21
DCAN3 - RAM parity error
Group1
22
DCAN2 - RAM parity error
Group1
23
MibSPI5 - RAM parity error
Group1
24
Reserved
Group1
25
RAM even bank (B0TCM) - correctable ECC error
Group1
26
CPU - self-test failed
Group1
27
RAM odd bank (B1TCM) - correctable ECC error
Group1
28
Reserved
Group1
29
DCC1 - error
Group1
30
CCM-R4 - self-test failed
Group1
31
Reserved
Group1
32
Reserved
Group1
33
N2HET2 - RAM parity error
Group1
34
FMC - correctable ECC error (Bank 7 access)
Group1
35
FMC - uncorrectable ECC error (Bank 7 access)
Group1
36
IOMM - Access to unimplemented location in IOMM frame, or write access
detected in unprivileged mode
Group1
37
Power domain controller compare error
Group1
38
Power domain controller self-test error
Group1
39
eFuse farm error – this error signal is generated when any bit in the eFuse farm
error status register is set. The application can choose to generate an interrupt
whenever this bit is set to service any eFuse farm error conditions.
Group1
40
eFuse farm - self test error. This error signal is generated only when a self test on
the eFuse controller generates an error condition. When this error signal is set,
group 1 channel 40 error signal will also be set.
Group1
41
PLL#2 - Slip
Group1
42
Ethernet Controller bus master access error
Group1
43
USB Host Controller master interface
Group1
44
Reserved
Group1
45
Reserved
Group1
46
Reserved
Group1
47
Reserved
Group1
48
Reserved
Group1
49
Reserved
Group1
50
Reserved
Group1
51
Reserved
Group1
52
Reserved
Group1
53
Reserved
Group1
54
Reserved
Group1
55
Reserved
Group1
56
Reserved
Group1
57
Reserved
Group1
58
Reserved
Group1
59
Reserved
Group1
60
Reserved
Group1
61
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Table 4-36. ESM Channel Assignments (continued)
105
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-36. ESM Channel Assignments (continued)
PRODUCT PREVIEW
106
ERROR Condition
Group
Channels
DCC2 - error
Group1
62
Reserved
Group1
63
Reserved
Group2
0
Reserved
Group2
1
CCMR4 - dual-CPU lock-step error
Group2
2
Reserved
Group2
3
FMC - uncorrectable address parity error on accesses to main flash
Group2
4
Reserved
Group2
5
RAM even bank (B0TCM) - uncorrectable redundant address decode error
Group2
6
Reserved
Group2
7
RAM odd bank (B1TCM) - uncorrectable redundant address decode error
Group2
8
Reserved
Group2
9
RAM even bank (B0TCM) - address bus parity error
Group2
10
Reserved
Group2
11
RAM odd bank (B1TCM) - address bus parity error
Group2
12
Reserved
Group2
13
Reserved
Group2
14
Reserved
Group2
15
Flash (ATCM) - ECC live lock detect
Group2
16
Reserved
Group2
17
Reserved
Group2
18
Reserved
Group2
19
Reserved
Group2
20
Reserved
Group2
21
Reserved
Group2
22
Reserved
Group2
23
Windowed Watchdog (WWD) violation
Group2
24
Reserved
Group2
25
Reserved
Group2
26
Reserved
Group2
27
Reserved
Group2
28
Reserved
Group2
29
Reserved
Group2
30
Reserved
Group2
31
Reserved
Group3
0
eFuse Farm - autoload error
Group3
1
Reserved
Group3
2
RAM even bank (B0TCM) - ECC uncorrectable error
Group3
3
Reserved
Group3
4
RAM odd bank (B1TCM) - ECC uncorrectable error
Group3
5
Reserved
Group3
6
FMC - uncorrectable ECC error: bus1 and bus2 interfaces
(does not include address parity error and errors on accesses to Bank 7)
Group3
7
Reserved
Group3
8
Reserved
Group3
9
Reserved
Group3
10
Reserved
Group3
11
Reserved
Group3
12
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
ERROR Condition
Group
Channels
Reserved
Group3
13
Reserved
Group3
14
Reserved
Group3
15
Reserved
Group3
16
Reserved
Group3
17
Reserved
Group3
18
Reserved
Group3
19
Reserved
Group3
20
Reserved
Group3
21
Reserved
Group3
22
Reserved
Group3
23
Reserved
Group3
24
Reserved
Group3
25
Reserved
Group3
26
Reserved
Group3
27
Reserved
Group3
28
Reserved
Group3
29
Reserved
Group3
30
Reserved
Group3
31
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
Table 4-36. ESM Channel Assignments (continued)
107
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.19 Reset / Abort / Error Sources
Table 4-37. Reset/Abort/Error Sources
ERROR SOURCE
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
CPU TRANSACTIONS
Precise write error (NCNB/Strongly Ordered)
User/Privilege
Precise Abort (CPU)
n/a
Precise read error (NCB/Device or Normal)
User/Privilege
Precise Abort (CPU)
n/a
Imprecise write error (NCB/Device or Normal)
User/Privilege
Imprecise Abort (CPU)
n/a
User/Privilege
Undefined Instruction Trap
(CPU) (1)
n/a
User/Privilege
Abort (CPU)
n/a
User/Privilege
ESM
1.26
B0 TCM (even) ECC double error (non-correctable)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.3
B0 TCM (even) uncorrectable error (i.e. redundant address
decode)
User/Privilege
ESM => NMI => nERROR
2.6
B0 TCM (even) address bus parity error
User/Privilege
ESM => NMI => nERROR
2.10
B1 TCM (odd) ECC single error (correctable)
User/Privilege
ESM
1.28
B1 TCM (odd) ECC double error (non-correctable)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.5
B1 TCM (odd) uncorrectable error (i.e. redundant address
decode)
User/Privilege
ESM => NMI => nERROR
2.8
B1 TCM (odd) address bus parity error
User/Privilege
ESM => NMI => nERROR
2.12
Illegal instruction
MPU access violation
SRAM
B0 TCM (even) ECC single error (correctable)
PRODUCT PREVIEW
FLASH WITH CPU BASED ECC
FMC correctable error - Bus1 and Bus2 interfaces (does not
include accesses to Bank 7)
User/Privilege
ESM
1.6
FMC uncorrectable error - Bus1 and Bus2 accesses
(does not include address parity error)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.7
FMC uncorrectable error - address parity error on Bus1
accesses
User/Privilege
ESM => NMI => nERROR
2.4
FMC correctable error - Accesses to Bank 7
User/Privilege
ESM
1.35
FMC uncorrectable error - Accesses to Bank 7
User/Privilege
ESM
1.36
DMA TRANSACTIONS
External imprecise error on read (Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write (Illegal transaction with ok
response)
User/Privilege
ESM
1.13
Memory access permission violation
User/Privilege
ESM
1.2
Memory parity error
User/Privilege
ESM
1.3
HET TU1 (HTU1)
NCNB (Strongly Ordered) transaction with slave error response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission violation
User/Privilege
ESM
1.9
Memory parity error
User/Privilege
ESM
1.8
HET TU2 (HTU2)
NCNB (Strongly Ordered) transaction with slave error response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission violation
User/Privilege
ESM
1.9
Memory parity error
User/Privilege
ESM
1.8
(1)
108
The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage
of the CPU.
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-37. Reset/Abort/Error Sources (continued)
ERROR SOURCE
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
ESM
1.7
ESM
1.34
ESM
1.43
ESM
1.44
N2HET1
Memory parity error
User/Privilege
N2HET2
Memory parity error
User/Privilege
ETHERNET MASTER INTERFACE
Any error reported by slave being accessed
User/Privilege
USB HOST CONTROLLER (OHCI) MASTER INTERFACE
Any error reported by slave being accessed
User/Privilege
MIBSPI
MibSPI1 memory parity error
User/Privilege
ESM
1.17
MibSPI3 memory parity error
User/Privilege
ESM
1.18
MibSPI5 memory parity error
User/Privilege
ESM
1.24
MIBADC
MibADC1 Memory parity error
User/Privilege
ESM
1.19
MibADC2 Memory parity error
User/Privilege
ESM
1.1
DCAN1 memory parity error
User/Privilege
ESM
1.21
DCAN2 memory parity error
User/Privilege
ESM
1.23
DCAN3 memory parity error
User/Privilege
ESM
1.22
PRODUCT PREVIEW
DCAN
PLL
PLL slip error
User/Privilege
ESM
1.10
PLL #2 slip error
User/Privilege
ESM
1.42
ESM
1.11
User/Privilege
ESM
1.30
User/Privilege
ESM
1.62
CLOCK MONITOR
Clock monitor interrupt
User/Privilege
DCC
DCC1 error
DCC2 error
CCM-R4
Self test failure
User/Privilege
ESM
1.31
Compare failure
User/Privilege
ESM => NMI => nERROR
2.2
ESM
1.15
Reset
n/a
ESM
1.27
ESM
1.37
User/Privilege
ESM
1.38
User/Privilege
ESM
1.39
VIM
Memory parity error
User/Privilege
VOLTAGE MONITOR
VMON out of voltage range
n/a
CPU SELFTEST (LBIST)
CPU Selftest (LBIST) error
User/Privilege
PIN MULTIPLEXING CONTROL
Mux configuration error
User/Privilege
POWER DOMAIN CONTROL
PSCON compare error
PSCON self-test error
eFuse CONTROLLER
eFuse Controller Autoload error
User/Privilege
ESM => nERROR
3.1
eFuse Controller - Any bit set in the error status register
User/Privilege
ESM
1.40
eFuse Controller self-test error
User/Privilege
ESM
1.41
ESM => NMI => nERROR
2.24
WINDOWED WATCHDOG
WWD Non-Maskable Interrupt exception
Copyright © 2012, Texas Instruments Incorporated
n/a
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
109
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 4-37. Reset/Abort/Error Sources (continued)
ERROR SOURCE
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
ERRORS REFLECTED IN THE SYSESR REGISTER
Power-Up Reset
n/a
Reset
n/a
Oscillator fail / PLL slip (2)
n/a
Reset
n/a
Watchdog exception
n/a
Reset
n/a
CPU Reset (driven by the CPU STC)
n/a
Reset
n/a
Software Reset
n/a
Reset
n/a
External Reset
n/a
Reset
n/a
(2)
Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.
PRODUCT PREVIEW
110
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.20 Digital Windowed Watchdog
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code
execution.
The DWWD module allows the application to configure the time window within which the DWWD module
expects the application to service the watchdog. A watchdog violation occurs if the application services the
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to
generate a system reset or an ESM group2 error signal in case of a watchdog violation.
PRODUCT PREVIEW
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog
can only be disabled upon a system reset.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
111
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.21 Debug Subsystem
4.21.1 Block Diagram
The device contains an ICEPICK module to allow JTAG access to the scan chains.
Boundary Scan
BSR/BSDL
Boundary Scan I/F
TRST
TMS
TCK
RTCK
TDI
TDO
Debug
ROM1
Debug APB
DAP
Secondary Tap 0
APB Mux
AHB-AP
POM
PRODUCT PREVIEW
ICEPICK_C
to SCR1 via A2A
APB slave
Cortex
R4F
from
PCR1/Bridge
Secondary Tap 2
AJSM
Test Tap 0
eFuse Farm
Test Tap 1
PSCON
Figure 4-20. Debug Subsystem Block Diagram
4.21.2 Debug Components Memory Map
Table 4-38. Debug Components Memory Map
MODULE NAME
FRAME CHIP
SELECT
CoreSight Debug
ROM
Cortex-R4F
Debug
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
CSCS0
0xFFA0_0000
0xFFA0_0FFF
4kB
4kB
Reads return zeros, writes have no
effect
CSCS1
0xFFA0_1000
0xFFA0_1FFF
4kB
4kB
Reads return zeros, writes have no
effect
4.21.3 JTAG Identification Code
The JTAG ID code for this device is 0x0B95502F. This is the same as the device ICEPick Identification
Code.
4.21.4 Debug ROM
The Debug ROM stores the location of the components on the Debug APB bus:
112
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 4-39. Debug ROM table
DESCRIPTION
VALUE
0x000
pointer to Cortex-R4F
0x0000 1003
0x001
Reserved
0x0000 2002
0x002
Reserved
0x0000 3002
0x003
POM
0x0000 4003
0x004
end of table
0x0000 0000
PRODUCT PREVIEW
ADDRESS
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
113
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.21.5 JTAG Scan Interface Timings
Table 4-40. JTAG Scan Interface Timing (1)
No.
Parameter
fTCK
fRTCK
1
td(TCK -RTCK)
2
tsu(TDI/TMS - RTCKr)
3
th(RTCKr -TDI/TMS)
4
th(RTCKr -TDO)
5
td(TCKf -TDO)
(1)
Min
TCK frequency (at HCLKmax)
RTCK frequency (at TCKmax and HCLKmax)
MAX
Unit
12
MHz
10
Delay time, TCK to RTCK
MHz
24
ns
Setup time, TDI, TMS before RTCK rise (RTCKr)
21
ns
Hold time, TDI, TMS after RTCKr
0
ns
Hold time, TDO after RTCKf
0
Delay time, TDO valid after RTCK fall (RTCKf)
ns
10
ns
Timings for TDO are specified for a maximum of 50pF load on TDO
TCK
RTCK
PRODUCT PREVIEW
1
1
TMS
TDI
2
3
TDO
4
5
Figure 4-21. JTAG Timing
114
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
4.21.6 Advanced JTAG Security Module
This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to
the device’s memory content by allowing users to secure the device after programming.
Flash Module Output
H
L
H
...
...
L
Unlock By Scan
Register
Internal Tie-Offs
(example only)
L
L
H
H
L
H
H
L
H
H
L
L
UNLOCK
128-bit comparator
Internal Tie-Offs
(example only)
H
L
L
H
H
L
L
H
Figure 4-22. AJSM Unlock
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the
UNLOCK signal being asserted, so that the device is now unsecure.
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the
device.
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By
Scan" register of the AJSM module. This register is accessible by configuring an IR value of 0b1011 on
the AJSM TAP. The value to be scanned is such that the XOR of the OTP contents and the Unlock-ByScan register contents results in the original visible unlock code.
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).
A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the
ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in
this state.
Copyright © 2012, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
115
PRODUCT PREVIEW
OTP Contents
(example)
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
4.21.7 Boundary Scan Chain
The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary
scan chain is connected to the Boundary Scan Interface of the ICEPICK module.
Device Pins (conceptual)
RTCK
TDI
TDO
IC E P ICK
TRST
TMS
TCK
Boundary Scan Interface
Boundary
Scan
TDI
TDO
BSDL
Figure 4-23. Boundary Scan Implementation (Conceptual Diagram)
PRODUCT PREVIEW
Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO.
116
System Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
5 Peripheral Information and Electrical Specifications
5.1
Enhanced Translator PWM Modules (ePWM)
Figure 5-1 illustrates the connections between the seven ePWM modules (ePWM1,2,3,4,5,6,7) on the
device.
PINMMR36[25]
NHET1_LOOP_SYNC
EPWMSYNCI
VIM
EPWM1TZINTn
VIM
EPWM1INTn
EPWM1B
TZ1/2/3n
Mux
Selector
SOCA1, SOCB1
EPWM1
VBus32
EQEP1 + EQEP2 EQEP1ERR / EQEP2ERR /
EQEP1ERR or EQEP2ERR
System Module OSC FAIL or PLL Slip
Debug Mode Entry
CPU
TZ4n
VCLK4, SYS_nRST
EPWM1ENCLK
TBCLKSYNC
TZ5n
TZ6n
VIM
EPWM2/3/4/5/6TZINTn
VIM
EPWM2/3/4/5/6INTn
EPWM2/3/4/5/6A
TZ1/2/3n
ADC Wrapper
Mux
Selector
SOCA2/3/4/5/6
SOCB2/3/4/5/6
EQEP1 + EQEP2 EQEP1ERR / EQEP2ERR /
EQEP1ERR or EQEP2ERR
System Module OSC FAIL or PLL Slip
VBus32
TZ4n
VCLK4, SYS_nRST
EPWM2/3/4/5/6ENCLK
TZ5n
Debug Mode Entry
CPU
EPWM
2/3/4/5/6
IOMUX
EPWM2/3/4/5/6B
TBCLKSYNC
TZ6n
VIM
EPWM7TZINTn
VIM
EPWM7INTn
EPWM7A
EPWM7B
ADC Wrapper
EQEP1 + EQEP2
System Module
Mux
Selector
EPWM
7
EQEP1ERR / EQEP2ERR /
EQEP1ERR or EQEP2ERR
OSC FAIL or PLL SLip
Debug Mode Entry
CPU
TZ1/2/3n
SOCA7, SOCB7
VBus32
TZ4n
VCLK4, SYS_nRST
EPWM7ENCLK
TBCLKSYNC
TZ5n
TZ6n
Pulse
Stretch, EPWMSYNCO
8 VCLK4
cycles
VBus32 / VBus32DP
VIM
ECAP1INTn
ECAP
1
ECAP1
Figure 5-1. ePWMx Module Interconnections
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
117
PRODUCT PREVIEW
ADC Wrapper
EPWM1A
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.1.1
www.ti.com
ePWM Clocking and Reset
Each ePWM module has a clock enable (EPWMxENCLK). When SYS_nRST is active low, the clock
enables are ignored and the ePWM logic is clocked so that it can reset to a proper state. When
SYS_nRST goes in-active high, the state of clock enable is respected.
Table 5-1. ePWMx Clock Enable Control
ePWM Module Instance
Control Register to Enable Clock
Default Value
ePWM1
PINMMR37[8]
1
ePWM2
PINMMR37[16]
1
ePWM3
PINMMR37[24]
1
ePWM4
PINMMR38[0]
1
ePWM5
PINMMR38[8]
1
ePWM6
PINMMR38[16]
1
ePWM7
PINMMR38[24]
1
PRODUCT PREVIEW
The default value of the control registers to enable the clocks to the ePWMx modules is 1. This means
that the VCLK4 clock connections to the ePWMx modules are enabled by default. The application can
choose to gate off the VCLK4 clock to any ePWMx module individually by clearing the respective control
register bit.
5.1.2
Synchronization of ePWMx Time Base Counters
A time-base synchronization scheme connects all of the ePWM modules on a device. Each ePWM
module has a synchronization input (EPWMxSYNCI) and a synchronization output (EPWMxSYNCO). The
input synchronization for the first instance (ePWM1) comes from an external pin. Figure 5-1 shows the
synchronization connections for all the ePWMx modules. Each ePWM module can be configured to use or
ignore the synchronization input. Refer to the ePWM chapter in the device Technical Reference Manual
for more information.
5.1.3
Synchronizing all ePWM Modules to the N2HET1 Module Time Base
The connection between the N2HET1_LOOP_SYNC and SYNCI input of ePWM1 module is implemented
as shown in Figure 5-2.
N2HET1
N2HET1_LOOP_SYNC
EXT_LOOP_SYNC
2 VCLK4 cycles
Pulse Strength
SYNCI
N2HET2
ePWM1
ePWM1_SYNCI
ePWM1_SYNCI_SYNCED
ePWM1_SYNCI_FILTERED
PINMMR36[25]
PINMMR47[8,9,10]
Figure 5-2. Synchronizing Time Bases Between N2HET1, N2HET2 and ePWMx Modules
118
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.1.4
SPNS184 – SEPTEMBER 2012
Phase-Locking the Time-Base Clocks of Multiple ePWM Modules
The TBCLKSYNC bit can be used to globally synchronize the time-base clocks of all enabled ePWM
modules on a device. This bit is implemented as PINMMR37 register bit 1.
When TBCLKSYNC = 0, the time-base clock of all ePWM modules is stopped. This is the default
condition.
When TBCLKSYNC = 1, all ePWM time-base clocks are started with the rising edge of TBCLK aligned.
For perfectly synchronized TBCLKs, the prescaler bits in the TBCTL register of each ePWM module must
be set identically. The proper procedure for enabling the ePWM clocks is as follows:
1. Enable the individual ePWM module clocks (if disable) using the control registers shown in Table 5-1.
2. Configure TBCLKSYNC = 0. This will stop the time-base clock within any enabled ePWM module.
3. Configure the prescaler values and desired ePWM modes.
4. Configure TBCLKSYNC = 1.
ePWM Synchronization with External Devices
The output sync from EPWM1 Module is also exported to a device output terminal so that multiple devices
can be synchronized together. The signal pulse is stretched by eight VCLK4 cycles before being exported
on the terminal as the EPWM1SYNCO signal.
5.1.6
ePWM Trip Zones
The ePWMx modules have six trip zone inputs each. These are active-low signals. The application can
control the ePWMx module response to each of the trip zone input separately. The timing requirements
from the assertion of the trip zone inputs to the actual response are specified in Section 5.1.8.
5.1.6.1
Trip Zones TZ1n, TZ2n, TZ3n
These three trip zone inputs are driven by external circuits and are connected to device-level inputs.
These signals are either connected asynchronously to the ePWMx trip zone inputs, or doublesynchronized with VCLK4, or double-synchronized and then filtered with a 6-cycle VCLK4-based counter
before connecting to the ePWMx. By default, the trip zone inputs are asynchronously connected to the
ePWMx modules.
Table 5-2. Connection to ePWMx Modules for Device-Level Trip Zone Inputs
Trip Zone Input
Control for
Asynchronous
Connection to ePWMx
Control for Double-Synchronized
Connection to ePWMx
Control for Double-Synchronized and Filtered
Connection to ePWMx
TZ1n
PINMMR46[16] = 1
PINMMR46[16] = 0 AND
PINMMR46[17] = 1
PINMMR46[16] = 0 AND PINMMR46[17] = 0
AND PINMMR46[18] = 1
TZ2n
PINMMR46[24] = 1
PINMMR46[24] = 0 AND
PINMMR46[25] = 1
PINMMR46[24] = 0 AND PINMMR46[25] = 0
AND PINMMR46[26] = 1
TZ3n
PINMMR47[0] = 1
PINMMR47[0] = 0 AND PINMMR47[1]
=1
PINMMR47[0] = 0 AND PINMMR47[1] = 0 AND
PINMMR47[2] = 1
5.1.6.2
Trip Zone TZ4n
This trip zone input is dedicated to eQEPx error indications. There are two eQEP modules on this device.
Each eQEP module indicates a phase error by driving its EQEPxERR output High. The following control
registers allow the application to configure the trip zone input (TZ4n) to each ePWMx module based on
the application’s requirements.
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
119
PRODUCT PREVIEW
5.1.5
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-3. TZ4n Connections for ePWMx Modules
ePWMx
Control for TZ4n =
not(EQEP1ERR OR
EQEP2ERR)
Control for TZ4n = not(EQEP1ERR)
Control for TZ4n = not(EQEP2ERR)
ePWM1
PINMMR41[0] = 1
PINMMR41[0] = 0 AND PINMMR41[1]
=1
PINMMR41[0] = 1 AND PINMMR41[1] = 0 AND
PINMMR41[2] = 1
ePWM2
PINMMR41[8]
PINMMR41[8] = 0 AND PINMMR41[9]
=1
PINMMR41[8] = 1 AND PINMMR41[9] = 0 AND
PINMMR41[10] = 1
ePWM3
PINMMR41[16]
PINMMR41[16] = 0 AND
PINMMR41[17] = 1
PINMMR41[16] = 1 AND PINMMR41[17] = 0
AND PINMMR41[18] = 1
ePWM4
PINMMR41[24]
PINMMR41[24] = 0 AND
PINMMR41[25] = 1
PINMMR41[24] = 1 AND PINMMR41[25] = 0
AND PINMMR41[26] = 1
ePWM5
PINMMR42[0]
PINMMR42[0] = 0 AND PINMMR42[1]
=1
PINMMR42[0] = 1 AND PINMMR42[1] = 0 AND
PINMMR42[2] = 1
ePWM6
PINMMR42[8]
PINMMR42[8] = 0 AND PINMMR42[9]
=1
PINMMR42[8] = 1 AND PINMMR42[9] = 0 AND
PINMMR42[10] = 1
ePWM7
PINMMR42[16]
PINMMR42[16] = 0 AND
PINMMR42[17] = 1
PINMMR42[16] = 1 AND PINMMR42[17] = 0
AND PINMMR42[18] = 1
5.1.6.3
Trip Zone TZ5n
PRODUCT PREVIEW
This trip zone input is dedicated to a clock failure on the device. That is, this trip zone input is asserted
whenever an oscillator failure or a PLL slip is detected on the device. The application can use this trip
zone input for each ePWMx module in order to prevent the external system from going out of control when
the device clocks are not within expected range (system running at limp clock).
The oscillator failure and PLL slip signals used for this trip zone input are taken from the status flags in the
system module. These are level signals are set until cleared by the application.
5.1.6.4
Trip Zone TZ6n
This trip zone input to the ePWMx modules is dedicated to a debug mode entry of the CPU. If enabled,
the user can force the PWM outputs to a known state when the emulator stops the CPU. This prevents the
external system from going out of control when the CPU is stopped.
5.1.7
Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs
A special scheme is implemented in order to select the actual signal used for triggering the start of
conversion on the two ADCs on this device. This scheme is defined in Section 5.4.2.3.
5.1.8
Enhanced Translator-Pulse Width Modulator (ePWMx) Timings
Table 5-4. ePWMx Timing Requirements
PARAMETER
tw(SYNCIN)
Synchronization input pulse width
TEST CONDITIONS
MIN
MAX
UNIT
Asynchronous
2 tc(VCLK4)
cycles
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Table 5-5. ePWMx Switching Characteristics
PARAMETER
tw(PWM)
TEST CONDITIONS
Pulse duration, ePWMx output high or low
tw(SYNCOUT Synchronization Output Pulse Width
MIN
MAX
UNIT
33.33
ns
8 tc(VCLK4)
cycles
)
td(PWM)tza
120
Delay time, trip input active to PWM forced high,
OR Delay time, trip input active to PWM forced
low
no pin load
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
25
ns
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 5-5. ePWMx Switching Characteristics (continued)
PARAMETER
td(TZ-
TEST CONDITIONS
MIN
Delay time, trip input active to PWM Hi-Z
MAX
UNIT
20
ns
PWM)HZ
Table 5-6. ePWMx Trip-Zone Timing Requirements
PARAMETER
Pulse duration, TZn input low
TEST CONDITIONS
MIN
Asynchronous
2 * TBePWMx
MAX
cycles
UNIT
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter
width
cycles
PRODUCT PREVIEW
tw(TZ)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
121
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.2
www.ti.com
Enhanced Capture Modules (eCAP)
Figure 5-3 shows how the eCAP modules are interconnected on this microcontroller.
EPWM1SYNCO
ECAP1SYNCI
ECAP1
VIM
ECAP1INTn
ECAP1
VBus32
VCLK4, SYS_nRST
ECAP1ENCLK
ECAP1SYNCO
ECAP2SYNCI
VIM
ECAP2INTn
ECAP
2/3/4/5
IOMUX
PRODUCT PREVIEW
ECAP2
VBus32
VCLK4, SYS_nRST
ECAP2SYNCO
ECAP2ENCLK
ECAP6
VIM
ECAP6INTn
ECAP
6
VBus32
VCLK4, SYS_nRST
ECAP6ENCLK
Figure 5-3. eCAP Module Connections
5.2.1
Clock Enable Control for eCAPx Modules
Each of the ECAPx modules have a clock enable (ECAPxENCLK). These signals need to be generated
from a device-level control register. When SYS_nRST is active low, the clock enables are ignored and the
ECAPx logic is clocked so that it can reset to a proper state. When SYS_nRST goes in-active high, the
state of clock enable is respected.
122
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 5-7. eCAPx Clock Enable Control
ePWM Module Instance
Control Register to Enable Clock
Default Value
eCAP1
PINMMR39[0]
1
eCAP2
PINMMR39[8]
1
eCAP3
PINMMR39[16]
1
eCAP4
PINMMR39[24]
1
eCAP5
PINMMR40[0]
1
eCAP6
PINMMR40[8]
1
The default value of the control registers to enable the clocks to the eCAPx modules is 1. This means that
the VCLK4 clock connections to the eCAPx modules are enabled by default. The application can choose
to gate off the VCLK4 clock to any eCAPx module individually by clearing the respective control register
bit.
5.2.2
PWM Output Capability of eCAPx
5.2.3
Input Connection to eCAPx Modules
The input connection to each of the eCAP modules can be selected between a double-VCLK4synchronized input or a double-VCLK4-synchronized and filtered input, as shown in Table 5-8.
Table 5-8. Device-Level Input Connection to eCAPx Modules
Input Signal
Control for Double-Synchronized Connection to
eCAPx
Control for Double-Synchronized and Filtered
Connection to eCAPx
eCAP1
PINMMR43[0] = 1
PINMMR43[0] = 0 AND PINMMR43[1] = 1
eCAP2
PINMMR43[8] = 1
PINMMR43[8] = 0 AND PINMMR43[9] = 1
eCAP3
PINMMR43[16] = 1
PINMMR43[16] = 0 AND PINMMR43[17] = 1
eCAP4
PINMMR43[24] = 1
PINMMR43[24] = 0 AND PINMMR43[25] = 1
eCAP5
PINMMR44[0] = 1
PINMMR44[0] = 0 AND PINMMR44[1] = 1
eCAP6
PINMMR44[8] = 1
PINMMR44[8] = 0 AND PINMMR44[9] = 1
5.2.4
Enhanced Capture Module (eCAP) Timings
Table 5-9. eCAPx Timing Requirements
PARAMETER
tw(CAP)
Capture input pulse width
TEST CONDITIONS
MIN
Synchronous
2 tc(VCLK4)
MAX
cycles
UNIT
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Table 5-10. eCAPx Switching Characteristics
PARAMETER
tw(APWM)
TEST CONDITIONS
Pulse duration, APWMx output high or low
Copyright © 2012, Texas Instruments Incorporated
MIN
MAX
UNIT
20
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
ns
123
PRODUCT PREVIEW
When not used in capture mode, each of the eCAPx modules can be used as a single-channel PWM
output. This is called the auxiliary PWM (APWM) mode of operation of the eCAP modules. Refer to the
eCAP chapter of the device Technical Reference Manual for more information.
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.3
www.ti.com
Enhanced Quadrature Encoder (eQEP)
Figure 5-4 shows the eQEP module interconnections on the device.
VBus32
EQEP1A
EQEP1B
EQEP1ENCLK
VCLK4
SYS_nRST
EPWM1/../7
VIM
EQEP1INTn
EQEP1I
EQEP1IO
EQEP1IOE
EQEP1
Module
EQEP1ERR
TZ4n
EQEP1S
EQEP1SO
EQEP1SOE
IO
Mux
VBus32
EQEP2A
EQEP2B
EQEP2ENCLK
VCLK4
SYS_nRST
VIM
PRODUCT PREVIEW
Connection
Selection
Mux
EQEP2INTn
EQEP2I
EQEP2IO
EQEP2IOE
EQEP2
Module
EQEP2ERR
EQEP2S
EQEP2SO
EQEP2SOE
Figure 5-4. eQEP Module Interconnections
5.3.1
Clock Enable Control for eQEPx Modules
Device-level control registers are implemented to generate the EQEPxENCLK signals. When SYS_nRST
is active low, the clock enables are ignored and the eQEPx logic is clocked so that it can reset to a proper
state. When SYS_nRST goes in-active high, the state of clock enable is respected.
Table 5-11. eQEPx Clock Enable Control
ePWM Module Instance
Control Register to Enable Clock
Default Value
eQEP1
PINMMR40[16]
1
eQEP2
PINMMR40[24]
1
The default value of the control registers to enable the clocks to the eQEPx modules is 1. This means that
the VCLK4 clock connections to the eQEPx modules are enabled by default. The application can choose
to gate off the VCLK4 clock to any eQEPx module individually by clearing the respective control register
bit.
5.3.2
Using eQEPx Phase Error to Trip ePWMx Outputs
The eQEP module sets the EQEPERR signal output whenever a phase error is detected in its inputs
EQEPxA and EQEPxB. This error signal from both the eQEP modules is input to the connection selection
multiplexor. This multiplexor is defined in Table 5-3. As shown in Figure 5-1, the output of this selection
multiplexor is inverted and connected to the TZ4n trip-zone input of all EPWMx modules. This connection
allows the application to define the response of each ePWMx module on a phase error indicated by the
eQEP modules.
124
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.3.3
SPNS184 – SEPTEMBER 2012
Input Connections to eQEPx Modules
The input connections to each of the eQEP modules can be selected between a double-VCLK4synchronized input or a double-VCLK4-synchronized and filtered input, as shown in Table 5-12.
Table 5-12. Device-Level Input Connection to eCAPx Modules
Input Signal
Control for Double-Synchronized Connection to
eQEPx
Control for Double-Synchronized and Filtered
Connection to eQEPx
eQEP1A
PINMMR44[16] = 1
PINMMR44[16] = 0 and PINMMR44[17] = 1
eQEP1B
PINMMR44[24] = 1
PINMMR44[24] = 0 and PINMMR44[25] = 1
eQEP1I
PINMMR45[0] = 1
PINMMR45[0] = 0 and PINMMR45[1] = 1
eQEP1S
PINMMR45[8] = 1
PINMMR45[8] = 0 and PINMMR45[9] = 1
eQEP2A
PINMMR45[16] = 1
PINMMR45[16] = 0 and PINMMR45[17] = 1
eQEP2B
PINMMR45[24] = 1
PINMMR45[24] = 0 and PINMMR45[25] = 1
eQEP2I
PINMMR46[0] = 1
PINMMR46[0] = 0 and PINMMR46[1] = 1
eQEP2S
PINMMR46[8] = 1
PINMMR46[8] = 0 and PINMMR46[9] = 1
Enhanced Quadrature Encoder Pulse (eQEPx) Timing
Table 5-13. eQEPx Timing Requirements
PARAMETER
tw(QEPP)
tw(INDEXH)
tw(INDEXL)
tw(STROBH)
tw(STROBL)
TEST CONDITIONS
MIN
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
Synchronous
2 tc(VCLK4)
cycles
Synchronous, with input
filter
2 tc(VCLK4) + filter width
cycles
QEP input period
QEP Index Input High Time
QEP Index Input Low Time
QEP Strobe Input High Time
QEP Strobe Input Low Time
MAX
UNIT
Table 5-14. eQEPx Switching Characteristics
PARAMETER
MIN
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
4 tc(VCLK4)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
6 tc(VCLK4)
cycles
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
125
PRODUCT PREVIEW
5.3.4
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.4
www.ti.com
Multi-Buffered 12bit Analog-to-Digital Converter
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given
with respect to ADREFLO unless otherwise noted.
Table 5-15. MibADC Overview
5.4.1
Description
Value
Resolution
12 bits
Monotonic
Assured
Output conversion code
00h to 3FFh [00 for VAI ≤ ADREFLO; 3FFh for VAI ≥ ADREFHI]
Features
PRODUCT PREVIEW
•
•
•
•
•
•
•
•
•
•
•
•
•
•
12-bit resolution
ADREFHI and ADREFLO pins (high and low reference voltages)
Total Sample/Hold/Convert time: 600ns Minimum at 30MHz ADCLK
One memory region per conversion group is available (event, group 1, group 2)
Allocation of channels to conversion groups is completely programmable
Supports flexible channel conversion order
Memory regions are serviced either by interrupt or by DMA
Programmable interrupt threshold counter is available for each group
Programmable magnitude threshold interrupt for each group for any one channel
Option to read either 8-bit, 10-bit or 12-bit values from memory regions
Single or continuous conversion modes
Embedded self-test
Embedded calibration logic
Enhanced power-down mode
– Optional feature to automatically power down ADC core when no conversion is in progress
External event pin (ADxEVT) programmable as general-purpose I/O
•
5.4.2
Event Trigger Options
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3
groups can be configured to be hardware event-triggered. In that case, the application can select from
among 8 event sources to be the trigger for a group's conversions.
5.4.2.1
MIBADC1 Event Trigger Hookup
Table 5-16. MIBADC1 Event Trigger Hookup
Trigger Event Signal
Group Source
Select, G1SRC,
G2SRC or
EVSRC
Event #
000
1
126
PINMMR30[0] = 0 and PINMMR30[1] = 1
PINMMR30[0] = 1
(default)
Option A
Control for
Option A
Option B
AD1EVT
AD1EVT
—
AD1EVT
—
Control for
Option B
001
2
N2HET1[8]
N2HET2[5]
PINMMR30[8] = 1
ePWM_B
PINMMR30[8] = 0
and
PINMMR30[9] = 1
010
3
N2HET1[10]
N2HET1[27]
—
N2HET1[27]
—
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 5-16. MIBADC1 Event Trigger Hookup (continued)
RTI Compare 0
Interrupt
PINMMR30[16] =
1
ePWM_A1
PINMMR30[16] =
0 and
PINMMR30[17] =
1
011
4
RTI Compare 0
Interrupt
100
5
N2HET1[12]
N2HET1[17]
—
N2HET1[17]
—
101
6
N2HET1[14]
N2HET1[19]
PINMMR30[24] =
1
N2HET2[1]
PINMMR30[24] =
0 and
PINMMR30[25] =
1
110
7
GIOB[0]
N2HET1[11]
PINMMR31[0] = 1
ePWM_A2
PINMMR31[0] = 0
and
PINMMR31[1] = 1
111
8
GIOB[1]
N2HET2[13]
PINMMR31[8] = 1
ePWM_AB
PINMMR31[8] = 0
and
PINMMR31[9] = 1
NOTE
PRODUCT PREVIEW
If ADEVT, N2HET1 or GIOB is used as a trigger source, the connection to the MibADC1
module trigger input is made from the output side of the input buffer. This way, a trigger
condition can be generated either by configuring the function as output onto the pad (via the
mux control), or by driving the function from an external trigger source as input. If the mux
control module is used to select different functionality instead of the ADEVT, N2HET1[x] or
GIOB[x] signals, then care must be taken to disable these signals from triggering
conversions; there is no multiplexing on the input connections.
If N2HET2[5], ePWM_B, N2HET1[17], N2HET1[19], N2HET2[1], N2HET1[11], ePWM_S2,
N2HET2[13] or ePWM_AB is used to trigger the ADC the connection to the ADC is made
directly from the N2HETx or ePWM module outputs. As a result, the ADC can be triggered
without having to enable the signal from being output on a device terminal.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.4.2.2
MIBADC2 Event Trigger Hookup
Table 5-17. MIBADC2 Event Trigger Hookup
Trigger Event Signal
Group Source
Select, G1SRC,
G2SRC or
EVSRC
Event #
000
1
PINMMR30[0] = 0 and PINMMR30[1] = 1
PINMMR30[0] = 1
(default)
Option A
Control for
Option A
Option B
AD2EVT
AD1EVT
—
AD1EVT
—
PINMMR31[16] =
0 and
PINMMR31[17] =
1
Control for
Option B
001
2
N2HET1[8]
N2HET2[5]
PINMMR31[16] =
1
ePWM_B
010
3
N2HET1[10]
N2HET1[27]
—
N2HET1[27]
—
PINMMR31[24] =
0 and
PINMMR31[25] =
1
011
4
RTI Compare 0
Interrupt
RTI Compare 0
Interrupt
PINMMR31[24] =
1
ePWM_A1
100
5
N2HET1[12]
N2HET1[17]
—
N2HET1[17]
—
N2HET2[1]
PINMMR32[0] = 0
and
PINMMR32[1] = 1
101
6
N2HET1[14]
Copyright © 2012, Texas Instruments Incorporated
N2HET1[19]
PINMMR32[0] = 1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
127
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-17. MIBADC2 Event Trigger Hookup (continued)
110
7
GIOB[0]
N2HET1[11]
PINMMR32[8] = 1
ePWM_A2
PINMMR32[8] = 0
and
PINMMR32[9] = 1
111
8
GIOB[1]
N2HET2[13]
PINMMR32[16] =
1
ePWM_AB
PINMMR32[16] =
0 and
PINMMR32[17] =
1
NOTE
If AD2EVT, N2HET1 or GIOB is used as a trigger source, the connection to the MibADC2
module trigger input is made from the output side of the input buffer. This way, a trigger
condition can be generated either by configuring the function as output onto the pad (via the
mux control), or by driving the function from an external trigger source as input. If the mux
control module is used to select different functionality instead of the AD2EVT, N2HET1[x] or
GIOB[x] signals, then care must be taken to disable these signals from triggering
conversions; there is no multiplexing on the input connections.
If N2HET2[5], ePWM_B, N2HET1[17], N2HET1[19], N2HET2[1], N2HET1[11], ePWM_S2,
N2HET2[13] or ePWM_AB is used to trigger the ADC the connection to the ADC is made
directly from the N2HETx or ePWM module outputs. As a result, the ADC can be triggered
without having to enable the signal from being output on a device terminal.
PRODUCT PREVIEW
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.4.2.3
Controlling ADC1 and ADC2 Event Trigger Options Using SOC Output from ePWM Modules
As shown in Figure 5-5, the ePWMxSOCA and ePWMxSOCB outputs from each ePWM module are used
to generate 4 signals – ePWM_B, ePWM_A1, ePWM_A2 and ePWM_AB, that are available to trigger the
ADC based on the application requirement.
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
SOCAEN, SOCBEN bits
inside ePWMx modules
Controlled by PINMMR
EPWM1SOCA
EPWM1
module
EPWM1SOCB
EPWM2SOCA
EPWM2
module
EPWM2SOCB
EPWM3SOCA
EPWM3SOCB
PRODUCT PREVIEW
EPWM3
module
EPWM4SOCA
EPWM4
module
EPWM4SOCB
EPWM5SOCA
EPWM5
module
EPWM5SOCB
EPWM6SOCA
EPWM6
module
EPWM6SOCB
EPWM7SOCA
EPWM7
module
EPWM7SOCB
ePWM_B
ePWM_A1
ePWM_A2 ePWM_AB
Figure 5-5. ADC Trigger Source Generation from ePWMx
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
129
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-18. Control Bit to SOC Output
Control Bit
SOC Output
PINMMR35[0]
SOC1A_SEL
PINMMR35[8]
SOC2A_SEL
PINMMR35[16]
SOC3A_SEL
PINMMR35[24]
SOC4A_SEL
PINMMR36[0]
SOC5A_SEL
PINMMR36[8]
SOC6A_SEL
PINMMR36[16]
SOC7A_SEL
The SOCA output from each ePWM module is connected to a "switch" shown in Figure 5-5.
The logic equations for the 4 outputs from the combinational logic shown in Figure 5-5 are:
ePWM_
SOC1B or SOC2B or SOC3B or SOC4B or SOC5B or SOC6B or SOC7B
B=
ePWM_
[ SOC1A and not(SOC1A_SEL) ] or [ SOC2A and not(SOC2A_SEL) ] or [ SOC3A and not(SOC3A_SEL) ] or
A1 =
[ SOC4A and not(SOC4A_SEL) ] or [ SOC5A and not(SOC5A_SEL) ] or [ SOC6A and not(SOC6A_SEL) ] or
[ SOC7A and not(SOC7A_SEL) ]
PRODUCT PREVIEW
ePWM_
[ SOC1A and SOC1A_SEL ] or [ SOC2A and SOC2A_SEL ] or [ SOC3A and SOC3A_SEL ] or
A2 =
[ SOC4A and SOC4A_SEL ] or [ SOC5A and SOC5A_SEL ] or [ SOC6A and SOC6A_SEL ] or
[ SOC7A and SOC7A_SEL ]
ePWM_
ePWM_B or ePWM_A2
AB =
130
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.4.3
SPNS184 – SEPTEMBER 2012
ADC Electrical and Timing Specifications
Table 5-19. MibADC Recommended Operating Conditions
Parameter
MIN
MAX
Unit
ADREFHI
A-to-D high-voltage reference source
ADREFLO
VCCAD
V
ADREFLO
A-to-D low-voltage reference source
VSSAD
ADREFHI
V
VAI
Analog input voltage
ADREFLO
ADREFHI
V
IAIC
Analog input clamp current
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)
-2
2
mA
Parameter
MAX
Unit
Rmux
Analog input mux on-resistance See Figure 5-6
Description/Conditions
250
Ω
Rsamp
ADC sample switch onresistance
See Figure 5-6
250
Ω
Cmux
Input mux capacitance
See Figure 5-6
16
pF
Csamp
ADC sample capacitance
See Figure 5-6
13
pF
IAIL
Analog off-state input leakage
current, for VCCAD = 3.6V
maximum
Off-state input leakage per
ADC input pin
VSSAD < VIN < VSSAD + 100mV
300
nA
VSSAD + 100mV < VIN < VCCAD
- 200mV
200
nA
VCCAD - 200mV < VIN < VCCAD
500
nA
VIN > VSSAD,
VIN < VSSAD + 300mV
1
µA
VIN > VSSAD + 300mV,
VIN < VCCAD - 300mV
250
nA
VIN > VCCAD - 300mV,
VIN < VCCAD
1
µA
IAIL
Analog off-state input leakage
current, for VCCAD = 5.5V
maximum
MIN
Off-state input leakage per
ADC input pin
IADREFHI
ADREFHI input current
ADREFHI = VCCAD, ADREFLO = VSSAD
3
mA
ICCAD
Static supply current
Normal operating mode
15
mA
ADC core in power down mode
5
µA
Rext
Pin
VS1
Smux
Rmux
Smux
Rmux
39*IAIL
Cext
On-State
Leakage
Rext
Pin
VS2
IAIL
Cext
IAIL
IAIL
Off-State
Leakages
Rext
Pin
Smux
Rmux
Ssamp
Rsamp
VS24
IAIL
Cmux
Cext
IAIL
Csamp
IAIL
Figure 5-6. MibADC Input Equivalent Circuit
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
131
PRODUCT PREVIEW
Table 5-20. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-21. MibADC Timing Specifications
Parameter
MIN
NOM
MAX
Unit
tc(ADCLK) (1)
Cycle time, MibADC clock
td(SH) (2)
Delay time, sample and hold
time
td©)
Delay time, conversion time
0.4
µs
td(SHC) (3)
Delay time, total sample/hold
and conversion time
0.6
µs
td©)
Delay time, conversion time
0.33
µs
td(SHC) (3)
Delay time, total sample/hold
and conversion time
0.53
µs
0.033
µs
0.2
µs
12-bit mode
10-bit mode
(1)
(2)
(3)
The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits
4:0.
The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as
well as the ADC’s internal impedance.
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
PRODUCT PREVIEW
132
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Parameter
Description/Conditions
CR
Conversion range over ADREFHI - ADREFLO
which specified
accuracy is
maintained
ZSET
Zero Scale Offset
FSET
EDNL
EINL
Differential
nonlinearity error
Integral nonlinearity
error
ETOT
(1)
(2)
Full Scale Offset
Total unadjusted error
(after calibration)
MIN
3
Type
MAX
Unit
5.5
V
Difference between the first ideal transition
(from code 000h to 001h) and the actual
transition
10-bit
mode
1
LSB
12-bit
mode
2
LSB
Difference between the range of the
measured code transitions (from first to last)
and the range of the ideal code transitions
10-bit
mode
2
LSB
12-bit
mode
3
LSB
Difference between the actual step width and
the ideal value. (See Figure 76)
10-bit
mode
± 1.5
LSB
12-bit
mode
±2
LSB
Maximum deviation from the best straight line 10-bit
through the MibADC. MibADC transfer
mode
characteristics, excluding the quantization
12-bit
error.
mode
±2
LSB
±2
LSB
Maximum value of the difference between an
analog value and the ideal midstep value.
10-bit
mode
±2
LSB
12-bit
mode
±4
LSB
1 LSB = (ADREFHI – ADREFLO)/ 212 for 12-bit mode
1 LSB = (ADREFHI – ADREFLO)/ 210 for 10-bit mode
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
133
PRODUCT PREVIEW
Table 5-22. MibADC Operating Characteristics Over Full Ranges of Recommended Operating
Conditions (1) (2)
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.4.4
www.ti.com
Performance (Accuracy) Specifications
5.4.4.1
MibADC Nonlinearity Errors
The differential nonlinearity error shown in Figure 5-7 (sometimes referred to as differential linearity) is the
difference between an actual step width and the ideal value of 1 LSB.
0 ... 110
PRODUCT PREVIEW
Digital Output Code
0 ... 101
0 ... 100
0 ... 011
Differential Linearity
Error (–½ LSB)
1 LSB
0 ... 010
Differential Linearity
Error (–½ LSB)
0 ... 001
1 LSB
0 ... 000
0
1
3
4
2
Analog Input Value (LSB)
5
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-7. Differential Nonlinearity (DNL) Error
134
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
The integral nonlinearity error shown in Figure 5-8 (sometimes referred to as linearity error) is the
deviation of the values on the actual transfer function from a straight line.
0 ... 111
0 ... 110
Ideal
Transition
Digital Output Code
0 ... 101
Actual
Transition
0 ... 100
At Transition
011/100
(–½ LSB)
0 ... 011
PRODUCT PREVIEW
0 ... 010
End-Point Lin. Error
0 ... 001
At Transition
001/010 (–1/4 LSB)
0 ... 000
0
1
2
3
4
5
6
7
Analog Input Value (LSB)
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-8. Integral Nonlinearity (INL) Error
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
135
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.4.4.2
www.ti.com
MibADC Total Error
The absolute accuracy or total error of an MibADC as shown in Figure 5-9 is the maximum value of the
difference between an analog value and the ideal midstep value.
0 ... 111
0 ... 110
PRODUCT PREVIEW
Digital Output Code
0 ... 101
0 ... 100
Total Error
At Step 0 ... 101
(–1 1/4 LSB)
0 ... 011
0 ... 010
Total Error
At Step
0 ... 001 (1/2 LSB)
0 ... 001
0 ... 000
0
1
2
3
4
5
6
7
Analog Input Value (LSB)
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-9. Absolute Accuracy (Total) Error
136
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.5
SPNS184 – SEPTEMBER 2012
General-Purpose Input/Output
The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and
bit-programmable. Both GIOA and GIOB support external interrupt capability.
Features
The GPIO module has the following features:
• Each IO pin can be configured as:
– Input
– Output
– Open Drain
• The interrupts have the following characteristics:
– Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)
– Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)
– Individual interrupt flags (set in GIOFLG register)
– Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers
respectively
– Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers
• Internal pullup/pulldown allows unused I/O pins to be left unconnected
For information on input and output timings see Section 3.8 and Section 3.9
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
137
PRODUCT PREVIEW
5.5.1
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.6
www.ti.com
Enhanced High-End Timer (N2HET)
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses.
5.6.1
Features
PRODUCT PREVIEW
The N2HET module has the following features:
• Programmable timer for input and output timing functions
• Reduced instruction set (30 instructions) for dedicated time and angle functions
• 160 words of instruction RAM protected by parity
• User defined number of 25-bit virtual counters for timer, event counters and angle counters
• 7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual
counters
• Up to 32 pins usable for input signal measurements or output signal generation
• Programmable suppression filter for each input pin with adjustable limiting frequency
• Low CPU overhead and interrupt load
• Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)
or DMA
• Diagnostic capabilities with different loopback mechanisms and pin status readback functionality
5.6.2
N2HET RAM Organization
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are
split into three 32-bit fields (program, control, and data).
5.6.3
Input Timing Specifications
The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals.
1
N2HETx
3
4
2
Figure 5-10. N2HET Input Capture Timings
138
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
Table 5-23. Dynamic Characteristics for the N2HET Input Capture Functionality
PARAMETER
MIN
MAX
UNIT
1
Input signal period, PCNT or WCAP for rising edge
to rising edge
(HRP) (LRP) tc(VCLK2) + 2
225 (HRP) (LRP) tc(VCLK2) - 2
ns
2
Input signal period, PCNT or WCAP for falling edge
to falling edge
(HRP) (LRP) tc(VCLK2) + 2
225 (HRP) (LRP) tc(VCLK2) - 2
ns
3
Input signal high phase, PCNT or WCAP for rising
edge to falling edge
2 (HRP) tc(VCLK2) + 2
225 (HRP) (LRP) tc(VCLK2) - 2
ns
4
Input signal low phase, PCNT or WCAP for falling
edge to rising edge
2 (HRP) tc(VCLK2) + 2
225 (HRP) (LRP) tc(VCLK2) - 2
ns
5.6.4
N2HET1-N2HET2 Synchronization
The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures
the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal
to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to
the loop resolution signal sent by the master. The slave does not require this signal after it receives the
first synchronization signal. However, anytime the slave receives the re-synchronization signal from the
master, the slave must synchronize itself again..
N2HET1
N2HET2
EXT_LOOP_SYNC
NHET_LOOP_SYNC
NHET_LOOP_SYNC
EXT_LOOP_SYNC
Figure 5-11. N2HET1 – N2HET2 Synchronization Hookup
5.6.5
N2HET Checking
5.6.5.1
Internal Monitoring
To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be
used to monitor each other’s signals as shown in Figure 5-12. The direction of the monitoring is controlled
by the I/O multiplexing control module.
N2HET1[1,3,5,7,9,11]
IOMM mux control signal x
N2HET1[1,3,5,7,9,11] / N2HET2[8,10,12,14,16,18]
N2HET1
N2HET2[8,10,12,14,16,18]
N2HET2
Figure 5-12. N2HET Monitoring
5.6.5.2
Output Monitoring using Dual Clock Comparator (DCC)
N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure
the frequency of the pulse-width modulated (PWM) signal on N2HET1[31].
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
139
PRODUCT PREVIEW
In some applications the N2HET resolutions must be synchronized. Some other applications require a
single time base to be used for all PWM outputs and input timing captures.
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to
measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0].
Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection
to the DCC module is made directly from the output of the N2HETx module (from the input of the output
buffer).
For more information on DCC see Section 4.7.3.
5.6.6
Disabling N2HET Outputs
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET
module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the
N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the
device Terminal Reference Manual for more details on the "N2HET Pin Disable" feature.
GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin
Disable" input for N2HET2.
PRODUCT PREVIEW
140
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.6.7
SPNS184 – SEPTEMBER 2012
High-End Timer Transfer Unit (HET-TU)
A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to
or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU.
•
•
•
•
•
•
•
•
•
5.6.7.2
Features
CPU and DMA independent
Master Port to access system memory
8 control packets supporting dual buffer configuration
Control packet information is stored in RAM protected by parity
Event synchronization (HET transfer requests)
Supports 32 or 64 bit transactions
Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or
64bit)
One shot, circular and auto switch buffer transfer modes
Request lost detection
Trigger Connections
PRODUCT PREVIEW
5.6.7.1
Table 5-24. HET TU1 Request Line Connection
Modules
Request Source
HET TU1 Request
N2HET1
HTUREQ[0]
HET TU1 DCP[0]
N2HET1
HTUREQ[1]
HET TU1 DCP[1]
N2HET1
HTUREQ[2]
HET TU1 DCP[2]
N2HET1
HTUREQ[3]
HET TU1 DCP[3]
N2HET1
HTUREQ[4]
HET TU1 DCP[4]
N2HET1
HTUREQ[5]
HET TU1 DCP[5]
N2HET1
HTUREQ[6]
HET TU1 DCP[6]
N2HET1
HTUREQ[7]
HET TU1 DCP[7]
Table 5-25. HET TU2 Request Line Connection
Modules
Request Source
HET TU2 Request
N2HET2
HTUREQ[0]
HET TU2 DCP[0]
N2HET2
HTUREQ[1]
HET TU2 DCP[1]
N2HET2
HTUREQ[2]
HET TU2 DCP[2]
N2HET2
HTUREQ[3]
HET TU2 DCP[3]
N2HET2
HTUREQ[4]
HET TU2 DCP[4]
N2HET2
HTUREQ[5]
HET TU2 DCP[5]
N2HET2
HTUREQ[6]
HET TU2 DCP[6]
N2HET2
HTUREQ[7]
HET TU2 DCP[7]
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
141
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.7
www.ti.com
Controller Area Network (DCAN)
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh
environments (e.g., automotive and industrial fields) that require reliable serial communication or
multiplexed wiring.
5.7.1
Features
PRODUCT PREVIEW
Features of the DCAN module include:
• Supports CAN protocol version 2.0 part A, B
• Bit rates up to 1 MBit/s
• The CAN kernel can be clocked by the oscillator for baud-rate generation.
• 64 mailboxes on each DCAN
• Individual identifier mask for each message object
• Programmable FIFO mode for message objects
• Programmable loop-back modes for self-test operation
• Automatic bus on after Bus-Off state by a programmable 32-bit timer
• Message RAM protected by parity
• Direct access to Message RAM during test mode
• CAN Rx / Tx pins configurable as general purpose IO pins
• Message RAM Auto Initialization
• DMA support
For more information on the DCAN see the device Technical Reference Manual.
5.7.2
Electrical and Timing Specifications
Table 5-26. Dynamic Characteristics for the DCANx TX and RX pins
MAX
Unit
td(CANnTX)
Delay time, transmit shift register to CANnTX pin (1)
Parameter
15
ns
td(CANnRX)
Delay time, CANnRX pin to receive shift register
5
ns
(1)
142
MIN
These values do not include rise/fall times of the output buffer.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
5.8
SPNS184 – SEPTEMBER 2012
Local Interconnect Network Interface (LIN)
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is
an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility.
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a Kline.
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is
single-master/multiple-slave with a message identification for multi-cast transmission between any network
nodes.
5.8.1
LIN Features
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
PRODUCT PREVIEW
The following are features of the LIN module:
• Compatible to LIN 1.3, 2.0 and 2.1 protocols
• Multi-buffered receive and transmit units DMA capability for minimal CPU intervention
• Identification masks for message filtering
• Automatic Master Header Generation
– Programmable Synch Break Field
– Synch Field
– Identifier Field
• Slave Automatic Synchronization
– Synch break detection
– Optional baudrate update
– Synchronization Validation
• 231 programmable transmission rates with 7 fractional bits
• Error detection
• 2 Interrupt lines with priority encoding
143
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
5.9
Serial Communication Interface (SCI)
5.9.1
Features
•
•
•
•
•
•
•
•
•
PRODUCT PREVIEW
•
•
144
www.ti.com
Standard universal asynchronous receiver-transmitter (UART) communication
Supports full- or half-duplex operation
Standard nonreturn to zero (NRZ) format
Double-buffered receive and transmit functions
Configurable frame format of 3 to 13 bits per character based on the following:
– Data word length programmable from one to eight bits
– Additional address bit in address-bit mode
– Parity programmable for zero or one parity bit, odd or even parity
– Stop programmable for one or two stop bits
Asynchronous or isosynchronous communication modes
Two multiprocessor communication formats allow communication between more than two devices.
Sleep mode is available to free CPU resources during multiprocessor communication.
The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate
selection.
Four error flags and Five status flags provide detailed information regarding SCI events.
Capability to use DMA for transmit and receive data.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
5.10 Inter-Integrated Circuit (I2C)
The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface
between the RM4x microcontroller and devices compliant with Philips Semiconductor I2C-bus specification
version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C compatible
device.
The I2C has the following features:
• Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number
9398 393 40011)
– Bit/Byte format transfer
– 7-bit and 10-bit device addressing modes
– General call
– START byte
– Multi-master transmitter/ slave receiver mode
– Multi-master receiver/ slave transmitter mode
– Combined master transmit/receive and receive/transmit mode
– Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate)
• Free data format
• Two DMA events (transmit and receive)
• DMA event enable/disable capability
• Seven interrupts that can be used by the CPU
• Module enable/disable capability
• The SDA and SCL are optionally configurable as general purpose I/O
• Slew rate control of the outputs
• Open drain control of the outputs
• Programmable pullup/pulldown capability on the inputs
• Supports Ignore NACK mode
NOTE
This I2C module does not support:
• High-speed (HS) mode
• C-bus compatibility mode
• The combined format in 10-bit address mode (the I2C sends the slave address second
byte every time it sends the slave address first byte)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
145
PRODUCT PREVIEW
5.10.1 Features
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.10.2 I2C I/O Timing Specifications
Table 5-27. I2C Signals (SDA and SCL) Switching Characteristics (1)
Parameter
Standard Mode
Fast Mode
Unit
MIN
MAX
MIN
MAX
75.2
149
75.2
149
tc(I2CCLK)
Cycle time, Internal Module clock for I2C,
prescaled from VCLK
tc(SCL)
Cycle time, SCL
10
2.5
ms
tsu(SCLH-SDAL)
Setup time, SCL high before SDA low (for a
repeated START condition)
4.7
0.6
ms
th(SCLL-SDAL)
Hold time, SCL low after SDA low (for a repeated
START condition)
4
0.6
ms
tw(SCLL)
Pulse duration, SCL low
4.7
1.3
ms
tw(SCLH)
Pulse duration, SCL high
4
0.6
ms
tsu(SDA-SCLH)
Setup time, SDA valid before SCL high
250
100
ns
PRODUCT PREVIEW
th(SDA-SCLL)
Hold time, SDA valid after SCL low (for I2C bus
devices)
tw(SDAH)
Pulse duration, SDA high between STOP and
START conditions
4.7
1.3
ms
tsu(SCLH-SDAH)
Setup time, SCL high before SDA high (for STOP
condition)
4.0
0.6
ms
tw(SP)
Pulse duration, spike (must be suppressed)
Cb
(3)
(1)
(2)
(3)
0
3.45
(2)
0
ns
0.9
0
Capacitive load for each bus line
400
ms
50
ns
400
pF
The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered
down.
The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL
signal.
Cb = The total capacitance of one bus line in pF.
SDA
tw(SDAH)
tsu(SDA-SCLH)
tw(SCLL)
tw(SP)
tsu(SCLH-SDAH)
tw(SCLH)
tr(SCL)
SCL
tc(SCL)
tf(SCL)
th(SCLL-SDAL)
th(SDA-SCLL)
tsu(SCLH-SDAL)
th(SCLL-SDAL)
Stop
Start
Repeated Start
Stop
Figure 5-13. I2C Timings
146
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
NOTE
•
•
•
PRODUCT PREVIEW
•
A device must internally provide a hold time of at least 300 ns for the SDA signal
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling
edge of SCL.
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW
period (tw(SCLL)) of the SCL signal.
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the
requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if
the device does not stretch the LOW period of the SCL signal. If such a device does
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
tr max + tsu(SDA-SCLH).
Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster falltimes are allowed.
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
147
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.11 Multi-Buffered / Standard Serial Peripheral Interface
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display
drivers, and analog-to-digital converters.
5.11.1 Features
Both Standard and MibSPI modules have the following features:
• 16-bit shift register
• Receive buffer register
• 8-bit baud clock generator
• SPICLK can be internally-generated (master mode) or received from an external clock source (slave
mode)
• Each word transferred can have a unique format
• SPI I/Os not used in the communication can be used as digital input/output signals
Table 5-28. MibSPI/SPI Configurations
PRODUCT PREVIEW
MibSPIx/SPIx
I/Os
MibSPI1
MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA
MibSPI3
MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA
MibSPI5
MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA
SPI2
SPI2SIMO, ZSPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA
SPI4
SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA
5.11.2 MibSPI Transmit and Receive RAM Organization
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer
RAM can be partitioned into multiple transfer group with variable number of buffers each. Each MibSPIx
module supports 8 transfer groups.
5.11.3 MibSPI Transmit Trigger Events
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event
and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low
level at a selectable trigger source. For example, up to 15 trigger sources are available which can be
utilized by each transfer group. These trigger options are listed in Table 5-29 and Section 5.11.3.2 for
MibSPI1 and MibSPi3 respectively.
148
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
5.11.3.1 MIBSPI1 Event Trigger Hookup
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
N2HET1[8]
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
PRODUCT PREVIEW
Table 5-29. MIBSPI1 Event Trigger Hookup
NOTE
For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving
the GIOx pin from an external trigger source. If the mux control module is used to select
different functionality instead of the GIOx signal, then care must be taken to disable GIOx
from triggering MibSPI1 transfers; there is no multiplexing on the input connections.
5.11.3.2 MIBSPI3 Event Trigger Hookup
Table 5-30. MIBSPI3 Event Trigger Hookup
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
N2HET1[8]
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
149
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-30. MIBSPI3 Event Trigger Hookup (continued)
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
PRODUCT PREVIEW
For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving
the GIOx pin from an external trigger source. If the mux control module is used to select
different functionality instead of the GIOx signal, then care must be taken to disable GIOx
from triggering MibSPI3 transfers; there is no multiplexing on the input connections.
5.11.3.3 MIBSPI5 Event Trigger Hookup
Table 5-31. MIBSPI5 Event Trigger Hookup
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
N2HET1[8]
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
150
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
NOTE
PRODUCT PREVIEW
For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving
the GIOx pin from an external trigger source. If the mux control module is used to select
different functionality instead of the GIOx signal, then care must be taken to disable GIOx
from triggering MibSPI5 transfers; there is no multiplexing on the input connections.
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
151
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.11.4 MibSPI/SPI Master Mode I/O Timing Specifications
Table 5-32. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO
= output, and SPISOMI = input) (1) (2) (3)
NO.
1
2 (5)
3 (5)
4 (5)
5 (5)
PRODUCT PREVIEW
6 (5)
7 (5)
8 (6)
9 (6)
Parameter
MIN
MAX
Unit
4040
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock
polarity = 0)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
ns
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 1)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 0)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCH)M
Pulse duration, SPICLK high (clock
polarity = 1)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
td(SPCH-SIMO)M
Delay time, SPISIMO valid before
SPICLK low (clock polarity = 0)
0.5tc(SPC)M – 5
td(SPCL-SIMO)M
Delay time, SPISIMO valid before
SPICLK high (clock polarity = 1)
0.5tc(SPC)M – 5
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 0)
0.5tc(SPC)M – tf(SPC) – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 1)
0.5tc(SPC)M – tr(SPC) – 3
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 0)
0.5tf(SPC) + 2
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK
high (clock polarity = 1)
0.5tf(SPC) + 2
tc(SPC)M
Cycle time, SPICLK (4)
tw(SPCH)M
ns
5
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 1)
5
tC2TDELAY
Setup time CS active
until SPICLK high
(clock polarity = 0)
CSHOLD = 0
C2TDELAY*tc(VCLK) + 2*tc(VCLK)
- tf(SPICS) + tr(SPC) – 15
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
CSHOLD = 1
C2TDELAY*tc(VCLK) + 3*tc(VCLK)
- tf(SPICS) + tr(SPC) – 15
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
Setup time CS active
until SPICLK low
(clock polarity = 1)
CSHOLD = 0
C2TDELAY*tc(VCLK) + 2*tc(VCLK)
- tf(SPICS) + tf(SPC) – 15
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
CSHOLD = 1
C2TDELAY*tc(VCLK) + 3*tc(VCLK)
- tf(SPICS) + tf(SPC) – 15
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
Hold time SPICLK low CS until inactive
(clock polarity = 0)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) - 5
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) + 8
ns
Hold time SPICLK high until CS
inactive (clock polarity = 1)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) - 5
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) + 8
ns
(C2TDELAY+1) * tc(VCLK) tf(SPICS) – 25
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
tT2CDELAY
SPIENAn Sample point
11
tSPIENAW
SPIENAn Sample point from write to
buffer
152
ns
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 0)
tSPIENA
(5)
(6)
ns
th(SPCL-SOMI)M
10
(1)
(2)
(3)
(4)
ns
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
For rise and fall timings, see Table 3-4.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns.
The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
SPISIMO
5
Master Out Data Is Valid
6
7
PRODUCT PREVIEW
Master In Data
Must Be Valid
SPISOMI
Figure 5-14. SPI Master Mode External Timing (CLOCK PHASE = 0)
Write to buffer
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
SPISIMO
Master Out Data Is Valid
8
9
SPICSn
10
11
SPIENAn
Figure 5-15. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
153
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-33. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO
= output, and SPISOMI = input) (1) (2) (3)
NO.
Parameter
MAX
Unit
40
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock
polarity = 0)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
ns
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 1)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 0)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCH)M
Pulse duration, SPICLK high (clock
polarity = 1)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
tv(SIMO-SPCH)M
Valid time, SPICLK high after
SPISIMO data valid (clock polarity =
0)
0.5tc(SPC)M – 5
tv(SIMO-SPCL)M
Valid time, SPICLK low after
SPISIMO data valid (clock polarity =
1)
0.5tc(SPC)M – 5
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 0)
0.5tc(SPC)M – tr(SPC) – 3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 1)
0.5tc(SPC)M – tf(SPC) – 3
tsu(SOMI-SPCH)M
Setup time, SPISOMI before
SPICLK high (clock polarity = 0)
tr(SPC)
tsu(SOMI-SPCL)M
Setup time, SPISOMI before
SPICLK low (clock polarity = 1)
tf(SPC)
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid after
SPICLK high (clock polarity = 0)
5
tv(SPCL-SOMI)M
Valid time, SPISOMI data valid after
SPICLK low (clock polarity = 1)
5
tC2TDELAY
Setup time CS
CSHOLD = 0
active until SPICLK
high (clock polarity =
0)
CSHOLD = 1
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
Setup time CS
active until SPICLK
low (clock polarity =
1)
CSHOLD = 0
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
CSHOLD = 1
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
Hold time SPICLK low CS until
inactive (clock polarity = 0)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tf(SPC) + tr(SPICS) 4
T2CDELAY*tc(VCLK) +
tc(VCLK) - tf(SPC) + tr(SPICS) +
8
ns
Hold time SPICLK high until CS
inactive (clock polarity = 1)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tr(SPC) + tr(SPICS) 4
T2CDELAY*tc(VCLK) +
tc(VCLK) - tr(SPC) + tr(SPICS) +
8
ns
(C2TDELAY+1)* tc(VCLK) tf(SPICS) – 25
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
tc(SPC)M
Cycle time, SPICLK
(5)
tw(SPCH)M
2
3 (5)
4 (5)
5 (5)
PRODUCT PREVIEW
MIN
1
6 (5)
7 (5)
8 (6)
9 (6)
tT2CDELAY
(4)
10
tSPIENA
SPIENAn Sample Point
11
tSPIENAW
SPIENAn Sample point from write to
buffer
(1)
(2)
(3)
(4)
(5)
(6)
154
ns
ns
ns
ns
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
For rise and fall timings, see Table 3-4.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns.
The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
Master Out Data Is Valid
SPISIMO
6
Data Valid
7
PRODUCT PREVIEW
Master In Data
Must Be Valid
SPISOMI
Figure 5-16. SPI Master Mode External Timing (CLOCK PHASE = 1)
Write to buffer
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
SPISIMO
Master Out Data Is Valid
8
9
SPICSn
10
11
SPIENAn
Figure 5-17. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
155
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.11.5 SPI Slave Mode I/O Timings
Table 5-34. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =
input, and SPISOMI = output) (1) (2) (3) (4)
NO.
1
2 (6)
3 (6)
4 (6)
5 (6)
6 (6)
PRODUCT PREVIEW
7 (6)
8
9
(1)
(2)
(3)
(4)
(5)
(6)
156
Parameter
MIN
MAX
Unit
tc(SPC)S
Cycle time, SPICLK (5)
40
256tc(VCLK)
ns
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
14
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
14
td(SPCH-SOMI)S
Delay time, SPISOMI valid after SPICLK high (clock
polarity = 0)
trf(SOMI) + 13
td(SPCL-SOMI)S
Delay time, SPISOMI valid after SPICLK low (clock polarity
= 1)
trf(SOMI) + 13
th(SPCH-SOMI)S
Hold time, SPISOMI data valid after SPICLK high (clock
polarity =0)
2
th(SPCL-SOMI)S
Hold time, SPISOMI data valid after SPICLK low (clock
polarity =1)
2
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity =
0)
2
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity =
1)
2
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low (clock
polarity = 0)
2
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after S PICLK high (clock
polarity = 1)
2
td(SPCL-SENAH)S
Delay time, SPIENAn high after last SPICLK low (clock
polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SPCH-SENAH)S
Delay time, SPIENAn high after last SPICLK high (clock
polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SCSL-SENAL)S
Delay time, SPIENAn low after SPICSn low (if new data
has been written to the SPI buffer)
tf(ENAn)
tc(VCLK)+tf(ENAn)+1
4
ns
ns
ns
ns
ns
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
For rise and fall timings, see Table 3-4.
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISOMI Data Is Valid
SPISOMI
6
7
PRODUCT PREVIEW
SPISIMO Data
Must Be Valid
SPISIMO
Figure 5-18. SPI Slave Mode External Timing (CLOCK PHASE = 0)
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
8
SPIENAn
9
SPICSn
Figure 5-19. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
157
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
Table 5-35. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =
input, and SPISOMI = output) (1) (2) (3) (4)
NO.
MIN
MAX
Unit
1
tc(SPC)S
Cycle time, SPICLK (5)
40
256tc(VCLK)
ns
(6)
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
14
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
14
td(SOMI-SPCL)S
Delay time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
trf(SOMI) + 13
td(SOMI-SPCH)S
Delay time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
trf(SOMI) + 13
th(SPCL-SOMI)S
Hold time, SPISOMI data valid after SPICLK high
(clock polarity =0)
2
th(SPCH-SOMI)S
Hold time, SPISOMI data valid after SPICLK low (clock
polarity =1)
2
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock
polarity = 0)
2
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity
= 1)
2
tv(SPCH-SIMO)S
High time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
2
tv(SPCL-SIMO)S
High time, SPISIMO data valid after SPICLK low (clock
polarity = 1)
2
2
3 (6)
4 (6)
5 (6)
6 (6)
PRODUCT PREVIEW
7 (6)
8
Parameter
ns
ns
ns
ns
ns
ns
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high
(clock polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SPCL-SENAH)S
Delay time, SPIENAn high after last SPICLK low (clock
polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
9
td(SCSL-SENAL)S
Delay time, SPIENAn low after SPICSn low (if new data
has been written to the SPI buffer)
tf(ENAn)
tc(VCLK)+tf(ENAn)+14
ns
10
td(SCSL-SOMI)S
Delay time, SOMI valid after SPICSn low (if new data
has been written to the SPI buffer)
tc(VCLK)
2tc(VCLK)+trf(SOMI)+8
ns
(1)
(2)
(3)
(4)
(5)
(6)
158
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S ≤ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
For rise and fall timings, see Table 3-4.
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISOMI
SPISOMI Data Is Valid
6
7
PRODUCT PREVIEW
SPISIMO Data
Must Be Valid
SPISIMO
Figure 5-20. SPI Slave Mode External Timing (CLOCK PHASE = 1)
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
8
SPIENAn
9
SPICSn
10
SPISOMI
Slave Out Data Is Valid
Figure 5-21. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
159
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.12 Ethernet Media Access Controller
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QoS) support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY
configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
5.12.1 Ethernet MII Electrical and Timing Specifications
1
2
MII_MRCLK
PRODUCT PREVIEW
MII_MRXD
MII_MRXDV
MII_MRXER
VALID
Figure 5-22. MII Receive Timing
Table 5-36. MII Receive Timing
Description
MIN
tsu(MIIMRXD)
Parameter
Setup time, MIIMRXD to MIIMRCLK rising edge
8ns
tsu(MIIMRXDV)
Setup time, MIIMRXDV to MIIMRCLK rising edge
8ns
tsu(MIIMRXER)
Setup time, MIIMRXER to MIIMRCLK rising edge
8ns
th(MIIMRXD)
Hold time, MIIMRXD valid after MIIRCLK rising edge
8ns
th(MIIMRXDV)
Hold time, MIIMRXDV valid after MIIRCLK rising edge
8ns
th(MIIMRXER)
Hold time, MIIMRXDV valid after MIIRCLK rising edge
8ns
160
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
MAX
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
1
MII_MTCLK
MII_MTXD
MII_MTXEN
VALID
Figure 5-23. MII Transmit Timing
Table 5-37. MII Transmit Timing
Description
MIN
MAX
td(MIIMTXD)
Delay time, MIIMTCLK rising edge to MIIMTXD
5ns
25ns
td(MIIMTXEN)
Delay time, MIIMTCLK rising edge to MIIMTXEN
5ns
25ns
PRODUCT PREVIEW
Parameter
Copyright © 2012, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
161
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
1
5.12.2 Ethernet2 RMII Timing
3
RMII_MHz_50_CLK
5
5
RMII_TXEN
4
RMII_TXD[1:0]
6
7
RMII_RXD[1:0]
8
RMII_CRS_DV
9
10
Figure 5-24. RMII Timing Diagram
11
Table 5-38. RMII Timing Requirements
RMII_RXER
NO.
PRODUCT PREVIEW
162
Parameter
Value
MIN
NOM
Unit
MAX
1
tc(REFCLK)
Cycle time, RMII_REF_CLK
-
20
-
ns
2
tw(REFCLKH)
Pulse width, RMII_REF_CLK High
7
-
13
ns
3
tw(REFCLKL)
Pulse width, RMII_REF_CLK Low
7
-
13
ns
6
tsu(RXD-REFCLK)
Input setup time, RMII_RXD valid before
RMII_REF_CLK High
4
-
-
ns
7
th(REFCLK-RXD)
Input hold time, RMII_RXD valid after
RMII_REF_CLK High
2
-
-
ns
8
tsu(CRSDV-REFCLK)
Input setup time, RMII_CRSDV valid before
RMII_REF_CLK High
4
-
-
ns
9
th(REFCLK-CRSDV)
Input hold time, RMII_CRSDV valid after
RMII_REF_CLK High
2
-
-
ns
10
tsu(RXER-REFCLK)
Input setup time, RMII_RXER valid before
RMII_REF_CLK High
4
-
-
ns
11
th(REFCLK-RXER)
Input hold time, RMII_RXER valid after
RMII_REF_CLK High
2
-
-
ns
4
td(REFCLK-TXD)
Output delay time, RMII_REF_CLK High to
RMII_TXD valid
2
-
16
ns
5
td(REFCLK-TXEN)
Output delay time, RMII_REF_CLK High to
RMII_TX_EN valid
2
-
16
ns
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
5.12.3 Management Data Input/Output (MDIO)
1
3
3
MDCLK
4
5
MDIO
(input)
Figure 5-25. MDIO Input Timing
Table 5-39. MDIO Input Timing Requirements
Value
Unit
MIN
MAX
1
tc(MDCLK)
Cycle time, MDCLK
400
-
ns
2
tw(MDCLK)
Pulse duration, MDCLK high/low
180
-
ns
3
tt(MDCLK)
Transition time, MDCLK
-
5
ns
(1)
tsu(MDIO-MDCLKH)
Setup time, MDIO data input valid before MDCLK
High
10
-
ns
5
th(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK
High
10
-
ns
4
(1)
Parameter
PRODUCT PREVIEW
NO.
The minimum 10ns of setup time is dictated by the IEEE MDIO standard. This design does not meet this standard specification. The
actual required minimum setup time for MDIO data input valid before MDCLK high is 17 ns.
1
MDCLK
7
MDIO
(output)
Figure 5-26. MDIO Output Timing
Table 5-40. MDIO Output Timing Requirements
NO.
Parameter
Value
MIN
1
tc(MDCLK)
Cycle time, MDCLK
7
td(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output
valid
Copyright © 2012, Texas Instruments Incorporated
Unit
MAX
400
-
ns
0
100
ns
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
163
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
www.ti.com
5.13 Universal Serial Bus Controller
5.13.1 Features
This device provides several varities of USB functionality, including:
• One full-speed USB device port compatible with the USB Specification Revision 2.0 and USB
Specification Revision 1.1
• Two USB host ports compatible with USB Specification Revision 2.0, which is based on the OHCI
Specification For USB Release 1.0.
5.13.2 Electrical and Timing Specifications
Table 5-41. Full-Speed USB Interface Timing Requirements (1)
NO.
PRODUCT PREVIEW
(1)
Parameter
MIN
MAX
Unit
FSU20
td(VPL, VML)
Time duration, RCVDPLS and
RCVDMNS low together during
transition
14
ns
FSU21
td(VPH,
Time duration, RCVDPLS and
RCVDMNS high together during
transition
8
ns
VMH)
The capacitive loading is equivalent tp 15 pF
Table 5-42. Full-Speed USB Interface Switching Characteristics (1)
NO.
(1)
MIN
MAX
Unit
FSU15
td(TXENL–DATV)
Parameter
Delay time TXENL active to
TXDPLS valid
0
1.5
ns
FSU16
td(TXENL–SE0V)
Delay time TXENL active to TXSE0
valid
0
1.5
ns
FSU17
ts(DAT–SE0)
Skew between TXDPLS and TXSE0
transition
1.5
ns
FSU18
td(TXENH–DATI)
Delay time TXENL inactive to
TXDPLS invalid
0
1.5
ns
FSU19
td(TXENH–SE0I)
Delay time TXENL inactive to
TXSE0 invalid
0
1.5
ns
The capacitive loading is equivalent tp 15 pF
Transmit
TXENL
FSU15
Receive
FSU18
TXDPLS
FSU16
FSU17
FSU19
TXSE0
FSU20
FSU21
FSU20
FSU21
RCVDPLS
RCVDMNS
RCVDATA
Figure 5-27. Full-Speed USB Interface – Transmit and Receive Modes
164
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
Copyright © 2012, Texas Instruments Incorporated
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
6 Device and Documentation Support
6.1
Device and Development-Support Tool Nomenclature
x
Experimental device that is not necessarily representative of the final device's electrical
specifications and may not use production assembly flow.
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications.
null
Fully-qualified production device.
x and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices have been characterized fully, and the quality and reliability of the device have
been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to
be used.
The figure below illustrates the numbering and symbol nomenclature for the RM46Lx50 devices.
x
RM 4 6 L 8 5 0 ZWT T R
Prefix:
Shipping Options:
x = Not Qualified
Removed when qualified
R = Tape and Reel
RM = Real Time Microcontroller
Temperature Range:
T = -40...+105oC
CPU:
Package Type:
4 = ARM Cortex-R4
PGE = 144 Pin Package
ZWT = 337 BGA Package
Series Number
Architecture:
Frequency:
L = Lockstep
0 = 200MHz
Flash / RAM Size:
Network Interfaces:
4 = 1MB flash, 128kB RAM
8 = 1.25MB flash, 192kB RAM
5 = Ethernet and USB
Figure 6-1. RM46Lx50 Device Numbering Conventions
6.2
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
Hercules™ ARM® Cortex™ Safety Microcontroller Section of the TI E2E Support Community. TI's
Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers.
At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve
problems with fellow engineers.
Device and Documentation Support
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
165
PRODUCT PREVIEW
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of
all devices.Each device has one of three prefixes: X, P, or null (no prefix) (for example, xRM46L852).
These prefixes represent evolutionary stages of product development from engineering prototypes
through fully qualified production devices/tools.
Device development evolutionary flow:
RM46L450
RM46L850
SPNS184 – SEPTEMBER 2012
6.3
www.ti.com
Device Identification
6.3.1
Device Identification Code Register
The device identification code register identifies several aspects of the device including the silicon version.
The details of the device identification code register are shown in Table 6-1. The device identification code
register value for this device is:
• Rev 0 = 0x8046AD05
Figure 6-2. Device ID Bit Allocation Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CP-15
UNIQUE ID
TECH
R-1
R-00000000100011
R-0
15
12
11
2
1
0
TECH
14
13
I/O
VOLT
AGE
PERIPH
PARITY
FLASH ECC
10
9
RAM
ECC
8
7
6
VERSION
5
4
3
1
0
1
R-101
R-0
R-1
R-10
R-1
R-00000
R-1
R-0
R-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
PRODUCT PREVIEW
Table 6-1. Device ID Bit Allocation Register Field Descriptions
Bit
Field
31
CP15
Value
Indicates the presence of coprocessor 15
1
30-17
UNIQUE ID
16-13
TECH
100011
11
10-9
I/O VOLTAGE
Unique device identification number
This bitfield holds a unique number for a dedicated device configuration (die).
PERIPHERAL
PARITY
F021
I/O voltage of the device.
0
I/O are 3.3v
1
Peripheral Parity
Parity on peripheral memories
FLASH ECC
Flash ECC
10
8
CP15 present
Process technology on which the device is manufactured.
0101
12
Description
RAM ECC
Program memory with ECC
Indicates if RAM memory ECC is present.
1
ECC implemented
7-3
REVISION
Revision of the Device.
2-0
101
The platform family ID is always 0b101
6.3.2
Die Identification Registers
The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a
128-bit dieid with the information as shown in Table Table 6-2.
Table 6-2. Die-ID Registers
166
Item
# of Bits
X Coord. on Wafer
8
7..0
Y Coord. on Wafer
8
15..8
Wafer #
6
21..16
Lot #
24
45..22
Reserved
82
127..46
Device and Documentation Support
Bit Location
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
RM46L450
RM46L850
www.ti.com
SPNS184 – SEPTEMBER 2012
7 Mechanical Data
7.1
Thermal Data
Table 7-1 shows the thermal resistance characteristics for the QFP - PGE mechanical package.
Table 7-2 shows the thermal resistance characteristics for the BGA - ZWT mechanical package.
Table 7-1. Thermal Resistance Characteristics
(PGE Package)
PARAMETER
°C / W
RΘJA
45
RΘJC
5
7.2
PARAMETER
°C / W
RΘJA
18.8
RΘJC
7.1
Packaging Information
The following packaging information reflects the most current released data available for the designated
device(s). This data is subject to change without notice and without revision of this document.
Mechanical Data
Copyright © 2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: RM46L450 RM46L850
167
PRODUCT PREVIEW
Table 7-2. Thermal Resistance Characteristics
(ZWT Package)
Functional Safety Disclaimer for Safety Critical Solutions
TI's safety critical solutions, including integrated circuits, software and tools help TI's customers create end products that may be
used in appropriately designed safety-critical applications to comply with functional safety standards or requirements.
Buyers represent and agree that they have all the necessary expertise to design, manage and assure effective system-level
safeguards to anticipate, monitor and control system failures in safety-critical applications. Buyers agree and accept sole
responsibility to meet and comply with all applicable regulatory standards and safety-related requirements concerning their systems
and end-products which use TI's safety-critical applications. Buyers will fully indemnify TI and its representatives against any
damages arising out of the use of TI products in safety-critical applications.
TI integrated circuits are not authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers
of the parties have executed a special agreement specifically governing such use.
PRODUCT PREVIEW
PACKAGE OPTION ADDENDUM
www.ti.com
3-May-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
RM46L450PGET
ACTIVE
LQFP
PGE
144
TBD
Call TI
Call TI
-40 to 105
RM46L450ZWTT
ACTIVE
NFBGA
ZWT
337
TBD
Call TI
Call TI
-40 to 105
RM46L850PGET
ACTIVE
LQFP
PGE
144
TBD
Call TI
Call TI
-40 to 105
RM46L850ZWTT
ACTIVE
NFBGA
ZWT
337
TBD
Call TI
Call TI
-40 to 105
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
Samples
MECHANICAL DATA
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996
PGE (S-PQFP-G144)
PLASTIC QUAD FLATPACK
108
73
109
72
0,27
0,17
0,08 M
0,50
144
0,13 NOM
37
1
36
Gage Plane
17,50 TYP
20,20 SQ
19,80
22,20
SQ
21,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040147 / C 10/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated