WILLAS MMBT3904LT1

WILLAS
General Purpose Transistor
• RoHS product for packing code suffix "G",
Halogen free product for packing code suffix "H" .
MMBT3904LT1
• Weight : 0.008g
ORDERING INFORMATION
Device
Marking
MMBT3904LT1
Shipping
1AM
3000/Tape & Reel
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Voltage
V
CEO
40
Vdc
Collector–Base Voltage
V
CBO
60
Vdc
Emitter–Base Voltage
V
EBO
6.0
Vdc
200
mAdc
Collector Current — Continuous
IC
SOT–23
3
COLLECTOR
1
BASE
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
PD
225
mW
RθJA
PD
1.8
556
300
mW/°C
°C/W
mW
RθJA
2.4
417
mW/°C
°C/W
Total Device Dissipation FR– 5 Board, (1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate, (2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Operating Junction and Storage Temperature
TJ , Tstg
–55 to +150
2
EMITTER
°C
DEVICE MARKING
MMBT3904LT1 = 1AM
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
V (BR)CEO
40
—
Vdc
V (BR)CBO
60
—
Vdc
V (BR)EBO
6.0
—
Vdc
Base Cutoff Current
I BL
—
50
nAdc
( V CE= 30 Vdc, V EB = 3.0 Vdc, )
Collector Cutoff Current
I CEX
—
50
nAdc
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage(3)
(I C = 1.0 mAdc)
Collector–Base Breakdown Voltage
(I C = 10 µAdc)
Emitter–Base Breakdown Voltage
(I E = 10 µAdc)
( V CE = 30Vdc, V BE = 3.0Vdc )
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
3. Pulse Test: Pulse Width <300 µs, Duty Cycle <2.0%.
WILLAS
MMBT3904LT1
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
40
70
100
60
30
––
––
300
––
––
––
––
0.2
0.3
0.65
––
0.85
0.95
Unit
ON CHARACTERISTICS (3)
DC Current Gain(1)
(I C =0.1 mAdc, V CE =1.0 Vdc)
(I C = 1.0 mAdc, V CE = 1.0 Vdc)
(I C = 10 mAdc, V CE = 1.0 Vdc)
(I C = 50mAdc, V CE = 1.0Vdc)
(I C = 100mAdc, V CE =1.0 Vdc)
Collector–Emitter Saturation Voltage
(I C = 10 mAdc, I B = 1.0 mAdc)(3)
(I C = 50 mAdc, I B = 5.0mAdc)
Base–Emitter Saturation Voltage(3)
(I C = 10 mAdc, I B = 1.0mAdc)
(I C = 50mAdc, I B = 5.0mAdc )
hFE
––
VCE(sat)
Vdc
V BE(sat)
Vdc
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(I C = 10mAdc, V CE= 20Vdc, f = 100MHz)
Output Capacitance
(V CB = 5.0Vdc, I E = 0, f = 1.0 MHz)
Input Capacitance
(V BE = 0.5Vdc, I C = 0, f = 1.0 MHz)
fT
300
––
MHz
C obo
––
4.0
pF
C ibo
––
8.0
pF
Input Impedancen
(V CE = 10Vdc, I C = 1.0mAdc, f = 1.0 kHz)
h ie
1.0
10
kW
h re
0.5
8.0
X10 –4
h fe
100
400
—
h oe
1.0
40
NF
—
5.0
td
tr
ts
tf
—
—
—
—
35
35
200
50
Voltage Feedback Ratio
(V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz)
Small–Signal Current Gain
(V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz)
Output Admittance
(V CE = 10 Vdc, I C = 1.0 mAdc, f = 1.0 kHz)
Noise Figure
(V CE = 5.0 Vdc, I C = 100µAdc, R S = 1.0 k Ω, f = 1.0 kHz)
mmhos
dB
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
(V CC = 3.0 Vdc,V BE = –0.5Vdc
I C = 10 mAdc, I B1 = 1.0mAdc)
(V CC = 3.0Vdc,
I C = 10 mAdc,I B1 = I B2 = 1.0 mAdc)
3. Pulse Test: Pulse Width <300 µs, Duty Cycle <2.0%.
ns
ns
WILLAS
MMBT3904LT1
+3 V
+3 V
10 < t 1 < 500 µs
t1
DUTY CYCLE = 2%
300 ns
275
+10.9 V
+10.9 V
DUTY CYCLE = 2%
275
10 k
10 k
0
–0.5 V
C S < 4 pF*
C S < 4 pF*
1N916
< 1 ns
–9.1
< 1 ns
* Total shunt capacitance of test jig and connectors
Figure 1. Delay and Rise Time
Equivalent Test Circuit
Figure 2. Storage and Fall Time
Equivalent Test Circuit
TYPICAL TRANSIENT CHARACTERISTICS
T J = 25°C
T J = 125°C
5000
10
V CC = 40 V
I C /I B = 10
3000
7.0
Q, CHARGE (pC)
CAPACITANCE (pF)
2000
5.0
C ibo
3.0
2.0
1.0
0.1
C obo
1000
700
500
Q
T
300
200
QA
100
70
50
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20 30 40
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
REVERSE BIAS VOLTAGE (VOLTS)
I C , COLLECTOR CURRENT (mA)
Figure 3. Capacitance
Figure 4. Charge Data
200
WILLAS
MMBT3904LT1
500
500
I C /I B = 10
300
200
V CC = 40 V
100
70
t r, RISE TIME (ns)
300
200
t r @ V CC = 3.0 V
TIME (ns)
50
30
20
40 V
15 V
10
7
5
2.0 V
t d @ V OB = 0 V
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
200
100
70
50
30
20
10
7
5
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 5. Turn–On Time
Figure 6. Rise Time
500
200
500
t ’s = t s –1 /8 tf
300
200
I C /I B =20
I C /I B =10
V CC = 40 V
I B1 = I B2
300
200
I B1 = I B2
I C /I B = 20
100
70
t f, , FALL TIME (ns)
t ’s , STORAGE TIME (ns)
I C /I B = 10
I C /I B =20
50
I C /I B =10
30
20
10
7
5
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
100
70
50
30
20
I C /I B = 10
10
7
5
200
1.0
2.0 3.0
5.0 7.0 10
20
30
50
70 100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 7. Storage Time
Figure 8. Fall Time
200
TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(V CE = 5.0 Vdc, T A = 25°C, Bandwidth = 1.0 Hz)
14
12
f = 1.0 kHz
SOURCE RESISTANCE=200Ω
NF, NOISE FIGURE (dB)
10
NF, NOISE FIGURE (dB)
12
I C = 1.0 mA
SOURCE RESISTANCE =200Ω
8
I C = 0.5 mA
6
SOURCE RESISTANCE =1.0k
I C = 50µA
4
2
SOURCE RESISTANCE=500Ω
I C = 100 µA
0
0.1
0.2
0.4
1.0
2.0
4.0
10
20
40
100
I C = 1.0 mA
I C = 0.5 mA
10
I C = 50 µA
8
I C = 100 µA
6
4
2
0
0.1
0.2
0.4
1.0
2.0
4.0
10
20
40
f, FREQUENCY (kHz)
R S , SOURCE RESISTANCE (kΩ)
Figure 9.
Figure 10.
100
WILLAS
MMBT3904LT1
h PARAMETERS
(V CE = 10 Vdc, f = 1.0 kHz, T A = 25°C)
100
hoe , OUTPUT ADMITTANCE (m mhos)
300
hfe, CURRENT
200
100
70
50
20
10
5
2
1
30
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
0.1
0.3
0.5
1.0
2.0
3.0
5.0
I C , COLLECTOR CURRENT (mA)
Figure 11. Current Gain
Figure 12. Output Admittance
20
10
5.0
2.0
1.0
0.5
0.2
0.1
0.2
I C , COLLECTOR CURRENT (mA)
h re , VOLTAGE FEEDBACK RATIO (X 10−4 )
0.1
hie, INPUT IMPEDANCE (kΩ)
50
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.1
10
10
0.2
0.3
0.5
1.0
2.0
3.0
5.0
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 13. Input Impedance
Figure 14. Voltage Feedback Ratio
10
h FE, DC CURRENT GAIN (NORMALIZED)
TYPICAL STATIC CHARACTERISTICS
2.0
T J = +125°C
1.0
V CE = 1.0 V
+25°C
0.7
–55°C
0.5
0.3
0.2
0.1
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
I C , COLLECTOR CURRENT (mA)
Figure 15. DC Current Gain
20
30
50
70
100
200
WILLAS
V CE, COLLECTOR EMITTER VOLTAGE (VOLTS)
MMBT3904LT1
1.0
T J = 25°C
0.8
I C = 1.0 mA
10 mA
30 mA
100 mA
0.6
0.4
0.2
0
0.01
0.02
0.03
0.05
0.07
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
I B , BASE CURRENT (mA)
Figure 16. Collector Saturation Region
1.0
1.2
T J = 25°C
V BE(sat) @ I C /I B =10
0.5
COEFFICIENT(mV/°C)
V, VOLTAGE (VOLTS)
1.0
0.8
V BE @ V CE =1.0 V
0.6
0.4
V CE(sat) @ I C /I B =10
0.2
0
1.0
+25°C TO +125°C
θ VC FOR V CE(sat)
0
–55°C TO +25°C
–0.5
+25°C TO +125°C
–1.0
–55°C TO +25°C
–1.5
θ
VB
FOR V BE(sat)
–2.0
2.0 3.0
5.0
10
20
50
100
200
0
20
40
60
80
100
120
140
160
180
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 17. “ON” Voltages
Figure 18. Temperature Coefficients
200
WILLAS
MMBT3904LT1
SOT-23
NOTES:
A
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
L
3
1
V
2
B S
DIM
G
A
B
C
D
G
H
J
K
L
S
V
C
D
H
K
J
INCHES
MIN
MAX
0.1102
0.1197
0.0472
0.0551
0.0350
0.0440
0.0150
0.0200
0.0701
0.0807
0.0005
0.0040
0.0034
0.0070
0.0140
0.0285
0.0350
0.0401
0.0830
0.1039
0.0177
0.0236
PIN 1. BASE
2. EMITTER
3. COLLECTOR
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
inches
mm
MILLIMETERS
MIN
MAX
2.80
3.04
1.20
1.40
0.89
1.11
0.37
0.50
1.78
2.04
0.013
0.100
0.085
0.177
0.35
0.69
0.89
1.02
2.10
2.64
0.45
0.60