WILLAS General Purpose Transistor • RoHS product for packing code suffix "G", Halogen free product for packing code suffix "H" . MMBT3904LT1 • Weight : 0.008g ORDERING INFORMATION Device Marking MMBT3904LT1 Shipping 1AM 3000/Tape & Reel MAXIMUM RATINGS Rating Symbol Value Unit Collector–Emitter Voltage V CEO 40 Vdc Collector–Base Voltage V CBO 60 Vdc Emitter–Base Voltage V EBO 6.0 Vdc 200 mAdc Collector Current — Continuous IC SOT–23 3 COLLECTOR 1 BASE THERMAL CHARACTERISTICS Characteristic Symbol Max Unit PD 225 mW RθJA PD 1.8 556 300 mW/°C °C/W mW RθJA 2.4 417 mW/°C °C/W Total Device Dissipation FR– 5 Board, (1) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Operating Junction and Storage Temperature TJ , Tstg –55 to +150 2 EMITTER °C DEVICE MARKING MMBT3904LT1 = 1AM ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic Symbol Min Max Unit V (BR)CEO 40 — Vdc V (BR)CBO 60 — Vdc V (BR)EBO 6.0 — Vdc Base Cutoff Current I BL — 50 nAdc ( V CE= 30 Vdc, V EB = 3.0 Vdc, ) Collector Cutoff Current I CEX — 50 nAdc OFF CHARACTERISTICS Collector–Emitter Breakdown Voltage(3) (I C = 1.0 mAdc) Collector–Base Breakdown Voltage (I C = 10 µAdc) Emitter–Base Breakdown Voltage (I E = 10 µAdc) ( V CE = 30Vdc, V BE = 3.0Vdc ) 1. FR–5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. 3. Pulse Test: Pulse Width <300 µs, Duty Cycle <2.0%. WILLAS MMBT3904LT1 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Max 40 70 100 60 30 –– –– 300 –– –– –– –– 0.2 0.3 0.65 –– 0.85 0.95 Unit ON CHARACTERISTICS (3) DC Current Gain(1) (I C =0.1 mAdc, V CE =1.0 Vdc) (I C = 1.0 mAdc, V CE = 1.0 Vdc) (I C = 10 mAdc, V CE = 1.0 Vdc) (I C = 50mAdc, V CE = 1.0Vdc) (I C = 100mAdc, V CE =1.0 Vdc) Collector–Emitter Saturation Voltage (I C = 10 mAdc, I B = 1.0 mAdc)(3) (I C = 50 mAdc, I B = 5.0mAdc) Base–Emitter Saturation Voltage(3) (I C = 10 mAdc, I B = 1.0mAdc) (I C = 50mAdc, I B = 5.0mAdc ) hFE –– VCE(sat) Vdc V BE(sat) Vdc SMALL–SIGNAL CHARACTERISTICS Current–Gain — Bandwidth Product (I C = 10mAdc, V CE= 20Vdc, f = 100MHz) Output Capacitance (V CB = 5.0Vdc, I E = 0, f = 1.0 MHz) Input Capacitance (V BE = 0.5Vdc, I C = 0, f = 1.0 MHz) fT 300 –– MHz C obo –– 4.0 pF C ibo –– 8.0 pF Input Impedancen (V CE = 10Vdc, I C = 1.0mAdc, f = 1.0 kHz) h ie 1.0 10 kW h re 0.5 8.0 X10 –4 h fe 100 400 — h oe 1.0 40 NF — 5.0 td tr ts tf — — — — 35 35 200 50 Voltage Feedback Ratio (V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz) Small–Signal Current Gain (V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz) Output Admittance (V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz) Noise Figure (V CE = 5.0 Vdc, I C = 100µAdc, R S = 1.0 k Ω, f = 1.0 kHz) mmhos dB SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time (V CC = 3.0 Vdc,V BE = –0.5Vdc I C = 10 mAdc, I B1 = 1.0mAdc) (V CC = 3.0Vdc, I C = 10 mAdc,I B1 = I B2 = 1.0 mAdc) 3. Pulse Test: Pulse Width <300 µs, Duty Cycle <2.0%. ns ns WILLAS MMBT3904LT1 +3 V +3 V 10 < t 1 < 500 µs t1 DUTY CYCLE = 2% 300 ns 275 +10.9 V +10.9 V DUTY CYCLE = 2% 275 10 k 10 k 0 –0.5 V C S < 4 pF* C S < 4 pF* 1N916 < 1 ns –9.1 < 1 ns * Total shunt capacitance of test jig and connectors Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit TYPICAL TRANSIENT CHARACTERISTICS T J = 25°C T J = 125°C 5000 10 V CC = 40 V I C /I B = 10 3000 7.0 Q, CHARGE (pC) CAPACITANCE (pF) 2000 5.0 C ibo 3.0 2.0 1.0 0.1 C obo 1000 700 500 Q T 300 200 QA 100 70 50 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 40 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 REVERSE BIAS VOLTAGE (VOLTS) I C , COLLECTOR CURRENT (mA) Figure 3. Capacitance Figure 4. Charge Data 200 WILLAS MMBT3904LT1 500 500 I C /I B = 10 300 200 V CC = 40 V 100 70 t r, RISE TIME (ns) 300 200 t r @ V CC = 3.0 V TIME (ns) 50 30 20 40 V 15 V 10 7 5 2.0 V t d @ V OB = 0 V 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 100 70 50 30 20 10 7 5 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 5. Turn–On Time Figure 6. Rise Time 500 200 500 t ’s = t s –1 /8 tf 300 200 I C /I B =20 I C /I B =10 V CC = 40 V I B1 = I B2 300 200 I B1 = I B2 I C /I B = 20 100 70 t f, , FALL TIME (ns) t ’s , STORAGE TIME (ns) I C /I B = 10 I C /I B =20 50 I C /I B =10 30 20 10 7 5 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 100 70 50 30 20 I C /I B = 10 10 7 5 200 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 7. Storage Time Figure 8. Fall Time 200 TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS (V CE = 5.0 Vdc, T A = 25°C, Bandwidth = 1.0 Hz) 14 12 f = 1.0 kHz SOURCE RESISTANCE=200Ω NF, NOISE FIGURE (dB) 10 NF, NOISE FIGURE (dB) 12 I C = 1.0 mA SOURCE RESISTANCE =200Ω 8 I C = 0.5 mA 6 SOURCE RESISTANCE =1.0k I C = 50µA 4 2 SOURCE RESISTANCE=500Ω I C = 100 µA 0 0.1 0.2 0.4 1.0 2.0 4.0 10 20 40 100 I C = 1.0 mA I C = 0.5 mA 10 I C = 50 µA 8 I C = 100 µA 6 4 2 0 0.1 0.2 0.4 1.0 2.0 4.0 10 20 40 f, FREQUENCY (kHz) R S , SOURCE RESISTANCE (kΩ) Figure 9. Figure 10. 100 WILLAS MMBT3904LT1 h PARAMETERS (V CE = 10 Vdc, f = 1.0 kHz, T A = 25°C) 100 hoe , OUTPUT ADMITTANCE (m mhos) 300 hfe, CURRENT 200 100 70 50 20 10 5 2 1 30 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 0.1 0.3 0.5 1.0 2.0 3.0 5.0 I C , COLLECTOR CURRENT (mA) Figure 11. Current Gain Figure 12. Output Admittance 20 10 5.0 2.0 1.0 0.5 0.2 0.1 0.2 I C , COLLECTOR CURRENT (mA) h re , VOLTAGE FEEDBACK RATIO (X 10−4 ) 0.1 hie, INPUT IMPEDANCE (kΩ) 50 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.1 10 10 0.2 0.3 0.5 1.0 2.0 3.0 5.0 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 13. Input Impedance Figure 14. Voltage Feedback Ratio 10 h FE, DC CURRENT GAIN (NORMALIZED) TYPICAL STATIC CHARACTERISTICS 2.0 T J = +125°C 1.0 V CE = 1.0 V +25°C 0.7 –55°C 0.5 0.3 0.2 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 I C , COLLECTOR CURRENT (mA) Figure 15. DC Current Gain 20 30 50 70 100 200 WILLAS V CE, COLLECTOR EMITTER VOLTAGE (VOLTS) MMBT3904LT1 1.0 T J = 25°C 0.8 I C = 1.0 mA 10 mA 30 mA 100 mA 0.6 0.4 0.2 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 I B , BASE CURRENT (mA) Figure 16. Collector Saturation Region 1.0 1.2 T J = 25°C V BE(sat) @ I C /I B =10 0.5 COEFFICIENT(mV/°C) V, VOLTAGE (VOLTS) 1.0 0.8 V BE @ V CE =1.0 V 0.6 0.4 V CE(sat) @ I C /I B =10 0.2 0 1.0 +25°C TO +125°C θ VC FOR V CE(sat) 0 –55°C TO +25°C –0.5 +25°C TO +125°C –1.0 –55°C TO +25°C –1.5 θ VB FOR V BE(sat) –2.0 2.0 3.0 5.0 10 20 50 100 200 0 20 40 60 80 100 120 140 160 180 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 17. “ON” Voltages Figure 18. Temperature Coefficients 200 WILLAS MMBT3904LT1 SOT-23 NOTES: A 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. L 3 1 V 2 B S DIM G A B C D G H J K L S V C D H K J INCHES MIN MAX 0.1102 0.1197 0.0472 0.0551 0.0350 0.0440 0.0150 0.0200 0.0701 0.0807 0.0005 0.0040 0.0034 0.0070 0.0140 0.0285 0.0350 0.0401 0.0830 0.1039 0.0177 0.0236 PIN 1. BASE 2. EMITTER 3. COLLECTOR 0.037 0.95 0.037 0.95 0.079 2.0 0.035 0.9 0.031 0.8 inches mm MILLIMETERS MIN MAX 2.80 3.04 1.20 1.40 0.89 1.11 0.37 0.50 1.78 2.04 0.013 0.100 0.085 0.177 0.35 0.69 0.89 1.02 2.10 2.64 0.45 0.60